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1 Abstract

This paper presents a workflow framework
of computational tools to be used in the
process of forced alignment and analysis
for endangered languages. We introduce a
roadmap  which  uses  established
methodologies in the area of data
processing and analysis, with a strong focus
on socio-phonetic studies. The tools are
organized into practical stages that can be
followed systematically by researchers of
under-resourced languages. We have
implemented these tools in Acquaviva
Collecroce, an endangered language from
southern  Italy and  spoken by
approximately 600 speakers. Alongside the
tools, we also give suggestions based on
our experience, which can contribute to the
preservation and  revitalization  of
endangered languages.
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21 Introduction

22 The use of computational tools in endangered
23 languages has proven critical for the revitalization
24 and preservation of languages. There is an increase
25 interest in using latest technologies to strengthen
26 our understanding and processing of minority
27 languages (Adams et al., 2018; Adams et al., 2020;
28 Michaud et al., 2018; Levow, 2019; Levow et al.,
20 2021), including speech to text (Foley et al., 2019;
s Michaud et al., 2018; Mitra, 2016), speech
31 recognition (Amith et al., 2021; Foley et al., 2018;
s> Hjortnaes et al., 2020; Matsuura et al., 2020; Shi et
33 al., 2021; Thai et al., 2020), phonemic transcription
s« (Adams et al., 2017; Amith and Castillo Garcia,
35 2020), and forced alignment (Cavar et al., 2016;
36 Coto-Solano, 2017; Gonzalez et al., 2018). The
s7 field of Automatic Speech Recognition (ASR) has

ss strongly influenced this endeavor
3o (Prud’hommeaux et al.,, 2021; Jimerson and
20 Prud’hommeaux, 2018; Jimerson et al., 2018). One
a1 of the greatest contributions is that advanced
s> technologies, which had traditionally been
23 available only to major languages, can now be
22 accessed by less resourced languages.

ss  The implementation of computational
s techniques in language documentation has
a7 established a toolkit of skills that need to be met to
a3 access these technologies, which shows that the
a0 tasks carried out in these processes are complex in
so nature.  These tasks are generally done by
s1 computational linguists with the required expertise,
s> who can decide on what tools and techniques are
s3 used in any given project. In deciding what to
s« choose, there are many options to select from, and
ss the decision on the workflow depends on the
ss resources available. Since there is no ultimate or
s7 perfect process, the decisions must be based on
ss what works best, as long as the goal of language
so documentation is achieved. Also, given the
s increasing effectiveness of current algorithms
¢t developed, the documentation of endangered
62 languages is in a crucial moment where the work
s done by computational linguistics can be
s« maximized to its best potential. However, there is
es still more work needed to efficiently link long-

es established linguistic analysis traditions and
s7 advances in data processing.
¢ Once the data is processed through

so computational techniques, the task is then to
70 identify what are the best approaches for
71 endangered languages to make the leap towards
72 systematic analysis of the data available. One area
73 that is a suitable test ground for this transition
72 between computational outputs and linguistic
75 analysis is the field of sociolinguistics. The



76 relevance of sociolinguistics for endangered
77 languages is that languages are better analyzed in
7s their social context and not just as isolated entities.
79 Sociolinguistics then helps interpret language
so patterns related to factors such as gender, age,
ethnicity, for example. Therefore, an important
contribution from computational linguists to
endangered languages is to develop technologies
that take computational outputs and allow
researchers to analyze linguistic patterns following
robust methodologies standard in the respective
fields, all this, in relatively short periods of time. In
this paper, we focus on technologies that are
so pertinent to the analysis of speech data, with a
focus on socio-phonetics.

8

=

82

8

%]

84

8

a

8

o

8

N

88

920

1.1  Speech Technologies and Data Size

91

One of the main challenges faced by languages
with small amounts of speech data, is that the
technologies available tend to require a minimum
threshold of speech. This threshold is generally
way more than what the vast majority of world
languages cann afford to have. The reasoning
behind this is that the more data available, the more
robust the acoustic models are to accurately
identify speech boundaries based on the phonetic
features extracted. It does not mean that under-
resourced languages cannot be processed, but
rather that the results are not as reliable as those
having more data available for training and testing
their models. However, we argue that even smaller
languages can be maximized by using all available
material, and the results are still of great value for
language researchers.

In this sense, computational tools used in under-
resourced languages are not the means on their
own, but rather they are the facilitators for
quantifying speech data and identifying language
113 patterns not available otherwise. It will then be the
role of the linguist to use all the outputs and look at
areas of interest, such as vowel spaces, allophonic
variation, morpheme sequence occurrence,
intonation, for example. In this sense, it is
important to make the difference between what a
computational linguist wants and what the field
researcher needs. A clear example is about error
accuracy. (Semi-) automatic computational models
evaluate their performance based on their accuracy
123 (or error rate). Higher accuracy is always desired,
124 but even lower accuracy models can make a big
125 difference in a researcher working with an under-
126 resourced language.
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127 1.2

128

Phonetic Analysis
Languages

and Endangered

120 Among the areas of linguistic interest is the
120 acoustic/phonetic  study of under-resourced
131 languages, and forced alignment has played a
132 crucial role in the way (and amount of data)
122 phoneticians analyze smaller languages. The
124 forced alignment process (See more details in
135 Section 4) takes audio files and their corresponding
136 time-stamped  transcriptions, generally at the
137 sentence level, and segments the data into the
138 corresponding individual phonological segment
130 (e.g. vowels and consonants). This tool has sped
120 up processes that would otherwise take more time,
121 by exponential differences. This is especially
meaningful when language researchers are
working against the clock in languages that
122 unfortunately do not have much time to be
analysed. Forced alignment has allowed smaller
languages to be fully analyzed as it has been done
in major languages. The way it works by current
workflows is by taking the automatically aligned
segments and extracting the relevant acoustic
features, such as duration, formants, centre of
gravity, to name a few. Sociophonetic research has
exploited this by extracting acoustic features and
finding correlations with social and geographic
factors, especially in the area of vowel spaces.

142

2 Aim of Paper

In this paper, we combine these overlapping fields
and develop an efficient roadmap that can be
implemented in endangered languages with at least
time-stamped orthographic transcriptions. The
nature of the paper is then a hybrid one. On the one
hand, it proposes a methodological approach brings
together different techniques, and on the other
hand, it provides resource materials that can be
freely used under open-source frameworks. This
roadmap includes the testing and implementation
of a socio-phonetic computational workflow, from
data processing to data analysis. All this is
developed following best practices in the field of
sociolinguistics and creates a single toolkit that can
be adapted to any language.

The algorithms and instructions are placed on a
GitHub repository for public use. The final output
is an ordered set of code files and instructions. It is
our intention to bring more systematicity and data
175 normalization that combines the power of
176 computational tools and linguistic analysis
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177 traditions. We believe that the implications can be
17s many-fold. First, tools like these can shed more
179 light into language patterns never observed before.
180 Second, it makes data from under-resourced
1e1 languages comparable with other languages,
1s2 including major ones. Finally, it equips a language
182 community to have the starting tools for more
18« advanced technologies, such as ASR and other
185 (semi)-automated  processes. All  this will
186 contribute to the ultimate goal of this type of work:
1e7 language  documentation, conservation, and
188 Tevitalization.

19 3 Methodology
190 3.1

191

Forced Alignment and Endangered
Languages

Forced alignment is strongly used in endangered
193 languages. In initial approaches, when aligning a
19a new language, researchers ran pre-existing
195 acoustic models from a similar language for the
196 new language (Coto-Solano, 2017). Though
107 effective to some extent, the main flaw of this
19 approach is that there are always features in a
190 language that are not accurately captured by
200 another language acoustic model. One of the main
201 motivations for this approach was that new
202 languages did not have the same amount of data,
203 thus having less accurate alignments. In this sense,
204 data size was a limitation in the forced alignment
205 task. Then, with the emergence of more powerful
206 data processing techniques such as neural network
207 and deep learning, newer approaches became more
208 robust and more efficient at dealing with lower
200 amount of data (McAuliffe et al., 2017), to a point,
210 that a threshold was reached, in which the adding
211 more data would not significantly improve the
212 acoustic model (Fromont and Watson, 2016). This
213 opened the door to training and aligning new
214 languages without the need for huge amounts of
215 data. As expected, minority and endangered
216 languages greatly benefited from these advances
217 (Gonzalez et al., 2018; Gupta and Boulianne, 2020;
218 Hildebrandt, 2017).

Across time, the processes became more
220 streamlined to such a point that forced aligning a
221 new language from scratch is more efficient and
222 accurate than using a pre-trained language model.
223 If compared to ten years ago, the process is simpler
224 but without compromising accuracy. Despite these
225 advances, there are still many stages to simplify the
226 process of forced alignment and its practical

192

219

227 applications. In this paper, we propose a more
228 succinct yet efficient workflow of data alignment
220 and analysis. Since the paper has a methodological
230 approach, which can be followed step by step, we
231 present the tools and solutions in sections.

222 3.2 Data Selection

233 The first task is to identify the language to be
234 forced aligned. A good source available for use is
235 Pangloss (Michailovsky et al., 2014), which is an
23 open archive created to help in the preservation of
27 world  languages, with a strong focus on
238 endangered and minority languages. Currently, it
239 hosts over 170 languages with more than 700 hours
220 of recordings. An approximate of half of the
241 audiovisual material (video and audio) has
222 annotated files. We then chose to work with Na-
243 NaSu (Molise Slavic) (Breu, 2020), which is a
224 micro-language with three dialects, including
225 Acquaviva Collecroce. The material available for
246 this dialect comes from a village called Kruc,
247 within the province of Campobasso, in the Molise
248 region of southern Italy (See Figure 1 for
220 reference). The dialect has been documented by
250 Adamou and Breu (2013) and Breu (2017).

251

Italy

Krué¢

252

Figure 1: Location of Kru¢, where the Acquaviva
Collecroce is found.

253
254
255
256 The language material available on the website was
257 a compilation of 27 audio recordings with their
253 corresponding transcription files. The data was
250 recorded in 2010 by Walter Breu, and the
260 transcriptions  have three main layers of
261 information. The first one is a time-stamped
262 transcription at the utterance level (described in the
263 original ~ documentation  as  orthographic,
264 Tepresenting a broad phonological transcription).
265 This time-stamp information is the one that is



266 relevant for the current study, because it is used to
267 create the TextGrids explained in section 4.2.

The second layer was a phonetic transcription
269 of all the words, which is not used in the current
270 study. The motivation is to use the broad
271 phonological transcription, which forms the basis
272 for the forced-alignment process, as explained
273 below. The third layer available includes
274 morphemic breakdowns. Even though these are not
as used in the forced-alignment process, this
276 information is relevant for the analysis of vowels,
277 which can help identify whether there are morpho-
s syntactic effects of vowel formants, for example,
running a model that measures whether there are
o differences between vowels that appear in stems or
+ vowels that appear in affixes. This is a good
example on how forced-alignment tools can help
s contribute to understand phonetic/phonological
« features and their relationship with other features in
285 the language. The final annotation layer included
2g6 translation into Italian and German. For the
27 purposes of this study, they were not included in
288 any stage of the process.
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289 3.3 Speakers

200 The Acquaviva Collecroce dialect is estimated to
291 have just over 600 speakers as for 2019, according
202 to the Italian National Institute of Statistics
203 (ISTAT). There were over 2200 speakers at the
204 beginning of 1950s, with sharp decreases since
295 then due to migration. The speakers in the corpus
206 were two females and four males, born between
207 1932 and 1960 (See Table 1).

Recordings

Speech
Duration
(Min)

Gender Duration

(Min)

Speaker

16.3 15.6
Male 10.2 9.5
Female 0.7 0.5
Male 35 2.9
Male 9.9 9.6
Female 13.2 11.7

Table 1: Speakers in the corpus with their
corresponding durations.

298

299 Since this is a first analysis on this dataset, we have
s00 focused on Gender to identify socio-phonetic
w01 differences. Age is another relevant factor that can
w202 be analysed to understand phonetic differences.
s0s This can be done in further stages of the research.

s04 Speakers were recorded narrating stories, which is
205 @ good source of naturalistic data. This is a relevant
characteristic in this study, since it is the type of
data that is generally available for endangered
languages and much suitable for socio-phonetic
analyses, as compared to more controlled data such
as wordlists and isolated tokens (e.g. Hay and
Foulkes, 2016; Grama et al., 2020; Catherine E.
Travis and Ghina, 2021).

3.4 Data format

The structure of the transcription files varies
according to the format given by corpus
developers. In the current case, the transcription
format is available as XML files (See Figure 2 for
reference). In the original recordings there were at
least two speakers per file: one interviewer and a
speaker, but the transcriptions provided included
the transcription for the speakers only.

4.5
5 na kudak ka gledaju nu ranjatu utra nu..</FORM
C’2 un bambino e un cane che guardano una rana dentro una..

F

Figljre 2: XML file from the source file.

The transcription files were processed in R, using a
script developed by the main author. The script first
identifies the sentence ID (<S id=“s1”> in
Figure 2), under which three dependent sections are
extracted: the start time, end time (<AUDIO
start="0.0000" end="4.5018"/>), and the
transcribed sentence (KFORM>Je jena dita ed
na kucak ka gledaju nu ranjatu utra
nu..</FORM>). The audio files were available in
s MP3 format, sampled with 44.1 kHz. They had
different durations, with the shortest file being 38
seconds and the largest 7.5 minutes, and the mean
duration being 2 minutes in length.
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19 4 Forced-Alignment Process

sa0 The forced-alignment process involves four main
stages, presented in Figure 3. Each stage is
expanded in the section below. One important
observation for these stages is that investing time
in the pre-processing of the files would ensure

aas better outputs and dealing with less bugs in future
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aa6 stages. We present some recommendations in each
aa7 section.

348

Forced
Alignment

Pronunciation
Dictionary

Aligned
Output
Processing

* Feature
Extraction

Input Files
* Audio
 Transcription * Train

* Align

* G2P Mapping

349

ss0 Figure 3: Main stages in the forced alignment process.

4.1

351 Pronunciation Dictionary from Input

Files

352

ss53 First, a pronunciation dictionary must be created.
s5¢ In some approaches, these dictionaries are created
355 from a lexicon file available for the language.
sss However, for languages without curated lexicon
s57 files, pronunciation dictionaries can be created
sss from the orthographic transcriptions. In this study,
350 we took the available raw transcription of the data
se0 and then tokenized the transcriptions to have
s61 unique individual words.

These are then used to create the g2p (grapheme
s6s to phoneme) mapping. The amount of processing
se« for creating this dictionary varies from language to
a5 language. For example, in Spanish there is a closer
a6 letter to phoneme mapping, where there is an
se7 almost full mapping between orthographic letters
ses and phonemes, except for silent ‘h’ and digraphs
s (1, “ch’) (Gonzalez, 2022). This is different from
a0 English, where the mapping cannot always follow
a7 the orthographic spelling. As an example, the
a2 orthographic letter “a’ can have different phonemic
a73 representations, e.g. /er/, /a/, /a:/. The latter case
a2 would present a more challenging task for the
a7s mapping. For the case of Acquaviva Collecroce,
a6 the transcriptions done by the original creators was
s7a  broad phonological representation. This
ars facilitated the g2p task and we decided to split
379 words into individual letters, which are then
as0 considered the phonemes for each entry, as shown
a1 in Figure 4 below.

362

382

b

1 balize
2 balun b
3 balunic¢ b
4 balunica
5 bane b
6 banu b
/ baratol b
8 baStunam
bastunic
Figure 4: Sample entries for the pronunciation
dictionary.

QY C DY C C -

U 3S SU0

Q

383 I
384

385

ass In this case, the g2p mapping had a one-to-one
correspondence. However, this is not always that
case. In cases where no such correspondence exists
in the transcription file, as in the Spanish example,
the recommendation is to assign a phonemic
symbol that does not overlap with other symbols.
This must be done a priori before creating the
dictionary so in the final product each grapheme or
grapheme sequence is accounted for.
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a5 4.2 Transcriptions in TextGrid Format

The first processing of the text involves text
normalization, which includes identifying spelling
mistakes, non-speech annotations (e.g. notes from
the transcribers, alternative pronunciations, etc.).
This ensures that all entries can be mapped to the
same word and not having multiple forms for the
same entry. Another step here is to identify whether
there are special characters that should not be
included in the text, such as parenthesis, brackets,
and slashes. Once the text has been normalized, the
next step is to convert the text into a time-stamped
file, since available forced aligners read
transcriptions with time-stamped formats.

An R script was developed to create
transcription files in TextGrid files, a format used
in Praat (Boersma and Weenink, 2022). This format
is widely used in linguistics, with strong emphasis
for acoustic phonetic analysis. TextGrids are files
containing time-stamped texts. The content is
divided into tiers, where the text can be split into
smaller sections with their respective boundaries.
This is very useful when researchers need to break
the content into different categories, such as
identifying different speakers or annotating
different linguistic layers, such as words, segments,
features, for example. A sample TextGrid file from
our data is shown in Figure 5, together with its
corresponding audio file represented in the
24 waveform above.

423

425

kumendzaju hot semaj ve¢a naduga

w1 | a ju ne nahodaju

3.821526
Visible part 3.867148 seconds
Total duration 4.477440 seconds

1610292
426

427 Figure 5: Sample TextGrid and audio files, with the
transcription tier.

53.258874 57.126022

N

428
429
230 The figure shows the transcription for one speaker.
a31 The blue lines represent the time boundaries which



232 correlate with the time information from the audio
«33 file. Based on our experience, we have identified
234 that the size of the intervals has an impact on the
235 output of the forced aligned file.

Since aligners analyze the acoustic signal as
237 linear in time, if there are alignment errors at the
a3 beginning of an interval, they will likely roll the
error over the following segment boundaries in the
same interval. For example, if the aligner marks the
beginning of a stop sound earlier than the actual
start (e.g., due to a spike in the acoustic signal
caused by a cough or a mouse click), then this will
also influence where the boundaries of the
following segments are placed. If the error is at the
start of a long interval, then it will most likely
447 render the full interval inaccurate. However, if the
error takes place at the beginning of a shorter
interval, less data will be compromised, because
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448

449

ag2 transcription. This is especially important when
a3 examining features such as intonation and prosodic
as4 patterns, where whole utterances would be relevant
a5 for analysis and not just words and segments on
a6 their own. The output would then be as shown in
a7 Figure 6 below.

488

mi para ka ovi dite ju fiskulija
2 mi pana ka | ovi dite fiskulija

‘, » m" K u‘! I‘tu x”s "’H

Figure 6: TextGrid with combined tiers: original
transcription (Tier 1), and aligned words (Tier 2) and
phonemes (Tier 3).
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290 As with any automatic process, a sanity check is

ss0 the acoustic mapping restarts at the beginning of «s always important to assess the accuracy of the

each interval. Thus, we recommend the intervals
are closely mapped with natural pauses and speech

45
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452

453 boundaries. This will also facilitate the mapping of «: contexts

45« words into natural speech units.

255 4.3  Running the Forced Alignment

Once we have prepared the pronunciation
dictionary and transcription files with the
corresponding audio files, the next step is to run the
as0 forced aligner. Previous studies have shown that
a0 the Montreal Forced Aligner (MFA) (McAuliffe et
al., 2017), based on Kaldi (Povey et al., 2011), is
one of the most accurate aligners currently
available, especially used in sociophonetic studies
(Gonzalez et al.,, 2020). We used the MFA
following the instructions from the source website
a66 https://montreal-forced-
aligner.readthedocs.io/en/latest/. The main
challenge here is to have the correct setup to ensure
a6 that the aligner runs though the data without any
a70 bugs. For this, it is recommended to have all audio
files in the same format, including, bit rate,
sampling rate, and following good labelling
practice for the files (which is mainly relevant for
feature extraction in future stages).
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a5 44  Forced alignment outputs

476 MFA provides the aligned outputs as TextGrid files
477 with two tiers, one for the forced-aligned words
and another for the forced-aligned phonemic
segments. We have found it efficient to recombine
a0 this output with the original input in the same
a1 TextGrid to  include the  utterance-level

478

479

a06 outputs. Previous studies have identified that the
a97 errors can be systematic, with some phonological
being more susceptible for more
299 inaccuracies (Gonzalez et al., 2020). In this case,
s00 We propose an initial assessment where duration
so1 can be used to look at errors. This is based on
s02 durational differences, where outliers, too long or
s03 too short, can be considered errors in the alignment.
s It is also common practice in cases where there are
s05 enough resources to manually check a proportion
so6 Of the outputs by trained phoneticians.

s0 5 Data Wrangling (Data Processing)

soe In this stage, we gather all the data from the
so0 TextGrids, which also prepares them for the
s10 extraction of acoustic and phonetic features. This
s11 process is done in R (R Core Team, 2022), using a
s12 combination of libraries such as rPraat (Boril and
s13 Skarnitzl, 2016), dplyr (Wickham et al., 2022),
s1 tidyr (Wickham and Girlich, 2022), for example.
s15 The main frequency counts from the forced aligned
s16 outputs are shown in Table 2.

Speaker Gender Consonants Vowels Words
4298 3573 2012
3175 2588 1487
204 159 103
491 389 252
3569 2920 1668
2866 2449 1483
14603 12078 7005

Table 2: Main frequency Counts from forced aligned
outputs.
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We extract all the information from the three tiers:
utterance, word, and phoneme. This process takes
phoneme labels, start and end time information,
and phonological contexts (previous and following
segments). Then, the same type of information is
extracted for words and utterances. The final
product is a full description of each phoneme with
its environments, phonetic, phonemic, and lexical,
as shown in Figure 7 below.

FollWord WordDur
nu 0.52
utra 0.6
prije 0.17
di 0.44
ka 0.32

Speaker Gender Previous Segment Following Duration PrevWord Word
GN | e d 0.12 ka gledaju
n 0.17 nu ranjatu
v 0.09 je riva

c 0.04 je tuculala
d 0.08 bi vidila

a
i
u

mmZzZLLL

a < -

p 0.1 nonda di parket 0.18

Figure 7: Sample output after data wrangling.

(¢]

5.1 Acoustic Features

Acoustic features are a crucial component in socio-
phonetic studies. There is a wide range of acoustic
features that can be used, and here we focus on
three, namely, Intensity (used in prosody), Pitch
(prosody and tonality), and Formants (vowels and
sonorant consonants). These features cover a wide
range of areas of interest. We use Praat as the main
program for extracting the acoustic values, taking
as input the time-specified data wrangled in the
previous stage.

For the acoustic information to be extracted, the
first step is to convert each audio file into a formant
file in Praat. From this file, we can then extract
information from the F1 and F2 for vowel analysis.
Based on some experimentation, we have
identified that combining R and Praat can
streamline the process more efficiently, by using
each program to their best capacity. For example,
R is very efficient at data wrangling and analysis,
but Praat cannot efficiently dealt with the level of
wrangling and dataset processing as in R,
especially when dealing with multiple file formats.
On the other hand, Praat is much more efficient at
acoustic processing and querying phonetic features
as compared to R. This is why we do the data
wrangling in R and the feature extraction in Praat.
We then do the data analysis in R again once all the
necessary information has been collected from the
audio, formant, and TextGrid files.

5.2 Populating Data from Praat

Once this step is finished, we have a fully annotated
dataset with individual features and their
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corresponding acoustic features. This functions as
the main data hub from which various analyses can
be carried out from the dataset. In the following
stages, we present the steps for processing vowels
and prepare them for acoustic analysis (See Figure
8).

Time
0.324
0.678

111
52.1712
52.2932
52.3532
10.0255
10.8055
10.8355

Figure 8: Sample output after feature extraction.

Segment Speaker
GN_M_1
GN_M_1

formant_1

435.644779
540.9370843
335.1292519
486.1003805
486.8311409
397.4000227
337.7970078
639.8518027
385.7087415

pitchValue

143.2858523

128.096409
153.6110352
139.0686298
132.6412425
141.6490183
159.3213093
136.3856407
133.8610273

intensityValue mfcc_5

72.95193861 146.0820365
74.44932052  155.946977
71.98936304 170.2450033
80.94875149 124.2078462
80.45326531 95.35667664
84.11465582 102.6605409

76.3552603 -100.4482523
68.11278488 -107.7933192
74.54216515 -118.1969266

T ~—conmo — o0
[1]
=
<
-

5.3 Vowel Analysis and Visualization

Identifying Vowels in the Dataset: The analysis
of vowels must account for important differences
in each speaker’s vocal tract. To have interpretable
and robust comparisons, there must be a process of
normalization techniques that give more credibility
to analysis. In this study, we apply vowel
normalization based on the Lobanov (Lobanov,
1971) technique. This allows the analysis of both
static and dynamic measurements to be compared
across speakers. Again, this gives researchers of
endangered languages quick access to the vocalic
spaces in the data. In this process, we use the vowel
package (Kendall and Thomas, 2018) for vowel
normalization and ggplot2 (Wickham, 2016) for
data visualization.

Visualization and Analysis: The visualization
gives importance access to vowel behaviors in the
data, and this can be split into the sociolinguistic
factors available, in this case, Gender. Figure 9
shows the vowel duration of a selection of five
landmark vowels and their differences based on
Gender. The data indicates that there is an
increasing mean duration starting from /a/, then /e/,
/i/ and /u/, ending in /0/, which is the longest vowel.
The mean durations are similar for both Genders,
but with more distinctions for /o/ and /u/. Further
statistical differences can reveal whether ther are
significant differences based on phonological
contexts.



Duration in ms

i
Vowel

Gender Bl F B M
605

eos  Figure 9: Vowel durations and Gender Differences.

607

s Different from duration analysis, vocalic space
s00 analysis reveals important differences for Genders
s10 in Figure 10. First, the selection of the five vowels
11 shows a different picture from the location of /u/,
¢12 as compared to other languages such as French,
s13 English and Spanish, where the /u/ is higher and
14 more retracted. In terms of the spread, it shows that
15 Males are producing more compressed vowels than
s16 Females, especially for the Front non-Low vowels
¢17 /i/ and /e/. Mean durations, represented by point
18 size, shows that the main durational differences are
19 observed for /a/. This is an indication that if there
620 18 a first potential area to examine socio-phonetic
e21 differences would be the formant and duration
e22 differences between Males and Females.
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625 Figure 10: Vowel space for Males and Females from
626 normalized formant values. Vowel size represents mean

627 durations.

628

629 5.4  Assessing Consonantal Analysis

e30 For the consonant analysis, we look at duration
631 differences for the Coronal fricatives /s, z/
632 (alveolar) and /8, 7/ (Post-Alveolar), split by
633 Gender. Two main observations can be drawn from

2« Figure 11 below. First, durations are similar, but
635 with Post-Alveolars having wider spread than
e3s Alveolars. Second, Females are producing mean
e larger durations than Males, except for /z/. This
s indicates that the differences for these consonants
s30 are likely more based on Gender differences rather
s20 than phonological factors, a question than can be
e41 further studied with in-depth analysis.
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Figure 11: Coronal Fricative Duration Differences
across Place of Articulation and Gender.
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645

s6 5.5  Assessing Prosodic Features

7 Finally, we look at pith as a suprasegmental feature.
ses Figure 12 shows the pitch tracks for a section of the
s20 recording of speaker GN Male. There are six main
ss0 utterances with their intonations shown in the blue
es1 lines. The arrows in each number represent the
e52 trajectory of the intonation, with all having a falling
653 pattern, except from 5 having a slight rising pattern.
s« These intonation patterns can further be examined
ess with the output and prepared data.
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Figure 12: Pitch tracks used to identify intonation
patterns in the language.
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s0 6  Discussion

ss1 This paper presents a roadmap of tools, from data
s62 processing to socio-phonetic analysis. We have
s taken Acquaviva Collecroce, an endangered
e« language and whose data can be freely accessible.



ess This work has put together a
ss computational tools and packages that can facilitate
se7 data processing and analysis in a simple, yet
sse efficient way. Table 3 shows a summary of the .,
sso tools. It is not our intention to present an ultimate s
s70 workflow, but rather a practical toolkit that allows e
e71 users to implement it in endangered language 700
s72 studies. The resource materials are open source and .,
s73 can be adapted an expanded to the required needs o2
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