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Abstract

Natural Language Processing applications,
such as Neural Machine Translation, typically
exhibit substantial biases toward sensitive fac-
tors such as gender or race. This degrades
the performance of machine translation and
promotes unfavorable preconceptions. The
current paper examines the issues and chal-
lenges of gender bias within Inuktitut, an under-
represented Indigenous language of Canada,
and discusses how to enhance the performance
of Inuktitut-English NMT; all with the aim of
revitalizing the Indigenous language and con-
sidering an inclusive NMT. Firstly, we per-
formed the detection of gender bias in word
embeddings in Inuktitut and English. Secondly,
we compared the debiasing effect with the tra-
ditional word to vectors and also based on a
dictionary. Then, we adopted a strategy, within
the Inuktitut-English NMT, using the two bilin-
gual debiased word embeddings.

1 Introduction

In recent years, studies on under-represented lan-
guages within NLP and AI, such as the Indigenous
and Endangered languages have drawn a number of
scholars. For example, some researchers have fo-
cused their studies on new conceptualisation of lan-
guage revitalisation (Grenoble and Whaley, 2006;
Pine and Turin, 2017) and others proposed revital-
isation strategies to strengthen communities and
promote commitment (Wiltshire et al., 2022).

This can be considered as a promising factor
for the development of language technologies for
this category of languages. However, the complex
morphology of these under-represented languages,
as well as lack of resources and the presence of
biases, have been regarded as serious barriers.

Gender bias, in particular, may be described as a
prejudice toward one gender over the other. Bias
can vary from the usage of gender defaults to the
association between occupation and gender. Since
language technologies become more widely used

and implemented, their social influence creates is-
sues both intrinsically and extrinsically (Hovy and
Spruit, 2016; Dastin, 2018; Sun et al., 2019).

Many NLP tasks are trained using collected hu-
man language data. These applications are likely to
display biases in various ways such as data, anno-
tation, input representations, models, and research
design (Hovy and Prabhumoy, 2021). To analyze
the context, NLP research was investigated by Sun
et al. (2019). Their research, however, is centred
on monolingual applications, and the underlying
hypothesis and method may not be applicable to
languages other than English. Gender stereotypes
have therefore been defined differently from re-
search to study, depending on the language used
and the elements considered.

As an illustration, Google Translate can translate
the following statement from English to French 1,
and to Inuktitut2 :

(en) The developer disagreed with the designer
because she did not like her design.

(fr) Le développeur n’était pas d’accord avec le
concepteur car elle n’aimait pas son design.

(iu) Sanaji angiqatiqalauttuq titiraujaqtimit pi-
ugilaummagu titiraujaqsimaninga.

We observe gender stereotypes that classified
the first subject "developer" and the second subject
"designer" in the masculine category, despite the
fact that we used she, her to focus on the feminine
gender. Such flaws not only challenge the devel-
opment of NLP applications for under-represented
languages, but they also intensify existing biases.

In Inuktitut, we notice another linguistic problem
in terms of gender, since the language is gender-

1https://translate.google.ca/, consulted on
November 18th, 2022

2https://www.bing.com/translator?from=
pt-pt&to=iu&setlang=be, consulted on November
18th, 2022

https://translate.google.ca/
https://www.bing.com/translator?from=pt-pt&to=iu&setlang=be
https://www.bing.com/translator?from=pt-pt&to=iu&setlang=be


less and does not identify a masculine or feminine
category, compared to European languages.

Actually, Inuktitut people determine rather an-
other concept of animacy, which means whether
a noun is considered animate or inanimate3. For
example, animate nouns are most obviously related
to humans and animals, but other objects, such
as river, tree, are considered inanimate (Hassan,
2015).

Given that word embeddings are often employed
in NLP tasks, understanding how human biases are
absorbed into them might help us understand bias
in NLP models.

This study aims to investigate the gender bias
challenges by assessing current efforts to identify
and minimise gender stereotypes. Furthermore, we
present an empirical case study of Inuktitut-English
NMT, in which Inuktitut is considered as an under-
represented language. Inuktitut is considered as an
Indigenous language of Eastern Canada and also
the official language of the Nunavut government.
The main goal also contributes to the efforts on
the revitalization and preservation of Indigenous
languages.

This paper is organised as follows: Section 2
presents the relevant work. Section 3 introduces
linguistic challenges in Indigenous languages, es-
pecially in Inuktitut. Sections 4 presents several
detection and mitigation methods to deal with gen-
der bias. Sections 5 presents an empirical case
study of the Machine Translation downstream task
on gender bias. The experiments and evaluations
are presented in Sections 6 and 7 with other state-
of-the-art approaches; following an error analysis
and a discussion. Finally, Section 8 gives some con-
clusions and presents future research directions.

2 Related work

Interest in identifying, measuring, and mitigating
gender bias in NLP continues to grow, with recent
research demonstrating how gender differences in-
fluence language technology (Cislak et al., 2018).
Recently, several approaches have been proposed
in order to identify gender bias in NLP. They are
classified in two main approaches, depending on
what they are based on; (1) traditional word embed-
dings or (2) dictionary-based embeddings. In the
following subsections, we give some details on the
state-of-the-art of these two approaches and also

3https://linguisticmaps.tumblr.com/post/169273617313/
grammatical-gender-or-noun-class-categories-new

that of methods for measuring gender bias.

Approach of using traditional embeddings

This technique uses some term list, i.e. occupa-
tion for male and female. The main component of
a word vector consisting of gender defining word
pairs defines gender directions, such as she and
he (Bolukbasi et al., 2016). Besides the use of
monolingual word embeddings, bilingual word em-
beddings are used for gender bias identification
task (Liu et al., 2019), to map with similar words in
related languages in the same task (Alipour et al.,
2022); multilingual word embeddings (Zhao et al.,
2020; Bansal et al., 2021); and contextual word
embeddings with ELMo or BERT (Kurita et al.,
2019; Zhao et al., 2019).

Approach of using dictionary-based
embeddings

Existing debiasing algorithms usually need a pre-
compiled list of seed words to indicate the bias
direction, which is followed by the removal of bi-
ased information. Kaneko and Bollegala (2021)
proposed a method for debiasing pre-trained word
embeddings using dictionaries, without requiring
access to the original training resources or any
knowledge regarding the word embedding algo-
rithms that was used. An et al. (2022) developed
dictionary-guided loss functions, which promote
word embeddings to be comparable to their rela-
tively neutral Dictionary Definition (DD) represen-
tations. The authors proposed DD-GloVe, a train-
time debiasing algorithm to learn word embeddings
by leveraging dictionary definitions.

Besides, Ding et al. (2022) proposed a causal
inference framework to leverage causal structure
among bias and semantic components in order to
remove gender bias.

Methods for measuring gender bias

In terms of measuring gender bias in NLP, the cal-
culation is usually done at the profession level
and at the corpus level for English, and then ap-
plied to other languages (Chaloner and Maldon-
ado, 2019; Fabris et al., 2020; Gezici and Saygin,
2022; Jentzsch and Turan, 2022). Among other
researches, Chen et al. (2021) reported measure-
ments of gender bias in the Wikipedia corpora for
nine languages, such as Chinese, Spanish, English,
Arabic, German, French, Farsi, Urdu, and Wolof,
in the NLP pipeline.



In terms of mitigating gender bias in NLP, es-
pecially in the downstream tasks, i.e. Machine
Translation, the main goal consists of reducing the
reliance on gender stereotypes, and also improving
the translation quality (Sun et al., 2019; Stafanovičs
et al., 2020; Liao, 2021; Chen et al., 2022; Kirtane
and Anand, 2022).

In order to evaluate gender bias in NLP, mul-
tiple methods are proposed such as hard debias
and soft debias (Bolukbasi et al., 2016). Moreover,
Ravfogel et al. (2020) proposed iterative nullspace
projection to evaluate on bias and fairness. Their
proposed algorithm could mitigate bias in word em-
beddings. On the other hand, the WEAT (Word Em-
bedding Association Test) bias detection method is
usually performed for assessing word embedding
bias (Caliskan et al., 2017).

3 Linguistic challenges of Inuktitut

3.1 Morphological segmentation in Inuktitut
The morphology of Indigenous languages in the
Americas is very complex, with the majority being
polysynthetic or agglutinative (Gasser, 2011; Littell
et al., 2018; Joanis et al., 2020; Le and Sadat, 2020,
2022b).

Morphology segmentation is important in the
learning of these languages. In this paper, we focus
on Inuktitut, the most popular polysynthetic Indige-
nous language in Northern Canada, in the context
of NLP research.

Polysynthetic languages, in principle, have
lengthy sentence-words and a regular agglutina-
tive and strongly suffixing morphology, which
causes words to be exceedingly long and potentially
unique (Lowe, 1985; Mithun, 2015). Besides, Inuk-
titut’s morphophonemics are quite complicated.

In the following example, in Nunavut Inuktitut
(Lowe, 1985), we observe no gender, only one
long word corresponding to one sentence in English
translation, and the verb root in the first position:

(iu) tusaatsiarunnanngittualuuJUNGA

(en) I can’t hear very well.

where tusaa means to hear, and junga means I.
We may highlight two relevant works in terms

of developing a morphological segmenter for Inuk-
titut: (1) Uqailaut morphological analyzer (Farley,
2012), and (2) an Inuktitut Neural Network-based
(NN) word segmenter (Le and Sadat, 2020).

The Uqailaut tool used a Finite-State Transducer-
based method by combining several techniques

such as grammar rules, linguistic knowledge and
heuristics; while the NN word segmenter is trained
using a set of rich features and by leveraging
bicharacter-based and word-based pretrained em-
beddings from large-scale raw corpora. When
used to perform word segmentation along with pre-
trained embeddings, NN-based techniques have
demonstrated their usefulness. Thus, we adopted
the second segmentation approach in order to pre-
pare the experimental training data in Inuktitut.

4 Word embeddings for debiasing

Inspired by (Hansal et al., 2022) to analyse and
mitigate bias in word embeddings, we adopted the
three following methods to measure bias in word
embeddings:

Hard debiasing (Bolukbasi et al., 2016)

The hard debiasing method aims to detect and re-
duce bias in word embeddings. Bolukbasi et al.
(2016) presented a post-processing strategy for pro-
jecting gender-neutral words into a subspace or-
thogonal to the gender dimension specified by a
list of gender-definitional terms (e.g., she, her, him,
actor, driver), as cited in (Kaneko and Bollegala,
2021).

In particularly, it needs a set of gender-specific
word pairs. Then the gender direction is computed
as the difference vectors between the embeddings
of the corresponding gender-definitional words.

Sent-Debias (Liang et al., 2020)

This method consists of the main following pro-
cesses: (1) define bias attributes as a set of relevant
words; (2) transform sentence representations us-
ing bias attributes; (3) compute bias subspace; and
(4) project onto bias subspace, then remove biased
sentences. As a result, the output is the general
sentences debiased.

The Sent-Debias algorithm1 is described below.

Dictionary-based debiasing (Kaneko and
Bollegala, 2021)

This method aims to debias pretrained word em-
beddings using a monolingual dictionary. It does
not require the bias attributes to be annotated in the
word pair lists or any prior knowledge.

Given a dictionary D containing the definition,
and n-dimensional pretrained word embedding, the
debiasing process is considered as the task of learn-
ing an encoder, E(w; θe), such that w desribes all



Algorithm 1 Sent-Debias algorithm (Liang et al.,
2020).

1: To initialize pretrained sentence encoder Mθ

2: To define bias attributes
3: To obtain words D indicative of bias attributes
4: S = Contextualize(D) ▷ words into

sentences
5: for each element in D do
6: To get sentence representations
7: end for
8: To compute bias subspace V
9: for each new sentence representation h do

10: To project onto bias subspace hV
11: To subtract the projection ĥ = h− hV
12: end for

words in the vocabulary, that is trained to generate
a debiased version of an input embedding. A loss
function is computed in order to optimize the learn-
ing process. This computation is based both on the
pre-trained word embeddings and on the unbiased
dictionary definition of the term.

A decoder Dd allows to compute the encoded
version of w, E(w; θe), using a parameter of θd
and an objective function Jd(w), as described in
the following equation 1:

Jd(w) = ∥s(w)−Dd(E(w; θe); θd)∥22 (1)

where s(w) represents the dictionary-definitional
vectors.

5 Methodology

5.1 Machine Translation downstream task

The purpose of this paper aims to investigate
the impact of pretrained debiased word embed-
dings into an Inuktitut-English NMT system based
on the Transformer encoder-decoder architecture
(Vaswani et al., 2017).

5.2 The framework

Inspired by (Font and Costa-Jussa, 2019), we built
an NMT framework by taking advantage of pre-
trained debiased word embeddings, and also source-
target alignment information as an additional fea-
ture. Figure1 shows the architecture of the pro-
posed architecture.

First, the pretrained debiased word embeddings
are used to initialize the embedding layers of the
NMT model, both in the encoder and the decoder.

Figure 1: Architecture of our framework: Deep
Learning-based debiased NMT for Indigenous language,
with pretrained debiased word-based embedding for
both source and target, combining with positional em-
bedding.

We deal with the morphology complexity by ap-
plying the morpheme segmentation for Inuktitut
(Le and Sadat, 2020, 2022a). Second, source-target
alignment information are incorporated in the train-
ing step. We apply an unsupervised word aligner
(Dyer et al., 2013) to generate symmetrical source-
target alignments. Third, we inject in the decoding,
the source-target morphological information, such
as a bilingual lexicon. We apply lexicon extrac-
tor from Moses (Koehn et al., 2007) to prepare a
bilingual lexical shortlist which is passed to the
decoder.

We hypothesize that an ensemble of all the
models of different types and architectures, with
weights, could lead to an improved NMT perfor-
mance. The following equation 2 of the objective
function f(x) helps in weighting all possible NMT
models.

f(x) = αModel1 + βModel2 + θModel3 (2)

where, α+ β + θ = 1.

6 Evaluations

6.1 Data preparation

We performed experiments on gender bias miti-
gation in Inuktitut. The Nunavut Hansard Inukti-
tut–English Parallel Corpus 3.0 (Joanis et al., 2020)
is used to train and to evaluate our proposal.

As described in Table 1, the Inuktitut-English
corpus contains 1,293,348 sentences pairs, 5,433
sentences pairs and 6,139 sentences pairs for the
training, development and testing sets, respectively.
Regarding the pretraining of word embeddings, we
applied a setting of the hyper-parameters, as de-
scribed in Table 2, and used fastText toolkit to



pretrain them, as proposed by Bojanowski et al.
(2017).

Dataset Train set Dev set Test set
Inuktitut (iu) 1,293,348 5,433 6,139
English (en) 1,293,348 5,433 6,139

Table 1: Statistics of Nunavut Hansard for Inuktitut-
English (Joanis et al., 2020).

Hyper-parameters
Epochs = 50
Dimension size = 300
Window size = 2
Alpha value = 0.03
Loss function = softmax

Table 2: Setting of the hyper-parameters for embedding
pretraining.

6.2 Neural Machine Translation
Our experiments on NMT using the Transformer-
based architecture (Vaswani et al., 2017) are de-
scribed as follows:

(1) System 1: Baseline of Joanis et al. (2020)
without pretrained debiased embeddings.

(2) System 2: Transformer-based model with only
word alignment information as additional fea-
ture.

(3) System 3: Transformer-based model with only
pretrained debiased embeddings.

(4) System 4: Transformer-based model with de-
biased embeddings and word alignment infor-
mation as additional feature.

The configuration of the experimental environ-
ment is described in Table 3 and the relevant hyper-
parameters of the NMT models are shown in Table
4.

Environment Configuration
Operating platform CUDA 11
Operating System Ubuntu
Memory 32 GB
multi-GPU 6 cores
Python version python 3.8
Tensorflow version v2.10.0

Table 3: Configuration of the experimental environment

Hyper-parameter Value
Maximum sentence length 128
Batch size 64
Transformer layers 12
Transformer hidden layers 768
Learning rate 0.0001
Epoch 50
Optimizer adam

Table 4: Setting of hyper-parameters for NMT models

7 Evaluations

7.1 Results on bias mitigation

The WEAT evaluation is performed on the altered
terms list which is translated into Inuktitut. We ob-
serve strong impact sizes across all standard word
embeddings and several tests are significant at vari-
ous levels. The WEAT results shows impact sizes
on gendered tests, where a large impact size on de-
biased word embeddings is observed from the orig-
inal models. Moreover, our evaluations show that
the dictionary-based debiasing method outperforms
other methods, as shown in Table 5. It effectively
removes unfair biases encoded in pre-trained word
embeddings, while retaining meaningful semantics.

Method Debiased WEAT
Baseline 0.034

Hard debiasing 0.385
Sent debiasing 0.377

Dictionary-based debiasing 0.527

Table 5: The evaluation of WEAT using fastText toolkit,
with significance of p-value < 0.05, against the WEAT
baseline value = 0.034.

As Inuktitut is a complex-gender language, using
pronouns might be challenging. Common names
are utilised for males and females rather than par-
ticularly gendered terminology to identify the male
and female groups (Goldfarb-Tarrant et al., 2020).
We performed three tests to examine male and fe-
male name correlations to job occupations and fam-
ily, art words and science.

In accordance with the projection in Figure 2,
we notice that the significant association between
the groups is no longer present in the tests. The
experimental results show that the classes are no
longer sequentially separated. This behaviour dif-
fers significantly from the sent debias and hard



debias approaches, which have been found to pre-
serve a significant amount of the closeness between
female and male-biased vectors.

Figure 2: Projection with t-distributed stochastic neigh-
bor embedding about different clusters between female
and male biased states, at t=0 for original state and t=35
for projected state.

7.2 Results on Neural Machine Translation
We used automatic evaluation metrics such as
SacreBLEU (Post, 2018) 4 for BiLingual Evalu-
ation Understudy (BLEU) (Papineni et al., 2002),
chrF++ (Popović, 2015) 5 for calculating character
n-gram F-score, and translation error rate (TER).

As shown in Table 6, in the Inuktitut-English
direction, systems 1, 2, and 4 outperformed the
base system, with significant gains from +0.93
to +3.03 points BLEU. In the other hand, Table
7, which related to the English-Inuktitut direction,
shows the best scores for System 4, with 20.5, 48,
and 62.3 in terms of BLEU, chrF++, and 62.3 re-
spectively. In both directions, we notice negative
impacts on the use of debiased word embedding
while injecting into NMT models. Especially, the
system 3 (Table 6), with only pretrained debiased
word embeddings for initialization phase, obtained
32.76 BLEU point against 35.00 BLEU point of
the baseline, so a decrease of −2.24 point.

4https://github.com/mjpost/sacrebleu
5https://github.com/m-popovic/chrF

Experiment BLEU chrF++ TER
System 1 (base) 35.00 63.1 53.3
System 2 35.93 64.2 53.2
System 3 32.76 55.3 56.3
System 4 36.61 67.5 52.6

Table 6: Performances on Inuktitut-English NMT in
terms of lowercase word BLEU score.

Experiment BLEU chrF++ TER
System 1 16.5 30.5 70.4
System 2 19.30 42.2 66.5
System 3 18.34 34.6 68.1
System 4 20.5 48.0 62.3

Table 7: Performances on English-Inuktitut NMT in
terms of lowercase word BLEU score. We consider the
system 1 as baseline.

On the other hand, with an ensemble of others
models, combining both the alignment feature and
debiased word embeddings, BLEU score has been
improved, in all the systems, with 1.61 BLEU more,
and 4 BLEU compared to the baseline, in the di-
rection of Inuktitut-English and in the direction of
English-Inuktitut, respectively.

Comparing the evaluation at the n-gram charac-
ter level (Tables 6 and 7), we notice a similarity be-
tween the models, with regard to the chrF++ scores,
that seems slightly more efficient than the baseline,
except for System 3 that shows a drop of 0.55 point
(Tables 6).

Additionally, in terms of translation error rate
(TER) reductions, all systems performed better
than the baseline, while applying alignment infor-
mation as an additional feature, or combining both
alignment information and pre-trained debiased
embeddings. In the next subsection, we discuss
error analysis and all possible causes.

7.3 Error analysis and discussion

Identifying the true gender direction in word em-
beddings is always challenging. We found a signifi-
cant effect in traditional embeddings, which can be
considered positive if the embeddings used ensure
a more gender-neutral approach.

In addition, we have noticed, in the context of
gender bias, a drawback which consists in the de-
pendence of all 3 debiasing methods presented, like
other machine learning approaches for that matter,
on the data provided to it.This assumes that the
training data is large enough and sampled from the

https://github.com/mjpost/sacrebleu
https://github.com/m-popovic/chrF


same distribution as the test data.
Another finding we made is that a large omis-

sion of masculine pronouns (less) is present in
the MT outputs, compared to feminine pronouns
(many). Alternatively, we notice that Inuktitut is
a non-gendered language as pronouns might be
dropped in translation outputs. This phenomenon
makes the issue of gender or racial bias more dif-
ficult to manage in NMT systems in conjunction
with underrepresented polysynthetic languages.

Statistics of errors found in accordance with the
pronouns including he, him, his, she, her are shown
in Tables 8 and 9 below.

For the NMT downstream task, we observed
a decrease in the performance when initializing
embedding layers with pretrained debiased em-
beddings. The plausible causes are related to the
limited vocabulary size of pretrained embeddings.
In contrast, using an ensemble of all the models
outperformed all other NMT systems, with 36.61
BLEU score, and could have a better coverage of
vocabulary for the model training.

Exp he him his she her
System 1 46.79 26.32 62.04 13.89 16.13
System 2 41.28 15.79 62.04 19.44 14.52
System 3 45.87 42.11 58.33 22.22 11.29
System 4 48.62 31.58 59.26 8.33 14.52

Table 8: Precision on Inuktitut-English NMT in terms
of pronouns found in accordance with {he, him, his, she,
her}.

Exp he him his she her
System 1 27.52 15.79 35.19 13.89 9.68
System 2 45.87 42.11 59.26 19.44 14.52
System 3 41.28 26.32 58.33 22.22 11.29
System 4 48.62 47.37 59.26 22.22 30.65

Table 9: Precision on English-Inuktitut NMT in terms
of pronouns found in accordance with {he, him, his, she,
her}.

8 Conclusion and perspectives

This research reveals that gender prejudice occurs
in Inuktitut as in other languages. In this empir-
ical study, we demonstrated how methodologies
used to measure and minimise biases in English
embeddings can be adapted to Inuktitut embed-
dings by accurately translating the data and tak-
ing into consideration the language’s distinctive
features. Furthermore, in Inuktitut-English NMT
framework, we suggested a technique that com-

bines bilingual debiased word embeddings with
source-target alignment information.

As a future direction, we intend to examine other
types of biases in Inuktitut, in close collaboration
and in partnership with the indigenous community.
Our primary goal is to help revitalize and preserve
Indigenous languages in Canada through the use
of NLP and machine learning technology and thus
contribute to the effort of an inclusive AI. We hope
that these preliminary results will inspire future
studies on Indigenous and Endangered languages.
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