Contrastive Hierarchical Discourse Graph for Scientific Document
Summarization

Haopeng Zhang, Xiao Liu, Jiawei Zhang
IFM Lab, Department of Computer Science, University of California, Davis, CA, USA
haopeng,xiao, jiawei@ifmlab.org

Abstract

The extended structural context has made sci-
entific paper summarization a challenging task.
This paper proposes CHANGES, a contrastive
hierarchical graph neural network for extrac-
tive scientific paper summarization. CHANGES
represents a scientific paper with a hierarchical
discourse graph and learns effective sentence
representations with dedicated designed hierar-
chical graph information aggregation. We also
propose a graph contrastive learning module to
learn global theme-aware sentence representa-
tions. Extensive experiments on the PubMed
and arXiv benchmark datasets prove the effec-
tiveness of CHANGES and the importance of
capturing hierarchical structure information in
modeling scientific papers.

1 Introduction

Extractive document summarization aims to ex-
tract the most salient sentences from the original
document and form the summary as an aggregate
of these sentences. Compared to abstractive sum-
marization approaches that suffer from hallucina-
tion generation problems (KryScinski et al., 2019;
Zhang et al., 2022b), summaries generated in an
extractive manner are more fluent, faithful, and
grammatically accurate, but may lack coherence
across sentences. Recent advances in deep neural
networks and pre-trained language models (Devlin
et al., 2018; Lewis et al., 2019) have led to sig-
nificant progress in single document summariza-
tion (Nallapati et al., 2016a; Narayan et al., 2018;
Liu and Lapata, 2019; Zhong et al., 2020). How-
ever, these methods mainly focus on short docu-
ments like news articles in CNN/DailyMail (Her-
mann et al., 2015) and New York Times (Sandhaus,
2008), and struggle when dealing with relatively
long documents such as scientific papers.

The challenges of lengthy scientific paper sum-
marization lie in several aspects. First, the extended
input context hinders cross-sentence relation mod-
eling, the critical step of extractive summarization
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(Wang et al., 2020). Thus, sequential models like
RNN are incapable of capturing the long-distance
dependency between sentences, and hard to dif-
ferentiate salient sentences from others. Further-
more, scientific papers tend to cover diverse topics
and contain rich hierarchical discourse structure
information. The internal hierarchy structure, like
sections, paragraphs, sentences, and words, is too
complex for sequential models to capture. Scien-
tific papers generally follow a standard discourse
structure of problem definition, methodology, ex-
periments and analysis, and conclusions (Xiao and
Carenini, 2019). Moreover, the lengthy input con-
text also makes the widely adopted self-attention
Transformer-based models (Vaswani et al., 2017)
inapplicable. The input length of a scientific paper
can range from 2000 to 7,000 words, which ex-
ceeds the input limit of the Transformer due to the
quadratic computation complexity of self-attention.
Thus, sparse Transformer models like BigBird (Za-
heer et al., 2020) and Longformer (Beltagy et al.,
2020) are proposed.

Recently, researchers have also turned to graph
neural networks (GNN) as an alternative approach.
Graph neural networks have been demonstrated to
be effective at tasks with rich relational structure
and can preserve global structure information (Yao
et al., 2019; Xu et al., 2019; Zhang and Zhang,
2020). By representing a document as a graph,
GNNs update and learn sentence representations
by message passing, and turn extractive summa-
rization into a node classification problem. Among
all attempts, one popular way is to construct cross-
sentence similarity graphs (Erkan and Radev, 2004;
Zheng and Lapata, 2019), which uses sentence rep-
resentation cosine similarity as edge weights to
model cross-sentence semantic relations. Xu et al.
(2019) proposed using Rhetorical Structure The-
ory (RST) trees and coreference mentions to cap-
ture cross-sentence discourse relations. Wang et al.
(2020) proposed constructing a word-document het-
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erogeneous graph by using words as the intermedi-
ary between sentences. Despite their success, how
to construct an effective graph to capture the hier-
archical structure for academic papers remains an
open question.

To address the above challenges, we propose
CHANGES (Contrastive HierArchical Graph neu-
ral network for Extractive Summarization), a hi-
erarchical graph neural network model to fully
exploit the section structure of scientific papers.
CHANGES first constructs a sentence-section hi-
erarchical graph for a scientific paper, and then
learns hierarchical sentence representations by ded-
icated designed information aggregation with itera-
tive intra-section and inter-section message passing.
Inspired by recent advances in contrastive learning
(Liu and Liu, 2021; Chen et al., 2020), we also pro-
pose a graph contrastive learning module to learn
global theme-aware sentence representations and
provide fine-grained discriminative information.
The local sentence and global section representa-
tions are then fused for salient sentence prediction.
We validate CHANGES with extensive experiments
and analyses on two scientific paper summariza-
tion datasets. Experimental results demonstrate the
effectiveness of our proposed method. Our main
contributions are as follows:

* We propose a hierarchical graph-based model
for long scientific paper extractive summa-
rization. Our method utilizes the hierarchical
discourse of scientific documents and learns
effective sentence representations with itera-
tive intra-section and inter-section sentence
message passing.

* We propose a plug-and-play graph contrastive
module to provide fine-grained discriminative
information. The graph contrastive module
learns global theme-aware sentence represen-
tations by pulling semantically salient neigh-
bors together and pushing apart unimportant
sentences. Note that the module could be
added to any extractive summarization sys-
tem.

* We validate our proposed model on two bench-
mark datasets (arXiv and PubMed), and the
experimental results demonstrate its effective-
ness over strong baselines.
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2 Related Work

2.1 Extractive Summarization on Scientific
Papers

Despite the superior performance on news summa-
rization by recent neural network models (Zhou
et al., 2018; Zhang et al., 2023a,b; Fonseca et al.,
2022) and pre-trained language models (Liu and
Lapata, 2019; Lewis et al., 2019), progress in long
document summarization such as scientific papers
is still limited.

Traditional approaches to summarize scientific
articles rely on supervised machine learning algo-
rithms such as LSTM (Collins et al., 2017) with
surface features such as sentence position, and sec-
tion categories. Recently, Xiao and Carenini (2019)
proposed a neural-based method by incorporating
both the global context of the whole document and
the local context within the current topic with an
encoder-decoder model. Ju et al. (2021) designed
an unsupervised extractive approach to summarize
long scientific documents based on the Informa-
tion Bottleneck principle. Dong et al. (2020) pro-
posed an unsupervised ranking model by incorpo-
rating two-level hierarchical graph representation
and asymmetrical positional cues to determine sen-
tence importance. Recent works also apply pre-
trained sparse language models like Longformer
for modeling long documents (Beltagy et al., 2020;
Ruan et al., 2022; Cho et al., 2022).

2.2 Graph-based Summarization

Graph models have been widely applied to extrac-
tive summarization due to the capability of mod-
eling cross-sentence relations within a document.
The sparsity nature of graph structure also brings
scalability and flexibility, making it a good fit for
long documents. Graph neural networks’ mem-
ory costs are generally linear with regard to the
input size compared to the quadratic self-attention
mechanism.

Researchers have explored supervised graph neu-
ral network methods for summarization (Cui and
Hu, 2021; Jia et al., 2020; Huang and Kurohashi,
2021; Xie et al., 2022; Phan et al., 2022). Yasunaga
et al. (2017) first proposed to use Graph Convo-
lutional Network (GCN) on the approximate dis-
course graph. Xu et al. (2019) then applied GCN on
structural discourse graphs based on RST trees and
coreference mentions. Recently, Wang et al. (2020)
proposed constructing a word-document heteroge-
neous graph by using words as the intermediary
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Figure 1: The overall model architecture of CHANGES. We first construct a hierarchical graph for an input document,
and then learn representations with a graph contrastive module and hierarchical graph layers. The concatenation
representations of sentence node and its section node will be fused for summary sentence selection.

between sentences. Zhang et al. (2022a) proposed
to use hypergraph to capture the high-order sen-
tence relations within the document. Our paper
follows the series of work but incorporates hierar-
chical graphs for scientific paper discourse struc-
ture modeling and graph contrastive learning for
theme-aware sentence representation learning.

3 Method

Given a document D = {s1, s9, ..., S, } with n sen-
tences and m sections, we first represent it as a
hierarchical graph and formulate extractive sum-
marization as a node labeling task. The objective
is to predict labels y; € (0,1) for all sentences,
where y; = 1 and y; = 0 represent whether the i-th
sentence should be included in the summary or not,
respectively.

The overall model architecture of CHANGES is
shown in Figure 1. CHANGES consists of two mod-
ules: a graph contrastive learning module to learn
global theme-aware sentence representations and
a hierarchical graph layer module to learn hier-
archical graph node representations with iterative
message passing. The learned sentence node and
section node representations will be used as indica-
tors for salient sentence selection.
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3.1 Graph Construction

Given an academic paper D, we first construct a
hierarchical graph G = (V, £), where V stands for
the node set and £ represents edges between nodes.
In order to utilize the sentence-section hierarchical
structure of academic papers, the undirected hier-
archical graph G contains both sentence nodes and
section nodes, defined by V = Ve, U Vge, Where
each sentence node vgepn; € Ve represents a sen-
tence s; in the document D and v, ;€ Vsec repre-
sents one section in the document. The edge con-
nection of G is defined as £ = Egen U Esec U Ecrosss
where E,.,, denotes the connection between sen-
tence nodes within the same section, &,.. denotes
the connection between section nodes, and E.oss
denotes the cross-connection between a sentence
node and its corresponding section node. Note that
we also add a special section supernode vp that
represents the whole document D. An illustration
of the hierarchical graph is shown in Figure 2.

Edge Connection Unlike prior work (Zheng and
Lapata, 2019; Dong et al., 2020) that uses cosine
similarity of sentence semantic representations as
edge weights, we construct unweighted hierarchi-
cal graphs to disentangle structural information
(adjacency matrix A) from semantic information
(node representation H). In other words, connected
nodes have weight 1, and disconnected nodes have



weight 0 in the adjacency matrix A.

Formally, sentence-level edge €sen, ; connects
sentence nodes Vgepn, and VUsen; if they are within
the same section, aiming to aggregate local intra-
section information. All section nodes are fully
connected by section-level edges esec, ,, aiming to
aggregate global inter-section information. The
cross-level edge €cross; , connects the sentence
node vsep, to its corresponding section node vsec,,,
which allow message passing between sentence-
level and section-level nodes.

In a hierarchical graph, a sentence node could
only directly interact with local neighbor nodes
within the same section, and indirectly interact with
sentence nodes of other sections via section-level
node connections.

Document
Node

Section
Node

Sentence
Node

Figure 2: An illustration of a hierarchical graph for a
long input document with rich discourse structures.

Node Representation We adopt BERT (Bidirec-
tional Encoder Representations from Transform-
ers) (Devlin et al., 2018) as sentence encoder
to embed the semantic meanings of sentences
{s1, $2, ..., 8. } as initial node representations X =
{x1,x2,...,X,}. Note that BERT here is only used
for initial sentence embedding, but is not updated
during the training process to reduce model com-
puting cost and increase efficiency.

In addition to the semantic representation of sen-
tences, we also inject positional encoding following
Transformer (Vaswani et al., 2017) to preserve the
sequential order information. We apply the hierar-
chical position embedding by (Ruan et al., 2022)
to model sentence positions accompanying our hi-
erarchical graph. Specifically, the position of each
sentence s; can be represented as two parts: its
corresponding section index p;°, and its sentence
index within section p;*"*. Formally, the hierarchi-
cal position embedding (HPE) of sentence s; can
be calculated as:

HPE(s;) = PE(p;*°

)

) + PE(p;™"),

where PE(-) refers to the position encoding func-

(D
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tion in (Vaswani et al., 2017):

(@)
3)

PE(pos, 2i) = sin(pos/10000%/4),
PE(pos, 2i + 1) = cos(pos/10000%/9).

Overall, we can get the initial sentence node repre-
. 0 _ (RO 0 0 -
sentations Hg,,, = {hg., ,hg., ..., hg, }, with

vector h) € R? defined as:

h? = x; + HPE(s;), 4)
where d is the dimension of the node embedding.
The initial section node representation hgecj € R?
for the j-th section is the mean of its connected
sentences embeddings, and the document node rep-
resentation h?loc ¢ R is the mean of all section

node embeddings.

3.2 Graph Contrastive Module

After constructing the hierarchical graph with ad-
jacency matrix A and node representation H,,, €
R™*9, we apply a graph contrastive learning (GCL)
module to capture global context information. Mo-
tivated by the principal idea that a good sum-
mary sentence should be more semantically similar
to the source document than the unqualified sen-
tences (Radev et al., 2004; Zhong et al., 2020), our
GCL module updates sentence representations us-
ing Graph Attention Network (Velickovi¢ et al.,
2017) with a contrastive objective to learn the
global theme-aware sentence representations. Note
that the module could be added to any extractive
summarization system.

Graph Attention Network Given a constructed
graph G = (V, £) with node representations H and
adjacent matrix A, a GAT layer updates a node v;
with representation h; by:

eij = LeakyReLU (W, [Wi,h;[|[ Wy, hy]),
i — exp (€i5)
! ZIEM exp (eil) ’
h; =0 Z aijWUhj y
JEN;

(5)
where N; denotes the 1-hop neighbors of node v;,
«a;; denotes the attention weight between nodes h;
and h;, W;,,, W,, W, are trainable weight matri-
ces, and || denotes concatenation operation.



The above single-head graph attention is further
extended to multi-head attention, where 1" indepen-
dent attention mechanisms are conducted and their
outputs are concatenated as:

hi =0 Z af;Wih; (6)

JEN;

Contrastive Loss Contrastive learning aims to
learn effective representation by pulling semanti-
cally close neighbors together and pushing apart
non-neighbors (Marelli et al., 2014). Recent works
have demonstrated contrastive learning to be ef-
fective in high-order representation learning (Chen
et al., 2020; Gao et al., 2021). Thus, we optimize
our GCL module in a contrastive manner with the
following contrastive loss. The goal of contrastive
learning is to learn theme-aware sentence embed-
ding by pulling semantically salient neighbors to-
gether and pushing apart less salient sentences. The
contrastive loss is formally defined as:

exp(sim((h’y, hl) /7
Ec — _log - p( (( D ) z)/, ) ’ (7)
Zj:l exp(sim(h), hj)/T)
where h’, is the document node embedding, h/ is

the updated representaion of sentence s; , and 7 is
the temperature factor.

After passing through the GCL module, the
learned global theme-aware sentence embeddings
ngn = {hsen17 seng) Tty hgenn} S RnXd are
then passed to the hierarchical graph layer mod-

ule.

3.3 Hierarchical Graph Layer

To exploit the sentence structure of academic pa-
pers, CHANGES then updates sentence and section
node representations with hierarchical graph layers
in an iterative manner.

The hierarchical graph layer first updates sen-
tence embeddings with the local neighbor sen-
tences within the same section with GAT for intra-
section message passing, then update section nodes
with sentence nodes for cross-level information ag-
gregation to exploit the hierarchical structure of
academic papers. Next, inter-section message pass-
ing allow global context information interaction.
Finally, the sentence nodes are updated based on
their corresponding section node, fusing both local
and global context information.

Formally, each iteration contains four update
processes: one intra-section message passing,
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Arxiv PubMed
# train 201,427 112,291
# validation 6,431 6,402
# test 6,436 6,449
avg. word/doc 4,938 3,016
avg. word/summary 203 220
avg. sent./doc 205 140
avg. sent./summary 5 6

Table 1: Statistics of PubMed and Arxiv datasets.

one sentence-to-section aggregation, one inter-
section message passing, and finally one section-
to-sentence aggregation. For the [-th iteration, the
process can be represented as:

H,,, = GAT(H..,)
H.,, = GAT(HL,) N
H{}' = GAT(H,)
HU!) = o(W,[H,, |HL])
where H_, ,H._ . denotes the intermediate

sen? sec
representations of sentence and section nodes,
HEL HH! denotes the updated sentence and sec-
tion node representations, and [H’_,|H!] de-
notes the concatenation of intermediate sentence
node representation and its corresponding updated
section node representation.

In this way, CHANGES updates and learns
hierarchy-aware sentence embeddings through the

hierarchical graph layers.

3.4 Optimization

After passing L hierarchical graph layers, we ob-
tain the ﬁnal sentence node representations HZ | =
{hl, hl . .. hL }eR" Wethenadda
multi-layer perceptron (MLP) followed by a sig-
moid activation function to indicate the confidence
scores for extracting each sentence in the summary.

Formally, the predicted confidence score y; to
extract a sentence s; in section sec; as a summary
sentence is:

z; = LeakyReLU(W ;

[ Sen; |hSGC ]) (9)

U; = sigmoid(W 522;), (10)

where W1, Wy are both trainable parameters,
and [h%, Hhsec ] denote the concatenation of sen-
tence embeddlng and its corresponding section em-
bedding. During the inference phase, we will select
the k& sentences with the highest predicted confi-
dence scores as the extractive summary for the

input long document.



Since the extractive ground truth labels for long
documents are highly imbalanced, we optimize
hierarchical graph layers using weighted cross en-
tropy loss following (Xiao and Carenini, 2019) as:

N Ng
D> (- yilogs + (1 —yi) log(1 — ),
d=1 i=1
1D
where IV denotes the number of training instances
in the training set, /N4 denotes the number of sen-
. __ #negative
ten.ces in the document, 1 = Fpositive df.:r.lote the
ratio of the number of negative and positive sen-
tences in the document, and y; represent the ground-
truth of sentence .

1

L= -§n,

Training Loss Overall, we optimize CHANGES
in an end-to-end manner, by optimizing the graph
contrastive module and hierarchical graph layers
simultaneously.
The overall training loss of CHANGES is:
L=Ls+ N\, 12)
where A is a re-scale hyperparameter and L. de-
notes the contrastive loss in Equation 7.

4 Experiment

4.1 Experiment Setup

Dataset To validate the effectiveness of
CHANGES, we conduct extensive experiments
on two benchmark datasets: arXiv and PubMed
(Cohan et al., 2018). The arXiv dataset contains
papers in scientific domains, while the PubMed
dataset contains scientific papers from the biomed-
ical domain. These two benchmark datasets are
widely adopted in long document summarization
research and we use the original train, validation,
and testing splits as in (Cohan et al., 2018). The
detailed statistics of datasets are shown in Table 1.

Evaluation Following the common setting, we
use ROUGE F-scores (Lin, 2004) as the automatic
evaluation metrics. Specifically, we report the
ROUGE-1/2 scores to measure summary informa-
tiveness and ROUGE-L scores to measure sum-
mary fluency. Following prior work (Liu and Lap-
ata, 2019; Nallapati et al., 2016b), we also construct
extractive ground truth labels (ORACLE) for train-
ing by greedily optimizing the ROUGE score on
gold-reference abstracts.
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4.2 TImplementation Details

We use the publicly released BERT-base ! (Devlin
et al., 2018) as the sentence encoder. The BERT
encoder is only used to generate initial sentence
embeddings, but is not updated during training to
improve model efficiency. We adopt the Graph
Attention Network 2 (Veli¢kovié et al., 2017) im-
plementation with 8 attention heads and 2 stack
layers for graph message passing. The hidden size
of our model is set to 2048.

Our model is trained with the Adam optimizer
(Loshchilov and Hutter, 2017) with a learning rate
of 0.0001 and a dropout rate of 0.1. We train our
model on a single RTX A6000 GPU for 10 epochs
and validate after each epoch using ROUGE-1 F-
score. We employ early stopping to select the
best model for a patient duration of 3 epochs. We
searched the training loss re-scale factor A in the
range of 0 to 1 with 0.1 step size and got the best
value of 0.5.

4.3 Baseline Methods

We perform a systematic comparison with recent
approaches in both extractive and abstractive sum-
marization for completeness. We keep the same
train/validation/test splitting in all the experiments
and report ROUGE scores from the original papers
if available, or scores from (Xiao and Carenini,
2019) otherwise. Specifically, we compare with
the following strong baseline approaches:
Unsupervised methods: LEAD method that se-
lects the first few sentences as a summary, SumBa-
sic (Vanderwende et al., 2007), graph-based un-
supervised models LexRank (Erkan and Radev,
2004), PACSUM (Zheng and Lapata, 2019) and
HIPORANK (Dong et al., 2020).

Neural extractive models: encoder-decoder based
model Cheng&Lapata (Cheng and Lapata, 2016)
and SummaRuNNer (Nallapati et al., 2016a); lo-
cal and global context model ExtSum-LG (Xiao
and Carenini, 2019) and its variants ExtSum-
LG+RdLoss/MMR (Xiao and Carenini, 2020);
language model-based methods SentCLF and
SentPTR (Subramanian et al., 2019).

Neural abstractive models: pointer network gen-
eration model PGN (See et al., 2017), hierarchical
attention generation model DiscourseAware (Co-
han et al., 2018), and transformer-based generation
model TLM-I+E (Subramanian et al., 2019).

"https://github.com/google-research/bert
Zhttps://github.com/PetarV-/GAT



PubMed ArXiv

Model ROUGE-1 ROUGE-2 ROUGE-L | ROUGE-1 ROUGE-2 ROUGE-L
Oracle(15k tok.) 53.04 29.08 48.31 53.58 26.19 47.76
Lead-10 38.59 13.05 34.81 37.37 10.85 33.17
LexRank (2004) 39.19 13.89 34.59 33.85 10.73 28.99
SumBasic (2007) 37.15 11.36 33.43 29.47 6.95 26.30
PACSUM (2019) 39.79 14.00 36.09 38.57 10.93 34.33
HIPORANK (2021) 43.58 17.00 39.31 39.34 12.56 34.89
Cheng&Lapata (2016) 43.89 18.53 30.17 42.24 15.97 27.88
SummaRuNNer (2016) 43.89 18.78 30.36 42.81 16.52 28.23
ExtSum-LG (2019) 44.85 19.70 3143 43.62 17.36 29.14
SentCLF (2020) 45.01 19.91 41.16 34.01 8.71 30.41
SentPTR (2020) 43.30 17.92 3947 42.32 15.63 38.06
ExtSum-LG + RdLoss (2021) 45.30 20.42 40.95 44.01 17.79 39.09
ExtSum-LG + MMR (2021) 45.39 20.37 40.99 43.87 17.50 38.97
PGN (2017) 35.86 10.22 29.69 32.06 9.04 25.16
DiscourseAware (2018) 38.93 15.37 35.21 35.80 11.05 31.80
TLM-I+E (2020) 42.13 16.27 39.21 41.62 14.69 38.03
CHANGES (ours) 46.43 21.17 41.58 45.61 18.02 40.06

Table 2: ROUGE F1 results on PubMed and Arxiv datasets. We keep the same train/validation/test splitting in all
the experiments and report ROUGE scores from the original papers if available, or scores from (Xiao and Carenini,

2019) otherwise.

4.4 Experiment Results

Table 2 shows the performance comparison of
CHANGES and all baseline methods on both
PubMed and arXiv datasets. The first blocks
include the extractive ground truth ORACLE,
position-based sentence selection method LEAD,
and other unsupervised baseline approaches. The
second block covers state-of-the-art supervised ex-
tractive neural baselines, and the third block covers
the supervised abstractive baselines.

According to the results, HIPORANK (Dong
et al., 2020) achieves state-of-the-art performance
for graph-based unsupervised methods. Compared
to PACSUM (Zheng and Lapata, 2019), the only
difference is that HIPORANK incorporates section
structural information for degree centrality calcu-
lation. The performance gain demonstrates the
significance of capturing the hierarchical structure
of academic papers when modeling cross-sentence
relations.

Interestingly, the LEAD approach performs
far better when summarizing short news like
CNN/DailyMail (Hermann et al., 2015) and New
York Times (Sandhaus, 2008) than summarizing
academic papers, as shown in Table 2. The results
show that the distribution of ground truth sentences
in academic papers is more even. In other words,
academic papers have less positional bias than news
articles.

We also notice that the neural extractive models
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tend to outperform the neural abstractive methods
in general, possibly because the extended context
is more challenging for generative models during
decoding. ExtSum-LG (Xiao and Carenini, 2019)
is a benchmarked extractive method with section
information by incorporating both the global con-
text of the whole document and the local context
within the current topic. We argue that CHANGES
could better model the complex sentence structural
information with the hierarchical graph than the
LSTM-minus in ExtSum-LG.

According to the experimental results, our model
CHANGES outperforms all baseline approaches sig-
nificantly in terms of ROUGE F1 scores on both
PubMed and arXiv datasets. The performance
improvements demonstrate the usefulness of the
global theme-aware representations from the graph
contrastive learning module and the hierarchical
graph structure for identifying the salient sentences.

5 Analysis

5.1 Ablation Study

We first analyze the influence of different compo-
nents of CHANGES in Table 3. Here the second row
w/o Contra’ means we remove the GCL module
and do not update the theme-aware sentence embed-
dings. The third row 'w/o Hierarchical’ denotes
that we only use the theme-aware sentence em-
bedding for prediction without hierarchical graph
layers. As shown in the table, removing either
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Model ROUGE-1 ROUGE-2 ROUGE-L
PubMed
CHANGES 46.43 21.17 41.58
w/o GCL 4391 18.57 40.01
w/o Hierarchical 43.76 18.30 39.88
arXiv

CHANGES 45.61 18.02 40.06
w/o GCL 44.47 16.58 38.87
w/o Hierarchical 44.72 16.79 39.10

Table 3: Ablation study results of removing components
of CHANGES on PubMed and arXiv datasets.

component causes a significant model performance
drop, which indicates that modeling sequential or-
der information, semantic information, and hierar-
chical structural information are all necessary for
academic paper summarization.

Interestingly, the theme-aware sentence embed-
dings and the hierarchy structure-aware sentence
embeddings are almost equally critical to sentence
salience modeling. The finding indicates the impor-
tance of modeling cross-sentence relations from
both semantic and discourse structural perspec-
tives.
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5.2 Performance Analysis

We also analyze the sensitivity of CHANGES to
section structure and length of academic papers.
As shown in Figure 3, we see a performance drop
trending when the number of sections increases.
This is likely because the complex section structure
hinders the inter-section sentence interactions. The
model performance on the arXiv dataset is more
stable compared to the PubMed dataset although
documents in the arXiv dataset are relatively longer.
We notice the same trend in Figure 4, model perfor-
mance is also more stable on arXiv datasets across
different document lengths. We argue this may im-
ply that our model is more fit for longer documents
that have richer discourse structures.

Regarding the document length, we see a steady
performance gain when comparing to benchmark
baseline methods ExtSum-LG on both datasets as
shown in Figure 4. We also see as the document
length increases, the performance gap between
CHANGES and extractive summary performance
ceiling ORACLE becomes smaller. The finding
also verifies that CHANGES is especially effective
and fit for long academic papers modeling.



6 Conclusion

In this paper, we propose CHANGES, a contrastive
hierarchical graph-based model for scientific pa-
per extractive summarization. CHANGES first
leans global theme-aware sentence representations
by graph contrastive learning module. Moreover,
CHANGES incorporates the sentence-section hier-
archical structure by separating intra-section and
inter-section message passing and aggregating both
global and local information for effective sentence
embedding. Automatic evaluation on the PubMed
and arXiv benchmark datasets proves the effective-
ness of CHANGES and the importance of capturing
both semantic and discourse structure information
in modeling scientific papers.

In spite of the strong zero-shot performance
of large language models like ChatGPT on vari-
ous downstream tasks, long document modeling
is still a challenging problem in the LLM era.
Transformer-based GPT-like systems still suffer
from the attention computing complexity problem
and will benefit from effective and efficient model-
ing of long documents.

Limitations

In spite of the strong performance of CHANGES, its
design still has the following limitations. First,
CHANGES only extracts the sentence-section-
document hierarchical structure of academic pa-
pers. We believe the model performance could be
further improved by incorporating document hi-
erarchy of different granularity like dependency
parsing trees and Rhetorical structure theory trees.
We leave this for future work. In addition, we only
focus on single academic paper summarization in
this work. Academic papers generally contain a
large amount of domain knowledge, thus introduc-
ing domain knowledge from peer papers or citation
networks should further boost model performance.
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