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Abstract

Detecting duplicate patient participation in clin-
ical trials is a major challenge because repeated
patients can undermine the credibility and ac-
curacy of the trial’s findings and result in sig-
nificant health and financial risks. Develop-
ing accurate automated speaker verification
(ASV) models is crucial to verify the iden-
tity of enrolled individuals and remove dupli-
cates, but the size and quality of data influ-
ence ASV performance. However, there has
been limited investigation into the factors that
can affect ASV capabilities in clinical envi-
ronments. In this paper, we bridge the gap
by conducting analysis of how participant de-
mographic characteristics, audio quality crite-
ria, and severity level of Alzheimer’s disease
(AD) impact the performance of ASV utilizing
a dataset of speech recordings from 659 par-
ticipants with varying levels of AD, obtained
through multiple speech tasks. Our results in-
dicate that ASV performance: 1) is slightly
better on male speakers than on female speak-
ers; 2) degrades for individuals who are above
70 years old; 3) is comparatively better for non-
native English speakers than for native English
speakers; 4) is negatively affected by clinician
interference, noisy background, and unclear
participant speech; 5) tends to decrease with
an increase in the severity level of AD. Our
study finds that voice biometrics raise fairness
concerns as certain subgroups exhibit differ-
ent ASV performances owing to their inher-
ent voice characteristics. Moreover, the per-
formance of ASV is influenced by the quality
of speech recordings, which underscores the
importance of improving the data collection
settings in clinical trials.

1 Introduction

Healthcare systems are increasingly relying on au-
tomatic speaker verification (ASV) models to en-
sure secure and accurate identification of patients
and healthcare providers, with the aim of prevent-
ing fraud, safeguarding patient privacy, and ensur-

ing the accuracy of medical records (Upadhyay
et al., 2022; Arasteh et al., 2022).

Conducting large-scale clinical trials, involving
numerous patients, doctors, clinics, and even dif-
ferent countries can pose significant challenges
in identifying instances of duplicate participation,
which occurs when a single individual joins the
same study more than once, either at different sites
or time points, leading to skewed results and un-
dermining the validity of study findings (Irum and
Salman, 2019). Shiovitz et al. (2013) discovered
that as much as 7.78% of patients involved in a clin-
ical study were duplicated across different sites.

In some cases, individuals participate in mul-
tiple clinical trials concurrently in order to earn
more money. When a trial enrolls an adequate
number of substandard participants, it risks not
meeting the primary endpoints and ultimately caus-
ing a multimillion-dollar study to fail. Pinho et al.
(2021) examined the financial effect of duplicate
participants on the pharmaceutical companies con-
ducting a set of short-term study programs across
psychiatric disorders including Schizophrenia, Ma-
jor Depressive Disorder, and Bipolar Depression.
Based on their results, enrolling ineligible subjects
in the selected studies results in a loss of around
$29,680,000 for the sponsor pharmaceutical com-
pany. In addition, duplicate participation results
in higher placebo rates and compromised data in-
tegrity. These findings highlight the importance of
addressing the duplicate participant problem and
underscore the need for reliable and accurate ASV
methods in healthcare systems to verify whether
an unknown voice belongs to a known enrolled
individual (Upadhyay et al., 2022; Arasteh et al.,
2022).

Cognitive impairment has been linked to a de-
cline in vocabulary richness, syntactic complexity,
and speech fluency, according to previous research
(Thomas et al., 2005; Roark et al., 2011; Guinn
and Habash, 2012; Meilán et al., 2012). Therefore,
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it is important to investigate whether the abnor-
mal speech patterns exhibited by individuals with
cognitive impairment can affect ASV performance.
Despite this concern, there is a paucity of research
examining the relationship between cognitive im-
pairment and ASV in the existing literature. This
research gap motivated us to address this issue by
examining the effect of Alzheimer’s disease (AD)
severity level on ASV performance.

Furthermore, external factors such as partici-
pants’ demographic information (Si et al., 2021),
recording environment, or data collection proce-
dure (Woo et al., 2006; Wan, 2017) may also have
an impact on ASV performance, but their impact
is not well-studied in the healthcare industry. An
extensive analysis of these external factors could
provide valuable insights into the accuracy and
reliability of ASV models and identify potential
sources of bias due to differences in inherent voice
characteristics among subgroups (Si et al., 2021).

The purpose of this study is to investigate the ef-
fectiveness of ASV models in identifying duplicate
patient participation in large-scale clinical trials,
and to explore the factors that influence ASV per-
formance in such settings. To this end, we utilize
a longitudinal clinical dataset of English speech
recordings obtained through multiple speech tasks
from 659 participants with varying levels of AD.
We employ the TitaNet model, an end-to-end deep
learning text-independent ASV model pre-trained
on a large volume of speech recordings of English
speakers. ASV models can be classified into two
groups: text-dependent (TD) and text-independent
(TI). TI ASV models allow for more flexibility in
the enrollment and verification phases without con-
straints on the speech content. When pre-trained
on extensive audio datasets, TI models demonstrate
a comparable level of accuracy to TD models. We
evaluate the performance of TitaNet on our dataset
in a zero-shot setting, achieving a 3.1% equal er-
ror rate (EER). In addition, we analyze the impact
of various external factors on ASV performance,
including participant demographic characteristics
(i.e., age, and gender), audio quality criteria (i.e.,
clinician interference, background noise, partici-
pant accent, and participant clarity), as well as AD
severity level. This study aims to provide valu-
able insights into the factors that can affect the
performance of ASV models in clinical trial envi-
ronments, with the goal of improving the accuracy,
fairness, and reliability.

Our findings indicate that voice biometrics may
present fairness issues, as certain subgroups demon-
strate differing speaker verification performances
due to their inherent voice characteristics. In ad-
dition, the quality of speech recordings can im-
pact ASV performance, highlighting the impor-
tance of monitoring and enhancing data collection
and recording settings during clinical trials.

2 Related Work

Speaker verification technology has been increas-
ingly utilized in various domains, including health-
care systems. Several studies have analyzed the
feasibility and effectiveness of speaker verification
models in healthcare settings (Hao and Hei; Weng
et al., 2014). However, the external factors that
can affect the performance of ASV models has not
been extensively studied through research in the
healthcare field.

Race and Gender Effect: Si et al. (2021) uti-
lized three state-of-the-art ASV models including
the Xvector-TDNN (Snyder et al., 2018), ECAPA-
TDNN (Desplanques et al., 2020), and DTW
(Dutta, 2008) models to explore demographic ef-
fects on speaker verification. For this purpose,
they used a subset of the mPower study (Bot et al.,
2016), a Parkinson’s disease mobile dataset, com-
paring a diverse group of 300 speakers by race and
gender. Their results demonstrated that the Latinx
subgroup indicates the worst ASV performance
among the four major races in the dataset (i.e.,
White, Black, Latinx, and Asian). Based on their
findings, gender represents minor differences in
ASV performance between male-only and female-
only subgroups. We did similar gender-level and
accent-level analyses on patients with Alzheimer’s
disease to detect the potential sources of bias in
ASV due to the inherent voice characteristics of
distinct genders or English accents.

Age Effect: Kelly and Harte (2011) analyzed the
effect of long-term ageing on ASV performance.
They utilized a conventional GMM-UBM system
(Irum and Salman, 2019) on a longitudinal voice
dataset of a cohort of 13 adult speakers, whose
recordings were collected over a time span of 30-
40 years. According to their results, short-term
aging (less than 5 years) does not have a signifi-
cant impact on verification performance, compared
to normal inter-session variations. However, for
longer periods, aging has a negative effect on veri-
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fication accuracy. Moreover, the researchers found
that the rate of verification score decline is more
rapid for speakers aged 60 years and above. How-
ever, they only evaluated their models on small
cohorts and inter-speaker differences across differ-
ent age groups were not further analyzed, while
in the present work, we evaluate the ASV perfor-
mance across different age groups over 55 years old
and incorporate a larger clinical dataset with 659
speakers in total, while we controlled for AD effect.
Taylor et al. (2020) also demonstrated that some
speech and vocal characteristics (e.g., the spectral
center of gravity, spectral skewness, or spectral
kurtosis) undergo alterations with aging, and these
changes can vary between men and women. These
findings suggest that age is an effective factor in
speaker’s voice characteristics and this underscores
the importance of assessing age effect on our ASV
model to ensure the fairness of the model across
different age groups.

Noise Effect: Wan (2017) applied LibriSpeech
corpus (Panayotov et al., 2015) of English novel
reading speech with varying lengths and tested
ASV performance across different types and lev-
els of background noise (e.g., babble, car, office
and airplane noise) with a great mismatch between
training and testing speech. Based on their findings,
performance varies across different types of noise
and the number of errors grow with a decrease in
the sound-to-noise-ratio value. However, other met-
rics of audio quality were not considered in their
study and their models were only trained and tested
on healthy speech recordings. In the present study,
we assess the effect of other audio quality aspects,
such as participant clarity, clinician interference,
and background noise, on ASV performance using
a dataset of speakers with varying severity levels of
AD, which was collected in clinical environment.

Speech Pathology Effect: Arasteh et al. (2022)
have investigated the vulnerability of pathological
speech to re-identification in ASV systems. In a
large-scale study, they explored the effects of differ-
ent speech pathologies on ASV using a real-world
pathological speech corpus of more than 2,000
test subjects with various speech and voice dis-
orders. Their results indicated that some types of
speech pathology, particularly dysphonia, regard-
less of speech intelligibility, are more vulnerable
to a breach of privacy compared to healthy speech.
They do not analyze the effect of AD on ASV per-

formance, even though speech and language im-
pairment are prevalent issues in moderate to severe
stages of AD that may potentially affect the ASV
performance. This motivates us to evaluate ASV
performance across varying severity levels of AD.

3 Methods

3.1 Datasets
The Alzheimer’s Disease Clinical Trial (ADCT)
dataset comprises speech recordings of English-
speaking patients with a clinical diagnosis of mild
to moderate AD who participated in a clinical trial.
This is a proprietary dataset, which was collected
every 12 weeks for a 48-week treatment period. It
includes recordings of participants performing a set
of self-administered speech tasks, including picture
description (Goodglass et al., 2001; Becker et al.,
1994), phonemic verbal fluency (Borkowski et al.,
1967), and semantic verbal fluency (Tombaugh
et al., 1999) tasks.

3.1.1 Demographic Information
Demographic data were collected about the partic-
ipants at the beginning of the study. This data
includes the age, and gender of the individuals
upon consenting. The data collection study was
approved by the ethical committee.

3.1.2 Transcription and Quality Assessment
All the audio recordings were manually transcribed
by 49 trained transcriptionists based on the CHAT
protocol and annotations (MacWhinney, 2014).
The transcriptionists utilized an online tool that
granted them access to the recordings and enabled
them to transcribe the audio content, segment the
files into utterances, and perform quality assess-
ment. In addition, the transcriptions manually rated
the quality of the recordings according to different
quality criteria. The values range from 0 to 3 for
each quality criterion. Value higher than 0 indi-
cates that the audio recording has minor to major
issues under that quality criterion. The quality cri-
teria consist of background noise, clinician inter-
ference, participant accent, and participant clarity.
The background noise criterion indicates whether
there is noise in the background from the envi-
ronment. Clinician interference indicates whether
the clinician (or another speaker) interferes with
the speech task. The participant accent criterion
indicates whether the participant is a native or near-
native speaker (values of 0) or has a detectable
non-native accent (value higher than 0). Participant
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clarity indicates whether the participant’s voice is
hard to hear or understand.

3.1.3 Clinical Assessment
Participants were assessed on the severity level
of AD using the Mini-Mental State Examination
(MMSE) (Henneges et al., 2016) rating scale.
MMSE is a brief cognitive function assessment,
which consists of 30 questions that can be com-
pleted in less than 10 minutes. The questions are
divided into seven categories, with each subscore
examining a particular aspect of cognition: Ori-
entation in time (score range 0-5), orientation in
place (score range 0-5), registration (score range
0-3), attention and concentration (score range 0-5),
recall (score range 0-3), language (score range 0-8),
and drawing (score range 0-1). MMSE total score
ranges from 0 to 30, with higher scores indicating
better cognitive function and lower scores indicat-
ing more severe cognitive impairment. In this study,
the participants were categorized into four levels
of AD severity based on MMSE criteria (Wimo
et al., 2013): Healthy Control (HC) (MMSE score
> 26 points), Mild AD (MMSE score 21-26 points),
Moderate AD (MMSE score 15-20 points), and
Severe AD (MMSE score < 15 points).

3.1.4 Dataset Composition
The ADCT data comprises 7084 audio recordings
from 659 speakers with 10.7±7.0 samples on aver-
age per each speaker. The average duration of total
audio and speech-only audio are equal to 69.31 and
37.30 seconds, respectively.

In the dataset, 43.4% of the speakers are male
and 56.6% of the speakers are female. The age
range of the subjects spans from 55 to 80 years old.
Age distribution of the subjects is represented in
Figure 1, with an average value equal to 69.7±6.7.

Figure 2 indicates the distribution of MMSE
scores in the ADCT dataset, showing that the ma-
jority of the samples consist of mild to severe levels
of AD with scores in the range of 15 to 26 points.
The average MMSE score is equal to 17.3±4.4. It
should also be noted that the severity level of AD
may vary over time for some of the speakers.

3.2 Models
In this study, we utilized the TitaNet model
(Koluguri et al., 2022), which is a state-of-the-
art end-to-end TI ASV model from the Nvidia
NeMo toolkit1 that had been pre-trained on an

1https://github.com/NVIDIA/NeMo

Figure 1: Age distribution of the speakers in ADCT
dataset.

Figure 2: Distribution of AD severity levels in ADCT
dataset.

extensive collection of English speech data, from
various publicly-available resources. The TitaNet
model is a neural network model that adopts an
encoder-decoder architecture to extract speaker
embeddings from speech. The model architec-
ture is inspired by ContextNet (Han et al., 2020)
model, which comprises 1D depth-wise separa-
ble convolutions followed by squeeze and excita-
tion (SE) layers combined with channel attention
pooling to convert utterances of varying lengths
into a fixed-length embedding. The model con-
tains 25.3M parameters and it is pre-trained on
the VoxCeleb1 Dev (Nagrani et al., 2017), Vox-
Celeb2 Dev (Chung et al., 2018), Fisher (Cieri
et al., 2004), Switchboard-Cellular1, Switchboard-
Cellular2 (Godfrey and Holliman, 1993), and Lib-
riSpeech (Panayotov et al., 2015) datasets.

We applied the model to the ADCT dataset in a
zero-shot setting and used it for further analysis of
the effect of external factors.
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3.3 Evaluation

To analyze the effect of external factors on ASV
performance, we separately evaluated the perfor-
mance of the TitaNet model across different subsets
of ADCT data including genders, age groups, au-
dio quality levels, and AD severity levels. Initially,
we produced embeddings for all audio files within
each group. Subsequently, we aggregated these
embeddings to create a set of tuples comprising
positive and negative pairs.

Positive tuples refer to pairs of embeddings that
belong to the same speaker. The total number of
positive tuples in each group is given by

∑m
i=1

(ni
2

)
,

which is calculated by summing up all pairs of ni

speech recordings for the ith speaker, where m is
the total number of speakers in the same group.

Negative tuples refer to pairs of embeddings
from different speakers within the same group.
The total number of negative pairs is calculated as∑m

i=1 ni ∗ (N − ni)/2, where N is the total num-
ber of audio files in the group, and ni is the number
of speech recordings for speaker i. The sum is
divided by 2 to avoid counting each pair twice.

After generating all the positive and negative pair
tuples, we proceeded to compute the cosine similar-
ity between the pairs of vector embeddings within
each tuple. Subsequently, we adjusted a threshold
value θ for each group through manual tuning until
the true positive rate equalled the true negative rate,
which enabled us to evaluate the performance of
the ASV model using the equal error rate (EER)
metric. If the cosine similarity value exceeded the
threshold, we considered the corresponding tuple
as belonging to the same speaker. Conversely, if
the cosine similarity value was below the thresh-
old, we deemed the two embeddings to represent
different speakers.

4 Results and Discussion

In order to have a baseline level of ASV perfor-
mance, we evaluated the TitaNet model on all the
speech recordings of the ADCT dataset and ob-
tained a 3.1% EER. To further analyze the impact
of participant demographic characteristics, audio
quality and AD severity level, we then recalculated
EER and compared the ASV performance across
different subgroups.

Figure 3: Visualization of speaker clusters using TitaNet
embeddings of all audio recordings in ADCT dataset,
created using the PaCMAP (Wang et al., 2021) dimen-
sionality reduction method, where each color represents
the gender of the speaker.

4.1 Effect of Participant Demographic
Characteristics on ASV Performance

4.1.1 Gender Effect

We first analyzed the effect of speaker genders on
the performance of ASV. As shown in Figure 3, two
visually distinguishable speaker clusters appeared
in the visualization of speech embeddings of all
speakers in our dataset. Colouring the data points
based on their gender indicates that each cluster is
representative of a specific gender. The left cluster
mostly comprises female speakers and the majority
of the right cluster consists of male speakers. For
further analysis of the ASV performance, we sep-
arately evaluated the model performance on male
and female speech samples within each cluster. To
control for the confounding factors, we randomly
downsized the size of the female subgroup to the
number of speakers in the male subgroup and also,
matched the average age and MMSE score between
the two subgroups. The results (Table 1) show that
according to the EER metric, the ASV model per-
forms better on the total dataset comprising diverse
genders compared to when it is applied to the male-
only or female-only speakers (Table 1). The ASV
performance for the male subgroup (EER = 4.98%)
is slightly better than that for the female subgroup
(5.13% EER), although the difference is not sub-
stantial. This is in line with prior literature (Hanilçi
and Ertaş, 2013) demonstrating that male speakers
exhibit higher speaker recognition accuracy com-
pared to female speakers regardless of the database
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Gender Tuned EER(%) #Spkrs #Smpls Avg #Smpls Avg Age Avg MMSE
Thr. per Spkr Score

Female 0.75 5.13 170 2735 16.09±3.94 69.53±6.72 17.33±4.37
Male 0.75 4.98 170 2671 15.72±4.02 69.41±6.96 17.45±4.45
All 0.74 3.10 659 7084 10.70±7.00 69.55±6.75 17.32±4.44

Table 1: Benchmarking TitaNet ASV model across different genders on the ADCT English dataset. ‘#Spkrs’ denotes
the number of speakers per each gender. ‘#Smpls’ denotes the number of audio recordings per each gender. ‘Tuned
Thr.’ denotes tuned threshold.

Age Group Tuned EER(%) #Spkrs #Smpls Avg #Smpls Gender Avg MMSE
Thr. per Spkr Score

Age <= 70 0.73 3.62 197 3235 16.42±3.86 Male+Female 17.09±4.72
Age > 70 0.74 4.20 195 3022 15.50±4.07 Male+Female 17.57±4.11
All 0.74 3.10 659 7084 10.7±7.0 Male+Female 17.32±4.44

Table 2: Benchmarking TitaNet ASV model across different age groups on the ADCT English dataset. ‘#Spkrs’
denotes the number of speakers per each age group. ‘#Smpls’ denotes the number of audio recordings per each age
group. ‘Tuned Thr.’ denotes tuned threshold.

and classifier used. The results also align with Si
et al. (2021) indicating that there is little differ-
ence in gender in terms of the performance of ASV
models in general.

4.1.2 Age Effect
We then evaluated the age effect on ASV perfor-
mance. For this purpose, we categorized the speak-
ers into two age subgroups with Age <= 70 and
Age > 70 according to the speaker ages at the study
enrollment date. The threshold was set to 70 be-
cause it is equal to the approximate median and
mean value of the age distribution of the speakers
in the ADCT dataset (Section 3.1.4). To control
for the confounding factors, we designed our ex-
periments to ensure that the age-based subgroups
had a comparable number of speakers and average
MMSE scores and included a combination of male
and female speakers.

Based on the results indicated in Table 2, EER
for participants under 70 is 0.58% lower than the
older age group. These results can be explained
by Taylor et al. (2020) revealing that specific at-
tributes of speech and voice characteristics (e.g.,
fricative spectral moments, semitone standard devi-
ation, etc.) vary according to age.

4.2 Effect of Audio Quality on ASV
Performance

We examined how different audio quality factors
affect the performance of speaker verification in
clinical environments. We divided ADCT samples

into two subgroups based on their quality rating for
each criterion: ‘No Issue’ for samples with a rat-
ing of 0 and ‘Minor to Major Issue’ for those with
a rating higher than 0 (maximum is 3). In order
to mitigate the influence of possible confounding
factors, we structured our experiments in such a
way that the quality-based subgroups had a similar
number of speakers and average MMSE score, and
included both male and female speakers. Table 3
shows the comparison of EER values between each
pair of subgroups per audio quality criterion. Our
results indicate that subgroups of audio samples
with no background noise, and high participant clar-
ity yielded lower EER than subgroups with varying
levels of background noise and poor participant
clarity. Therefore, better control of the data collec-
tion setting, along with the use of high-clarity audio
recordings with minimal background noise, would
be recommended in order to improve ASV perfor-
mance in clinical trials. Our findings are in line
with Eskimez et al. (2018), who demonstrated that
incorporating a DNN-based speech enhancement
technique as a front-end noise reduction module
can enhance the ASV performance when applied
to noisy speech data obtained from real customers.

Our results also suggest that clinician interfer-
ence can negatively impact ASV performance with
0.48% increase in EER. Therefore, it is recom-
mended that clinicians refrain from interrupting
participants during speech tasks in recording ses-
sions to prevent any decline in performance.

We also evaluated the speakers’ accents as a qual-
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Audio Quality Criterion Tuned EER(%) #Spkrs #Smpls Avg #Smpls Gender Avg Age Avg MMSE
Thr. per Spkr Score

Background Noise - No Issue 0.75 2.90 125 426 3.40±1.45 M + F 69.60±6.72 16.94±5.83
Background Noise - Minor to Major Issue 0.74 3.54 125 511 4.08±2.08 M + F 69.21±6.45 16.78±5.58
Participant Clarity - No Issue 0.75 2.85 112 481 4.29±1.70 M + F 69.80±6.38 16.81±5.62
Participant Clarity - Minor to Major Issue 0.74 3.41 112 432 3.85±1.83 M + F 69.23±6.81 16.04±5.54
Clinician Interference - No Issue 0.75 2.90 103 659 4.30±2.08 M + F 69.40±6.77 17.65±5.61
Clinician Interf. - Minor to Major Issue 0.73 3.38 103 399 3.87±1.86 M + F 69.43±6.84 14.77±5.22
Participant Accent - Native 0.74 2.97 188 901 4.79±2.82 M + F 68.63±6.89 17.22±5.01
Participant Accent - Non-Native 0.74 2.01 188 594 3.16±1.54 M + F 70.45±6.32 17.19±4.56
All 0.74 3.10 659 7084 10.7±7.0 M + F 69.55±6.75 17.32±4.44

Table 3: Benchmarking TitaNet speaker verification model across different levels of audio quality on the ADCT
dataset. ‘#Spkrs’ denotes the number of speakers per each quality subgroup. ‘#Smpls’ denotes the number of audio
recordings per each quality subgroup. ‘Tuned Thr.’ denotes tuned threshold. For each quality criterion, ‘No Issue’
indicates samples with a rating = 0 and ‘Minor to Major Issue’ indicates samples with a rating > 0 (maximum is 3).
‘M’ denotes male speakers and ‘F’ denotes female speakers. Bold font denotes the subgroup yielding best ASV
performance in each quality criterion.

Figure 4: Comparison of the performance of the TitaNet
ASV model across different AD severity levels based
on EER% metric. Original ADCT refers to the dataset
with the original number of speakers per severity level.
Balanced ADCT refers to the dataset with each group
downsized to the number of speakers in the smallest
group, which is the HC group.

ity indicator, and our results show that ASV per-
forms better on non-native speakers (2.01% EER)
than on native speakers (2.97% EER). This sug-
gests that ASV performance can be better in trials
that involve participants who speak with diverse
non-native English accents as a way to identify
unique speech characteristics for each individual.

4.3 Effect of the Severity Level of Alzheimer’s
Disease on ASV Performance

We examined how the AD severity level impacts the
performance of the ASV model. For this purpose,
we performed a separate recalculation of EER for
subgroups of audio samples consisting of Severe
AD (Number of speakers = 218), Moderate AD
(Number of speakers = 436), Mild AD (Number of
speakers = 244), and HC (Number of speakers =
25), while retaining the original number of speak-
ers. To establish a fair comparison, we then bal-

(a) Healthy Control

(b) Severe AD

Figure 5: Speaker cluster visualizations of HC and
Severe AD groups based on TitaNet embeddings for
ADCT dataset, created using the PaCMAP (Wang
et al., 2021) dimensionality reduction method, with each
colour representing a distinct speaker.

anced the number of speakers across the subgroups
by downsizing each to the smallest subgroup size
of 25 speakers, which was the size of the HC sub-
group. In both scenarios, higher AD severity lev-
els lowered speaker verification performance, by
about 1% to 1.5% of EER (Figure 4). Also, EER
was lower within the groups where a higher num-
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(a) Severe AD (b) Moderate AD

(c) Mild AD (d) Healthy Control

Figure 6: Similarity heatmap visualizations for ADCT dataset using TitaNet embeddings for different AD severity
levels each downsized to the number of speakers in the smallest group, which is equal to 25. The lighter colours
correspond to a higher level of similarity between the associated speaker tuples.

ber of speakers were included. Figure 5a and 5b
display the PaCMAP (Wang et al., 2021) visualiza-
tion of TitaNet speaker embeddings for the HC and
Severe AD groups in the balanced ADCT dataset,
where each colour representing a unique speaker.
In both the HC and Severe AD groups, samples
from the same speakers are clustered close to each
other, while in the HC group, the samples from
different speakers are more distinguishable com-
pared to the Severe AD group. Moreover, there is a
higher level of similarity between negative speaker
tuples within Moderate and Severe AD subgroups
in comparison to Mild AD and HC subgroups, as
indicated in the similarity heatmaps for different
AD severity levels (Figure 6). Overall, our findings
suggest that the unique voice characteristics asso-
ciated with varying levels of AD severity (Boschi
et al., 2017) can be entangled with the identity of
the speaker and may introduce a potential source
of bias in the ASV models.

5 Conclusion

Large-scale clinical trials require accurate verifi-
cation of participants, as duplicate participation
may lead to substandard data quality and signifi-
cant financial and health risks. Therefore, develop-
ing accurate ASV models for verifying participant
identity is essential in these settings. External fac-

tors such as participant profile or audio quality can
cause errors and biases in ASV performance during
the trials, but limited research has been conducted
in this area. In the present work, we utilize a longi-
tudinal speech dataset of participants with varying
levels of AD severity and investigate the impact
of external factors, such as different participant de-
mographic characteristics, audio quality criteria,
and AD severity levels, on the performance of an
end-to-end TI ASV model. Our findings show that
variations in ASV performance can be attributed to
the inherent voice characteristics of different sub-
groups (e.g., different ages, genders, accents, or
AD severity levels) that are likely to be confused
with the identity of the speaker. Hence, it is critical
to reassess this technology to mitigate the risk of po-
tential biases toward certain subgroups. Based on
our results, poor audio quality with unclear speech,
noisy background, and clinician interference also
negatively impacts ASV performance. This high-
lights the importance of quality assurance for the
speech recordings during the trials. In future work,
we aim to automate the audio quality assessment
process by leveraging existing automated meth-
ods such as perceptual evaluation of speech quality
(PESQ) (Rix et al., 2001) or short-time objective in-
telligibility (STOI) (Taal et al., 2010), which would
reduce the human effort required for this task.
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