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Abstract

We explore temporal dependency graph (TDG)
parsing in the clinical domain. We leverage
existing annotations on the THYME dataset
to semi-automatically construct a TDG corpus.
Then we propose a new natural language in-
ference (NLI) approach to TDG parsing, and
evaluate it both on general domain TDGs from
wikinews and the newly constructed clinical
TDG corpus. We achieve competitive perfor-
mance on general domain TDGs with a much
simpler model than prior work. On the clinical
TDGs, our method establishes the first result of
TDG parsing on clinical data with 0.79/0.88
micro/macro F1. Our code is available at
https://github.com/Jryao/thyme_tdg.

1 Introduction and Background

Temporal information extraction from text is an
important part of natural language understanding.
Many works have framed temporal relation extrac-
tion (RE) as the task of identifying temporal re-
lations between pairs of events, or an event and
a time expression (TIMEX3) (Pustejovsky et al.,
2003a,b; Cassidy et al., 2014; Styler IV et al., 2014;
Ning et al., 2018; Ballesteros et al., 2020; Lin
et al., 2021). This pairwise framing can make it
hard to decide when to annotate a temporal rela-
tion, and the resulting timelines are usually frag-
mented (Kolomiyets et al., 2012) as not all events or
TIMEX3s are linked to each other. Heuristics are
typically applied to constrain the search space of
pairwise relations, both for annotators and machine
learning models. For example, many annotation
efforts have constrained temporal relations to adja-
cent sentences: TempEval (Verhagen et al., 2007,
2010; UzZaman et al., 2013), Clinical TempEval,
(Bethard et al., 2015, 2016, 2017), and TimeBank-
Dense (Cassidy et al., 2014).

A more principled approach is to model the tem-
poral information in a document as a dependency
tree structure (Kolomiyets et al., 2012; Zhang and
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Figure 1: TDG representation for “We will have Dr. Lee
perform a flexible sigmoidoscopy to verify the tattooing and
to verify the location when he sees her on Friday.” DocTime
is the Document Creation Time.

Xue, 2018b). This approach was extended by Yao
et al. (2020) to temporal dependency graph (TDG)
structure for a more comprehensive representation.
An example is shown in Figure 1. With this ap-
proach, human annotators inspect each entity and
find at most 2 reference times. A complete TDG
can be constructed from these decisions. The au-
tomatic temporal RE task then becomes a parsing
task: produce a TDG as output given a text as in-
put. TDG datasets have been constructed for news
articles (Yao et al., 2020) and contracts (Mathur
et al., 2022). The current state-of-the-art (SoTA)
TDG model (Mathur et al., 2022) reports 0.77 F1
score in the general domain, and 0.64 F1 on the
contract dataset, showing the learnability of the
TDG approach in those two domains.

In the current work, we make the following con-
tributions:

• We bring TDGs to the clinical domain, by
converting the pairwise annotations over the
Mayo Clinic electronic health record (EHR)
notes in the widely used THYME corpus
(Styler IV et al., 2014) to TDGs.1

1Our THYME-TDG dataset will be available to the re-
search community under the THYME data use agreement
procedure.
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Figure 2: Overview of converting THYME pairwise annotations to TDGs. ID refers to identification, ReferTimex
and ReferEvent denote reference timex and reference event respectively. Only the step of identifying reference
timex for events requires manual annotation.

• We develop an natural language inference
(NLI)-based TDG parser that is much simpler
than prior TDG parsers, yet achieves perfor-
mance competitive with the state-of-the-art in
the general domain. On the newly constructed
clinical TDG dataset, this parser also achieves
strong performance.

Our TDG parser is inspired by works applying
NLI-based methods to other information extraction
tasks, including relation extraction (Sainz et al.,
2021) on the TACRED data set (Zhang et al., 2017),
event argument extraction (Sainz et al., 2022) on
the ACE (Walker et al., 2006) and WikiEvents (Li
et al., 2021) datasets, and biomedical relation ex-
traction (Xu et al., 2022).

2 Creating a Clinical TDG Corpus

A temporal dependency graph (TDG) is defined
as a 4-tuple (T,E,M,L), where T is a set of
TIMEX3s, E is a set of EVENTs, M is a set of
pre-defined “meta” nodes (e.g. ROOT), and L is
a set of edges. The definitions and guidelines2

of Yao et al. (2020) describe the steps to create a
TDG from EVENTs and TIMEX3s: (1) For each
TIMEX3 t, if t is locatable (i.e., t is not a QUAN-
TIFIER, DURATION or SET), find its reference
time expression (reference timex), otherwise assign
no reference timex; (2) For each EVENT e, find its
reference timex; and (3) For each EVENT e, find
its reference event if there is one. Fig. 1 shows ex-
amples of such reference decisions, where the refer-
ence timex of “Friday” is “DocTime”, the reference
timex of “sigmoidoscopy” is “DocTime”, and the
reference event of “sigmoidoscopy” is “sees”.

We semi-automate this TDG construction pro-
cess by leveraging the existing annotations over the
THYME corpus (Styler IV et al., 2014). Our ap-
proach is visualized in Fig 2. First, we take all the
EVENTs and TIMEX3s in the THYME corpus as
the building blocks of the graph. In the following

2https://github.com/Jryao/temporal_dependency_
graphs_crowdsourcing

Temporal Operator TLINK Labels

Last BEFORE
Next AFTER
Before BEFORE
This OVERLAP
After AFTER

Table 1: Mapping SCATE temporal operators to
THYME temporal relations.

steps, we include as many TLINKs (temporal links)
from the THYME corpus as possible to maintain
the richness and informativeness of the THYME
annotations. In some cases, we reverse the TLINK
label (e.g. <e1 BEFORE e2> becomes <e2 AFTER
e1>) to make the final graph structure simpler and
the annotation process easier (see Appendix A.1).

Identifying the Reference Timex for a TIMEX3.
TLINKs between two TIMEX3s are not annotated
in the THYME corpus as the temporal relations
between a pair of TIMEX3s can be inferred if their
normalized values are available.3 For a locatable
TIMEX3, we use the gold temporal operators anno-
tations from the Semantically Compositional An-
notation of Time Expressions (SCATE; Bethard
and Parker, 2016) to get a TIMEX3-TIMEX3 re-
lation by mapping temporal operators to temporal
relations as shown in Table 1.

Identifying the Reference Timex for an Event.
Given an event e, we choose the reference timex of
e among the TIMEX3s linked to e in the original
THYME corpus via TLINKs. If there is only one
TIMEX3 temporally related to e, that TIMEX3
is automatically assigned as the reference timex
of e. If there are multiple TIMEX3 temporally
related to e, but only one TIMEX3 CONTAINS
e, that TIMEX3 is automatically selected as the
reference timex of e. Otherwise, the instance’s
reference timex is manually annotated. If e is not
TLINKed to any TIMEX3s, DocTime is selected

3https://clear.colorado.edu/compsem/documents/
THYME_guidelines.pdf
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Train Dev Test

THYME-TDG

TDG 1,822 927 998
TIMEX3-TIMEX3 4,328 2,286 2,216
EVENT-TIMEX3 37,042 20,100 18,499
EVENT-EVENT 10,073 5,798 5,443
EVENT-EVENT (THYME+) 11,558 6,579 6,225
EVENT-EVENT % 87.2% 88.1% 87.4%

general-TDG

TDG 400 50 50
TIMEX3-TIMEX3 1,952 325 209
EVENT-TIMEX3 12,047 1,717 1,015
EVENT-EVENT 8,725 1,298 706

Table 2: THYME-TDG and general-TDG distributions.
EVENT-EVENT % is the percent of EVENT-EVENT
relations in THYME+ represented in THYME-TDG.

as its reference timex with the relation between an
event and DocTime (DocTimeRel) as the label.

Identifying the Reference Event for an Event.
To find the reference event for e among the
EVENTs that are TLINKed to e, we define a label
hierarchy4 based on the specificity of different tem-
poral relations to facilitate consistent annotation:

BEGINS-ON, ENDS-ON >

CONTAINS, CONTAINS-SUBEVENT >

BEFORE >

OVERLAP, NOTED-ON

If the candidates have the same level of specificity,
we choose the one closest to e in textual order.

3 Corpus Statistics

Following the Clinical TempEval tasks, we use the
colon cancer set of the THYME+ corpus and the
same data splits as described in Wright-Bettner
et al. (2020). Our statistics on the Development
(Dev) set show that there are on average 155 events
per note. Since 91.5% of the TLINKs occur within-
section, and all the cross-section TLINKs are
CONTAINS-SUBEVENT relations, we split each
note into sections, drop the cross-section TLINKs,
and create one TDG per section.

With our carefully designed conversion method,
we automatically translated most of the pairwise
annotations in the THYME+ corpus into TDGs.

4While the rest of the hierarchy reflects actual specificity,
we do not claim that CONTAINS is more specific than BE-
FORE. We gave preference to CONTAINS here to capitalize
on THYME’s narrative containers (Styler IV et al., 2014). This
is also why we chose CONTAINS as the preferred TLINK
type for selecting a reference timex.

There were only 72, 35 and 40 events in the Train,
Dev and Test sets, respectively, which could not be
automatically assigned reference times. Because
of this small number, one domain expert manually
annotated these missing TDG edges. Statistics of
the final THYME-TDG corpus are in Table 2. The
EVENT-EVENT rows show that more than 87% of
the original event-event TLINKs are represented
in the THYME-TDG corpus. Table 2 also shows
the statistics of the publicly available TDG dataset
(general-TDG; Yao et al., 2020).

4 TDG Parsing

The task of temporal dependency graph parsing
is to find the parent node(s) for each child node,
where the child node can be an EVENT or a
TIMEX3. We cast the TDG parsing task as a
textual-entailment (NLI) task. Given a child node
xi and a list of candidate parent nodes {y1, y2, . . . ,
yi, . . . , yn}, our model first verbalizes the possible
relations between <xi, yi> to generate hypotheses
using a list of pre-defined templates (shown in Ap-
pendix A.3). For example, the verbalization for
the BEFORE relation is: xi happened before yi.
To get the premise, we concatenate the sentence
that contains the child node and the one that con-
tains the parent node.5 If yi is not the parent of xi,
the relation label between xi and yi will be NO-
EDGE. We also add descriptions after the premise
regarding the distance between two nodes, follow-
ing previous works (Zhang and Xue, 2018a; Ross
et al., 2020; Yao et al., 2020).6 Then, we run the
NLI model to obtain the probability the premise
entails/contradicts/is neutral to the hypothesis.

In the training stage, we finetune a pre-trained
NLI model on the entailment data generated from
the TDG training data. In a TDG, each event can
have at most two parents: a reference timex, and a
reference event. That is, most of the time, a candi-
date parent node is not the gold parent for the child,
which means the relation between a child node xi
and a candidate parent yi is NO-EDGE in most
cases. To obtain a relatively balanced training set,
we first divide the candidate parent nodes into two
sets: A and B, where A contains the gold parent
nodes for the current child node, and B contains
the rest. Then, we randomly sample NE examples

5Only one sentence will be needed if the two nodes are in
the same sentence.

6Our preliminary experiments show the additional features
can increase the model performance by about 2%.
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from A, and NC examples from B. For each in-
stance sampled from A, we generate an entailment
example using the gold label, and randomly sample
NC incorrect labels to generate neutral examples.
For each instance sampled from B, we generate one
contradiction example (see Appendix A.3 for an ex-
ample). In the inference stage, for each candidate
parent node yi of a child node xi, we verbalize all
possible relations between them and pick the candi-
date parent with the highest entailment probability
as the final parent for xi.

5 Experimental Setup

We evaluate our model on the two TDG data
sets: the general-TDG and THYME-TDG (clinical-
TDG).7 When sampling the training data, we set
NE to 1 and NC to 3. For general-TDG, to generate
the reference timex candidates for each TIMEX3
or EVENT, we include all the TIMEX3s in the doc-
ument; to generate reference event candidates for
each EVENT, we include all the EVENTs from
the beginning of the document to two sentences
after the child node. For clinical-TDG, we include
candidates in the window of 6 sentences before
and 4 sentences after the child node. For both data
sets, our candidate parent window setting covered
> 99% of the cases.

For the general domain TDG parsing, we fine-
tune the roberta-large-mnli (Liu et al., 2019;
Williams et al., 2018) model via HuggingFace
(Wolf et al., 2020) for 3 epochs. For the clinical do-
main TDG parsing, we finetune the PubMedBERT-
mnli-snli-scinli-scitail-mednli-stsb (Deka et al.,
2022) model for 3 epochs. For model initializa-
tion, we experimented with 5 random seeds: {42,
52, 62, 72, 82}. See Appendix A.2 for other hyper-
parameters.

We use gold EVENTs and TIMEX3s as input for
the TDG parsers. Parsed <child, relation, parent>
triples are compared against gold triples to compute
F1 scores. On the general-TDG, we report the
average F1 scores across all documents (macro-
F) following previous practice (Zhang and Xue,
2018a; Yao et al., 2020; Ross et al., 2020; Mathur
et al., 2022). On the clinical-TDG data set, we
report both macro- and micro- F1 scores.

7The TDG dataset of 100 contracts used in Mathur et al.
(2022) is not publicly available to the best of our knowledge.

Dev Test

BERT-Ranking (Ross et al., 2020)* 0.62 0.71
DocTime (Mathur et al., 2022)* 0.69 0.77
NLI-based TDG (best) 0.67 0.75
NLI-based TDG (average) 0.66 0.74

Table 3: TDG parsing F1 scores on the general-TDG.
Best results bolded, second best underlined. * indicates
results from (Mathur et al., 2022). “Best” and “average”
refer to the best and average results across 5 seeds.

Dev Test

NLI-based TDG (best) 0.88 (0.79) 0.88 (0.79)
NLI-based TDG (average) 0.87 (0.79) 0.88 (0.79)

Table 4: TDG parsing macro F1 (micro F1) scores on
the clinical-TDG data set.

6 Results and Discussion

Table 3 shows our general-TDG results. We com-
pare our NLI-based TDG model with two existing
supervised models trained for the TDG parsing
task: the BERT-Ranking model (Ross et al., 2020)8

and the DocTime model (Mathur et al., 2022). Both
our NLI-based TDG (best) and (average) models
outperform the BERT-Ranking model by a large
margin, suggesting the advantages of our NLI ap-
proach. The NLI-based TDG (average) model and
BERT-Ranking model report the average scores of
5 runs, however it is unclear whether the DocTime
results are the best or the average.

Compared to the DocTime model (Mathur et al.,
2022), our NLI-based TDG model (best) achieved
slightly lower but competitive performance, while
being much simpler. The DocTime model con-
tains 3 graph neural networks and relies on off-the-
shelf NLP tools including a co-reference resolution
model, a dependency parser, a pre-trained model
for sentence embeddings, and a document-level
Rhetorical Structure Theory parser. Mathur et al.
(2022) did not list exact tools or configurations
(e.g., what is the model used for coreference reso-
lution?) and the code is not publicly available, so
it’s very hard to re-implement or apply this model
to other data sets currently.

We evaluated our NLI-based TDG approach on
the newly created clinical-TDG data set (Table 4).
This is the first result with a graph algorithm on
a clinical temporal relation dataset. Thus, our re-

8This model was not evaluated on the TDG data set by the
authors, Mathur et al. (2022) ran the experiments on general-
TDG and reported the results in their publication.
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sults serve as a baseline for future research. Our
NLI-based parser achieved promising results on the
clinical-TDG data, showing both the utility of this
dataset, and the generalizability of our TDG parser.

7 Conclusion

We explore TDG representation and parsing in the
clinical domain. We convert the pairwise anno-
tations over the Mayo Clinic EHR notes in the
THYME corpus to TDGs semi-automatically. We
then develop a NLI-based TDG parser that is much
simpler than prior TDG parsers, yet achieves per-
formance competitive with the SoTA in the general
domain. On the clinical TDG data set, our parser
also achieves strong performance, which can serve
as a baseline for future research on clinical TDG
parsing.

Limitations

We finetuned pre-trained NLI models for TDG pars-
ing. Both data sets we used were in English. To
apply this model to other languages and to get the
best results, pre-trained NLI models or NLI data
sets might be required for the new language. Tem-
plates to verbalize the temporal relations in the new
language are also required.

The clinical data set (i.e. THYME) we used in
this work only contains EHRs from one institution:
Mayo Clinic. Clinicians from different hospitals
can have different writing style or use different tem-
plates when writing the notes. Future work should
test the TDG representation and parsers on EHRs
from other institutions, and EHRs of different pa-
tient populations.
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A Appendix

A.1 Annotation Details
Given a TLINK <event A, r, event B> in the
THYME+ corpus, where event A is the Source
(parent), event B is Target (child), and r is the la-
bel between them, we reverse the TLINK label in
the following case: event B is the Target in multi-
ple TLINKs, while event A is only TLINKed with
event B.

In example 1 below, instead of looking for the
reference event of colonoscopy between mass and
bleeding, it’s easier to make colonoscopy the refer-
ence event of mass and bleeding by reversing those
two TLINKs: <mass, NOTED-ON, colonoscopy>
becomes <colonoscopy, NOTED-ON-INV, mass>,
and <bleeding, NOTED-ON, colonoscopy> be-
comes <colonoscopy, NOTED-ON-INV, bleed-
ing>, with “INV” indicating “inverse”. The sub-
graph representation for those 3 TLINKs is showed
in Figure 3.

In example 2 below, it’s not clear which event
among report, pathology, values and notes should

colonoscopy

mass

seen

bleeding

NOTED-ON-INV
CONTAINS

NOTED-ON-INV

Figure 3: Final graph representation of Example 1.

review

report

values pathology

notes

AFTER
AFTER AFTER

AFTER

Figure 4: Final graph representation of Example 2.

be the reference event of review as they all have the
same temporal relation with review. However, if
we reverse those TLINKs, then review will become
the reference event of the 4 other events, as shown
in Figure 4.

1. Review of the colonoscopy reports indicates
that approximately 10-cm from the anal verge
a 3- to 4-cm mass was seen with bleeding.

• <mass, NOTED-ON, colonoscopy>
• <colonoscopy, CONTAINS, seen>
• <bleeding, NOTED-ON, colonoscopy>

2. I have had the opportunity to review the op-
erative report, surgical pathology, laboratory
values, and notes.

• <report, BEFORE, review>
• <pathology, BEFORE, review>
• <values, BEFORE, review>
• <notes, BEFORE, review>

A.2 Implementation Details
For the general-TDG data set, we carried out a grid-
search of training epochs in {3, 4, 10, 20}, batch
size in {16, 32, 64}, maximum sequence length
in {64, 128}, learning rate in {1e-5, 2e-5, 3e-5},
and weight decay in {0.1, 0.2, 0.3}, final parameter
settings are in bold.

For the clinical-TDG data set, we experimented
with training epochs in {3, 4}, batch size in {16,
32}, learning rate in {1e-5, 2e-5, 3e-5}, and weight
decay in {0.1, 0.2, 0.3}, final parameter settings
are in bold.
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Experiments were run on an NVIDIA Titan RTX
GPU cluster of 7 nodes. It took 80 - 90 minutes to
run one training epoch for both data sets.

A.3 Templates
The templates we used to verbalize temporal rela-
tions are listed in Table 5 and Table 6.

We give a concrete example to show how we
generate the NLI instances from our TDG data sets.
Given an event ei, let {e1, e2, e3} be its candidate
reference events, e2 be the gold reference event,
and let BEFORE be the gold relation between e2
and ei. The following are the NLI instances we can
generate for this example:

• Entailment: e2 happened before ei.

• Neutral: e2 happened at around the same time
as ei.

• Contradiction: During e3, ei happened.

Both Entailment and Neutral examples are gen-
erated with the gold candidate event e2, the dif-
ference is that the Neutral instance has the wrong
label that is randomly sampled from the label set.
The Contradiction example is generated by ran-
domly sampling an incorrect reference event from
the candidates with a random label.

Please note that in both the training and infer-
ence stage, entity type constraints are applied when
verbalizing a temporal relation. For example, in
the general-TDG data set, “included” is only used
for event-timex pairs. Therefore, when verbalizing
event-event relations, the “included” label will be
ignored.

A.4 Features
The linguistic features we used are showed in Table
7.
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Label Template
before {subj} happened before {obj}
after {subj} happened after {obj}
overlap {subj} happened at around the same time as {obj}
included {subj} happened {obj}
Depend-on {subj} depended on {obj}

Table 5: Templates we used to verbalize temporal relations in the general-TDG data set. {subj} and {obj} are
placeholders for entities.

Label Template
BEFORE {subj} happened before {obj}
AFTER {subj} happened after {obj}
OVERLAP {subj} happened at around the same time as {obj}
CONTAINS-SUBEVENT {obj} is a sub-event of {subj}
CONTAINS-SUBEVENT-INV {subj} is a sub-event of {obj}
NOTED-ON The {obj} test showed the result {subj}
NOTED-ON-INV The {subj} test showed the result {obj}
AFTER/OVERLAP {subj} happened after or overlap {obj}
CONTAINS During {subj}, {obj} happened
CONTAINS-INV During {obj}, {subj} happened
Depend-on {obj} depended on {subj}
BEGINS-ON {subj} begins on {obj}
ENDS-ON {subj} ends on {obj}

Table 6: Templates we used to verbalize temporal relations in the clinical-TDG data set. {subj} and {obj} are
placeholders for entities. “INV” means “inverse”, for example, CONTAINS-INV is the inverse of CONTAINS.

Description
Same sentence
Parent sentence before child sentence
Parent sentence after child sentence
No reference event
Parent is Root
Parent is DCT
Parent is the immediately previous node of the child node
Parent is two nodes before the child node in textual order
Parent is the immediately succeeding node of the child node
Parent node after the child node in text order

Table 7: We describe the sentence distance and node distance between two nodes in natural language, as listed in
this table.
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