
End-to-end Dependency Parsing via Auto-regressive Large
Language Models
Claudiu Daniel Hromei1, Danilo Croce1 and Roberto Basili1

1University of Rome Tor Vergata, Italy

Abstract
This paper presents a straightforward application of Large Language Models (LLMs) for Dependency Parsing. The parsing
process is approached as a sequence-to-sequence task, where a language model takes a sentence as input and generates a
bracketed form, allowing for the deterministic derivation of the dependency graph. The experimental evaluation explores
the feasibility of utilizing LLMs for this purpose, while also assessing the process’s sustainability with modest parameter
sizes (training on a single GPU with limited resources) and investigating the impact of incorporating multilingual data
during training. The results demonstrate that an end-to-end dependency parsing process can indeed be formulated using a
task-agnostic architecture.
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1. Introduction
Dependency parsing is a crucial component of natural
language processing that plays a significant role in cap-
turing the syntactic intricacies within sentences [1]. The
primary objective of dependency parsing is to establish
dependency relations among words. This allows humans
to understand how words are connected and how they
depend on one another in the sentence’s structure [2].
Such understanding is instrumental in a wide range of
applications, including semantic interpretation, machine
translation, relation extraction, and various other linguis-
tic tasks.

One notable parsing technique is the shift-reduce
method, as exemplified in [3, 4]. This parser processes
sentences from left to right, word by word while main-
taining a buffer for words that are yet to be fully pro-
cessed. Other approaches have been proposed, based on
machine learning techniques, such as the biaffine neural
networks, as in [5]. These networks, based on Bi-LSTMs,
have proven effective in capturing complex dependencies
between words. Another intriguing parsing approach is
UDPipe [6], focused on parsing with the Universal De-
pendency Framework [7]. UDPipe stands out because it
performs dependency parsing and other essential tasks
like tokenization, morphological analysis, part-of-speech
tagging, and lemmatization for multiple languages. UD-
Pipe performs all these tasks without relying on external
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data. It employs a Bi-LSTM architecture fed with end-
to-end, character-level, pre-trained, and contextualized
embeddings. The model was trained on an extensive
dataset of over a million sentences across different lan-
guages to capture cross-lingual relations effectively. The
system was later extended [8] as UDPipe+ by incorporat-
ing multilingual BERT [9] in its token representations.
However, while these methods have achieved state-of-
the-art results in various languages, they are tailored
specifically for the structure prediction problem based
on ad hoc methods.

More recently, models based on the Transformer ar-
chitecture [10] have gained popularity for their ability
to perform classification, regression, and rewriting tasks.
These models operate on a sequence and they output an-
other sequence. For instance, the work in [11] introduced
an end-to-end seq2seq method for dependency parsing,
where the model directly predicts the relative position of
the head for each word in the sentence. It also utilized a
beam search decoder with tree constraints and sub-root
decomposition to improve the results. Moreover, in [12]
the authors have experimented with a multi-task, multi-
lingual version of BERT [9]. This model was pre-trained
on 104 languages and could predict not only dependency
parsing trees but also lemmas, part-of-speech tags, and
more for each word in an input sentence. One notable
Transformer-based architecture is the LLaMA [13] foun-
dational models. LLaMA is a large model with billions of
parameters that generates output sequences in an auto-
regressive manner based on the input and previously
generated output tokens. It has been recently applied in
[14] to a variety of linguistic tasks by instruction-tuning
a monolithic architecture to solve them all.

In this work, we raise a crucial question about the
applicability of models like LLaMA for predicting tree-
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like structures. Specifically, we seek to explore whether
such models can be used to define an end-to-end parsing
process without relying on architecture choices that are
task-dependent. We envision a system that, given an
input sentence, predicts an output sequence in a paren-
thetical form as in [15]. This output sequence allows for
the reconstruction of the dependency tree of the origi-
nal sentence. The experimental results on three Italian
treebanks demonstrate that such an approach is not only
feasible but also capable of achieving results comparable
to the state-of-the-art while requiring minimal training
resources, such as training on a single GPU with modest
memory.

In the rest of the paper, Section 2 described the pro-
posed approach, Section 3 presents and discusses the
experimental evaluations, while Section 4 derives the
conclusions.

2. Dependency Parsing via
Auto-regressive Language
Model

The architecture of Transformers [10] has revolutionized
Natural Language Processing (NLP), achieving increas-
ingly higher results. In fact, the Architecture can be
divided into three major families: Encoder-only models
like BERT [9], RoBERTa [16], and DeBERTa [17] that are
responsible for encoding input sequences and generating
meaningful representations (embeddings) using the self-
attention mechanism; Encoder-Decoder models, such as
T5 [18] and BART [19], able to combine the strengths of
both the encoder and decoder components and to main-
tain the integration of the two aforementioned blocks
and typically used in tasks like machine translation, sum-
marization, or question-answering, where complex input
understanding and transduction are required; Decoder-
only models like GPT [20], GPT3 [21], and LLaMA [13],
that generate output sequences in an auto-regressive
manner based on the input and previously generated
output tokens. Recently, approaches based on Large Lan-
guage Models (LLMs) have shown state-of-the-art per-
formance in countless scenarios and tasks. LLMs excel at
understanding language and following instructions, with
ChatGPT1 being a prime example.

However, training and fine-tuning such models require
heavy computational resources, i.e. countless GPUs. Re-
cently, a method for efficient training has been intro-
duced, called Low-Rank Adaptation (LoRA [22]). LoRA
involves freezing the weights of the pre-trained model
and introducing trainable rank decomposition matrices
into each layer of the Transformer architecture. This
approach significantly limits the number of trainable

1https://openai.com/blog/chatgpt

parameters for downstream tasks while avoiding addi-
tional inference latency. Additionally, [23] introduces
Quantized-LoRA, an optimization that further reduces
memory usage enough to finetune a 65B parameter model
on a single 48GB GPU while preserving full 16-bit finetun-
ing task performance. QLoRA backpropagates gradients
through a frozen, 4-bit quantized pre-trained language
model into LoRA.

One of the challenges in modeling tasks with LLMs
(Large Language Models) is that these models take se-
quences as input and produce sequences as output. For
instance, consider this (Italian) sentence2:

“Tutti gli esseri umani hanno capacità
non sfruttate, non utilizzate.”

(1)

The Dependency Graph of this sentence is represented in
Figure (1). In this graph, each node represents a word, and
the arcs define the syntactic relationships among them.
Additionally, each arc is labeled to indicate the type of
dependency. A special node labeled ROOT is included to
mark the root of the sentence, typically the main verb.

By converting the sentence into an arboreal structure,
a Dependency Tree (Figure (2)) can be obtained. This tree
illustrates the hierarchical structure of the sentence, with
the main verb (hanno) serving as the ROOT and all other
words depending on it. Non-terminal nodes in the tree
represent the labels of the dependencies from the Depen-
dency graph in Figure (1), while terminal nodes represent
the words from the original sentence. For example, the
NSUBJ arc indicates that the word esseri is the subject of
the sentence, and the OBJ arc shows that the word ca-
pacità is the object of the verb. Furthermore, the ADVMOD
label indicates that the word sfruttate is modified by the
word non, negating its meaning. Both the Dependency
Graph and Tree representations are equivalent, and it has
been demonstrated in [15] that the Dependency Tree can
be transformed into a linguistic representation, e.g. for
computational purposes. The linguistic representation
of the sentence corresponds to:

[ROOT [NSUBJ [DET:PREDET

[Tutti]] [DET [gli]] [esseri]

[AMOD [umani]]] [hanno] [OBJ

[capacità] [ACL [ADVMOD [non]]

[sfruttate] [CONJ [PUNCT [,]]

[ADVMOD [non]] [utilizzate]]]]

[PUNCT [.]]]

(2)

Finally, it is worth noting that the process is reversible,
meaning the DP tree can be constructed from the linguis-
tic representation and vice versa. This ability facilitates

2In English: “All human beings have untapped, unused capaci-
ties.”.
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Tutti gli esseri umani hanno capacità non sfruttate , non utilizzate .
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Figure 1: Example of a dependency graph associated to the sentence “Tutti gli esseri umani hanno capacità non sfruttate, non
utilizzate.”
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Figure 2: The syntactic parse tree associated with the dependency graph from Figure (1).

various computational tasks involving language model-
ing and analysis and, more importantly, allows the usage
of such LLMs for predicting the Dependency Tree of
sentences by training on the linguistic representation

In fact, several studies, such as [21], have highlighted
the impressive few-shot learning capabilities of Lan-
guage Models. These models can generalize information
from only a limited number of input examples provided
through prompting, producing coherent and accurate
output. In this paper, we explore the application of the
LLaMA 7𝐵 and 13𝐵 foundational models to Italian sen-
tences with the goal of extracting DP Trees in parenthet-
ical form. LLaMA is one of the Large Language Models
that operates by taking a sequence of words as input
and predicting the next word to generate text recursively.
The model is built on the popular Transformers archi-
tecture [10], with several key differences. Firstly, to en-
hance training stability, the RMSNorm function [24] is
applied before each layer for normalization. Secondly, the
SwiGLU activation function [25] is utilized. Lastly, Ro-
tary Embeddings (RoPE) [26] replace absolute positional
embeddings. The combination of these modifications,
along with the vast size of parameters and training data
(trillions of tokens), makes LLaMA a highly promising
model for various natural language processing tasks.

It’s important to stress that LLaMA operates as
a sequence-to-sequence model, following an auto-
regressive approach, where text is fed as input, and text
is generated as output. This allows the model to capture
complex linguistic structures and dependencies in the
input sentences and produce corresponding DP Trees

in parenthetical form, showing the effectiveness of the
approach in parsing Italian sentences. The input/output
pairs used for LLaMA consist of sentences (as in Eq. (1))
and the linguistic representation of the DP Trees (as in
Eq. (2)). During training and inference, the model is
prompted with a simple instruction (“Parse this sentence.”)
to guide it in generating the desired output.

3. Experimental Evaluation
The training of the model utilized PyTorch and the Hug-
gingface library, along with the Peft packages, to im-
plement the Q-LoRA technique. The LLaMA models
underwent 3 epochs of training with a learning rate of
3 · 10−4 and a batch size of 32. To optimize the model’s
performance, a linear scheduler with warmup was uti-
lized, using a warmup ratio of 0.1. The training process
employed Q-LoRA 4-bit to refine the transformer’s 𝑊𝑞

and 𝑊𝑣 modules, as in [23]. The LoRA matrices had a
matrix rank 𝑅 of 8 and a parameter 𝛼 of 16. The train-
ing was performed on a single Tesla T4 GPU with 16GB
of memory. This is particularly interesting as we have
implied the two smallest available models, i.e. with 7 and
13-billion-parameters, to demonstrate that it can be used
even on standard architectures. It doesn’t rule out the
possibility of evaluating larger models like LLaMA 65𝐵,
but currently, they require such computational power
that would limit their applicability in real-world scenar-
ios, due to their extensive training duration and memory
requirements.

We used the Universal Dependency Parsing dataset



Table 1
UAS using the Gold Standard tokenization provided.

Model IT-ISDT IT-ParTUT IT-PoSTWITA
UDPipe 93.49% 92.64% 86.03%
UDPipe+ 94.97% 95.36% 87.25%
7B_ita_b1 90.52% 93.00% 83.27%
7B_ita_b4 92.04% 93.18% 83.96%
13B_ita_b1 91.51% 93.76% 84.34%
13B_ita_b4 92.38% 94.01% 85.53%
7B_multi_b1 93.06% 94.22% 84.89%
7B_multi_b4 93.30% 94.55% 85.45%

and, to align with [6], we utilized version 2.3 of the
dataset and focused on the same subsets of examples
in the Italian language, i.e., three Treebanks: IT-ISDT
obtained by conversion from ISDT (Italian Stanford De-
pendency Treebank), IT-ParTUT a conversion of a mul-
tilingual parallel treebank and consisting of a variety
of text genres, and IT-PoSTWITA a collection of Ital-
ian tweets. The neural architecture was trained on the
union of these three datasets, comprising 20, 270 train-
ing examples, 1, 391 development examples, and 1, 309
test sentences. This initial set of experiments, referred
to as 𝑖𝑡𝑎, involved training and evaluating the neural
architecture using examples from the same language.

Objectives. In this experimentation, our primary objec-
tive is to address three crucial experimental questions
related to natural language processing using the LLaMA
model. First and foremost, we seek to determine if this
process effectively works and if LLaMA is capable of
achieving state-of-the-art performance. Secondly, we aim
to explore the potential advantages of employing larger
architectures (from 7𝐵 to 13𝐵 parameters): traditional
large models have been criticized for their considerable
computational and environmental costs. By investigat-
ing the use of bigger architectures in the LLaMA model,
we strive to determine if advancements in performance
can be achieved without compromising sustainability.
Furthermore, we want to investigate the significance of
multilingual data in enhancing the LLaMA model’s per-
formance. We draw inspiration from previous works such
as UDPipe [6], which have demonstrated the positive im-
pact of multilingual training on various natural language
processing tasks. As the LLaMA model supports multi-
ple languages, we aim to analyze whether incorporating
multilingual data leads to improved overall performance
on the Dependency Parsing task.

In a second set of experiments (referred to as 𝑚𝑢𝑙𝑡𝑖),
we trained the system by incorporating data from English,
French, and Spanish datasets. Specifically, we added
training examples from the English-EWT, English-GUM,
English-LinES, English-ParTUT, French-GSD, French-
ParTUT, French-Sequoia, French-Spoken, French-Old,
Spanish-AnCora, and Spanish-GSD datasets to the train-

ing material. In this case, while the test data remained
unchanged, being in Italian, the training dataset consisted
of 101,284 examples. The development dataset was also
kept in Italian for comparison purposes. To evaluate the
performance of the LLaMA model, we have selected two
key metrics: UAS (Unlabeled Attachment Score), and LAS
(Labeled Attachment Score). UAS assesses the accuracy
of the model’s dependency tree structure by verifying
if the correct head and dependency arcs are generated.
On the other hand, LAS provides a more comprehensive
evaluation by measuring the accuracy of the dependency
labels assigned to each arc in the dependency tree.

Table 2
LAS using the Gold Standard tokenization provided.

Model IT-ISDT IT-ParTUT IT-PoSTWITA
UDPipe 91.50% 90.50% 81.80%
UDPipe+ 93.40% 93.40% 83.10%
7B_ita_b1 87.40% 89.50% 77.80%
7B_ita_b4 89.00% 90.00% 78.60%
13B_ita_b1 88.87% 90.61% 79.09%
13B_ita_b4 89.81% 90.87% 80.46%
7B_multi_b1 90.42% 91.19% 79.63%
7B_multi_b4 90.80% 91.61% 80.37%

Results Discussion. The experimental results are re-
ported in Table 1, and 2 for the UAS and LAS metrics, re-
spectively. Here we compare our approach with UDPipe
[6] and the subsequent extension UDPipe+ [8], as these
are the state-of-the-art systems for the Italian Treebanks.
Notice that our LLaMA-based models fail in 0.5-1% of
the times to correctly rewrite the whole sentence, i.e.
they sometimes skip a word and do not produce any la-
bel, differently from UDPipe which covers 100% of the
words in a sentence. Please note that, for the purpose of
comparison, we have applied gold-standard tokenization
in these initial experiments, as done in [8].

Our models are divided into two categories: ita, which
is trained exclusively on Italian data, and multi, trained
using material from other languages. From Tables 1 and
2, it is evident that the 7𝐵 models fall short of achieving
state-of-the-art performance; however, they only slightly
lag behind UDPipe. Advancing to the 13𝐵 models shows
a modest performance increase, but considering their
larger size, their practicality may be limited. Further-
more, we observe a performance boost when incorporat-
ing multilingual data during fine-tuning, as the LLaMA
models support multiple languages. By enriching the
Italian training set with data from other languages, we ef-
fectively leverage valuable relations and structures from
diverse linguistic sources.

Moreover, since the dependency parsing process of a
sentence is a global property of the entire sentence, we
have also investigated more complex decoding processes,
such as adopting deterministic beam search [27] during



the decoding process. In a nutshell, beam search involves
exploring up to 𝑏 possible sequences during decoding
until the completion of individual generations. This way,
we believe that the generated sequence is not penalized
by locally optimal choices for the decoding process but
rather optimized at the sentence level. This enables us to
enhance decoding strategies by adopting a larger beam
search size (b43) instead of relying solely on greedy search
(b1). As a result, the adoption of beam search systemati-
cally improves performances for both the 7𝐵 and 13𝐵
parameter models. The results indicate that the model
excels in generating the syntactic structure of sentences,
with comparable performance to UDPipe. Remarkably,
the neural model remains task-agnostic. Additionally, the
study suggests that incorporating data from other lan-
guages, if possible, is more beneficial than merely scaling
up to larger architectures.

Notice that these evaluations used the Gold Standard
tokenization of the sentences available from the Tree-
banks, both during training and inference. For this rea-
son, we trained and evaluated the same models using
the “raw” sentences, without any tokenization and re-
quiring the model to produce the resulting DP tree. For
instance, the sentence from Eq (1) will be given to the
model without any additional spaces for the punctua-
tion, but the resulting output should remain the same,
i.e. the one from Eq (2). The models, thus, are required
to learn the tokenization during the training phase. The
results are in Tables 3 and 4, where the performance for
the UDPipe models is not available as they rely com-
pletely on the Gold Standard tokenization. For both UAS
and LAS metrics, there is a loss in performance: every
model drops around 1% of accuracy with respect to the
GS tokenization, with 7𝐵_ita_bs1 losing almost 2% on
the IT-PoSTWITA treebank. Intuitively, this drop is due
to the fact that the model is required to learn the tok-
enization and the majority of the errors are because of
missing punctuation and so on. This result shows the
robustness of the LLaMA model even on “un-tokenized”
data.

Table 3
UAS computed on the end-to-end process, where the tokeniza-
tion is performed by the model.

Model IT-ISDT IT-ParTUT IT-PoSTWITA
7B_ita_b1 90.13% 91.19% 81.36%
7B_ita_b4 91.27% 91.96% 82.18%
13B_ita_b1 92.31% 93.80% 82.90%
13B_ita_b4 92.57% 94.34% 83.59%
7B_multi_b1 92.65% 94.12% 83.31%
7B_multi_b4 93.22% 94.31% 83.99%

3We experimented with different values for the beam search
parameter ‘b’, but none of them yielded significant performance
improvements except for when ‘b’ was set to 4.

Table 4
LAS computed on the end-to-end process, where the tokeniza-
tion is performed by the model.

Model IT-ISDT IT-ParTUT IT-PoSTWITA
7B_ita_b1 87.27% 87.77% 76.26%
7B_ita_b4 88.51% 88.45% 77.13%
13B_ita_b1 89.81% 90.52% 77.90%
13B_ita_b4 90.10% 91.04% 78.79%
7B_multi_b1 89.93% 91.32% 78.04%
7B_multi_b4 90.57% 91.62% 78.78%

4. Conclusions
In this paper, we investigate the application of recent
popular LLMs, specifically the LLaMA foundational mod-
els, to address the Dependency Parsing problem. Our
exploration aimed to answer three key questions: Can
we utilize LLaMA in a sequence-to-sequence sce-
nario to rewrite Dependency Parsing Trees from
input sentences? The answer is affirmative. Although
LLaMA did not achieve a new state-of-the-art perfor-
mance, our results demonstrate that the adopted model
and approach are competitive with UDPipe, the current
leading model. Can we scale up LLaMA by increasing
the number of parameters while ensuring sustain-
ability? Our evaluation reveals that almost doubling the
model’s parameters leads to little or no significant gain in
performance. However, we found a notable performance
increment by leveraging the beam search technique in-
stead of the greedy search. This aspect could be explored
further in the future. Does the inclusion of multilin-
gual data improve the LLaMAmodel? Our findings in
this paper support the initial hypothesis that using mul-
tilingual data enhances the LLaMA model’s performance.
Every model trained with multilingual data consistently
outperforms those trained solely on Italian data.

As a future work, it would be interesting to exploit
data from all available languages and evaluate the model’s
capabilities across a broader linguistic spectrum. This
approach could lead to the development of a Univer-
sal Dependency Parsing Model as a unified architecture,
which holds significant promise in advancing the field of
dependency parsing.
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