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Abstract

Pre-trained transformer language models (LMs)
have in recent years become the dominant
paradigm in applied NLP. These models have
achieved state-of-the-art performance on tasks
such as information extraction, question an-
swering, sentiment analysis, document classi-
fication and many others. In the biomedical
domain, significant progress has been made in
adapting this paradigm to NLP tasks that re-
quire the integration of domain-specific knowl-
edge as well as statistical modelling of lan-
guage. In particular, research in this area has
focused on the question of how best to construct
LMs that take into account not only the patterns
of token distribution in medical text, but also
the wealth of structured information contained
in terminology resources such as the UMLS.
This work contributes a data-centric paradigm
for enriching the language representations of
biomedical transformer-encoder LMs by ex-
tracting text sequences from the UMLS. This
allows for graph-based learning objectives to be
combined with masked-language pre-training.
Preliminary results from experiments in the ex-
tension of pre-trained LMs as well as train-
ing from scratch show that this framework im-
proves downstream performance on multiple
biomedical and clinical Named Entity Recogni-
tion (NER) tasks. All pre-trained models, data
processing pipelines and evaluation scripts will
be made publicly available.

1 Introduction

In recent times, transformer language models
(Vaswani et al., 2017) have become the most popu-
lar and effective sequence modelling framework in
almost all areas of applied Natural Language Pro-
cessing. Unsupervised pre-training on large quanti-
ties of text allows transformers to capture rich se-
mantic and syntactic patterns that can be transferred
to many specialised language processing objectives.
As such, transformer models that use the transfer
learning paradigm whereby the model is trained

in an unsupervised manner on a large text corpus
and then fine-tuned on a downstream supervised-
learning task have achieved state-of-the-art results
across a wide range of general and domain-specific
applications.

The proliferation of textual data in the biomed-
ical domain (Electronic Health Records (EHRs),
clinical documents, pharmaceutical specifications,
etc) has precipitated the broad adoption of deep
learning & NLP techniques for information extrac-
tion and processing (Li et al., 2021; Tiwari et al.,
2020; Dubois et al., 2017). Moreover, it has been
shown that language models are capable of encod-
ing clinical knowledge to a certain extent (Sing-
hal et al., 2022). Biomedical and clinical NLP,
however, is widely recognised to present particu-
lar challenges that do not apply to the same ex-
tent in other domains, in particular the need to
incorporate structured domain knowledge into text
encodings (Chang et al., 2020). In order for neu-
ral language modelling to be reliable in a disci-
pline as highly specialised as medicine, there is a
more acute need for models to learn directly from
domain-specific terminologies, as opposed to rely-
ing solely on corpus-based learning. Thus, a signif-
icant amount of research effort in the medical NLP
community has been directed towards the question
of how best to inject information from knowledge
graphs (KGs) into LMs (He et al., 2022; Naseem
et al., 2022; Li et al., 2020). However, a generalis-
able, widely-accepted approach to this technique
that can be easily transferred across different prob-
lem settings, models and training corpora has yet to
emerge. In addition, research into knowledge graph
integration in NLP in the biomedical domain has
tended to focus on English-language corpora; the
utility and transferability of these techniques for
other languages, for which less textual resources
are available, as well as for multilingual models,
remains therefore an under-explored area.

This paper aims to contribute to the resolution of
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these issues by proposing a general framework for
training BERT encoders (Devlin et al., 2019) us-
ing the UMLS (Unified Medical Language System,
Bodenreider (2004)) alongside free-text corpora.

The main contributions of this work are as fol-
lows:

• We propose a data-centric method for formu-
lating the KG-based learning objectives of
triple classification and entity/link prediction
in the language modelling paradigm, and im-
plement a framework for training transformers
using the UMLS knowledge base in parallel
with masked-language pre-training.

• Pre-training on the UMLS alongside the Eu-
ropean Clinical Case Corpus (Minard et al.,
2021; Magnini et al., 2020), we show that this
method brings improvements to pre-trained
models across a range of biomedical en-
tity recognition tasks in three different lan-
guages, as well as functioning as a competi-
tive pre-training strategy that requires much
less training data in comparison to state-of-
the-art transformer models. We release the
monolingual and multilingual model weights
trained in this way, UMLS-KGI-BERT, as
open-source resources for the clinical NLP
research community.

• Based on this work, we release the Python
library bertify_umls, built mainly on the
transformers and pandas libraries, which
allows researchers to create custom text
datasets and effectively use the UMLS knowl-
edge base as a training corpus for BERT-style
LMs.

2 Related Work

2.1 Pre-trained LMs for Medical Applications
In general, the standard methodology for adapting
neural text encoders to the biomedical domain has
been to take a model that has been pre-trained on
general-domain text corpora and continue this unsu-
pervised pre-training on a medical corpus (Alrow-
ili and Shanker, 2021; Lee et al., 2020; Alsentzer
et al., 2019). However, recent work has suggested
that, given enough training data, it is preferable to
pre-train these models on large domain-specific cor-
pora only, without starting from a general-domain
checkpoint (Gu et al., 2021; Rasmy et al., 2021). In
this work we explore both approaches, extending

existing biomedical and general-domain models as
well as training BERT models from scratch on our
own generated datasets.

2.2 Knowledge-enhanced LMs

Techniques for the incorporation of knowledge
graph structure into BERT models can, broadly
speaking, be divided into three categories, each fo-
cusing on one of the three fundamental components
of a machine learning system, i.e. 1) the training
data, 2) the model architecture and 3) the objective
function to be optimised. The first type of approach
prioritises the augmentation of BERT’s input data
with information extracted from a knowledge graph.
This extra information can be numerical, e.g. pre-
computed graph embeddings (Jeong et al., 2019)
or textual, e.g. KG triples linked to input sentences
(Liu et al., 2019).

The second type of approach focuses on adapting
the architecture of BERT so that its language repre-
sentations become fused with knowledge graph em-
beddings (KGEs) (Wang et al., 2021; Peters et al.,
2019; Zhang et al., 2019). Knowledge graph fu-
sion techniques such as these have been shown to
be beneficial on certain English-language medical
NLP tasks (Meng et al., 2021; Roy and Pan, 2021).

Thirdly, the self-supervised pre-training objec-
tive of BERT models can be augmented using the
kind of knowledge graph reasoning tasks used to
build KGE models. This approach is more com-
monly used for knowledge graph completion (Kim
et al., 2020; Yao et al., 2019) but has also been
shown to be an effective strategy in the biomedical
NLP domain (Hao et al., 2020).

As previously mentioned, given that the med-
ical domain is particularly exacting in terms of
requirements for the use of structured facts, the
exploration of ways in which ontological knowl-
edge can be integrated into automated text process-
ing is a very active area of research (Khosla et al.,
2020; Mondal et al., 2019). In particular, there
have been multiple successful efforts to integrate
the UMLS knowledge graph into BERT models,
notably UmlsBERT (Michalopoulos et al., 2021),
which proposes a data-augmentation technique al-
lowing for concept and semantic type information
to be linked to input text, and SapBERT (Liu et al.,
2021b,a), which introduced a self-alignment strat-
egy for learning from UMLS synonym pairs via a
multi-similarity (MS) loss function to force related
concepts closer to one another in BERT’s repre-
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Figure 1: Overview of the UMLS-KGI pre-training process.

sentation space. Yuan et al. (2022) build on this
strategy by applying MS loss to relation triples. In
contrast, in this work we show that information
from the UMLS can be incorporated into BERT
models in a simpler way, using only cross-entropy
classification loss, while also balancing this train-
ing process with standard masked-language BERT
pre-training.

Recent general overviews of the landscape of
AI research have highlighted the importance of
data-centric approaches to building models (Zha
et al., 2023; Hamid, 2022; Jakubik et al., 2022)
and in light of these trends this work focuses on
types 1) and 3) of knowledge base integration de-
scribed above, i.e. on improving the performance
of standard model architectures by constructing
high-quality datasets that can be integrated into
the self-supervised language modelling paradigm
by modifying the BERT objective function. The
motivation for this kind of approach is also to pro-
vide a pre-training framework that is more widely
transferable and does not rely on any particular
transformer-encoder architecture.

3 Methodology

In this work, we experiment with training BERT
language models with three knowledge graph rea-
soning tasks derived from the UMLS, in addition
to the standard masked-language modelling objec-
tive: entity prediction, link prediction and triple
classification.

3.1 Dataset Construction

Formally, we consider the UMLS KG in the stan-
dard fashion, as a directed graph G = (C,E,R)
where C is the set of all medical concepts in the
KG, E the set of all edges or relations that link
these concepts to one another, and R the set of pos-
sible relation types, i.e. the labels r for each e ∈ E.
The training sequences are thus generated from
the KG dataset of ordered triples (h, r, t) where
(h, r) ∈ C × C and r ∈ R. As a compendium of
multiple different sources of taxonomic biomedi-
cal information, the UMLS metathesaurus contains
multiple levels of granularity at which meaning
representation can be analysed. We consider three
such levels of granularity in our work:

• Terms - string descriptors for conceptual enti-
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Table 1: Pre-training corpora sizes used in the experiments.

Triple
Classification

Entity
Prediction Paths E3C corpus

(num. documents)
Total Training

Examples
Memory
Footprint

French 200K 100K 64,208 25,740 389,948 604MB
Spanish 200K 100K 100K 1,876 401,876 162MB
English 200K 100K 100K 9,779 409,779 174MB
Total 600K 300K 264,208 37,395 1,201,603 940MB

ties

• CUIs (Concept Unique Identifiers) - the basic
unit of meaning representation for the nodes
in the knowledge graph, i.e. the elements of
the set C.

• Semantic Groups - these are groupings of con-
cepts that can be considered to define the type
of entity a concept represents; e.g. anatomical
structure, chemical, disorder etc.

Each concept (CUI) can be associated with multiple
terms and multiple semantic groups. Thus, given
that the entities h and t that make up the knowledge
graph triples are represented as CUIs, in order to
represent them as input text sequences for BERT
models, we use the “preferred term” strings associ-
ated with the concepts h and t, except in the case
of synonym relations where we randomly select
another of the terms associated with the concept in
question to associate with t. We also introduce a set
of special tokens to represent the relation types R,
of which there are seven (parent, child, synonymy,
allowed qualifier, qualified by, broader, narrower).
Concretely, the tokenization function for BERT
models forms text classification sequences from
triples in the following way;

Tokenize(h, r, t) = [CLS]wh
1 · · ·wh

m

[REL]wt
1 · · ·wt

n[SEP] (1)

where the wi represent the token sequences cor-
responding to the strings h and t, [CLS] and
[SEP] are BERT’s standard classification and
sequence-separation tokens as defined by De-
vlin et al. (2019), and [REL] is one of the
relation tokens. For link prediction, we con-
struct a dataset of variable-length paths through
the KG by iteratively selecting a list of triples
(h1, r1, t1), . . . , (hn, rn, tn) where hi+1 = ti to
form a path p = (h1, r1, h2, . . . , rn, tn).

Entity Prediction The entity classification task
can be trivially integrated into the masked-language

objective of BERT, by masking the tokens associ-
ated with the concept t.

Link Prediction We formulate link prediction
as a narrow masked-language task by masking the
relation tokens in the path dataset with another hid-
den relation token, for which the model is trained
to fill in one of six relation types - as the triple clas-
sification and entity prediction tasks already have
the partial goal of improving the model’s capability
to associate synonymous terms with each other, we
exclude synonym relations from the path dataset.

Triple Classification Following the work of Hao
et al. (2020), the triple classification objective is for-
mulated as a binary classification problem where
the model is tasked with classifying triples as true
or false. In order to generate training examples of
false triples, we use two different negative sampling
strategies. Firstly, to provide directly contrastive
examples for existing relations, we sample triples
(h, r, t) where h and t belong to different semantic
groups and construct corresponding false triples
with the same relation type and semantic group
categories, i.e. (ĥ, r, t̂) /∈ G where ĥ and t̂ are of
the same semantic group as h and t respectively.
Secondly, to provide contrastive examples for rela-
tion types, we sample triples for which h and t are
of the same semantic group, and form the negative
training example by changing the relation type r.
To ensure balance, the triple classification datasets
used in this work are made up of 50% positive ex-
amples (real triples from the KG), 25% examples
generated by the first negative sampling method
and the rest by the second.

We perform stratified sampling on the base
knowledge graph according to semantic groups,
i.e. we ensure that the proportional representa-
tion of each semantic group in the knowledge-base
triples for each language is maintained in the train-
ing datasets.

Mixed Objective Function In order to train
BERT models using the UMLS-based reason-
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ing tasks described above alongside the masked-
language objective, each training example is aug-
mented with an indicator label that tells the model
which loss function to apply to the sequence in
question. The overall loss function is then calcu-
lated as

L = LMLM + α1LEP + α2LLP + α3LTC (2)

where the αi are scalar task-weighting coefficients
and LMLM, LEP, LLP, and LTC correspond to the
loss values for masked language modelling, entity
prediction, link prediction and triple classification
respectively. We use the standard cross-entropy
classification loss for all tasks.

4 Experiments

For the evaluation of the approach described in
the previous section, we restrict our attention in
this paper to NER tasks. Where possible, we use
the datasets and training-evaluation-test splits that
are publicly available via the Huggingface datasets
library1.

4.1 KG-integrated pre-training
Pre-training corpora As a resource for masked-
language pre-training, we utilise the European Clin-
ical Case Corpus (E3C) version 2.0.02, a freely-
available multilingual corpus of clinical narratives.
We evaluate our method in three different lan-
guages; English, French and Spanish. These lan-
guages were chosen as they are the three most
well-represented languages in the metathesaurus
for which we have access to pre-trained clinical
BERT models for comparison. The sizes of the
combined UMLS-E3C datasets used are shown in
Table 1.

For each language, we compare the performance
of 1) a transformer model trained from scratch on
each monolingual dataset (KGI-BERTEN,FR,ES)
against 2) a multilingual version of the same model
trained on all three datasets (KGI-BERTm), 3) a
pre-trained monolingual biomedical model and 4)
the same pre-trained model with supplementary
training on the corresponding monolingual UMLS-
E3C dataset.

The UMLS-KGI models were trained for 64
epochs on each dataset, using the PyTorch im-
plementation of the weighted ADAM optimizer

1https://huggingface.co/datasets
2https://live.european-language-grid.eu/

catalogue/corpus/7618

(Loshchilov and Hutter, 2019) with default param-
eters. We use a maximal sequence length of 256
for the masked-language modelling sequences, an
effective batch size of 1500 and a triangular learn-
ing rate schedule peaking at 7.5 × 10−4. To take
into account the varying sizes of the components
of the pre-training dataset we set the values of the
coefficients of the loss function such that they are
inversely proportional to the number of documents
available:

αi =

∑3
j=0,j ̸=i nj

2
∑3

k=0 nk

where the nk correspond to the number of docu-
ments in the training set for each UMLS-based task.
In this way, the E3C masked-language loss has the
same weighting as the UMLS-based task losses.

Pre-trained models For supplementary train-
ing, we make use of what are, to the best of our
knowledge, the overall best-performing biomedi-
cal BERT models of their size (pre-trained using
masked-language tasks only) for each language, ac-
cording to baseline experiments on the NER tasks.

For French, we use DrBERT (Labrak et al.,
2023), for Spanish the RoBERTa-based biomed-
ical model released by Carrino et al. (2021), which
we refer to as BioRoBERTa-ES, and for English
PubMedBERT (Gu et al., 2021). For training from
scratch, we use the DistilBERT model configura-
tion (Sanh et al., 2019) with 12 encoder layers and
12 attention heads.

4.2 Evaluation corpora

We evaluate these models on nine different clinical
entity recognition tasks; four in French, two in
Spanish and three in English. In order to ensure a
fair comparison between models and evaluate more
directly the knowledge transfer capabilities of the
pre-trained models, we restrict ourselves to a one-
shot setting for all tasks, i.e. the model is given
a single pass over the training data before being
evaluated on the test set. For all fine-tuning runs,
we use an effective batch size of 4 (we found that
very frequent optimizer updates give better results
in for few-shot learning), learning rate 2 × 10−5

and weight decay of 0.01.

CAS/ESSAIS CAS (Grabar et al., 2018) and ES-
SAIS (Dalloux et al., 2021) are corpora of clinical
cases in French for which a subset is annotated with
part-of-speech tags as well as semantic biomedi-
cal annotations (UMLS concepts, negation, and
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Table 2: Results on the French-language NER tasks. Bold: best result, underlined: next best.

CAS-POS CAS-SG QUAERO-MEDLINE ESSAI-POS
Model P R F1 P R F1 P R F1 P R F1
DrBERT-4GB 90.94 91.59 90.84 65.86 64.89 62.20 68.65 69.38 66.66 94.83 95.08 94.69
+ UMLS-KGI 93.15 93.22 92.84 70.82 69.98 67.14 71.59 72.37 69.90 94.92 94.76 94.59
KGI-BERTFR 88.55 88.40 87.82 71.57 66.90 65.79 71.78 72.93 70.75 95.46 95.40 95.18
KGI-BERTm 90.87 90.58 90.16 71.14 69.81 67.28 72.04 72.89 70.96 94.88 94.84 94.55

Table 3: Results on the English-language NER tasks.

NCBI-Disease BioRED-NER JNLPBA04
Model P R F1 P R F1 P R F1
PubMedBERT 93.81 94.26 93.53 84.76 85.33 83.35 81.57 82.59 81.13
+ UMLS-KGI 94.65 95.11 94.46 84.28 85.92 83.64 85.75 86.04 85.15
KGI-BERTEN 89.33 89.43 88.99 82.98 85.89 82.99 81.82 82.90 81.47
KGI-BERTm 89.40 90.04 89.16 82.67 84.63 81.97 81.24 82.47 82.02

uncertainty). We evaluate our models on the two
corresponding medical POS-tagging tasks, CAS-
POS and ESSAI-POS, as well as formulating a
semantic-group token classification task using the
CAS corpus annotations (CAS-SG).

QUAERO The QUAERO French Medical Cor-
pus (Névéol et al., 2014) is a corpus of biomedical
documents from EMEA and Medline annotated
with UMLS concepts to facilitate entity recogni-
tion and document classification tasks. The NER
evaluation task we make use of here, QUAERO-
MEDLINE, involves semantic group identification
in the Medline documents.

PharmaCoNER (Gonzalez-Agirre et al., 2019)
Designed for the automated recognition of phar-
macological substances, compounds and proteins
in Spanish-language clinical documents, this is a
manually annotated subset of the Spanish Clinical
Case Corpus (SPACCC (Intxaurrondo, 2018)).

MEDDOCAN Similarly to PharmaCoNER, the
MEDDOCAN corpus (Marimon et al., 2019) is an
annotated subset of SPACCC, in this case with se-
mantic entity types relevant to clinical document
anonymisation, i.e. words and expressions consti-
tuting Personal Health Information (PHI).

NCBI-Disease (Doğan et al., 2014) The NCBI
disease corpus is made up of PubMed abstracts
with annotated disease mentions. In this work, we
restrict our attention to token classification at the
mention level.

BioRED (Luo et al., 2022) This corpus is de-
signed for biomedical relation extraction and en-

tity recognition; we focus on the latter in this
work. This task can be considered a more seman-
tically general version of the NCBI disease recog-
nition task, in that the BioRED corpus consists of
PubMed abstracts annotated with a diverse range
of entity types including genes, proteins and chem-
icals.

JNLPBA04 NER Dataset (Collier and Kim,
2004) Developed in the context of a biomedical
entity recognition shared task, this corpus consists
of Medline documents annotated with mentions of
DNA, RNA, proteins, cell types and cell lines.

We report the macro-averaged precision, recall
and F1-score for each task. Results for the French,
English and Spanish tasks can be seen in Tables
2, 3, and 4 respectively. We find that the best-
performing models are in general the pre-trained
checkpoints for which training has been extended
via knowledge graph integration. This is unsur-
prising given that these are the models that have
undergone the most domain-specific pre-training
among all variants. It is important to highlight,
moreover, the fact that the KGI-BERT variants are
competitive with the pre-trained baselines for many
tasks, despite being trained on less data. The largest
improvements brought about by the UMLS-KGI
training strategy can be seen in the French and
Spanish tasks, suggesting that this technique will
be more beneficial for lower-resource languages for
which there is more room for improvement with
respect to existing models.

The number of documents and target label
classes for each evaluation task is show in Table 5.
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Table 4: Results on the Spanish-language NER tasks. Bold: best result, underlined: next best.

PharmaCoNER MEDDOCAN
Model P R F1 P R F1
BioRoberta-ES 81.11 81.99 80.41 91.41 93.15 91.84
+ UMLS-KGI 83.52 84.30 83.90 93.65 95.32 91.99
KGI-BERTES 79.95 80.14 78.11 92.28 92.93 92.17
KGI-BERTm 85.05 85.95 85.49 92.32 92.65 91.98

Table 5: Number of documents and target classes in the
NER evaluation datasets

Dataset Train Dev Test N. Classes
CAS-POS 2,652 569 569 31

CAS-SG 167 54 54 15

QUAERO-MEDLINE 788 790 787 11

ESSAI-POS 5,072 1,088 1,087 34

NCBI-Disease 5,433 924 941 3

BioRED-NER 387 98 97 7

JNLPBA04 16,619 1,927 3,856 11

PharmaCoNER 500 250 250 5

MEDDOCAN 500 250 250 22

4.3 Ablation Experiments

In order to measure the relative effect of the three
KG-derived pre-training tasks on downstream per-
formance, we perform ablation experiments with
the continually pre-trained models. This involved
comparing the downstream performance on the
NER tasks of different versions of the UMLS-
extended models, each with one of the three KG-
based pre-training tasks excluded from the pre-
training process. For ablation, we use identical
experimental settings to those described previously,
except with 32 pre-training epochs rather than 64.

In general, the ablation results, for which the
macro F1 scores are shown in Table 6, suggest that
the majority of the benefits in terms of NER perfor-
mance are brought about by the link prediction task,
although there are not enough statistically signifi-
cant differences among the results to fully justify
this conclusion.

It is clear also that certain tasks tend to add un-
helpful noise to the model with respect to some
tasks, in particular the ESSAI-POS task in French
and the MEDDOCAN task in Spanish. This may be
due to the nature of these entity recognition tasks
being more linked to general semantic patterns (i.e.
parts-of-speech and identifying information) such
that the addition of biomedical knowledge to the
models does not improve their representation of the

relevant concepts.

5 Conclusions and Future Work

This paper introduces UMLS-KGI, a framework for
training BERT models using knowledge graphs re-
quiring highly minimal adjustments to the standard
language modelling paradigm. We show the poten-
tial of this method to increase the performance of
BERT models on various NER tasks. The results
presented in this paper suggest that for clinical
NER tasks, high-quality small-scale datasets de-
rived from structured information, alongside along-
side relatively small clinical text corpora, can be
as effective as large-scale corpora for pre-training
BERT models. We make our models and data-
processing pipelines freely available online.

Future work in this direction will involve the in-
corporation of more diverse graph-based reasoning
tasks in the pre-training strategy with more fine-
grained representation of relation types, as well as
intrinsic evaluation of the UMLS-KGI-BERT lan-
guage representations via embedding visualisation
and interpretability studies.

Limitations

The work presented in this paper is subject to a
number of limitations which will be addressed in fu-
ture work. Firstly, we evaluate UMLS-KGI-BERT
on a very narrow range of tasks limited to token
classification - a broader range of information ex-
traction and reasoning tasks would be necessary for
a more complete picture of the utility of our pre-
training methods. In addition, we only train mod-
els for mid-to-high-resource languages; to properly
validate the applicability of this approach, in par-
ticular the lessening of the need to rely on large
training corpora, it will be necessary to train and
evaluate such models in more low-resource set-
tings.
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Table 6: Macro-F1 scores for the ablation experiments.

Dataset
Base Model KG Tasks CAS-POS CAS-SG QUAERO-MEDLINE ESSAI-POS
DrBERT-4GB - 90.84 62.20 66.66 94.69

EP+LP 91.59 64.85 66.08 94.62
EP+TC 90.86 62.11 66.75 94.88
TC+LP 92.01 65.98 66.89 94.41
all 92.04 66.22 67.15 94.50

NCBI-Disease BioRED-NER JNLPBA04
PubMedBERT - 93.53 83.35 81.13

EP+LP 93.24 82.40 81.25
EP+TC 93.37 83.09 82.66
TC+LP 94.13 83.38 84.30
all 94.11 83.45 84.36

PharmaCoNER MEDDOCAN
BioRoberta-ES - 81.11 91.84

EP+LP 81.12 91.86
EP+TC 82.40 91.80
TC+LP 83.22 91.71
all 83.46 91.77
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Table 7: Size of the UMLS dataset from which the KG-
based pre-training corpus was sampled.

Language Terms CUIs Relations
English 3,912,195 2,245,468 17,121,829

Spanish 303,978 118,061 437,578

French 202,963 171,060 669,006

Total 4,419,136 2,534,589 18,228,413

Entities. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Linguistics,
pages 1441–1451, Florence, Italy. Association for
Computational Linguistics.

A Dataset Statistics

A.1 UMLS Knowledge Graph
We use the 2022AB release of the UMLS knowl-
edge graph, which contains 8,751,471 concepts
defined by 3,711,072 unique identifiers (CUIs),
and 25,369,590 relations. Restricting our attention
to semantic types related to human biology and
medicine, we end up with the base dataset outlined
in Table 7.

B Supplementary Experimental Details

Pre-trained Checkpoints We use the following
pre-trained model weights downloaded from the
HuggingFace model hub as baseline models;

• DrBERT: Dr-BERT/DrBERT-4GB

• PubMedBERT:
microsoft/BiomedNLP-PubMedBERT-base-
uncased-abstract-fulltext

• BioRoBERTa-ES:
PlanTL-GOB-ES/roberta-base-
biomedical-clinical-es

Model Hyperparameters The hyperparameter
settings used for the pre-training on the UMLS-
based dataset are shown in Table 8. The pre-
training process used a linear learning rate sched-
ule with warmup, where the learning rate increases
from zero over the warmup period until it reaches
the specified before decaying linearly over the rest
of the training steps. In the interest of minimising
the energy consumption of our experiments, we
carried out very minimal hyperparameter search,
leaving most parameters at their default values. The
experiments were run using Python 3.8.15, with Py-
Torch version 2.0.0 and CUDA 11.8, along with
the transformers library version 4.27.4.

Table 8: Hyperparameter settings for pre-training the
UMLS-KGI models.

Parameter Value
Sequence Length 256

Learning rate 0.00075

Learning rate warmup steps 10,770

Batch size 15

Gradient accumulation steps 100

MLM probability 0.15

Hardware specifications The pre-training exper-
iments were run on four Nvidia Tesla V100 GPUs
with 32GB of RAM, while the fine-tuning experi-
ments were run on an RTX 2080 Ti with 11GB of
RAM.
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