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Abstract

In discourse relation recognition, the classifica-
tion labels are typically represented as one-hot
vectors. However, the categories are in fact
not all independent of one another — on the
contrary, there are several frameworks that de-
scribe the labels’ similarities (by e.g. sorting
them into a hierarchy or describing them in
terms of features (Sanders et al., 2021)). Re-
cently, several methods for representing the
similarities between labels have been proposed
(Zhang et al., 2018; Wang et al., 2018; Xiong
et al., 2021). We here explore and extend the
Label Confusion Model (Guo et al., 2021) for
learning a representation for discourse relation
labels. We explore alternative ways of inform-
ing the model about the similarities between
relations, by representing relations in terms of
their names (and parent category), their typical
markers, or in terms of CCR features that de-
scribe the relations. Experimental results show
that exploiting label similarity improves classi-
fication results.

1 Introduction

Discourse relations (DRs) are logical relations be-
tween units of text (“arguments 1 and 2”) that make
the whole text coherent, see e.g. the concession re-
lation in (1).

(1) [John prepared for his final exam hoping to
get at least a pass.] 4,41 [He got an E.] 4142
(DR: COMPARISON.CONCESSION.ARG2-AS-
DENIER)

The task of implicit DR recognition (IDRR) is par-
ticularly challenging because informative discourse
connectives (DCs), such as "however" are missing.
Implicit discourse relation classification tasks us-
ing the Penn Discourse Treebank (PDTB) frame-
work (Prasad et al., 2008) typically distinguish be-
tween 11 different labels. However, these labels
are not completely independent of one another —
some relations tend to co-occur or be confused

99

more than others. The similarities between rela-
tions are represented in the PDTB relation hierar-
chy, which groups the labels into four top-level
classes, or by the CCR feature representation pro-
posed in Sanders et al. (2021). However, these
well-known similarities are typically not exploited
for discourse relation classification tasks — instead,
all labels are treated as if they were independent of
one another.

Guo et al. (2021) recently proposed the Label
Confusion Model (LCM), which seems well-suited
for the characteristics of the IDRR task: Guo et al.
(2021) showed that the method is particularly suit-
able for problems with many labels, classification
problems in which labels are ambiguous and tend
to be confused with each other, and/or when there is
semantic overlap between the labels. They demon-
strated the benefit of the method on several text
classification tasks.

The goal of the present paper is to test whether
the LCM approach is indeed helpful for IDRR and
experiment with three different ways of capturing
the label similarities. (1) We use label embeddings:
DR labels are not random words but terms that lex-
ically describe the meaning of the DRs, such as
REASON, PRECEDENCE, CONDITION, and so on.
Using label embeddings assumes that similar rela-
tions also tend to have names with similar lexical
embeddings. However, some relation labels may
additionally be associated with a quite different
meaning in normal language use (e.g., “conces-
sion”), and their embedding may hence not capture
the technical meaning well. (2) We characterize a
DR by a set of prototypical connectives (e.g., how-
ever and nevertheless for a CONCESSION relation).
(3) We encode DRs via their cognitive features
(e.g., a concession relation would be described as a
negative causal relation).
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2 Related work

2.1 Discourse Relation Classification

Our work is not the first to use information from
typical connectives for enriching classification: For
example, the implicit DCs that are annotated to-
gether with the sense labels in PDTB have been
incorporated into the training objective (Kishimoto
et al., 2020; Jiang et al., 2021a; Kurfali and Ostling,
2021; Jiang et al., 2021b). Several works also
utilize the label hierarchy of the PDTB to train
the model to learn the difference between the la-
bels by contrastive learning (Long and Webber,
2022) or operate on the label hierarchy for learning
sounder embeddings to direct the prediction (Wu
et al., 2021). In this work, we operate on the label
names to incorporate the information of the DCs
and the PDTB hierarchy.

In addition, DRs can be described in terms of
features. The Cognitive approach to Coherence
Relations (CCR) (Sanders et al., 1992, 2021) char-
acterizes the nature of DRs by “dimensions" such
as basic operation, source of coherence, order and
polarity. For example, a CONTRAST relation can
be described as a negative relation of addition oper-
ation with objective source of coherence. We also
explore the potential of encoding these unifying
dimensions of DRs into the label names for IDRR.

2.2 Exploiting label Similarity

Text classification tasks typically distinguish be-
tween a large number of categories or labels. Vari-
ous approaches have been proposed to model the
relation between the semantics of the labels and the
text to be classified. Zhang et al. (2018) compares
the vectors of the inputs and labels in a multitask
learning setting. Wang et al. (2018) use label-based
attention scores to embed the label information.
Xiong et al. (2021) append the labels to the inputs,
such that the embeddings of the labels are learned
using the self-attention mechanism of BERT.

Our work builds on the Label Confusion Model
(LCM; Guo et al., 2021), which was proposed for
learning about the similarity of instances and labels
simultaneously during training and which can be
expected to be particularly useful in classification
tasks with many similar labels. The LCM generates
an alternate semantically informed vector in place
of one-hot vectors.

For every input to the base model, the LCM
inputs all the labels of the corresponding classifi-
cation tasks, i.e., the LCM is run in parallel with

a base model, as seen on the right side of Figure
1. The LCM model consists of a label encoder
and a Simulated Label Distribution (SLD) block.
The encoder, which comprises an input layer, an
embedding layer and a linear layer produces a rep-
resentation for all the labels.

The representation produced by the base model
before the soft-max layer and the representation
generated by the LCM encoder is made compati-
ble such that they have dimensions that enable a
similarity calculation. A similarity calculation is
performed in the SLD block between the represen-
tation produced by the base model and the label
encoder to generate the SLD distribution in place
of one-hot vectors. A controlling parameter is «
modulates the balance between the original label
one-hot vector and the generated SLD.

Then, KL-divergence loss is computed between
the predicted label distribution (PLD) of the base
model and the generated SLD. The final labels are
predicted using the soft-max classifier of the base
model. The LCM trains in parallel with the base
model until the LCM-stop epoch, which is deter-
mined by a hyper-parameter.

Experiments and analyses on data sets like DB-
Pedia', THUCNews?, etc., show that the LCM can
generate representations that capture the dependen-
cies between the labels and assist the base model to
better understand the obscure meaning of the target
labels compared with one-hot representation. In
this work, we train an IDRR model with the LCM
to exploit the semantics of the DR labels.

3 Methodology
3.1 LCM for IDRR

We train an 11-way classification model which pre-
dicts one of the second-level DR labels defined in
PDTB 2.0, as shown in the first column of Table 1,
given the two spans of text (called Arg I and Arg 2)
the DR links. To do so, we trained the LCM with a
state-of-the-art IDRR model, which is the Bilateral
Matching and Gated Fusion (BMGF) RoBERTa
model (Liu et al., 2020).

The BMGF-RoBERTa is a complex model that
comprises six layers: a hybrid representation layer,
a context representation layer, a matching layer, a
fusion layer, an aggregation layer, and a prediction
layer. As shown in Fig 1, the LCM runs concur-
rently with the BMGF-RoBERTa for each input

"https://www.dbpedia.org/
Zhttp://thuctc.thunlp.org/
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instance. We initialize the embedding layer of the
LCM with pre-trained GloVe (Pennington et al.,
2014) word embeddings of the labels and their vari-
ations as described in table 1. The learned repre-
sentation generated by the prediction layer of the
BMGF-RoBERTa is fed as the input to the SLD
block of the LCM. KL-divergence loss is calculated
between the predicted label distribution (PLD) of
the BMGF-RoBERTa and the generated SLD. The
final labels are predicted using the soft-max clas-
sifier of the BMGF-RoBERTa and the SLD pro-
duced by the LCM is utilized for optimizing the
loss until the LCM-stop epoch, which is determined
by a hyper-parameter. After the LCM-stop epoch,
only the BMGF-RoBERTa is trained further and
the LCM is inactive.

Loss =
KLD(PLD,SLD)

VAN

Predicted Label LI Label
Distribution (PLD) one-hot
4N vector

N
Softmax Classifier (el
VAN A\

Instance U U N\
sl ol o r,,JJ 1 2 A o

BMGF-RoBERTa

Input Encoder

Argument 1 Argument 2

Figure 1: Combined architecture of the BMGF-
RoBERTa and the LCM

3.2 Encoding other DR knowledge

Training with the LCM allows the IDRR model to
learn the association between the input arguments
and the semantics of the label tokens, such as CON-
JUNCTION and CAUSE. We hypothesize that more
detailed relationships could be learned with more
expressive label tokens. We explore three alterna-
tive ways of encoding label similarity: via label
encodings, via encodings of prototypical connec-
tives and via CCR features.

DR labels The PDTB 2.0 labels are arranged in
a three-level hierarchical structure, where the 11-
way labels, which are usually used in classification
tasks, belong to the second level and are children of
one of the four parent categories, namely TEMPO-
RAL, COMPARISON, CONTINGENCY, and EXPAN-
SION. Labels under the same parent category are
more closely related than labels of different parent
categories. In our experiments, we compare the use

of only the level-2 labels with the combination of
level-2 and level-1 “parent” labels.

Prototypical DCs DCs are used in both tradi-
tional and crowd-sourced annotations to facilitate
the identification of the implicit DRs (Prasad et al.,
2007; Yung et al., 2019). Most relations can be
characterized by some prototypical DCs. For ex-
ample, a CAUSAL relation is best represented by
because and therefore. We define a subset of pro-
totypical DCs for each label and replace the label
tokens with the DC tokens. We do not include
preposition tokens present in multi-word DCs in or-
der not to dilute the overall semantic representation
of the labels (e.g. example instead of for example).

Cognitive approach to Coherence Relations
(CCR) Sanders et al. (2021) decompose each
third-level DR in the PDTB 2.0 with five unifying
dimensions. We specify each second-level rela-
tion by the dimension values shared by its children.
Two or three dimensions are enough to specify the
second-level relations. We use these CRR tokens in
addition to the original DR tokens because certain
second-level relations, such as CONJUNCTION and
RESTATEMENT, have the same set of dimension
values. We do not include value tokens that seman-
tically overlap with the relation label. For example,
we do not include the value of the temporal order
dimension of the SYNCHRONOUS relation, because
it is also synchronous.

Table 1 shows the lexical terms we use for each
setting. We combine the representation of the mul-
tiple tokens per label by summing up the GloVe
embeddings of the individual tokens?.

3.3 Data and setting

We train and evaluate the proposed model on the
PDTB 2.0 data set (Prasad et al., 2008). We use
sections 2-20 for the training, 21-22 for testing, and
0-1 for validation, following e.g. Ji and Eisenstein
(2015). The models are trained for the 11-way
classification of the second-level sense labels.

We use the codes of the BMGF-RoBERTa re-
leased on GitHub’, which was implemented in Py-
Torch, and re-implemented the original LCM from

3We also experimented with vector averaging. Similar
results were obtained.

*For integrity, we use single tokens in the original labels.
For the PRAGMATIC CAUSE relation, we used the token prag-
matic instead of cause since there is already a CAUSE relation.

Shttps://github.com/HKUST-KnowComp/
BMGF-RoBERTa
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Original labels Parent labels

Prototype DCs

CCR features

concession comparison

contrast comparison contrast, comparison, but
cause contingency because, result, therefore
pragmatic (cause) contingency considering, accordingly
alternative expansion alternatively, instead, rather
conjunction expansion addition, also, furthermore
instantiation expansion example, instance

list expansion firstly, secondly, thirdly
restatement expansion other, words, means
asynchronous temporal

synchrony temporal

despite, even, though, however

subsequently, afterwards, previously
same, time, simultaneously, meanwhile

negative, causal

negative, addition, objective
positive, causal, objective
positive, causal, subjective
positive, addition

positive, addition

positive, addition

positive, addition

positive, addition

positive, addition

positive, addition

Table 1: Tokens used in each label representation strategy. The prototype DC tokens replace the original labels
while the CCR and parent tokens are used in addition to the original labels *.

TensorFlow to PyTorch in order to integrate the
two models.

For training, we have utilized 3 x NVIDIA Tesla
V100, with a batch size of 16. The pre-trained
embedding utilized where GloVe (Pennington et al.,
2014) common crawl with 42B tokens. Whenever
we utilized the pre-trained word embeddings for
the labels, the weights of the embedding layer were
frozen and not updated during the training. The
values of the hyper-parameters « is optimized to 4
using initialization in the range of 1-6. The LCM-
stop parameter is set to 100, which is chosen based
on the implementation of Guo et al. (2021). The
results reported below are averaged over five runs.

4 Results

Table 2 compares the results of the models evalu-
ated by accuracy and macro F1. It can be observed
that all versions of the LCM improved the base-
line model. In particular, the LCM model using
prototype DCs outperforms the other models.

Model Accuracy macro F1
BL (Liu et al., 2020) 55.20 (.013) 36.07 (.010)
+ LCM (orig.) 57.20 (0.006) 38.92(0.014)
+ LCM (orig.+parent)  57.55 (.010) 40.48 (.006)
+ LCM (orig.+CCR) 57.69 (.004) 39.45 (.015)
+ LCM (protyp. DC) 57.80 (0.013)  40.63 (0.025)

Table 2: 11-way classification results on PDTB 2.0°.
The standard deviation of the five runs is shown in brack-
ets respectively.

Figure 2 compares the distribution of the labels
predicted by the baseline and the LCM (protyp.
DC) models as well as the gold labels of the five

®The published accuracy of the BMGF-RoBERTa is 58.13.
We found that the discrepancy is because, according to the
released codes, the result of the best test epoch has been re-
ported. For fair evaluation, we report the results of all the mod-
els based on the best validation epoch (based on macro F1).

. BL
B +LCM (proto.dc)
gold

300 4

2504

count

contrast cause instantiation  restatement

conjunction

Figure 2: Distribution of the predictions produced by
the BL and LCM (protyp. DC) model compared with
gold on the five most frequent DR labels. The counts
are the average values of the five runs of each model.

most frequent DRs in the test set’. It shows that the
baseline model over-predicts CONTRAST, CAUSAL,
and CONJUNCTION. Inspection of the samples re-
veals that many of the over-predicted CONTRAST
are actually CAUSAL, while the over-predicted
CAUSAL and CONJUNCTION are mostly RESTATE-
MENT and these are correctly classified by the
model with LCM. However, the LCM also leads to
over-prediction of RESTATEMENT. We will look at
some concrete examples in the next section.

The predicted label distributions suggest that the
LCM allows the IDRR model to learn the differ-
ence and similarity between COMPARISON and EX-
PANSION, but not among different types of EXPAN-
SION. The parent relation and the CCR features
of all EXPANSION relations are in fact the same.
That could explain why the performances of these
two versions on the EXPANSION items are similar,
while LCM p¢ performs slightly better.

"These are the gold labels of 90% of the test set instances.
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5 Qualitative Analysis

In this section, we analyze some examples that
demonstrate that the LCM has better captured the
implicit DRs between two arguments.

First, as mentioned in the previous section, the
false positive CONTRAST relations predicted by the
baseline model are mostly CAUSAL relations. In
most of these cases, the Arg2 contains the tokens
now or still, which are often used to mark contrast,
as in the following example.

(2) [Last week that company and union negotia-
tions had overcome the major hurdle, ...] 4741
[Now only minor points remain to be cleaned
up]ArgQ
(gold: : CONTINGENCY.CAUSE
LCM: CONTINGENCY.CAUSE
baseline: COMPARISON.CONTRAST)

In Example 2, the baseline model’s prediction
might have been based on the local markers now
and the lexical pair major and minor, while the
LCM model infers the positive relation between
overcome major hurdle and only minor points re-
main.

Secondly, the LCM models overpredict RE-
STATEMENT relations, which are annotated as other
relations in the PDTB. We found that for some of
these cases, a restatement label could actually be
justifiable as a secondary label.

(3) [Treating employees with respect is crucial
for managers.] o441 [It’s in their top five work
values.] g2
(gold: : CONTINGENCY.CAUSE
LCM: EXPANSION.RESTATEMENT
baseline: CONTINGENCY.CAUSE)

(4) [Sotheby’s defends itself and Mr. Paul in the
matter.] 4,41 [Mr. Wachter says Mr. Paul
was a quick study who worked intensely
and bought the best pictures available at the
moment. ] 442
(gold: : EXPANSION.INSTANTIATION
LCM: EXPANSION.RESTATEMENT
baseline: EXPANSION.INSTANTIATION)

In Example (3), respect being crucial is the rea-
son that it is counted as a fop value, but these two
arguments can also be viewed as different ways
to state that it is important for managers to repect
their employees. In Example (4), Mr. Wachter’s

comment could be an example of how Sotheby’s de-
fends Mr. Paul. However, depending on the context,
Arg? can also be interpreted as a RESTATEMENT.
These cases suggest that the LCM tends to confuse
relations most easily when they are similar or have
semantic overlap.

However, we do note that there are cases where
the LCM model indeed overpredicts restatement
relations, see example (5).

(5) [It’s no longer enough to beat the guy down
the street.] 4,41 [You have to beat everyone
around the world.] 4,42
(gold: : EXPANSION.ALTERNATIVE
LCM: EXPANSION.RESTATEMENT
baseline: EXPANSION.ALTERNATIVE)

Finally, comparing the different versions of the
LCM models, the LCM pc model outperforms the
other two models in predicting CAUSAL and CON-
JUNCTION relations. A possible explanation is that
the DC tokens used to represent these relations
are indeed strongly prototypical compared with
other relations. This suggests that the choice of
prototype DCs has a strong effect on the model
performance. On the other hand, the LCMy,4rent
model has the highest recall of INSTANTIATION
relations, but these are often co-occurring with RE-
STATEMENT, which is predicted by the other two
variants.

6 Conclusion

We proposed to inform an IDRR model with knowl-
edge about the DRs encoded in the classification
labels using the LCM, instead of treating each class
independently. In addition, we explored various
strategies to encode different types of knowledge
into the model and found that they are all beneficial.
This approach is flexible and can also be applied to
other base models. Furthermore, learning the lexi-
cal semantics of the label tokens allows a model to
train on multiple datasets even if they do not share
the same label set, and this is the direction of our
future work.

7 Limitations

The encoder of the LCM which we have utilized
for our experiments is a basic deep neural network.
Replacing it with more robust and effective ar-
chitectures could help achieve better performance.
Furthermore, instead of using pre-trained GloVe
embeddings for the encoder, using IDDR-specific
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embeddings could have been a more efficient ap-
proach. Lastly, our models have been trained and
evaluated on PDTB 2.0, instead of the latest PDTB
3.0, which includes also intra-sentential implicit re-
lations and has a more systematic sense hierarchy.
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