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Message from the organisers

We are happy to welcome you to the CLASP Conference on Learning with Small Data (LSD 2023)! This
volume consists of the papers presented at the LSD conference held at the Department of Philosophy,
Linguistics and Theory of Science (FLoV), University of Gothenburg on September 11–12, 2023.

The purpose of our conference is to bring together researchers from several areas of NLP, addressing
datasets, methods and limits of effective (machine) learning with small data containing natural language
and associated multi-modal information. The conference covers areas such as machine learning,
natural language processing, language technology, computational linguistics, theoretical linguistics,
psycholinguistics, as well as artificial intelligence, cognitive science, ethics, and policy.

Current deep learning systems require large amounts of data in order to yield optimal results. Despite
ever-increasing model and data size, these systems have achieved remarkable success across a wide
range of tasks in NLP, and AI in general. However, these systems possess a number of limitations.
Firstly, the models require a significant amount of time for pre-training, and modifying them proves to be
challenging. As a result, much NLP research is shaped by what can be achieved with large transformers.
This has marginalised important computational learning questions for which they are not well suited.
Second, due to the substantial resources necessary for their development, they have become the preserve
of technological companies. Researchers are now positioned as consumers of these systems, restricted to
fine-tuning them for experimental work on downstream tasks. Thirdly, the complexity, size, and mode of
computation of transformers have obscured the process through which they derive generalisations from
data. This opacity has created a challenge in comprehending precisely the reasons behind their success
or failure in different scenarios. Finally, comparison with human learning and representation has become
increasingly difficult, given the large disparity in accessible data and learning time between transformers
and humans. Therefore, the cognitive interest of deep learning has receded.

Papers were invited on topics from these and closely related areas, including (but not limited to): small-
scale neural language modelling, both text and multi-modal; training corpus and test task development;
visual, dialogue and multi-modal inference systems; neurolinguistic and psycho-linguistic experimental
approaches to human language processing; semantics and pragmatics in neural models; dialogue
modelling and linguistic interaction; formal and theoretical approaches to language production and
comprehension; language acquisition in the context of computational linguistics; statistical, machine
learning, reinforcement learning, and information theoretic approaches that embrace small data;
methodologies and practices for annotating datasets; visual, dialogue and multi-modal generation; text
generation in both the dialogue and document settings; semantics-pragmatics interface; social and ethical
implications of the development and application of large or small neural language models, as well as
relevant policy implications and debates.

This conference aims to initiate a discussion about these related topics and to examine various approaches
and how they can mutually inform each other. The event includes 4 keynote talks, 10 peer-reviewed long
papers, 5 peer-reviewed short papers, 5 peer-reviewed student papers, and 9 non-archival presentations.

We would like to thank all our contributors and programme committee members, with special thanks to
CLASP for organising the hybrid conference and the Swedish Research Council for funding CLASP.

Ellen Breitholtz, Shalom Lappin, Sharid Loáiciga, Nikolai Ilinykh, and Simon Dobnik

Gothenburg

September 2023
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Invited talk: Aurélie Herbelot

Decentralised semantics

Large Language Models (LLMs) are currently the dominant paradigm in the field of Natural Language
Processing. But their enormous architecture, coupled with an insatiable hunger for training data, makes
them ill-suited for many purposes, ranging from fundamental linguistic research to small business
applications. The main argument of this talk is that the monolithic architecture of LLMs, and by extension
their reliance on big data, is a direct consequence of a lack of semantic theory in the underlying model.
As an alternative, I will explore a modular architecture based on concepts from model theory, which
lends itself to decentralised training over small data. Starting from research in linguistics and cognitive
science, I will summarise evidence against the view that language competence should “live” in a single
high-dimensional space. I will then review various computational models of meaning at the junction
between formal and distributional approaches, and show how they can be combined into a modular system.
Finally, I will present a possible implementation where learning takes place over individual situation
types, at low dimensionality. This decentralised approach has natural benefits in terms of accessibility and
energy efficiency.

Invited talk: Danielle Matthews

How children learn to use language through interaction

This talk will chart out pragmatic development with a focus on the real-world experiences that allow
infants to start using language for social communication and permit children to use it at ever more complex
levels. Following a working definition of pragmatics in the context of human ontogeny, we will trace
the early steps of development, from a dyadic phase, through to intentional triadic communication and
early word use before briefly sketching out later developments that support adult-like communication at
the sentential and multi-sentential levels and in literal and non-literal ways. Evidence will be provided
regarding the experiential basis of learning from the study of individual differences, from randomised
controlled trials and from deaf infants growing up in families with little prior experience of deafness
(and who are thus at risk of reduced access to interaction). This will provide a summary of elements
from a forthcoming book: Pragmatic Development: How children learn to use language for social
communication.

Invited talk: Tal Linzen

How much data do neural networks need for syntactic generalisation?

I will discuss work that examines the syntactic generalisation capabilities of contemporary neural network
models such as transformers. When trained from scratch to perform tasks such as transforming a
declarative sentence to a question, models generalise in ways that are very different from humans.
Following self-supervised pre-training (word prediction), however, transformers generalise in line with
syntactic structure. Robust syntactic generalisation emerges only after exposure to a very large amount of
data, but even more moderate amounts of pre-training data begin to steer the models away from their linear
inductive biases. Perhaps surprisingly, pre-training on simpler child-directed speech is more data-efficient
than on other genres; at the same time, this bias is insufficient for a transformer to learn to form questions
correctly just from the data available in child-directed speech.
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Invited talk: Shalom Lappin

Assessing the Strengths and Weaknesses of Large Language Models

The transformers that drive chatbots and other AI systems constitute large language models (LLMs).
These are currently the focus of a lively discussion in both the scientific literature and the popular media.
This discussion ranges from hyperbolic claims that attribute general intelligence and sentience to LLMs,
to the skeptical view that these devices are no more than “stochastic parrots”. In this talk I will present
an overview of some of the weak arguments that have been presented against LLMs, and I will consider
several more compelling criticisms of these devices. The former significantly underestimate the capacity
of transformers to achieve subtle inductive inferences required for high levels of performance on complex,
cognitively significant tasks. In some instances, these arguments misconstrue the nature of deep learning.
The latter criticisms identify significant limitations in the way in which transformers learn and represent
patterns in data. They also point out important differences between the procedures through which deep
neural networks and humans acquire knowledge of natural language. It is necessary to look carefully at
both sets of arguments in order to achieve a balanced assessment of the potential and the limitations of
LLMs.
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Abstract
In industry settings, machine learning is an
attractive tool to automatize processes. Un-
fortunately, annotated and high-quality data
is expensive to source. This problem is ex-
acerbated in settings spanning multiple mar-
kets and languages. Thus, developing solutions
for multilingual tasks with little available data
is challenging. Few-shot learning is a com-
pelling approach when building solutions in
multilingual and low-resource settings, since
the method not only requires just a few training
examples to achieve high performance, but is
also a technique agnostic to language. Even
though the technique can be applied to multi-
lingual settings, optimizing performance is an
open question. In our work we show that lever-
aging higher-resource, task-specific language
data can boost overall performance and we pro-
pose a method to select training examples per
their average performance in a Monte Carlo
simulation, resulting in a training set more con-
ducive to learning. We demonstrate the effec-
tiveness of our methods in fashion text reviews
moderation, classifying reviews as related or
unrelated to the given product. We show that
our methodology boosts performance in mul-
tilingual (English, French, German) settings,
increasing F1 score and significantly decreas-
ing false positives.

1 Introduction

In real-life settings, machine learning methods are
being applied to automate and improve processes,
from content moderation to search query filtering.
Large pretrained language models have the poten-
tial to bring further improvements, at the cost of
data resources, with high quantities of labeled data
required for effective training. Collecting, clean-
ing, annotating and analyzing data is an expensive,
time-consuming and challenging task.

With recent advancements in modeling, it has
been shown that large language models exhibit few-

∗Work was performed while at Zalando SE.

Model F1 FPR

DistilDE 73.0% 30.7%
Set111 73.4% 39.5%

SetMC 74.7% 28.5%

mBERTall 67.5% 16.2%
mBERTall/MC 70.2% 25.9%

Table 1: Comparison (in the German setting) between
performance of a production DistilBERT model (Dis-
tilDE) and the best-performing few-shot model (Set111),
as well as our models developed with our multilingual
transfer learning (mBERTall) and Monte Carlo (SetMC

and mBERTall/MC ) sampling methods. With our meth-
ods we can find a better balance between overall perfor-
mance (F1 score) and the false positive rate.

and zero-shot capabilities, able to solve tasks with
little or no data (Wei et al., 2022). For example,
with PET (Schick and Schütze, 2021a), models can
be finetuned on a task using only a few training
examples. Annotating a small number of examples
is desirable and applicable in academic as well as
real-life settings.

An added complication in many scenarios is the
need to develop solutions for multilingual settings.
Annotating data, developing and evaluating models
is increasingly more challenging when there are
multiple languages to consider. This is exacerbated
in settings where certain markets are larger and
higher-resource than other markets. Developing
solutions that are scaleable to both high- and
low-resource markets is challenging.

We work in the domain of customer text re-
views on a fashion platform. When a customer
leaves a review on one of their purchased prod-
ucts, the review goes through moderation to verify
whether it abides by the platform’s code of conduct.
For example, a review may be rejected because it
contains offensive content or personal data. In our
work, we are focusing on the task of identifying

1



Figure 1: Overview of our proposed method. Starting from a small dataset of training examples, we perform a
Monte Carlo simulation and calculate the average performance of each individual training example. Selecting the
best-performing examples results in a training set more conducive to training.

whether a review is related or unrelated to the prod-
uct. When a submitted review is unrelated to the
product (e.g., a review that only mentions delivery
time), the review is rejected.

Further, on our platform, multiple languages are
covered across markets, with the majority of con-
tent written in German. Thus, in our work, Ger-
man is the focus language, with expansion to the
in-domain lower-resource English and French.

In synopsis, in an industry setting dealing with
multiple markets and languages (e.g., an online
shopping platform), (i) annotating large quantities
of data for all languages is expensive and, (ii) the
language of the dominant market makes up most
of the available data. In line with these two obser-
vations, our contributions are:

1. showing that in few-shot settings, multilingual
capabilities of large pretrained language mod-
els can be leveraged for better performance
across languages,

2. proposing a Monte Carlo simulation method
to identify training examples most conducive
to learning based on a focus market (German),
further improving overall performance.

We show that multilingual models finetuned on
all languages perform better than their monolingual
counterparts and that with our Monte Carlo selec-
tion method we can extract the training examples
most conducive to learning to achieve improved
performance, both in the monolingual and multilin-
gual settings.

2 Related Work

It has been shown that large pretrained lan-
guage models exhibit strong cross-lingual abilities,
with cross-lingual transfer investigated extensively
(Nooralahzadeh et al., 2020; K et al., 2020; Huang
et al., 2019; Wu and Dredze, 2019; Pires et al.,
2019; Conneau et al., 2020; Artetxe et al., 2020).
In our work, we make use of cross-lingual trans-
fer from higher- to lower-resource in-domain lan-
guages to improve performance.

With the emergent abilities of large language
models (Wei et al., 2022), large models are being
applied to few- and zero-shot settings (Sanh et al.,
2022; Le Scao and Rush, 2021; Gao et al., 2021),
showcased saliently in GPT-3, where prompting
was shown to be effective across a range of tasks.
To aid in few-shot learning, pattern-exploiting train-
ing (PET) was introduced in Schick and Schütze
(2021a), allowing for training of large language
models in few-shot settings via the use of prompts.
It has been further shown that PET is competitive
with models orders of magnitude larger (Schick
and Schütze, 2021b).

Fu et al. (2022) showed that prompting can be
employed in multilingual settings, with the authors
showing that multilingual and multitask settings
can be modeled without the use of language or
task specific modules or training, by using prompts
to leverage transfer learning capabilities. In our
work we make use of prompts in a similar fashion,
employing prompting to improve language transfer.

A downside with prompt-learning is the need for
intricate and noisy prompt- and label-crafting, with

2



Language Prompt

German
[MASK]: r

r: Die Beurteilung ist [MASK]

r ist [MASK]

English
[MASK]: r

r: The review is [MASK]

r is [MASK]

French
[MASK]: r

r: L’avis est [MASK]

r est [MASK]

Table 2: The prompts for each language, where r de-
notes the review text for each example

work on the task recently gaining more traction
(Lu et al., 2022; Logan IV et al., 2022; Zhao and
Schütze, 2021; Schick et al., 2020; Jung et al., 2022;
Mishra et al., 2022; Wu et al., 2022; Shin et al.,
2020). While there has been plenty of work in
prompt- and label-crafting, there has been little
work in the identification of optimal training sets.
While training examples can have a large impact
and add significant noise during training (due to
the small size of the set), selecting examples most
conducive to learning is still under-explored.

3 Experimental Setup

3.1 Pattern Exploiting Training (PET)

Patter Exploiting Training (Schick and Schütze,
2021a), or PET, is a technique that reformulates
examples into cloze-type questions to help task fine-
tuning of language models. It has been shown to be
particularly effective in low-resource settings, out-
performing setups with orders of magnitude more
data (Schick and Schütze, 2021b).

In our work, we employ PET during the task fine-
tuning phase, training a model to predict whether a
review is related or unrelated to the product. Input
examples are reformulated into prompts with ex-
actly one masked token that the model learns to fill.
The model output for that masked token is mapped
to one of the task classes (in our case, related or
unrelated). Formally, given model vocabulary V
and classes C, the verbalizer maps C → V . Input
x is reformulated into input xp ∈ V ∗ with exactly

Language related unrelated

German unabhängig verbunden
English related rejected
French pertinent mauvais

Table 3: The labels mapping to the two classes (i.e., the
verbalizer) for each language

one masked token.
PET operates in three stages: (i) training a

model for each prompt on a few annotated exam-
ples, (ii) soft-labeling a larger dataset of unlabeled
data via an ensemble of prompt-trained models,
(iii) training a final classifier on the soft-labeled
dataset.

3.2 Models

Since PET works adjacently to Masked Language
Modeling (MLM), models based on the BERT1 ar-
chitecture were chosen. For English, bert-base-
cased was used. For German, we used the bert-
base-german-cased variant. For French, we ex-
perimented with FlauBERT (Le et al., 2020) and
CamemBERT (Martin et al., 2020). For CamemBERT,
both the base and large variants were used.

As baselines we chose a logistic regression clas-
sifier and a production model for reviews modera-
tion. The production model is based on the German
DistilBERT model (Sanh et al., 2019). The model
was originally finetuned on 20K reviews, 1271 of
which were unrelated to the product and then fur-
ther finetuned on 473 related and 198 unrelated
reviews, to account for any shifts in data (e.g., tem-
poral differences between original and testing data).
This model is denoted with DistilDE.

In our work, since we have a plethora of reviews
written in German, we focus on the German lan-
guage for hyperparameter tuning and prompt label-
ing. Namely, we train using PET for 3 epochs, with
a learning rate of 2e-3.

3.3 Prompt and Label Engineering

Prompts and labels were manually crafted for
the German language, after empirically gauging
their performance on the German development set,
which is significantly larger than the English and
French equivalents. We experimented both with
the multi-token label variant (i.e., labels spanning
multiple tokens) and multiple labels for a single

1Models as found on https://huggingface.co
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class, both options were low-performing and we
did not continue investigation in these directions.

Prompts for French and English were trans-
lated in a two-step process: (i) the word ‘review’
(‘Beurteilung’ in German, ‘review’ in English and
‘avis’ in French) was retrieved from the review mod-
ule on the company website, which has been pre-
translated by the localisation team, (ii) given the
pre-translated word for ‘review’, the rest of the
prompts were translated through Google Translate
from German to the other two languages.

For labels, due to limitations with vanilla PET,
we only chose words that span single tokens. For
this reason, labels were hand-picked by the re-
searchers to best approximate the essence of the
class names, related and unrelated.

The prompts for each language are shown in
Table 2. The verbalizer (label → class pairs) for
each language is shown in Table 3.

3.3.1 Language Selection

In this work we focus on three languages: En-
glish, French and German. We do not verify
whether customers are native speakers of these lan-
guages. Further, these languages cover multiple
markets: French can be found in France, Luxem-
bourg and Belgium, German in Austria, Germany
and Switzerland, while English can be found in
Germany, Ireland and the UK.

3.4 Data

Data comes from datasets of customer reviews on
Zalando (an online fashion shopping platform). Re-
views are submitted by customers and then mod-
erated manually. Reviews are either accepted for
publication or rejected because they do not meet
the company’s policy standards. When a review is
rejected, it can be rejected for one or more reject
reasons. These include offensiveness, divulging of
personal data, and reviews unrelated to the product.
Since most rejected reviews are reviews marked as
unrelated to the product, we focus on this subclass
since it promises the highest return of investment.
Thus, the task we are solving is the binary classi-
fication between reviews related and unrelated to
the product.

Zalando’s largest market is German-speaking.
Thus, (i) most reviews are written in German,
(ii) there is an increased incentive to develop mod-
els to moderate German reviews. For these two
reasons, we chose German as a ‘focus’ language

for our work. Prompt and label engineering is con-
ducted during experiments on the German set.

All data is made up of reviews submitted by
customers after 2021 and up to June 2022, across
products and product categories. For all languages,
the training set (during prompt-based training) con-
tains 8 related and 8 unrelated reviews. In English
and French, the development set also contains 8
related and 8 unrelated reviews. In the German
set, where more data is available, the development
set is made up of 100 related and 100 unrelated
reviews. For all languages, we collected 20,000
unlabeled reviews (to be soft-labeled during PET).

3.5 Monte Carlo Simulation

In few-shot settings, due to the natural scarcity of
data, learning is particularly susceptible to noise
in the training set. Performance relies heavily on
the training set and minor, uninterpretable perturba-
tions can affect performance drastically. Currently,
selecting training examples is performed arbitrarily.
We propose a method to identify which examples
are most conducive to learning via a Monte Carlo
simulation and selection of the examples that on
average score the highest F1. The intuition behind
this method is that a useful training example will
on average be useful regardless of the other exam-
ples in the training set. Thus, with multiple runs,
the useful training examples will on average score
higher than the less useful examples.

Namely, we simulate 200 runs, via sampling 200
different training sets. For each set, we sample 16
reviews from a total of 32 possible reviews without
repetition and without order-significance. The total
number of combinations is intractably large. We
instead sample 200 training sets due to computa-
tional considerations. Then, for each training set
a model is trained using PET and evaluated on a
common development set (and, finally, on the test
set).

Due to the scarcity of data for English and
French, the Monte Carlo simulation is performed
solely on the German set. Performance was eval-
uated over a development set of 200 reviews (100
related and 100 unrelated to the product). The
model we use is bert-base-german-cased.

4 Results

4.1 Monte Carlo Simulation

We performed 200 Monte Carlo runs, with bert-
base-german-cased models trained using PET on
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Method Dev. F1 Accuracy F1 Precision Recall tp, fp, fn, tn

Log. Reg. - 72.2% 58.2% 97.5% 71.4% 1678, 44, 673, 184
DistilDE - 88.8% 73.0% 96.8% 90.7% 2133, 70, 218, 158

Set113 69.4% 91.2% 73.9% 95.5% 94.8% 2228, 104, 123, 124
Set031 70.3% 89.5% 71.8% 95.8% 92.5% 2175, 95, 176, 133
Set054 71.0% 88.9% 70.2% 95.5% 92.2% 2168, 103, 183, 125
Set148 72.7% 90.9% 74.1% 95.9% 94.1% 2212, 95, 139, 133
Set111 74.9% 90.2% 73.4% 96.1% 93.1% 2188, 90, 163, 138

Setfull 48.6% 49.8% 43.6% 98.8% 45.3% 1068, 13, 1283, 215

SetMC - 89.8% 74.7% 97.1% 91.5% 2152, 65, 199, 163

mBERTde - 87.2% 60.1% 92.9% 93.0% 2186, 166, 165, 62
mBERTall - 82.3% 67.5% 98.1% 82.2% 1932, 37, 419, 191
mBERTall/MC - 86.0% 70.2% 97.2& 87.2% 2050, 59, 301, 169

Table 4: German performance comparison between sampled training sets performing the best on a development
set versus the training set made up of the best-performing individual training examples. With bold we show the
best score in each metric, except in the false positives and true negative columns, where the best performing model,
Setfull, has not learned to recognize the positive class and thus has degenerate performance.

Method Accuracy F1 Precision Recall tp, fp, fn, tn

FlauBERT 60.6% 51.3% 88.1% 61.8% 1510, 204, 935, 243
CamemBERTbase 84.5% 45.8% 84.5% 100.0% 2445, 447, 0, 0
CamemBERTlarge 83.9% 72.2% 92.6% 87.9% 2149, 171, 296, 276

mBERTfr 84.6% 49.0% 84.9% 99.3% 2431, 432, 14, 15
mBERTall 77.1% 70.2% 98.4% 74.1% 1932, 29, 633, 418
mBERTall/MC 82.5% 74.4% 96.5% 82.2% 2010, 72, 435, 375

Table 5: French test set performance.

sampled sets as detailed in Section 3.5. Models
were evaluated on development and test sets with
macro F1 score, Precision and Recall.2 In Table
7 we see statistics on the performance of models.
It is evident that performance is heavily reliant
on the training set used in each iteration, with the
difference between the minimum and maximum F1
scores being 40.5% in the development and 26.4%
in the test set, with a standard deviation of 9.3%
and 7.3% respectively. While mean performance
for both sets is low (52.3% and 61.6% respectively),
the maximum performance is high at 74.9% for the
development and 74.1% for the test set.

We next investigate whether certain training ex-
amples are consistently more conducive to perfor-
mance than other examples. In Table 8 we show the
top- and bottom-3 ranked reviews based on their
average F1 scores as calculated through the Monte

2As implemented in https://scikit-learn.org.

Carlo simulation. While the worst-performing re-
view contains multiple numbers (specifically, ‘36’
and ‘38’), which may inhibit learning, it is difficult
to identify why the rest of the reviews perform bet-
ter or worse. Further, reviews related and unrelated
to the product are equally distributed as high- and
low-performing. Nevertheless, a noticeable differ-
ence in performance can be observed, with a 4%
absolute difference between the top- and bottom-
scoring reviews. This exercise shows that while
performance varies a lot across different training
examples, it is difficult to infer why some examples
perform better than others.

As a next step, we create a training set with the
16 reviews performing the best on the development
set, by picking the 8 reviews related to the product
with the highest score and the 8 unrelated reviews
with the highest score. Combining these two sets
of 8 reviews results in a 16-review training set to
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Method Accuracy F1 Precision Recall tp, fp, fn, tn

BERTen 83.2% 54.3% 98.5% 83.9% 4458, 67, 854, 101

mBERTen 51.7% 36.1% 96.4% 52.1% 2769, 104, 2543, 64
mBERTall 89.7% 62.9% 99.2% 90.1% 4787, 39, 525, 129
mBERTall/MC 93.6% 66.1% 98.6% 94.8% 5035, 72, 277, 96

Table 6: English test set performance.

Set Min. Max. Mean. Std

Dev. 34.4% 74.9% 52.3% 9.3%
Test 47.7% 74.1% 61.6% 7.3%

Table 7: Statistics of the Monte Carlo simulation perfor-
mance on the development and test sets

be used in subsequent experiments. Models trained
with this training set are marked with MC.

4.2 Unrelated Reviews Classification
We show that finetuning a single multilingual
model on all available languages (English, French
and German) outperforms its monolingual coun-
terparts trained on each individual language. We
can further improve performance by employing
our proposed method of selecting training exam-
ples based on their average F1 score over a Monte
Carlo simulation, improving performance in both
the monolingual and multilingual settings.

For multilingual models, with mBERTx we denote
the multilingual BERT model trained on the set of
language x, for x ∈ [fr, en, de]. With mBERTall we
denote the mBERT model finetuned on all languages,
where the training set for German is the set that
performed the best in the Monte Carlo experiments
(Set111). Finally, with mBERTall/MC we denote the
variant of mBERTall where the German training set
is made up of the training examples performing
individually the best during the Monte Carlo exper-
iments (the process is outlined in Section 3.5).

4.2.1 German Setting
With the greater availability of German data, this
setting was chosen as the focus language of the
project. While the other two languages (English
and French), each have 16 reviews in the develop-
ment set, there are 200 reviews available in German.
For this reason, prompts and labels were crafted af-
ter evaluation on the German set (and subsequently
translated into French and English) and the afore-
mentioned Monte Carlo experiments (Section 4.1)

for training example selection were performed on
the German set. Results are shown in Table 4.

As baselines we compare against a logistic re-
gression classifier trained on all 32 German re-
views, as well as a production model based on
German DistilBERT trained on 20K reviews.

As per the Monte Carlo experiments, 200 sets
of 16 reviews were sampled from 32 total re-
views, training bert-base-german-cased models
on each set using PET. Here we show the five sets
performing best on the development set, denoted
with Setxxx, where x ∈ [0, 199]. SetMC is created
from the 16 best-performing training examples. For
the multilingual transformer models, the training
sets from English and French were used in con-
junction with Set111 (the best-performing set in the
Monte Carlo experiments) forming mBERTall, and
with SetMC to form mBERTall/MC .

To more fairly compare the multilingual mod-
els, which make use of more training examples
(16 from each language, for 48 overall), we train
a model with PET on all available German data
(Setfull). This model does not seem able to gen-
eralize from all 32 examples, with very low per-
formance when identifying reviews related to the
product.

From the monolingual models, the best-
performing one is SetMC , trained on the train-
ing examples selected through the Monte Carlo
simulation, outperforming the best-performing
model trained during the Monte Carlo experiments
(Set111), with both a higher F1 score and lower
false positive rate. Further, it outperforms the pro-
duction model, DistilDE by almost 2%, despite
requiring a fraction of training examples (16 versus
20K), with a slightly lower rate of false positives.

Between the multilingual models, the best-
performing one is mBERTall/MC , with an F1 score
of 70.2% outperforming mBERTall and mBERTde
with F1 scores 67.5% and 60.1% respectively.
However, mBERTall has the lowest rate of false pos-
itives, with only 37 false positives versus 59 false
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ID Review Avg. F1 Label

1 Sehr bequem und richtig süss ich liebe baby rosa 63.9% related

2 es ist ganz schade 63.9% unrelated

3 Gutes Material auf der Haut, sitzt nicht ganz teilliert, etwas lock-
eres, hat es trotzdem behalten.

63.9% related

4 Es würde ein anderes t-shirt schicken und zur nächsten würde ich
wieder eine Retour machen.

60.0% unrelated

5 Kann ich leider noch keine Bewertung abgegeben, ist noch bei
Hermes wie gesagt

59.7% unrelated

6 Ich musste eine Nummer größere bestellen, trage gewöhnlich 36.
Ich hätte größe 38 kaufen sollen.

59.7% related

Table 8: The top- and bottom-3 ranked reviews on average F1 performance from the Monte Carlo experiments for
German (reviews here have been edited to preserve privacy and abide by GDPR laws).

positives from mBERTall/MC . Nevertheless, the in-
crease in the F1 score is significant at 2.7%, which
shows that utilizing our proposed method of Monte
Carlo selection and multilingual transfer performs
the best for the multilingual setting too.

4.2.2 French Setting
For our experiments in French, we are com-
paring three monolingual models (FlauBERT,
CamemBERTbase and CamemBERTlarge) with three
multilingual models (i) mBERTfr, (ii) mBERTall, and
(iii) mBERTall/MC . Results are shown in Table 5.

Out of the three monolingual models, only
CamemBERTlarge performs well, with FlauBERT
having a low recall and CamemBERTbase unable to
identify reviews unrelated to the product. While
CamemBERTlarge has a high F1 score, it suffers from
a high rate of false positives, with 171 unrelated
reviews classified as related. With our method this
issue is mitigated, reducing the number of false pos-
itives to 29 and 72 with mBERTall and mBERTall/MC

respectively, while at the same time keeping over-
all performance competitive or even better that
the monolingual counterparts. While mBERTall per-
forms slightly worse than CamemBERTlarge, with an
F1 score of 70.2% versus 72.2%, mBERTall/MC out-
performs the monolingual model with an F1 score
of 74.4%.

We can thus conclude that in French, perfor-
mance improves both in reducing the false positive
rate and in increasing the F1 score via multilingual
transfer from the better-performing German train-
ing set selected through the Monte Carlo simulation
(SetMC) to the French set.

4.2.3 English Setting
For our experiments in English, we are compar-
ing the monolingual BERTen model with three mul-
tilingual models (i) mBERTen, (ii) mBERTall, and
(iii) mBERTall/MC . Results are shown in Table 6.

While training mBERT solely on English does not
perform well, with a very low recall score, mBERTall
and especially mBERTall/MC perform well, show-
ing that multilingual transfer and our proposed
Monte Carlo selection method jointly improve per-
formance. Namely, while the monolingual model
has an F1 score of 54.3%, mBERTall/MC has an F1
score of 66.1%.

Unfortunately, in this case our proposed method
does not provide improvements for the false posi-
tives rate. In fact, mBERTall/MC introduces 5 more
false positives than the monolingual baseline. This
could potentially be noise in the evaluation set,
considering that English-language data was scarce,
with only 168 unrelated reviews. Nevertheless, our
proposed method improves the F1 score by 11.8%
over the monolingual model.

4.2.4 Multilingual Setting
Finally, we compare in greater detail monolingual
with multilingual model performance.

For our experiments in the multilingual setting,
we compare three types of models. With BERTmono

we denote the BERT model pretrained and finetuned
on the corresponding language performing the best
in each language setting (e.g., CamemBERTlarge for
French), with mBERTall we denote the model trained
on all language training sets and with mBERTall/MC

we denote the multilingual model variant where the
7



Model French English German

BERTmono 72.2% 54.3% 73.4%
mBERTall 70.2% 62.9% 67.5%
mBERTall/MC 74.4% 66.1% 70.2%

Table 9: Comparison of monolingual and multilingual
F1 scores per language on each test set.

Model French English German

BERTmono 38.3% 39.9% 39.5%
mBERTall 10.7% 23.2% 16.2%
mBERTall/MC 25.9% 42.9% 25.9%

Table 10: Comparison of monolingual and multilingual
false positive rate per language on each test set.

German SetMC was used instead of Set111.
The monolingual models are the models that per-

formed the best in their respective language settings
on the development sets (although for French and
English the development sets contain only 16 re-
views). The multilingual models were all finetuned
using English labels and prompts, since English
data is the most prominent in mBERT’s pretraining
set and intuitively the best hub across languages
(even though Anastasopoulos and Neubig (2020)
showed that choosing English is not always the best
hub-language for bilingual models, hub-language
selection is out of scope for our work).

In Table 9 we compare F1 scores. In French
and English, multilingual models perform best,
with an average increase to the F1 score of 2%
for mBERTall and 11% for mBERTall/MC . In Ger-
man, while mBERTall/MC performs competitively,
the monolingual model still performs the best. This
is to be expected, considering that German was the
focus language of our experiments and the Ger-
man monolingual models received the majority of
attention during the development stage, with hyper-
parameter tuning and extensive prompt engineering.
On the other hand, no tuning or engineering was
performed on the multilingual models.

In Table 10, we compare false positive rates (i.e.,
unrelated reviews that were classified as related)
between monolingual and multilingual models. In
many real-world settings, false positives are partic-
ularly insidious, since users are exposed to content
they should not be seeing. For example, expos-
ing customers to harmful content or publishing re-
views where customers have inadvertently revealed

personal information (e.g., their address or email
address) is harmful. In our case, customers are
exposed to information that is not related to the
product, which may add confusion and affect cus-
tomer trust negatively.

For this important metric, we see that the mono-
lingual models perform badly, with the false posi-
tive rate just below 40% across all languages. This
is performance that would deem such models un-
trustworthy for production. On the other hand, the
multilingual models perform better overall. In par-
ticular, mBERTall performs the best in all languages
and by large margins (at least 16%). mBERTall/MC

also performs better than the monolingual models
in French and German, sporting improvements of at
least 12%. In English, however, mBERTall/MC per-
forms competitively but still worse than the mono-
lingual model by 3%. An explanation for this is
that in English the test set contains only a few unre-
lated (i.e., negative) reviews, numbering at 168. In
comparison, in the German set there are 228 unre-
lated reviews and in the French set 447. Thus, due
to the small size, it is challenging to make inference
on solely unrelated reviews.

5 Conclusion

In our work, we investigate how to improve dis-
crimination between customer reviews related and
unrelated to the product in low-resource settings
for English, French and German. We show that via
multilingual transfer learning we can improve per-
formance of models in English and French, lever-
aging the in-domain higher-resource German data,
while at the same time reducing the rate of false
positives across all languages.

Selecting training examples most conducive to
performance in few-shot learning is of paramount
importance and still an open question. We pro-
pose a method to extract such examples through a
Monte Carlo simulation, selecting training exam-
ples with the highest average performance across
experiments. We show that with our method we
can improve performance both in monolingual and
multilingual settings, outperforming baselines with
orders of magnitude more data as well as all mod-
els trained on randomly-sampled sets, consistently
increasing F1 scores and decreasing false positives.

Acknowledgements. The first author performed
work as an intern at Zalando SE (Berlin). The
first author is currently funded by the European
Research Council (grant #740516).
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6 Limitations

In our Monte Carlo simulation, due to computa-
tional restrictions, we only performed 200 random
runs. Even though the training set produced via
our selection method outperforms other methods,
performance could be potentially improved even
further with more runs.

Future work should focus on expanding the set
of languages investigated. Due to limited data re-
sources, we were not able to procure enough data
in other languages. It is important to include not
only more, but also more linguistically diverse lan-
guages in the study.
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Abstract

Developed to alleviate prohibitive labeling
costs, active learning (AL) methods aim to re-
duce label complexity in supervised learning.
While recent work has demonstrated the bene-
fit of using AL in combination with large pre-
trained language models (PLMs), it has often
overlooked the practical challenges that hinder
the effectiveness of AL. We address these chal-
lenges by leveraging representation smoothness
analysis to ensure AL is feasible, that is, both
effective and practicable. Firstly, we propose an
early stopping technique that does not require a
validation set – often unavailable in realistic AL
conditions – and observe significant improve-
ments over random sampling across multiple
datasets and AL methods. Further, we find that
task adaptation improves AL, whereas standard
short fine-tuning in AL does not provide im-
provements over random sampling. Our work
demonstrates the usefulness of representation
smoothness analysis for AL and introduces an
AL stopping criterion that reduces label com-
plexity.1

1 Introduction

The notorious data hungriness of deep learning
models emphasizes the importance of efficient and
effective label acquisition. However, the labeling
process is often tedious and expensive, ultimately
slowing the development of labeled datasets and re-
sulting in subpar models. Evolved out of a practical
necessity, active learning (AL; Cohn et al., 1996;
Settles, 2009) is a special family of machine learn-
ing algorithms designed to reduce label complexity
– the number of labels that a learning algorithm re-
quires to achieve a given performance (Dasgupta,
2011) – and thus minimize labeling costs. An AL
method aims to select the most informative exam-
ples, which can be particularly useful when unla-

1Our code is available at https://github.com/
josipjukic/al-playground

beled data are abundant, but the labeling is costly
or requires substantial expertise.

The striking success of deep learning has mo-
tivated the use of traditional AL techniques for
training deep neural networks (DNNs) and the de-
velopment of novel AL methods suited specifically
to DNNs. In natural language processing (NLP),
AL has been shown to outperform a random se-
lection of examples in many NLP tasks (Zhang
et al., 2017; Siddhant and Lipton, 2018; Ikhwantri
et al., 2018). Before the widespread adoption of
large pre-trained language models (PLMs), a typi-
cal AL approach to training deep models was to use
task-specific neural models trained from scratch in
each AL step (Kasai et al., 2019; Prabhu et al.,
2019). Since PLMs fine-tuned to downstream tasks
outperform standard neural models, PLMs have
supplanted most of them, and researchers have be-
gun to investigate the feasibility of AL for PLMs
(Ein-Dor et al., 2020; Schröder et al., 2022). Re-
cent work in AL experimented with several train-
ing regimes, such as PLM adaptation and specific
fine-tuning techniques (Yuan et al., 2020; Mar-
gatina et al., 2022). In particular, task-adaptive pre-
training (TAPT) has emerged as a cost-effective
method for performance improvement complemen-
tary to AL (Howard and Ruder, 2018). TAPT
uses additional pre-training on the unlabeled train-
ing set via masked language modeling and self-
supervision. In theory, combining AL with adapted
PLMs should produce greater reductions in label
complexity than either of the methods in isolation.
However, since research on combining AL with
PLMs is still in its infancy, whether it can work
consistently better than random selection in realis-
tic conditions remains an open question.

One of the challenges in combining AL and
PLMs is that, although AL is conceptually sim-
ple and promises efficiency gains, there are a host
of practical challenges in deploying it in realistic
conditions (Attenberg and Provost, 2011; Lowell
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et al., 2019). The situation is further aggravated by
the fact that most AL research overlooks these chal-
lenges and resorts to unrealistic evaluation setups
and resources. One of the most pervasive problems
stems from using a hold-out set during training
(e.g., a validation set for regularization by early
stopping). In real applications, hold-out sets are
unlikely to be available, as building them would
require additional labeling effort the AL is meant to
reduce in the first place. Another major problem is
the flawed evaluation of AL methods: typically, an
AL method is compared against random selection
as the baseline, but the two training regimes are
not kept identical, which confounds the measured
effect of AL. In addition to the above-mentioned
problems, there is the important practical question
of when to stop the acquisition of labels, i.e., how
to define the AL stopping criterion.

AL methods rely highly on the acquisition model
(the underlying model used for selecting examples).
Therefore, it is important to maintain good general-
ization properties of the acquisition model, which
can be analyzed using representation smoothness.
Recently, functional space theory has emerged as
a valuable tool for analyzing generalization prop-
erties and expressivity of DNNs (Yarotsky, 2017;
Suzuki, 2019). In particular, the Besov space, a
general function space that can capture spatial in-
homogeneity, appears convenient for such analyses
(Suzuki and Nitanda, 2021).

In this work, we address the practical challenges
of AL. First, we systematically evaluate the fea-
sibility, where we consider an AL method to be
feasible if it is both practicable (achievable in re-
alistic conditions) and effective (consistently out-
performs random selection). Concretely, we ex-
plore different learning regimes in AL on various
NLP classification tasks without a validation set
that is unavailable in most real-world labeling cam-
paigns. Motivated by the effectiveness of TAPT for
PLMs (Gururangan et al., 2020), we explore how
TAPT combines with AL in the low-resource setup.
Secondly, we leverage the representation smooth-
ness of PLM layers in the Besov space to improve
AL effectiveness. In particular, we develop Besov
early stopping, an early stopping regularization
technique that does not require a validation set, and
we show that it consistently improves the model
performance and reduces the variance of results
for all AL methods we consider. Moreover, Besov
early stopping shows promise as a surrogate for a

validation set in zero- and few-shot setups for regu-
lar training without AL. We also utilize represen-
tation smoothness to develop a stopping criterion
based on the smoothness of AL samples to mini-
mize label complexity. Our experiments show a
reduction in label complexity for PLMs across five
NLP datasets and five AL methods. In addition,
building on the idea that representation smoothness
is relevant for AL, we complement our experiments
with a novel AL method based on the norm of rep-
resentation gradients. Both the proposed method
and the existing AL methods consistently outper-
form random selection on PLMs with TAPT, which
supports the recent findings that the training regime
is more important than the choice of the AL method
(Margatina et al., 2022).

Our contributions can be summarized as fol-
lows: (1) we conduct a systematic evaluation of
AL methods for large PLMs and show that AL is
feasible, i.e., it consistently outperforms random
selection under realistic conditions, (2) we ana-
lyze the smoothness of the representation space of
PLMs in AL and propose an early stopping tech-
nique that improves AL performance and stabilizes
the results, (3) we discover patterns in the repre-
sentation smoothness of AL samples, which we
use for an effective AL stopping criterion, and (4)
we introduce a representation-based AL method,
competitive with other state-of-the-art AL strate-
gies. Our results demonstrate that AL with PLMs
is feasible. Even more importantly, the results in-
dicate that representation smoothness analysis can
be leveraged to improve model training in general
and the effectiveness of AL in particular, opening
new avenues for further research.

2 Related Work

Our work builds on several strands of research,
including practical challenges in AL, combining
AL with PLMs, and different training setups for
AL acquisition models.

Practical challenges in AL. Despite the success
of AL for many NLP tasks, studies have identi-
fied a number of practical challenges hindering the
broader deployment of AL (Attenberg and Provost,
2011; Lowell et al., 2019). The most obvious prob-
lem is the unavailability of a labeled validation set,
an essential resource in model training typically
used for hyperparameter optimization and regular-
ization via early stopping. Moreover, in realistic
AL conditions, a labeled test set is also unavailable,
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making a held-out evaluation of the underlying
model’s quality impossible. Previous work mostly
used model confidence or training error stability to
evaluate the acquisition model and derive an AL
stopping criterion based on that estimation (Vla-
chos, 2008; Bloodgood and Vijay-Shanker, 2009;
Zhu et al., 2010; Ishibashi and Hino, 2021). How-
ever, these criteria have not been widely adopted
as they often require tuning for specific datasets
and tasks. We mitigate this by developing a task-
agnostic AL stopping criterion that detects the
points of the largest reduction in label complex-
ity compared to random selection.

AL with PLMs. Only recently have large PLMs
been coupled with AL. Early work concentrated
mainly on the Transformer architecture (Vaswani
et al., 2017) utilizing a simple training setup. More
concretely, the predominant approach was to use
a standard fine-tuning technique with a fixed num-
ber of training epochs, fine-tuning the model from
scratch in each AL step (Ein-Dor et al., 2020; Mar-
gatina et al., 2021; Shelmanov et al., 2021; Karam-
cheti et al., 2021; Schröder et al., 2022). How-
ever, Mosbach et al. (2021) and Zhang et al. (2021)
showed that fine-tuning in low-resource setups (sce-
narios with little training data) tends to be very
unstable, especially when training for only a few
epochs. This instability poses a serious issue, as
AL often implies a low-resource setting. Moreover,
fine-tuning is often sensitive to weight initializa-
tion and data ordering (Dodge et al., 2020). This
instability of PLM fine-tuning also makes the AL
results unstable. We address the instability issue
by proposing an early stopping technique without a
validation set, and we show that combining PLMs
with AL is feasible.

AL training regimes. AL research took a turn
from standard fine-tuning of pre-trained models
to explore different training regimes and how to
use them in combination with AL methods. For
example, Grießhaber et al. (2020) explored how
to efficiently fine-tune Transformers with AL by
freezing the network’s layers. Similarly, Yuan et al.
(2020) explored self-supervised language modeling
to estimate example informativeness for cold-start
active learning. Motivated by the general success
of TAPT (Gururangan et al., 2020), Margatina et al.
(2022) showed that AL outperformed random sam-
pling for PLMs with TAPT, albeit using a validation
set. Similarly, Yu et al. (2022) developed a self-

training approach for active learning with the addi-
tion of weighted clustering. While some training
regimes seem promising for AL, the outstanding
question is which regimes can consistently outper-
form random selection. Furthermore, considering
what resources are realistically available during
training, the primary concern is whether we can ap-
ply these training regimes in realistic conditions.

3 Representation in Besov Space

Due to their remarkable flexibility and adaptivity,
deep learning models have gained significant trac-
tion. To explain these phenomena, researchers have
leveraged function space theory to develop approx-
imation and estimation error analysis (Yarotsky,
2017; Suzuki, 2019). Our work relies on a partic-
ular type of analysis based on the theory of Besov
spaces.

3.1 Besov space

It has been shown that the expressive power of
DNNs can be analyzed by specifying the target
function’s property such as smoothness (Petersen
and Voigtländer, 2018; Imaizumi and Fukumizu,
2019), i.e., the number of orders of continuous
derivatives it has over some domain. Besov space
has proven to be especially convenient for such
analyses, as it allows spatially inhomogeneous
smoothness with spikes and jumps, which we of-
ten encounter in high-dimensional deep learning.
In Besov spaces, the approximation error (expres-
sivity)2 and estimation error (generalizability)3 de-
pend on the properties of the representation space
(Suzuki and Nitanda, 2021). Given these theoreti-
cal connections, representation space analysis can
steer toward better generalization properties.

3.2 Besov smoothness index

We briefly describe the mathematical apparatus of
the Besov space analysis, adopted with slight mod-
ifications from (Suzuki, 2019; Suzuki and Nitanda,
2021). Let Ω ∈ Rd be a domain of functions. For
a function f : Ω → R with a defined p-norm in
Lp (space of measurable functions with finite p-
norm) and seminorm |f | defined by x 7→ |f(x)|,
we define ∥f∥p := ∥f∥Lp(Ω) := (

∫
Ω |f |pdx)

1
p

2The approximation error refers to the distance between
the target function and the closest neural network function of
a given architecture.

3Estimation error refers to the distance between the ideal
network function and an estimated network function.
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for 0 < p < ∞. For p = ∞, we define
∥f∥∞ := ∥f∥L∞(Ω) := supx∈Ω |f(x)|.
Definition 1 (Smoothness modulus). For a func-
tion f ∈ Lp(Ω), p ∈ (0,∞], t ∈ (0,∞), h ∈ Rd,
and r ∈ N, the r-th modulus of smoothness of f is
defined by

wr,p(f, t) := sup
∥h∥2≤t

∥∆r
h(f)∥p,

where ∆r
h(f) is the forward difference opera-

tor of the r-th order defined as ∆r
h(f)(x) :=∑r

i=0

(
r
i

)
(−1)r−if(x + ih) for [x, x + rh] ∈ Ω,

and 0 otherwise.

Definition 2 (Besov space (Bα
p,q)). For 0 < p, q ≤

∞, α > 0, r := ⌊α⌋ + 1, let the seminorm of the
Besov space Bα

p,q be

|f |Bα
p,q

:=

(∫ ∞

0

(
t−αwr,p(f, t)

)q dt
t

) 1
q

(1)

for q < ∞. Let |f |Bα
p,q

= supt>0 t
−αwr,p(f, t) for

q = ∞. Besov smoothness index of f is deter-
mined as the maximum index α for which the Besov
seminorm is finite.

Intuitively, the Besov smoothness index (Besov
smoothness for short) quantifies the properties of
DNN’s representation space. More specifically, a
higher index indicates higher smoothness. Because
the calculation of Besov smoothness (more pre-
cisely, the integral in (1)) is intractable, we have to
rely on approximations. Elisha and Dekel (2016,
2017) proposed wavelet decomposition of a ran-
dom forest (RF) for approximating Besov smooth-
ness. Wavelet decomposition of the RF establishes
an order of importance of the RF nodes, while RF
uses the embedded representations of an arbitrary
DNN as features. For classification problems, we
can normalize the inputs to [0, 1] and transform the
class labels into vectors in the RL−1 space by as-
signing each label to a vertex of a standard simplex,
where L is the number of classes. This gives us
the k-th layer of a neural network as a function
fk : [0, 1]d → RL−1. For a random forest con-
sisting of J estimators, Elisha and Dekel (2017)
proceeded by approximating the errors of each es-
timator Tj with M most important wavelets. The
error function (with r = 1, p = 2) is estimated
as σM ∼ ckM

−αk . Numerically, we can use an
approximation log(σm) ∼ log(ck) − α log(m),
m = 1, . . . ,M , and find ck and αk through least
squares, where αk is the estimate for the Besov
smoothness of fk, i.e., the k-th layer of a DNN.

3.3 Representation smoothness

Analyzing the Besov smoothness of DNNs can un-
veil their representation geometry. DNNs should
benefit from smoother representations, as they
help the model avoid overfitting. Intuitively,
“well-learned” representations will exhibit high
Besov smoothness. When we decompose a PLM
into wavelets sorted by relevance and use the
Besov smoothness approximation described in Sec-
tion 3.2, smoother representations achieve lower
generalization errors with fewer wavelets.

Another relevant phenomenon for representation
smoothness analysis is that the individual layers
of DNNs specialize in different features. In par-
ticular, earlier layers tend to learn generalization
features, while the deeper layers are more prone
to memorization (Stephenson et al., 2021; Baldock
et al., 2021). Following these insights, we propose
using Besov smoothness to inspect the general-
ization properties of PLMs through the prism of
layer-wise representation geometry. We hypoth-
esize PLMs should benefit more from smoother
representations in earlier layers, and we propose
methods to enforce learning such representations
during training.

4 Preliminaries

In this section, we describe our experimental setup,
detailing the datasets, models, AL methods, and
evaluation metrics.

4.1 Datasets

We select three different single-text classification
tasks commonly used in the AL literature. The
datasets vary in size, number of classes, and com-
plexity, allowing for a nuanced study of AL meth-
ods. To extend our analysis to similar datasets
with different levels of complexity, we also add bi-
nary versions of the multi-class tasks. In total, we
work with five datasets (cf. Appendix, Table 3): (1)
the question type classification dataset (TREC-6;
Li and Roth, 2002); (2) the corresponding binary
version TREC-2 with only the two most frequent
classes (Entity and Human); (3) the subjectivity
dataset SUBJ of Pang and Lee (2004), which clas-
sifies the movie snippets as subjective or objec-
tive and is often used in AL benchmarks; (4) the
AG’s News classification dataset AGN-4 of Zhang
et al. (2015); and (5) its binary version, AGN-2,
often used in the AL literature, with two categories
(World and Sports) out of four.
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4.2 Models
We focus on large PLMs and include two repre-
sentatives of the Transformer family, each using a
different pre-training paradigm. Specifically, we
experiment with BERT (Devlin et al., 2018), which
uses a generative pre-training approach via masked
language modeling, and ELECTRA (Clark et al.,
2020), which relies on discriminative training to
detect corrupted tokens induced by a small gener-
ator network. For both models, we leverage their
widely used base variants from the Hugging Face
library (Wolf et al., 2020), which consist of 12 lay-
ers.

4.3 Active learning methods
We consider six sampling strategies, including ran-
dom selection, which serves as a baseline. The
other five strategies are AL methods from different
families.

Random selection (RND) selects instances uni-
formly from the unlabeled pool.

Maximum entropy (ENT; Lewis and Gale, 1994)
comes from the family of uncertainty strate-
gies. The method queries instances where the
model is least certain, according to the crite-
rion of maximum entropy of the prediction
output.

Monte Carlo dropout (MC; Gal and Ghahramani,
2016) is similar to ENTROPY, but relies on the
stochasticity of forward passes with dropout
layers (Srivastava et al., 2014) to estimate the
entropy for a given instance.

Core-set (CS; Sener and Savarese, 2018) promotes
instance diversity by leveraging the learned
representations of the acquisition model. The
method aims to minimize the distance be-
tween an example in the unlabeled set and its
most similar counterpart in the labeled subset.

Discriminative active learning (DAL; Gissin and
Shalev-Shwartz, 2019) frames active learning
as a classification of whether a particular in-
stance is labeled or not to make the labeled
and unlabeled sets indistinguishable. Specif-
ically, DAL queries instances that are most
likely to be in the unlabeled subset according
to a trained classifier.

Representation gradients (RG) is a novel AL
strategy we propose in this work. Similar

to methods from (Huang et al., 2016; Ash
et al., 2019), RG selects instances based on
gradient information from the representation
space. However, unlike other gradient-based
methods, RG is much less computationally de-
manding and, therefore, suitable for resource-
limited studies and realistic conditions. The
method computes the mean representation gra-
dient with respect to the embedded inputs
and selects the instances with the largest gra-
dient norm. Formally, with h̄ as the mean
representation, the RG’s selection criterion is
argmaxx∈U

∥∥∂xh̄
∥∥
2
, where U denotes the un-

labeled set. The intuition behind RG is that the
locally sharp instances in the representation
space of the underlying model, i.e., the ones
with large gradient norms, surprise the model
the most and thus will contribute the most to
a reduction in label complexity.

In our experiments, we select 50 new examples
in each step of each AL experiment, using 100
examples for the warm start (randomly sampled
labeled data to kick-start the model). We set the la-
beling budget to 1, 000 instances for easier datasets
(TREC-2, AGN-2, and SUBJ) and 2, 000 instances
for harder datasets (TREC-6 and AGN-4).

4.4 Evaluation

To evaluate the entire AL process, we use the area
under the performance curve (AUC). Each step cor-
responds to the classification performance in terms
of the F1 score of a model trained with a certain
number of labeled examples. We advocate using
AUC complementary to the AL curves, as we be-
lieve it is a good approximation of AL feasibility as
a summary numeric score. Since we use different
training regimes in our experiments, we compare
each AL strategy to random selection within the
same training regime to isolate the effects of AL.
Additionally, we introduce a metric to measure
the direct practical gains of AL by estimating the
reduction in label complexity of AL compared to
random selection. For a given AL step, we compute
the number of additional labels required to achieve
the same performance with random selection, thus
estimating the number of labels one saves when us-
ing AL. We refer to this metric as label complexity
reduction (LCR).
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5 Improving Active Learning

In this section, we first look into the representa-
tion geometry of PLMs by means of representation
smoothness analysis. Then, we link our findings
to devise a smoothness-based early stopping tech-
nique that does not require a validation set. We
explore the effects of our method in different train-
ing regimes and provide a systematic evaluation of
AL for PLMs in the low-resource setup.

5.1 Representation smoothness analysis

We empirically test the characteristics of Besov
smoothness of PLMs. In particular, we compare
the representation smoothness of PLMs in three
different training regimes: (1) short training (ST),
where models were trained for 5 epochs, (2) ex-
tended training (ET), where models were trained
for 15 epochs, and (3) model adaptation with TAPT
(cf. Appendix A.5 for details) followed by an ex-
tended training for 15 epochs (ETA). We computed
the smoothness of PLM layers during training, av-
eraged across AL steps. In each AL step, we fine-
tuned the model anew.

Performance-wise, ETA yields better results than
ET and ST (Table 1). Moreover, AL in the ST

regime does not yield improvement over random
sampling. Figure 1 shows the layer-wise smooth-
ness for the three mentioned regimes with the ad-
dition of the overfitting regime, where we purpose-
fully overfitted the acquisition model in each AL
step by training the model for 100 epochs. In the
ST regime, we observe a monotonic increase in
smoothness as we progress through layers, while
the smoothness in ET peaks before the last few lay-
ers. The shift of the smoothness peak is even more
pronounced for TAPT with extended training. In
overfitted models, we observe a flat distribution of
smoothness across layers. We observe that better
performance and effective AL come with a shift in
smoothness distribution towards earlier layers, as
displayed in ET and ETA regimes. We hypothesize
that, in the low-resource setup, the deeper layers
exhibit higher smoothness in the ST regime because
they are prone to heuristic memorization – DNN
relies on spurious artifacts (shortcuts) that are cor-
related with a target label (Bansal et al., 2022) –
which may cause the model to perform poorly.

5.2 Besov early stopping

In the AL loop, the effect of selecting an acqui-
sition model with poor generalization properties
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Figure 1: Besov smoothness of PLM layers for different
training regimes. The scores are normalized (between 0
and 1 per layer) and averaged across datasets, models,
and AL methods. The black error bars represent the stan-
dard deviation. We note that the deviation is small, indi-
cating similar behavior across different datasets, models,
and AL methods.

propagates through the AL steps. To ensure the
effectiveness of AL, regularization by early stop-
ping is often used to pre-empt overfitting in order
to retain good generalization properties. However,
since a validation set is often unavailable in realis-
tic conditions, using it for early stopping renders
AL impracticable. However, feasible AL needs to
be both effective and practicable.

The above empirical findings on smoothness dis-
tribution across the PLM layers for the different
training regimes motivate an early stopping heuris-
tic based on representation smoothness without a
validation set. We propose BEAST (Besov early
stopping), where we proceed with the training as
long as the Besov smoothness distribution skews
toward earlier layers. We define the stopping point
as the epoch where the distribution skewness4 fails
to increase, i.e., when the peak of the representa-
tion smoothness ([CLS] token) fails to shift towards
earlier layers for two consecutive epochs. We re-
vert the model to the last epoch where this effect is
preserved. In this way, we stop the training before
the smoothness distribution flattens out, which we
observe in overfitted models. We experiment with
two more training regimes: ETB and ETAB, which
are just ET and ETA with BEAST.

We compare BEAST to the approaches without
early stopping, where we chose the models from
the last epoch. Our experiments show the differ-
ence in AL performance across different training

4We compute the layer-wise smoothness skewness as the
Fisher-Pearson coefficient of skewness.
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Figure 2: Active learning performance curves for BERT
in terms of F1 score. Random sampling (purple rhombs)
serves as a baseline. For the sake of space, we show
the results on a subset of datasets for BERT and regimes
ETA and ETAB as we obtained similar results for other
configurations (cf. Figure 4 in Appendix). The results
are averaged over five runs. The confidence intervals
represent the standard deviation. Best viewed on a com-
puter screen.

regimes. Figure 2 shows the trend of AL curves
through the steps, and Table 1 provides more com-
prehensive comparisons with AUC as the aggre-
gated measure of AL effectiveness. We can observe
that AL coupled with ST performs poorly, and AL
fails to outperform random sampling (sometimes
even worse than random sampling). The ET regime
generally improves performance, with AL some-
times outperforming random selection. ETA and
ETAB further improve performance over random
sampling for every AL method on every dataset we
used. For BERT, the difference between AL and
random sampling is statistically significant in 22
out of 25 cases with ETA and in all 25 cases with
ETAB. More importantly, ETB and ETAB outper-
form their counterparts without BEAST and reduce
the variance of the results (cf. Appendix, Table 6).
We support the hypothesis that the choice of the AL
method is not as important as the training regime,
as we achieve similar results for every method
when AL outperforms random selection. TAPT
works across the board, improving AL performance
on all five datasets. With the addition BEAST, we
achieve feasible AL, making it both practicable and
effective. On top of that, even with random sam-
pling, BEAST consistently yields higher scores than
the model from the last epoch, showing benefits
even for regular fine-tuning without AL.

RND ENT MC CS DAL RG

T
R

E
C

-2

ST .875 .873 .883 .881 .889 .879
ET .912 .932† .934† .929 .931 .931
ETB .925 .942† .942† .939† .940† .938

ETA .941 .959† .957† .960† .957† .958†

ETB .949 .966† .965† .965† .964† .965†

S
U

B
J

ST .896 .892 .885 .901 .898 .892
ET .920 .922 .922 .925 .925 .920
ETB .928 .931 .932 .932 .933 .930

ETA .942 .949† .950† .949† .949† .948
ETB .946 .954† .954† 954† .953† .952†

A
G

N
-2

ST .923 .942† .941† .922 .941† .942†

ET .960 .969 .970† .965 .967 .969
ETB .967 .974† .975† .972 .974† .975†

ETA .974 .981† .980 .981† .980 .980†

ETB .977 .983† .983† .983† .982† .982†

T
R

E
C

-6

ST .706 .743† .749† .666 .689 .693
ET .867 .878 .881† .867 .878 .867
ETB .873 .885 .890† .873 .882 .875

ETA .909 .933† .931† .931† .934† .930†

ETB .925 .939† .937† .936† .940† .935†
A

G
N

-4

ST .837 .828 .824 .801 .834 .829
ET .869 .869 .871 .871 .880† .875
ETB .875 .877 .878 .879 .886† .881

ETA .891 .905† .905† .902† .906† .899†

ETB .894† .908† .908† .905† .909† .903†

Table 1: AUC scores for random sampling and different
AL methods across datasets and training regimes for
BERT (cf. Appendix, Table 5). The results are averaged
over 5 runs with different seeds. Bold numbers indicate
the best AUC for each dataset. The “†” indicates when
the mean AUC of an AL method is significantly different
from random sampling (two-sided Man-Whitney U test
with p < .05, adjusted for family-wise error rate with
the Holm-Bonferroni method).

6 Active Sample Smoothness

In Section 5, we analyzed the Besov smoothness
of layer representations of PLMs. In this section,
we take a step further and examine the smoothness
at the instance level. Instead of using the repre-
sentations on the training set, we computed the
Besov smoothness as the average across layers on
the unseen (selected but not yet trained on) active
sample, acquired by the AL method. In contrast
to the seen training examples, we argue that the
Besov smoothness on unseen examples can be in-
terpreted as the amount of information the model
could obtain from that sample. More precisely,
the lower the smoothness of an active sample, the
more informative it is for the model. In contrast,
smooth samples are already well-represented and
thus not as resource-effective as their less smooth
counterparts.
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Figure 3: The relationship between an active sample
and random sample smoothness. Figure 3a shows how
the smoothness of samples retrieved by AL (red) relates
to the smoothness of random samples (violet) with fitted
regression lines. The smoothness values are calculated
as the average across layers. Figure 3b shows the corre-
sponding AL performance curve. The gray dotted line
indicates the intersection of active and random sample
smoothness, which signals the beginning of diminish-
ing returns of AL. We show the results for BERT in the
ETAB regime on the TREC-6 dataset as an illustration.
We observe very similar patterns in other datasets. Since
all of the AL methods display similar behavior in ETAB

regime, we show only MC to avoid clutter (cf. Figure 5
in Appendix for other datasets). Best viewed on a com-
puter screen.

We compare the Besov smoothness of actively
acquired samples against random samples. We
consistently observe two patterns, showcased by
Figure 3. First, the smoothness of random samples
is uniform throughout the AL steps. The second
pattern occurs in the trend of AL sample smooth-
ness. In the early AL steps, AL sample smoothness
is low, indicating sharp representations that require
smoothing (by learning). As the AL procedure pro-
gresses, the acquisition model improves, and the
active samples’ smoothness increases. We interpret
this as the model slowly consuming the informa-
tion from the data pool, eventually reaching a state
of “information depletion”, i.e., a state in which the
remaining unlabeled data provides no additional
value to the model.

Stopping criterion. Our preliminary analysis of
the relationship between the active and random
sample smoothness motivates a simple stopping cri-
terion, which we refer to as ALSBI (active learning
stopping by Besov index). ALSBI aims to detect
when AL methods reach information depletion. We
terminate the AL process when sample smooth-
ness surpasses the average smoothness of a random
sample in two consecutive steps. We disregard the
first AL step, as it often takes several steps for the
acquisition models to stabilize. Since we cannot

ENT MC CS DAL RG

ETA
avg .316 .312 .351 .275 .319

ALSBI .447 .401 .511 .282 .521

ETAB avg .385 .385 .394 .354 .382
ALSBI .586 .532 .488 .447 .645

Table 2: Average LCR across datasets and models. The
scores indicate the proportion of the dataset that needs
to be labeled for random sampling to match the per-
formance of the corresponding AL method. ALSBI is
compared to an average LCR throughout the AL steps
(avg). The results are averaged over 5 runs. Numbers
in bold indicate the largest LCR for a certain training
regime.

compute the smoothness of a random sample (as
we query only AL samples) in realistic conditions,
we estimate the random sample smoothness on the
warm start examples via bootstrapping. This ap-
proximation proved stable for 100 examples as the
smoothness of a random sample remains stable
throughout AL steps. We take the average smooth-
ness of 1, 000 bootstrapped samples of size 50. Ta-
ble 2 shows that ALSBI yields larger LCR than what
one would get on average across AL steps, which
supports our preliminary analysis. RG achieves the
highest LCR among the tested AL methods, which
we believe is due to its compatibleness to ALSBI as
both the AL method and the stopping criterion are
based on representation smoothness.

7 Conclusion

In our paper, we leverage representation smooth-
ness analysis to improve the effectiveness of active
learning (AL). In realistic conditions, we show that
AL with pre-trained language models (PLMs) is ef-
fective when combined with task adaptation, while
standard short fine-tuning often fails. We address
the problem of unavailable resources (labeled hold-
out sets) by developing the Besov early stopping
technique (BEAST) that does not require a valida-
tion set. For AL to be feasible, it must be both
effective and practicable. BEAST meets both feasi-
bility requirements: it improves AL performance
over random sampling and reduces the variance of
the performance scores across AL steps (effective-
ness) while not requiring additional labeled data
(practicability). Moreover, BEAST improves the
performance of PLMs even in standard fine-tuning
without AL, which makes it potentially useful in
zero-shot and few-shot setups where a validation
set could also be unavailable. We further show the
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usefulness of representation smoothness analysis
for AL by devising a simple and effective AL stop-
ping criterion. We corroborate the hypothesis from
previous research in that the effectiveness of AL
is influenced more by the training regime rather
than the AL method itself. We believe that the rela-
tionship between PLMs’ generalization properties,
label complexity, and representation smoothness is
an exciting avenue for AL, and we hope our results
will motivate further research in that direction.

Limitations

To fully comprehend the significance of our find-
ings, it is necessary to consider the limitations
of this study. Firstly, we evaluate only two
Transformer-based models on a small number of
text classification tasks. Although we used the mod-
els with different pre-training paradigms, it is pos-
sible that the findings do not generalize across mod-
els within the same family. In addition, we used the
base variants of BERT and ELECTRA, which both
feature 12 layers. Since our early stopping crite-
rion is influenced by the number of layers whose
smoothness we approximate, there is a possibil-
ity that smoothness would distribute differently for
models with more or fewer layers. Another limi-
tation is that we did not investigate these models’
performance on tasks other than text classification,
and the results may not be generalizable to different
types of NLP tasks.

Since there are many different ways to measure
the quality of an AL stopping criterion and we only
wanted to illustrate the usefulness of smoothness
patterns, we only compared the proposed ALSBI

method against an average baseline. However, a
more comprehensive comparison with other ap-
proaches from the literature would provide a better
understanding of the merit of our method.

Lastly, we only scratched the surface of differ-
ent training regimes for PLMs in the context of
AL. Many new training regimes are emerging in
the field, especially the ones focused on efficiency
and modularity. We leave the exploration of these
methods for future work.
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TRAIN VAL TEST TOTAL

TREC-2 1, 987 159 486 2, 632
SUBJ 7, 000 1, 000 2, 000 10, 000
AGN-2 20, 000 2, 600 5, 000 27, 600
TREC-6 4, 881 452 500 5, 833
AGN-4 20, 000 7, 600 7, 600 35, 200

Table 3: Dataset sizes by splits. Although we do not
use a validation set (VAL) in our experiments, we report
its size for completeness. We uniformly subsampled
the AGN-2 and AGN-4 datasets for shorter computation
time.

A Reproducibility

A.1 Dataset statistics

We report the sizes of the datasets per split in Ta-
ble 3. The datasets contain mainly texts in English.

A.2 Models

We used base and uncased variants of the Trans-
former models. Specifically, we used “bert-
base-uncased” for BERT and “google/electra-base-
discriminator” for ELECTRA. Both models have
109, 514, 298 trainable parameters each.

A.3 AL methods

MC We use ten inference cycles to approximate the
entropy of the output via Monte-Carlo dropout
sampling.

CS We use the [CLS] token representation from the
Transformer’s penultimate layer. We opt for
the greedy method described in the original
paper (Sener and Savarese, 2018).

A.4 Preprocessing

We use the same preprocessing pipeline on all
datasets for both BERT and ELECTRA. We lower-
case the tokens, remove non-alphanumeric tokens
and truncate the sequence to 200 tokens.

A.5 Hyperparameters

We used a fixed learning rate of 2× 10−5 for both
models. Additionally, we set the gradient clipping
to 1 during training. In the ST regime, we trained
the model for 5 epochs and 15 in ET, and ETA. For
TAPT, we used masked language modeling with
15% of randomly masked tokens and trained the
model via self-supervision for 50 epochs with the
learning rate set to 10−5.

BERT ELECTRA

TREC-2 32.4 31.1
SUBJ 40.8 39.2
AGN-2 71.4 70.3
TREC-6 68.4 67.1
AGN-4 82.3 75.7

Table 4: Experiment duration in minutes for both mod-
els across datasets. We report the average runtime over
five different runs and six different sampling methods
(five AL methods and random sampling).

A.6 Computing infrastructure
We conducted our experiments on 4× AMD Ryzen
Threadripper 3970X 32-Core Processors and 4×
NVIDIA GeForce RTX 3090 GPUs with 24GB of
RAM. We used PyTorch version 1.9.0 and CUDA
11.4.

A.7 Average runtime
We report the average runtime of experiments in
Table 4. We ran six sampling methods on five
datasets for two models and for five different train-
ing regimes. Additionally, we repeated each exper-
iment five times with different seeds ([1, 2, 3, 4, 5]).
In each experiment, we re-train the model 20 times
on TREC-2, SUBJ, and AGN-2 up to 1, 000 in-
stances (20 batches of 50 instances), and 40 times
on TREC-6 and AGN-4 up to 2, 000 instances (40
batches of size 50). In total, we ran 300 AL experi-
ments.

B Experiments

We report the experiments that were omitted from
the main part of the paper due to space constraints.
Figure 4 shows the active learning performance
curves across the used datasets and for both models
(BERT and ELECTRA). For the ETA and ETAB train-
ing regimes, we observe a consistent improvement
in performance compared to random sampling. We
report the results for ELECTRA in Table 5, where
we observed similar patterns as with BERT (cf. Ta-
ble 1 in the main part of the paper). On top of that,
our early stopping method reduces the variance of
the results compared to other training regimes, as
shown in Table 6.

Figure 5 shows the relationship between the
Besov smoothness of random and active samples.
We report the smoothness of samples for each
dataset. We observe a similar pattern, with a rising
smoothness of actively acquired samples.
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Figure 4: AL performance curves for different training regimes across datasets and models. Random sampling
(purple rhombs) serves as a baseline. Best viewed on a computer screen.23



RND ENT MC CS DAL RG

T
R

E
C

-2

ST .831 .829 .836 .835 .840 .805
ET .910 .924 .918 .928 .927 .919
ETB .919 .930 .926 .934 .936 .927

ETA .932 .953 .953 .953 .951 .949
ETAB .939 .959 .958 .959 .956 .956

S
U

B
J

ST .880 .872 .870 .871 .898 .860
ET .926 .927 .925 .935 .936 .935
ETB .938 .937 .934 .944 .946 .942

ETA .946 .955 .954 .955 .955 .952
ETAB .952 .959 .959 .959 .959 .957

A
G

N
-2

ST .867 .901 .891 .850 .850 .823
ET .963 .963 .954 .963 .966 .965
ETB .969 .971 .962 .971 .971 .972

ETA .977 .981 .981 .982 .981 .980
ETAB .980 .983 .983 .983 .982 .982

T
R

E
C

-6

ST .604 .645 .636 .549 .561 .461
ET .837 .848 .839 .817 .811 .814
ETB .843 .858 .847 .821 .813 .816

ETA .897 .917 .905 .905 .905 .901
ETAB .906 .925 .917 .915 .914 .911

A
G

N
-4

ST .793 .706 .713 .688 .755 .750
ET .857 .844 .824 .845 .866 .857
ETB .868 .855 .836 .857 .874 .866

ETA .888 .903 .901 .901 .904 .897
ETAB .893 .907 .905 .905 .907 .901

Table 5: AUC for random sampling and different AL
methods across datasets and training regimes for ELEC-
TRA. The results are averaged over five runs with differ-
ent seeds.

ST ET ETA ETB ETAB

TREC-2 .0093 .0053 .0045 .0026 .0022
SUBJ .0117 .0045 .0032 .0013 .0008
AGN-2 .0100 .0036 .0020 .0009 .0005
TREC-6 .0134 .0081 .0074 .0032 .0027
AGN-4 .0118 .0048 .0045 .0022 .0014

Table 6: Average standard deviation for different train-
ing regimes. The results are averaged across models and
AL methods. Bold numbers indicate regimes with the
lowest standard deviation for a particular dataset.
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Figure 5: Besov smoothness of actively acquired sam-
ples with MC (red) compared to the smoothness of ran-
dom samples (purple).
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Abstract

The success of large language models (LMs)
has also prompted a push towards smaller mod-
els, but the differences in functionality and en-
codings between these two types of models
are not yet well understood. In this paper, we
employ a perturbed masking approach to inves-
tigate differences in token influence patterns on
the sequence embeddings of larger and smaller
RoBERTa models. Specifically, we explore
how token properties like position, length or
part of speech influence their sequence embed-
dings. We find that there is a general tendency
for sequence-final tokens to exert a higher in-
fluence. Among part-of-speech tags, nouns,
numerals and punctuation marks are the most
influential, with smaller deviations for individ-
ual models. These findings also align with
usage-based linguistic evidence on the effect of
entrenchment. Finally, we show that the rela-
tionship between data size and model size in-
fluences the variability and brittleness of these
effects, hinting towards a need for holistically
balanced models.

1 Introduction

Recent years have witnessed an exponential growth
in the size of language models, which has led to sig-
nificant improvements in their performance on var-
ious natural language processing tasks. However,
the reasons behind the remarkable success of LMs
remain elusive, and it is questionable whether fur-
ther growth will enhance their performance (Hong
et al., 2022). More recently, it has been shown that
small models can potentially learn linguistic struc-
ture equally well (Warstadt et al., 2020b; Zhang
et al., 2021; Huebner et al., 2021). Because of
neural network’s opaque functionality, the reasons
for these similarities and differences are not yet
well understood. While grammatical evaluation
suites (Warstadt et al., 2020a; Huebner et al., 2021;
Newman et al., 2021) focus more on model output,
evaluation approaches from the field of BERTology

(Rogers et al., 2020) try to address this problem by
studying the model’s internal representations and
mechanics. The present paper employs a perturbed
masking approach (Wu et al., 2020) to study the
influence of syntactic and constructional factors on
lexical influence in sentence embeddings, and their
differences between smaller and larger models.

To investigate these differences, we propose an
approach inspired by usage-based linguistics. In
the usage-based view, grammar is seen as emerg-
ing from language use and domain-general learning
mechanisms (Diessel, 2019). Constructions, form-
meaning pairings on all levels of linguistic analysis,
are seen as the essential building blocks of language
(Fillmore, 1988; Goldberg, 2003). Domain-general
processes that influence such construction gram-
mars are highly dependent on frequency effects in
the input. For example, repeated use of a linguis-
tic structure leads to it becoming more entrenched,
more unit-like, in a speaker’s “cognitive organiza-
tion” (Langacker, 1987, 59). As artificial neural
networks are domain-agnostic, statistical learners
that create their linguistic systems through repeated
use in the learning process, such effects attested
in human language users should also be present
in artificial learners. Consequently, usage-based
approaches should be able to provide new insights
on understanding the linguistic capabilities of lan-
guage models, and the differences between large
and small models (with different amounts of input)
in particular.

Within our usage-based framework, we explore
the influence that individual tokens have on the
embeddings of their sequence. In opposition to
grammatical test suites that challenge LLMs’ abil-
ities on very specific phenomena and structures,
we aim to explore and analyze the linguistic abil-
ities of LMs in terms of general positional and
constructional factors and influences in their rep-
resentations. Furthermore, by comparing these as-
pects for models trained on different amounts of
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linguistic data, we aim to find out whether, and
if so, how fast constructional entrenchment and
generalizations may arise. Because their repre-
sentations are shaped by less input data, smaller
models may exhibit less entrenchment effects, and
be thus more brittle and sensitive. By comparing
the most influential parts of speech for the mod-
els and construction types, we aim to find out on
which grammatical categories the sequence embed-
dings depend the most and whether this is changed
through the amount of training data. Finally, the
frequency and information effects should affect the
representations diametrically. The present analysis
will tell if any effect is stronger in larger LMs.

Generally, we find that LMs of all sizes have
a bias towards attributing more weight/influence
to tokens at the end of a sentence, which aligns
with the information-driven aspect of the linguistic
theory. However, although there are construction-
dependent differences, this effect does not vary sys-
tematically between the construction types. This is
surprising, considering their differences in lexical
specificity. Furthermore, we find that this bias is
influenced by model size, but not in a linear fashion.
Finally, we find that all models assign the highest
importance to lexical words, especially nouns. In
this sense, our results suggest that entrenchment
as a property of statistical learners does indeed
map from usage-based theories to artificial learners.
Yet, its interplay with model structure and learn-
ing processes remains complex and not completely
transparent.

2 Motivation for usage-based approaches
to LMs

Established evaluation suites for grammatical abili-
ties (Warstadt et al., 2020a; Huebner et al., 2021;
Newman et al., 2021) often work by focusing on
models’ preferences for grammatical utterances
over their ungrammatical counterparts. These tech-
niques are inspired by a rather strict generative
view of language, which assumes a pre-endowed
human language faculty that generates grammat-
ical strings of words from a hypothesized men-
tal hierarchical structure (Chomsky, 1957, 1965).
If the goal of neural language modelling was to
recreate this, then only testing on phenomena like
binding or filler-gap relations would be sufficient.
However, alternative approaches to linguistic the-
ory question these notions. The usage-based ap-
proach sees grammar as a fuzzy mental model of

language that is constantly shaped and re-shaped
by domain-general cognitive mechanisms, such as
automatization, entrenchment or analogy, through
input and usage (Tomasello, 2003; Diessel, 2019).
The resulting mental representations in the form
of linguistic constructions are influenced by fre-
quency effects. For example, forms that are per-
ceived and produced more often are more deeply
entrenched in mental grammar (Schmid, 2015). On
the syntactic level, such effects have syntagmatic
and paradigmatic dimensions. The syntagmatic
dimension refers to which elements occur sequen-
tially, whereas the paradigmatic dimensions is con-
cerned with the variation possible for certain po-
sitions/slots in syntagms. Constructions exhibit
different levels of such variation. For example, wh-
questions like Where is the butter? only have a lim-
ited number of options for the question word (first
slot) or the auxiliary (second slot), whereas the last
slot can be filled by any noun. These variation ef-
fects manifest in different phenomena. Research
from child-directed speech shows that spoken lan-
guage is organized around lexical frames, lexically
restricted sentence beginnings that occur with a
much higher frequency than their lexically diverse
counterparts, and which differ for syntactic con-
struction types (Cameron-Faulkner et al., 2003).
While the possible linguistic variation in language
production is quasi-infinite, speakers rely on highly
frequent, mentally automatized combinations to
initiate utterances. This preference is commonly
related to ease of production, a factor that is also
realized in phonetic reduction or syntactic contrac-
tion of high frequency units (Bybee and Thompson,
1997). Such producer-oriented factors grounded in
automatization and entrenchment are, however, not
the only usage-based variables shaping variation in
utterance production. For example, the information
weight principle (Behaghel, 1930; Quirk, 1972;
Arnold et al., 2000) posits that new information
and longer, “heavier” constituents in English are
commonly placed at the end of utterances, which fa-
cilitates communicative ease from a hearer-oriented
perspective. Such aspects only play a very minor
role in current approaches to evaluating the gram-
matical abilities and behaviour of LMs, although
they share many underlying concepts these models.
Consequently, a new, usage-based paradigm to the
evaluation and analysis of LLMs is needed, as it
enables new insights that are not derivable from
current approaches.
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3 Related work

Although perturbed masking, the analysis of model
architecture or size, and contructionist/usage-based
approaches to NLP have had little to no overlap
in previous research, they have been used for in-
sightful analyses on their own. The following para-
graphs offer a short review of the current literature
in these research directions.

Perturbed masking Wu et al. (2020) show that
perturbed masking can be used to retrieve depen-
dency trees, constituency trees and document-level
discourse structures by inducing tree structures
from influence matrices, based on tokens connected
by higher influence values. While not as exact
as other parsing approaches, they showed that
BERT-based representations already encode syn-
tactic structure. Taktasheva et al. (2021) investigate
the influence of syntactic perturbations through po-
sition shifts of syntactically grouped n-grams and
clauses inside sentences for English, Swedish and
Russian BERT models. They find that the pertur-
bation patterns vary for languages with different
degrees of word order flexibility and that syntac-
tic representations can be better restored from lan-
guages with fixed word order (e.g. English). In
an earlier approach, the NLIZE (Liu et al., 2019a)
system visualized perturbation-based changes in
attention heads and output weights for natural lan-
guage inference tasks. The approach has not yet
been used for construction-oriented analyses or the
investigation of smaller models.

Model size Differences between smaller and
larger models have only begun to get systemati-
cally investigated, and existing studies have arrived
at somewhat contradictory conclusions. Warstadt
et al. (2020b) trained a variety of RoBERTa models
with growing amounts of data, ranging from 1M to
1B tokens. They show that only larger models be-
gin to exhibit preferences for linguistic generaliza-
tions over surface generalizations. The additional
amount of data appears crucial for this difference.
In contrast, the BabyBERTa model (Huebner et al.,
2021) restricts the model size, number of inter-
mediate layers and attention heads. Its training
data is comparably small and was sampled from
child-directed speech from the CHILDES corpora.
Despite these limitations, its performance across
their own evaluation suite, Zorro, is similar to the
much larger RoBERTa-base model, questioning if
ever larger amounts of data are actually needed, or

whether the combination of hyperparameters and
training data is actually responsible for emergent
generalizations.

Construction grammar More recently, LLMs
have also begun to be investigated from a construc-
tion grammar viewpoint. Tayyar Madabushi et al.
(2020) show through a series of probing experi-
ments that BERT embeddings already contain in-
formation that could be seen as constructionist, for
example by being able to successfully determine
whether two sentences with little to no lexical over-
lap instantiate the same grammatical construction.
Tseng et al. (2022) fine-tune a BERT model for a
cloze completion task on open slots in Taiwanese
Mandarin constructions and show that it improves
performance. Moreover, sentences that instantiate
the same construction tend to be spatially closer in
the vector space than sentences with different con-
structions but the same main verb (Li et al., 2022).
However, it remains questionable how applicable
such knowledge is, as Weissweiler et al. (2022)
find that LLMs fail to deduce conclusions from
the comparative correlative construction in an infer-
ence task. Finally, Weissweiler et al. (2023) sum-
marize the previous line of constructionist inquiry
into LLMs. They find that current research has
focused on only a very limited set of constructions
and that there are differences in what is assumed
to be evidence for the presence of constructionist
information in LLMs. Consequently, they call for a
diversification of constructionist research in terms
of data sources and methodology. The present pa-
per responds to this call by investigating construc-
tions as processing units and their influence on se-
quence embeddings. By employing constructions
as an additional analytical factor, not as the end
point of the analysis, we expand on this previous
research.

4 Methods

4.1 Perturbed masking
We use Wu et al.’s (2020) perturbed masking ap-
proach to calculate the influence of a token x on its
sequence. This approach is adequate as a measure
of influence because it captures the global influence
patterns between all token pairs in a sequence, and
not only the influence of one token on the entirety
of a sequence.

1. For each other token y in the sequence:

(a) y is replaced with the <mask> token
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i can see two of the books over there
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Figure 1: Influence heatmap for the sentence I can see
two of the books over there encoded with roberta-base

(b) the sequence embedding sy with masked
y is computed

(c) x is additionally replaced with the
<mask> token

(d) the embedding sx,y for the sequence with
both x and y masked is calculated

(e) the vector distance d between sy and sx,y
is calculated to measure the influence of
x on the embedding of y

2. By averaging the distances d between token
x and all other tokens y, an average influence
value of x on the sequence is acquired

We use the penultimate layer of the BERT mod-
els as the source of our embeddings, as Devlin
et al. (2019) report that these embeddings perform
consistently well across a variety of tasks.

By examining how certain tokens impact their
embeddings more significantly, we can assess the
degree to which these tokens become deeply em-
bedded (or entrenched) in the learning model. To-
kens with a stronger influence on their embeddings
are indicative of greater entrenchment, reflecting
their increased importance and resistance to modi-
fication within LMs.

4.2 Test data
We chose naturally occurring sentences from the
CHILDES family of corpora (MacWhinney, 2000)
as the basis of our analysis. They are especially
suited to this experimental setup, because the vo-
cabulary of child-directed speech is restricted to
fairly frequent words that should be present in all
models’ training data, and the individual sentences
are rather short and syntactically not overly com-
plex, yet grammatical. Due to the uniform nature
of child-directed speech, we also control for the

influence of highly unusual or infrequent words
that could disproportionately affect the perturba-
tion data.

We sampled a data set of 3.000 test sentences
from the English section of CHILDES – 1.000 sen-
tences per construction type of interest. They were
retrieved from the corpus through pattern matching
on part-of-speech-tagged data. We annotated the
CHILDES data with 14 different construction types
inspired by Cameron-Faulkner et al. (2003) with
a construction parser that operates on word class
patterns. We chose three focus constructions1 –
imperatives, wh-questions and transitive sentences.
We decided on these construction types because
they differ in their word order (and its strictness), as
well as in their lexical variation (Cameron-Faulkner
et al., 2003). While transitives, for example, have
a near-infinite amount of possible beginnings, wh-
questions are constrained to the word class of in-
terrogatives. This variation in syntactic and lexical
patterns should shed additional light on positional
and other entrenchment effects – focusing on one
construction type only could taint the results by
being biased from these factors.

Our parser retrieved the construction types with
an accuracy of over 93% compared against a manu-
ally annotated ground-truth data set. For each con-
struction type of interest, we then sampled 1.000
sentences randomly. To reduce variation intro-
duced by different sentence lengths or patterns of
clausal combination, only utterances with nine to-
kens or less were considered. The mean utterance
length lies a little below that (M = 5.84, SD = 1.38),
with wh-questions being the shortest (M = 5.20,
SD = 1.54), transitive sentences being the longest
(M = 6.28, SD = 1.25) and imperatives in between
(M = 6.06, SD = 1.06).

4.3 Models

To maintain comparability of model architecture,
we exclusively analysed models with RoBERTa ar-
chitectures. These include the two original roberta-
base2 and roberta-large (Liu et al., 2019b) models,
the distilled distilroberta-base (Sanh et al., 2020)
as well as models trained with different amounts
of input by Warstadt et al. (2020b). The model
properties are compared in Table 1. The training
data for all models was sourced from a combina-

1The respective patterns for the three constructions can be
found in appendix A.

2For the rest of this paper, we denote the models by their
lowercase names.
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Hidden layers Parameters Attention heads Embedding size Training data
roberta-base 12 125M 12 768 30B tokens
roberta-large 24 355M 16 1024 30B tokens
distilroberta-base 6 82M 12 768 30B tokens
roberta-med-small-1M 6 45M 8 512 1M tokens
roberta-base-10M 12 125M 12 768 10M tokens
roberta-base-100M 12 125M 12 768 100M tokens
roberta-base-1B 12 125M 12 768 1B tokens

Table 1: Hyperparameters of target models

tion of BookCorpus, English Wikipedia, CC-News,
OpenWebText, and Stories dataset, and sampled
down for the smaller models.

Although all of these eight models are large LMs,
some of them can be considered “small” for the
sake of the present analysis. roberta-med-small-
1M features a reduced architecture and smaller
dataset (1M tokens), whereas roberta-med-small-
10M only has a smaller dataset (10M tokens) but
no reduced architecture. Finally, distilroberta-base
has a smaller architecture that was later fine-tuned
to mirror the larger roberta-base (based on 30B to-
kens). Consequently, the first two models can be
considered small in terms of architecture and data,
whereas the latter are small in data or architecture.
BabyBERTa was excluded from the analysis be-
cause its training data contains a part of the test
data we used.

4.4 Experimental setup

For all 3.000 sentences and all 7 models, we per-
form perturbed masking with the transformers li-
brary (Wolf et al., 2020). Figure 1 shows the result
of one perturbation run on the sequence I can see
two of the books over there. The influencing words
are shown on the x-axis, the influenced words on
the y-axis. A higher numerical value, shown by
brighter-colored cells, stands for a larger vector dis-
tance between the once and twice masked sequence
embeddings. This indicates that the respective in-
fluencing word exerts a higher influence on the em-
bedding of the influenced word – it changes its nu-
merical values more strongly. As Wu et al. (2020)
note, these patterns often align with grammatical
relations. For example, books as the grammatical
object here exerts the most influence on I, see and
two – the subject and predicate in the sentence and
a numeral that defines it.

We average the influence values per column,
which gives a measure of the average influence
a token exerts on its sentence embedding. For each
token, we store this influence value together with

its part-of-speech tag, tagged with spaCy (Honnibal
et al., 2020). For all LMs, we fit a linear regres-
sion model for the influence value as a dependent
variable, with the following independent variables3

with statsmodels (Seabold and Perktold, 2010):

• Token position, to investigate whether a posi-
tion bias exists

• Token length (in characters), to see how differ-
ent parts of speech and/or higher information
content affect the influence

• Sequence length (number of tokens), to see
how longer sequences affect influence values

• Construction type, to see whether paradig-
matic and syntagmatic differences mediate
these effects

Furthermore, we calculate the average in-
fluence for part-of-speech categories for all
model/construction combinations.

5 Results

5.1 Regression analysis
Table 2 shows the linear models for each investi-
gated language model, reporting the intercept and
the regression coefficients for token position, word
length, sentence length, the construction type, and
the R2 for the respective regression. For the con-
struction type, imperative sentences form the base-
line, while the other two types were included as
categorical variables, which means that their corre-
sponding results signify their relative impact com-
pared to the influence values for the imperative
sentences. The test statistics of all models’ F-tests,
as well as those of the t-tests for all values, were
statistically highly significant (p < 0.001). We
acknowledge that this significance might also be
caused by the high number of data points available.

3Position, token length and sequence length were normal-
ized to values in the range [0; 1] before fitting the linear re-
gression models.
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Figure 2: Regression lines for token position, word length and sentence length (calculated independently), with the
influence value as the dependent variable

roberta-
med-small-
1M-1

roberta-
base-10M-
1

roberta-
base-
100M-1

roberta-
base-1B-1

roberta-
base

roberta-
large

distilroberta-
base

(intercept) 4.871 5.367 3.188 2.115 2.012 2.186 1.478
token position 2.351 1.225 0.373 0.557 1.009 1.818 0.675
word length 1.075 0.978 0.538 0.834 1.287 2.129 0.883
sentence length -0.932 -1.959 -1.210 -0.712 -0.550 -0.909 -0.402
cxn = wh-question 0.158 0.847 0.263 0.216 0.057 0.123 0.122
cxn = transitive 0.206 0.582 0.208 0.109 0.090 0.190 0.090
R2 0.372 0.506 0.388 0.264 0.373 0.409 0.428

Table 2: Summary of parameter estimates for the logistic regression models across RoBERTa models of different size
(column order roughly corresponds to model size). The response variable corresponds to the calculated influence
values per word. The baseline for the categorical variable “construction” (cxn) are the imperative sentences included
in the data set.

Across all models and constructions, the to-
ken position has a positive effect on the influence
value. The same can be said for word length. This
means that, for the current experiment, small and
large LMs have a clear and systematic preference
for putting more weight on sequence endings and
longer words. This effect, to the best of our knowl-
edge, has not been described before. Interestingly,
for the two smallest models, the regression coef-
ficient is larger for token position than for word
length, a relation that is reversed for all other mod-
els trained on more data. Sentence length has a
constantly negative effect on the influence value
– longer sequences thus lower the influence val-
ues of their contained tokens. The effects of con-
struction type on the influence value are generally
positive, which points towards individual words’
influence being higher in transitive sentences and
wh-questions, when compared to the baseline (im-
peratives). These tendencies with regard to con-
structions are stable across all models.

Figure 2 shows model-wise regression lines only
incorporating token position or word length or sen-
tence length. The two models trained with the least
amount of data (1M and 10M tokens) have the high-
est absolute influence values. This is also reflected

in the comparatively high intercepts reported in Ta-
ble 2. The other models’ values are roughly equiva-
lent. Interestingly, word length alone has a slightly
negative effect for the two smallest models (1M
and 10M). When incorporating all variables in the
regression model, as in Table 2, this tendency is re-
versed. It is plausible that other interaction effects
exist between the independent variables, which fur-
ther underlines the importance of accounting for
all of them in the regression model.

Finally, the R2-values as goodness-of-fit mea-
sures exhibit considerable variation between the
models. Training data and model size appear to
play a certain role, as roberta-base-10M, the model
with the least amount of data learned with a non-
reduced architecture, features the highest R2-value.
However, the 10M model also features (by far)
the largest regression coefficients for the construc-
tion types. Overall, the values range from 26.4%
for the roberta-base-1B model to 50.6% for the
10M model. This shows that, although position,
word length, sentence length and construction type
cannot function as the sole predictors of influence
values, they are influential variables under certain
circumstances, possibly mediated by architectural
factors beyond the scope of the present analysis.

30



Crucially, there is no linear relationship between
the amount of training data, the model size and the
goodness-of-fit, hinting towards an interconnected-
ness and/or more or less “fitting” combinations of
internal factors like number of layers or attention
heads, and model size.

5.2 Impact of construction type on
part-of-speech influence

General overview In addition to the regression
analysis, we calculated the average influence val-
ues on the part-of-speech level. These values are
shown in Tables 3, 4 and 5, with the top three/four
highest values set apart in bold face. Across all
construction-model combinations, nouns, proper
nouns and punctuation symbols are consistently in-
fluential.4 For the models trained on more data,
verbs are quite influential as well (at least for
transitive sentences and wh-questions). For wh-
questions and imperatives, also numerals are spo-
radically in the top three. Overall, the three dif-
ferent construction types show a similar, but still
variable picture. Regarding model size, it is in-
teresting to note that the smallest and the largest
models (and distilroberta-base) tend to have their
own, fairly stable rankings, whereas the most out-
liers occur in the medium-sized models.

Wh-questions The data for the wh-question in
Table 3 is the least straightforwardly interpretable
– only proper nouns are consistently influential.
Apart from that, a contrast between the small-
est/largest models and the medium-sized ones is
noticeable. The smallest/largest models feature
nouns and punctuation marks as most influential,
whereas the medium models show larger influence
values for numerals, verbs, and also (once) for ad-
verbs and auxiliaries.

Transitive sentences For the transitive sentences
(Table 4), nouns and punctuation marks are con-
stantly among the most influential parts of speech.
Here, a division can be drawn between the smaller
and larger models. Whereas smaller models focus
more on proper nouns, the larger models feature
high influence values for verbs. For the roberta-
base-1B model, one outlier is the auxiliary tag al-
ready found in the wh-question data.

4The X tag for unknown part of speech was consistently
strong as well. A closer inspection of the dataset yields that the
respective tokens are family-internal onomatopoeia or similar
phonetic descriptions, which most probably are absent from
the training data and thus qua definitionem more influential.
Consequently, they were not set apart in bold face.

Imperatives The data for imperative sentences in
Table 5 once more features punctuation and nouns
as the most influential. Proper nouns are also highly
influential, except for the two medium-sized (100M
and 1B) models, where pronouns and auxiliaries
also play a role.

6 Discussion

The present analysis in section 5.1 has shown that
token position, word length and sequence length
strongly affect sequence embeddings in terms of
the influence of their lexical elements (viz. tokens).
The general effect of token position on token influ-
ence is positive and stable across seven different
RoBERTa models. All models exhibit a sequence-
ending bias for the influence values. However, the
effects exhibit variable strength. One reason for
this could lie in the model size (training data, hy-
perparameters and model internals) – the effects
(and the absolute influence values) are higher for
smaller models but also for the largest model.

Apart from the token position, word length also
has a constantly positive effect on the influence
value. Longer words are thus more influential. The
Zipfian law (Zipf, 1935) posits an inverse relation-
ship between word frequency and length. As the
most frequent words tend to be function words, the
positive effect of word length on the influence value
could also hint towards the higher informational
content of longer words. Piantadosi et al. (2011)
find a high correlation between word length and in-
formational content for words in English, Swedish
and German.

The negative impact of the sentence length could
be caused by more tokens having to “share” the in-
formational content of the whole sequence, which
is then divided between all of them. The positive
influence of the non-imperative sentences allows
a ranking of construction type influence, where
the effect is the weakest for imperatives, stronger
for transitives and the strongest for wh-questions.
From a linguistic point-of-view, the reasons for
this remain elusive. Wh-questions and impera-
tives have more syntactically and lexically-fixed
constructional schemas than transitive sentences.
There is a possible connection between the func-
tional aspects of imperatives and their reduced in-
fluence values, because they usually trigger real-
world actions. In contrast, the information-driven
functions of (information-demanding) questions
and (information-conveying) regular transitive sen-
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tences could impact their tokens’ influence values
positively.

When directly comparing the parts of speech,
construction types do not seem to hold much ex-
planatory value either. There is no systematic vari-
ation between their preferred parts of speech. In
contrast, nouns, proper nouns, numerals and punc-
tuation marks are consistently important across the
types. Outliers are sporadic, only the higher in-
fluence of verbs in transitive sentences embedded
through models with more training data is some-
what systematic. Importantly, including positional
information is an active research topic in contem-
porary NLP (see Dufter et al., 2022 for a survey).
The present results suggest that the token influence
patterns already encode positional information, al-
though transformers are theoretically invariant to
the reordering of tokens in a sequence.

Comparing the data from a model-oriented per-
spective yields interesting, although ambiguous and
inconclusive results. The smallest models (in terms
of architecture and training data), as well as the
largest models (in terms of training data) stabilize
in different ways with regard to their most influ-
ential parts of speech. The medium-sized models
(in terms of training data) exhibit more variation,
focus on more exotic parts of speech and the corre-
sponding linear regressions have a somewhat lower
goodness-of-fit as well as lower overall regression
coefficients. Crucially, it seems that for a stable and
predictable functionality, a certain match between
model size in terms of internal architecture (hidden
layers, attention heads, etc.) is needed. Small data
needs smaller models, and large data needs larger
models. If these factors do not match, the represen-
tations become brittle and potentially less useful for
downstream tasks. The concrete make-up of such
matching combinations still needs more empirical
scrutiny. For example, the model with the high-
est R2, roberta-base-10M, also features the highest
regression coefficients for the construction types.
This relationship does not stabilize across the other
model-data combinations, with no discernible rea-
sons identifiable from the present analysis.

Also, as further empirical results show that
the processing in LMs mirrors traditional NLP
pipelines along the layers of linguistic process-
ing (Tenney et al., 2019), the value of LMs for
studies of linguistic processing has been put to
question (Linzen and Baroni, 2021; Warstadt and
Bowman, 2022). Pannitto and Herbelot (2022) ar-

gue that neural networks should also be used to
investigate usage-based theories of language. The
present study has added to this emergent field by
showing that findings from usage-based linguistics
on the importance of sequence order to language
use are indeed mirrored in transformer-based LMs.
However, the construction-level effects proposed
in linguistic literature could not be completely ver-
ified. This might be due to the very different na-
ture of language acquisition in humans and the
training procedure in ANNs. Training only mir-
rors the frequency-driven aspect of usage-based
linguistics. Other aspects like embodied cognition
or the functional dimension of language, which
can also be linked to construction types (e.g. in
Cameron-Faulkner and Hickey (2011)), are miss-
ing. Remarkably, function words are not as influen-
tial as lexical words. Their structural predictability
could be an influence factor in this case. Construc-
tions are usually conceptualized as structures with
open slots. Here, paradigmatic variation is much
higher for lexical words, which are also more in-
fluential for models. However, the great amount
of variation suggests that not all LMs learn the ex-
act same structures, with inadequate data/model
matchings leading to more brittle representations.
Dąbrowska (2012) argues that the grammatical sys-
tems of adult speakers do not completely align with
each other – they are only similar enough to enable
effective communication. Judging from our results,
the grammatical systems in language also feature
different sensitivities to factors like word length
or sequence length. This could point to learning
with fitting parameter combinations being more
human-adequate, as the linguistic and architectural
effects on LMs are gradient in nature (a feature they
share with human language processing and usage).
Most importantly, this analysis has shown that the
trade-offs between data size, model internals, and
stable performance deserve further recognition and
investigation, because mismatched combinations
may lead to unstable or brittle representations.

7 Conclusion

Our investigation shed light on the functionality
of LMs from a usage-based perspective, and has
shown that concepts from usage-based linguistics,
like entrenchment, can be used fruitfully in the anal-
ysis of such LMs. We discovered that frequency-
driven factors, as well as information weight, play
a significant role in these models’ encodings. No-
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tably, the models exhibit a bias towards the ends of
sequences, with the influence of tokens positively
correlated with their length and information-rich
parts of speech, such as nouns. However, these
effects weaken in longer sequences. The high vari-
ation across our statistical models’ R2-values hints
at additional factors beyond entrenchment being
at play when determining token influence on se-
quence embeddings. Still, our findings suggest
that human learners and artificial learners share
similarities, as both processes are influenced by
frequency and information effects. Significant dif-
ferences in influence values between construction
types indicate a need for further research to inter-
pret these differences linguistically. Additionally,
our study explored the similarities and differences
between models trained with varying amounts of
data. While general effects remain similar, there
is increased volatility, especially in preferred parts
of speech, with shrinking data size. A non-linear
relationship between the amount of training data,
model architecture, and effect sizes/goodness-of-fit
was observed. This highlights the need for deeper
investigations into the optimal combinations of data
and other hyperparameters.

Limitations

The present study is limited by the availability of
models with different, yet comparable (e.g. in
terms of training data or traceable stepwise adjust-
ment) training regimens. More empirical results
with regard to data size and model internals, investi-
gated in a systematic and controlled way, are clearly
needed. Furthermore, it would also be interesting
to additionally look into the perturbation patterns
for different layers in LMs, which could further
illuminate the ways in which structural sensitivity
mirrors the levels of human linguistic processing.
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B Full influence values for all construction types

part of
speech

roberta-
med-small-
1M

roberta-
base-10M

roberta-
base-100M

roberta-
base-1B

roberta-base roberta-
large

distilroberta-
base

ADJ 5.4 5.78 3 2.47 2.69 3.62 1.96
ADP 5.28 5.09 2.9 2.32 2.42 3.12 1.85
ADV 5.66 5.64 3.24 2.47 2.68 3.54 1.97
AUX 5.45 5.62 3.06 2.81 2.52 2.88 1.8
CCONJ 4.47 4.25 2.07 1.05 1.26 1.39 0.94
DET 4.56 4.97 2.76 2.1 2.06 2.45 1.58
INTJ 4.13 4.35 2.42 1.22 1.45 1.44 1.19
NOUN 5.71 5.77 3 2.4 2.76 3.66 2.03
NUM 5.7 5.88 3.17 2.56 2.66 3.74 1.95
PART 5.47 4.65 2.63 2.09 2.21 2.87 1.65
PRON 4.64 5.44 2.82 1.98 2.08 2.26 1.6
PROPN 6.37 6.57 3.46 2.56 2.76 3.73 2.14
PUNCT 8.27 6.74 3.1 2.46 2.73 3.56 2.07
SCONJ 4.12 4.89 2.63 1.32 1.76 1.41 1.42
VERB 5.54 5.85 3.11 2.6 2.77 3.6 1.98
X 7.15 6.96 3.36 3.09 3.16 3.92 2.29
(mean) 5.50 5.53 2.92 2.22 2.37 2.95 1.78

Table 3: Average influence values for wh-questions

part of
speech

roberta-
med-small-
1M

roberta-
base-10M

roberta-
base-100M

roberta-
base-1B

roberta-base roberta-
large

distilroberta-
base

ADJ 5.93 5.36 2.79 2.26 2.57 3.35 1.9
ADP 5.59 4.64 2.65 2.04 2.32 2.99 1.79
ADV 5.85 5.25 2.78 2.25 2.47 3.15 1.83
AUX 5.71 5.24 2.77 2.31 2.28 2.89 1.7
CCONJ 4.62 4.48 2.4 1.23 1.39 1.55 1.09
DET 5.34 4.68 2.63 2.02 2.12 2.64 1.6
INTJ 4.55 4.49 2.4 1.36 1.53 1.57 1.23
NOUN 6.38 5.69 2.91 2.3 2.8 3.54 2.03
NUM 5.86 5.3 2.69 2.26 2.52 3.18 1.81
PART 5.33 4.18 2.39 1.85 2.09 2.49 1.65
PRON 5.32 5.07 2.68 1.96 2.24 2.49 1.56
PROPN 6.6 6.02 3.09 2.23 2.61 3.2 1.91
PUNCT 6.44 6.13 3.09 2.16 2.66 3.41 1.92
SCONJ 4.52 4.36 2.44 1.47 1.67 1.63 1.29
VERB 5.59 5.36 2.92 2.46 2.65 3.42 1.92
X 7.19 6.1 2.98 2.41 2.88 3.6 2.11
(mean) 5.68 5.15 2.73 2.04 2.30 2.82 1.71

Table 4: Average influence values for transitive sentences
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part of
speech

roberta-
med-small-
1M

roberta-
base-10M

roberta-
base-100M

roberta-
base-1B

roberta-base roberta-
large

distilroberta-
base

ADJ 5.87 5.25 2.93 2.32 2.75 3.44 1.93
ADP 5.74 4.86 3.03 2.36 2.55 3.36 1.87
ADV 6.03 5.4 3.05 2.35 2.64 3.36 1.88
AUX 5.72 5.26 2.69 2.08 2.24 2.81 1.68
CCONJ 5.16 4.74 2.65 1.83 1.92 2.44 1.35
DET 5.52 4.8 2.89 2.3 2.33 2.85 1.71
INTJ 4.99 4.76 2.5 1.55 1.73 1.89 1.37
NOUN 6.73 5.71 3.06 2.43 3.09 3.89 2.16
NUM 5.96 5.45 2.92 2.47 2.73 3.57 1.9
PART 5.44 4.33 2.61 1.94 2.12 2.48 1.54
PRON 5.67 5.23 2.91 2.43 2.56 3.22 1.78
PROPN 6.89 5.96 2.94 2.34 2.9 3.66 2.05
PUNCT 6.75 6.19 3.22 2.29 2.76 3.57 1.98
SCONJ 5.26 4.77 2.75 2.17 2.48 3.07 1.75
VERB 4.91 5.15 2.95 2.17 2.29 2.57 1.67
X 7.6 6.26 3.45 2.79 3.15 4.03 2.36
(mean) 5.89 5.26 2.91 2.24 2.52 3.14 1.81

Table 5: Average influence values for imperatives
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Abstract

Student mobility reflects academic transfer
from one postsecondary institution to another
and facilitates students’ educational goals of
obtaining multiple credentials and/or advanced
training in their field. This process often re-
lies on transfer credit assessment, based on the
similarity between learning outcomes, to de-
termine what knowledge and skills were ob-
tained at the sending institution as well as what
knowledge and skills need to still be acquired at
the receiving institution. As human evaluation
can be both a challenging and time-consuming
process, algorithms based on natural language
processing can be a reliable tool for assess-
ing transfer credit. In this article, we propose
two novel datasets in the fields of Anatomy
and Computer Science. Our aim is to probe
the similarity between learning outcomes util-
ising pre-trained embedding models and com-
pare their performance to human-annotated re-
sults. We found that ALBERT, MPNeT and
DistilRoBERTa demonstrated the best ability
to predict the similarity between pairs of learn-
ing outcomes. However, Davinci - a GPT-3
model which is expected to predict better re-
sults - is only able to provide a good qualita-
tive explanation and not an accurate similarity
score. The codes and datasets are available
at https://github.com/JAkriti/New-Dataset-and-
Performance-of-Embedding-Models.

1 Introduction

Student mobility refers to the movement - or, “trans-
fer” – of students from one post-secondary institu-
tion (i.e., college or university) to another. Students
might choose to transfer for any number of reasons;
common motivating factors include the opportu-
nity to obtain both advanced training and multiple
credentials in order to increase the number of fu-
ture employment options. Additionally, students
whose high school grades do not allow them to
enter their program or institution of choice might
instead enroll first in an institution with less strin-

gent admission requirements. Obtainment of the
initial post-secondary credential (e.g., diploma) can
then facilitate transfer into the desired credential
(e.g., degree) (Lang and Lopes, 2014), particularly
when both are within related fields (e.g., Computer
Programming diploma and Computer Science de-
gree).

Transferring within similar fields of study often
means that there is overlap in topics and/or courses
required for both credentials; therefore, in order to
effectively recognize students’ previous learning,
receiving institutions are often required to assess
“transfer credit.” Although numerous factors might
influence this assessment, learning outcomes are
considered a particularly valuable tool in the pro-
cess (Arnold et al., 2020a). Learning outcomes are
the measurable objectives defined at the end of an
assignment, class, course, or program (Davis, 2009)
and indicate the skill or knowledge level that can
be expected from a student who has successfully
completed the task in question. When a student
transfers between institutions, the receiving insti-
tution typically reviews course learning outcomes
from the previous institution to determine whether
they align with the learning outcomes of compa-
rable courses offered at the receiving institution.
Generally, program coordinators or other domain
experts (e.g., teaching faculty) are the trusted au-
thority designated to determine whether credit is
warranted; however, human evaluation can be a
complex and challenging task (Fallon, 2015).

The process of assessing transfer credit can be
facilitated through the use of Natural Language
Processing (NLP) based semantic similarity algo-
rithms. NLP has wide applicability, with the main
challenge of measuring textual semantic similar-
ity (Chandrasekaran and Mago, 2021b; Majumder
et al., 2016). In the past few decades, there has
been rich advancement in defining various mea-
sures for similarity between words, short texts, and
sentences (Corley and Mihalcea, 2005; Ramage
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et al., 2009). Word-embeddings have emerged as
a well-known technique that represents text in the
form of a real-valued vector that reasonably cap-
tures the syntactic and semantic resemblance be-
tween them (Turian et al., 2010; Mikolov et al.,
2013). Transformer-based pre-trained language
models trained on large text corpora have success-
fully emerged to be paradigmatic models for build-
ing vector-based representations of texts (Vaswani
et al., 2017). These models have applications in
numerous fields such as text summarization (Mo-
hamed and Oussalah, 2019), question/answering
(Bordes et al., 2014; Lopez-Gazpio et al., 2017),
sentiment analysis (Zhao et al., 2016), and sentence
prediction, among others.

In this direction, this paper aims to propose
two novel datasets consisting of course learning
outcomes in postsecondary education. We deter-
mined the complexity of the outcomes (sentences)
through readability analysis. We also implemented
various embedding models to scrutinize the sim-
ilarity between pairs of sentences and compared
the models’ performance with human-annotated re-
sults. Among different models, we found that AL-
BERT, MPNET and DistilRoBERTa demonstrated
the best ability to predict the similarity between
pairs of learning outcomes. However, Davinci - a
GPT-3 model which is expected to predict better
results - is only able to provide a good qualitative
explanation and not an accurate similarity score.

2 Context and Motivation

2.1 Learning Outcomes in Postsecondary
Education

Learning outcomes are “clearly defined and mea-
surable statements of learning that reflect the scope
and depth of performance; what a learner is ex-
pected to know, understand and be able to demon-
strate after completion of a process of learning”
(Lennon et al., 2014, p. 47). Within postsecondary
education, outcomes are foundational for both de-
veloping curriculum and demonstrating quality
assurance (Arnold et al., 2020a; Lennon, 2015).
Transfer credit assessment increasingly relies on
learning outcomes as a means of evaluating simi-
larity between courses and credentials offered by
different postsecondary institutions (Arnold et al.,
2020a; Fallon, 2015), with outcomes sometimes
being viewed as a “currency” that students can
exchange between institutions in order to avoid
repeating previous learning (Young et al., 2017).

Effectively assessing transfer credit is an impor-
tant process when considering that the amount of
credit received can correspond to increase in aca-
demic performance as well as influence academic
workload and time to completion for obtaining a
postsecondary credential (Gerhardt and Masakure,
2016).

2.2 The Challenge of Assessing Learning
Outcomes

Learning outcomes have the potential to establish
a common language for communicating student
learning and achievement across contexts (Arnold
et al., 2020b); however, the overall process of as-
sessing transfer credit tends to be both resource-
and time-intensive (Arnold et al., 2020a). Addition-
ally, course comparisons can differ substantially
across institutions, and might (or might not) in-
corporate numerous other considerations related
to content, evaluation, and grading (Arnold et al.,
2020a). This subjectivity can be detrimental for
students and institutions alike (Tortola et al., 2020),
with the lack of consistency in standards and pro-
cesses presenting a notable barrier. A recommenda-
tion to address this concern is the implementation
of policies and practices that facilitate consistent
decision-making, for example by documenting pre-
vious assessments (Wheelahan et al., 2016). An
additional consideration is the presence of com-
mon assumptions regarding the nature and quality
of education offered at different types of institu-
tions (e.g., colleges and universities) (Arnold et al.,
2020b), which could influence transfer credit de-
cisions. Again, establishing some means of con-
sistency that eliminates such potential bias could
facilitate a more accurate and effective assessment
process.

3 Methodology

3.1 New Dataset Development

We developed two novel datasets consisting of
learning outcomes related to two content areas,
namely (1) human anatomy and (2) operating sys-
tems. To create each dataset, we first accessed
relevant course outlines from postsecondary insti-
tutions in Ontario, Canada. All of the outlines were
publicly available and could be accessed via the
institutions’ websites without log-in credentials or
other permissions. Next, we extracted the learning
outcomes from each course outline and organized
them by field (i.e., human anatomy and operating
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systems), institution (e.g., Institution A, Institu-
tion B, etc.), course (e.g., ANAT 101, BIOL 102,
etc.), and topic (e.g., Digestive System, Muscular
System, etc.). In some instances, we modified the
general sentence structure of a learning outcome
to either reduce“wordiness”, delete redundant in-
formation, and/or separate information pertaining
to multiple topics. For example, an outcome that
included two topic areas, such as “Explain the struc-
ture and function of the muscular and skeletal sys-
tems,” would become two separate outcomes (e.g.,
“Explain the structure and function of the muscu-
lar system; Explain the structure and function of
the skeletal system”). The resulting datasets con-
sisted of 28 (anatomy) and 59 (operating systems)
unique learning outcomes (sentences) representing
the knowledge and skills that would be expected of
students who successfully completed the respective
courses.

To create sentence pairs for analysis, learn-
ing outcomes from each dataset were paired to-
gether so that (1) both similar and dissimilar
pairs were represented uniformly (i.e., by cre-
ating both inter- and intra-topic pairings) and
(2) no learning outcomes were repeated more
than twice. A total of 28 and 45 sentence
pairs were analyzed for the anatomy and operat-
ing systems datasets, respectively. The datasets
are available at https://github.com/JAkriti/New-
Dataset-and-Performance-of-Embedding-Models.

3.2 Complex Sentence Dataset
(Chandrasekaran and Mago, 2021a)

Recently, a dataset comprising 52 sentence pairs
related to definitions of Computer Science ter-
minology was developed and analyzed. The au-
thors conduct readability analysis anticipating that
their dataset exhibits a low readability index. This
claims that their dataset is more complex in compar-
ison to two benchmark datasets (Sentences Involv-
ing Compositional Knowledge “SICK”(Marelli
et al., 2014) and Semantic Text Similarity “STS”
(Shao, 2017)). Their main objective is to show how
the increase in complexity of sentences leads to a
significant decrease in the performance of embed-
ding models.

3.3 Readability Analysis
The readability score is a metric defined to mea-
sure the complexity of a sentence and deliberate
the grade level of education required for a person
to understand the piece of text. Depending on the

complexity of learning outcomes, it is important to
comprehend how reasonably the embedding mod-
els perform to evaluate the similarity scores be-
tween them. The indices used to determine the
readability scores of the sentences in the proposed
datasets are – a) Flesch-Kincaid Grade Level (Cole-
man and Liau, 1975), b) Coleman-Liau Index (Kin-
caid et al., 1975), c) Automated readability Index
(Kincaid et al., 1975), d) Linsear Write and e) Gun-
ning fog index (Gunning et al., 1952).

The readability scores of learning outcomes from
each institute (e.g., Institute A, Institute B, etc.) are
evaluated using the above indices. The aggregate
of all these indices provides an overall readability
score of each institute as highlighted in Figure 1
(for each dataset). For example, an average score
of 11.74 shows that a reader needs a qualification
of grade 11 to understand the text. Therefore, fol-
lowing this notation we observe that a reader re-
quires education of collegiate level and above to
understand the Anatomy sentences, and knowledge
of grade 12 and above for Computer Science sen-
tences.

3.4 Annotation
To develop a basis for comparing the performance
of embedding models, the proposed datasets are
each manually evaluated by three human respon-
dents with relevant contextual expertise. The
Anatomy dataset is evaluated by two graduated
scholars and one graduate student in Kinesiology.
The Computer Science dataset is evaluated by three
thesis-based Master’s students. The annotators
have been made aware of the applicability of this
work. Each sentence pair is annotated on a scale of
0 to 9, where 0 (9) represents completely dissimi-
lar (similar) sentences. To affirm the competency
of these human ratings, we computed inter-rater
agreement using Krippendorff’s alpha coefficient
represented as α, where data with a coefficient
value between 0.667 < α < 0.8 is considered reli-
able (Krippendorff, 2011; Hayes and Krippendorff,
2007). For the Anatomy dataset, α = 0.71, and
for the Computer Science dataset, α = 0.68 which
indicates that the annotation is reliable.

3.5 Web Interface
To ensure that the implementation of pre-tarined
embedding models is successful in assisting trans-
fer credit assessment, a web interface is developed
to streamline the process. This begins by prompt-
ing users to upload new programs to the website
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Figure 1: Readability analysis of learning outcomes from different institutes (denoted as InsA, InsB, and so on) for
(a) Anatomy (b) Computer Science dataset using five different indices (values indicated in black). The aggregate
scores are highlighted in red on each of the stacked bar graph.

Figure 2: An example of the web interface where learn-
ing outcome comparisons can be observed

that contain information about the courses and their
expected learning outcomes. Once an institute iden-
tifies a program they would like to transfer credit
to, a comparative analysis is performed where a
natural language processing algorithm is used to
determine the semantic similarity between each
course.

From these results, members of the receiving
institute are able to access the screen shown in Fig-
ure 2 where they can observe suggestions from the
algorithm for each learning outcome comparison
before making their own decisions. After each user
has provided input, the owner of the analysis can
then observe the overall consensus before making

a final recommendation on the transfer credit and
generating a report to show the outcome.

Model Version

BERTbase (Devlin et al., 2018) bert-base-nli-mean-tokens
BERTLarge (Devlin et al., 2018) bert-large-nli-mean-tokens
RoBERTabase (Liu et al., 2019) roberta-base-nli-mean-tokens
RoBERTaLarge (Liu et al., 2019) nli-roberta-large
ALBERT (Lan et al., 2019) paraphrase-albert-small-v2
DistilRoBERTa (Sanh et al., 2019) all-distilroberta-v1
DistilRoBERTa (Sanh et al., 2019) nli-distilroberta-base-v2
MPNeT (Song et al., 2020) all-mpnet-base-v2
GPT-3 (Brown et al., 2020) Davinci OpenAI

Table 1: Pre-trained embedding models used to generate
sentence embeddings.

3.6 NLP Algorithm

Transformer is a neural network architecture that
emerged as a breakthrough in NLP (Vaswani et al.,
2017). Along with the encoder-decoder structure,
self-attention mechanism is the key characteristic
of transformers for the algorithms to learn the long-
range relationship between words in a sequence.
This architecture has surpassed the performance
of various traditional networks like convolutional
and recurrent neural networks known for language
understanding (Mikolov et al., 2011). Furthermore,
Sentence transformer is a transformer-based model
designed to generate a fixed-size dense vector for
a sentence of any length (Reimers and Gurevych,
2019). A brief outline of transformer-based models
along with their sentence transformer version used
in this paper is given in Table 1. The resulting sen-
tence embeddings are then compared using cosine
similarity.
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Figure 3: Pearson’s and Spearman’s correlation coefficient to analyse relationship between similarity values of
human annotators and embedding models (Section 3.6) for Anatomy dataset.

S1: Discuss the structural organization and function of the respiratory system and its major organs.
S2: List the parts of the respiratory system and identify their functions.

ALBERT BERTbase BERTLarge Davinci DistilRoBERTa-v1 DistilRoBERTa-v2 MPNeT RoBERTabase RoBERTaLarge Human
0.8288 0.8197 0.9002 0.9098 0.7738 0.7967 0.7706 0.8901 0.8622 0.7407

Table 2: Similarity scores of a sentence pair from Anatomy dataset, evaluated using versions of pre-trained
embedding models discussed in Section 3.6. Human ratings are normalized between 0 and 1.

4 Results

This section provides an extensive comparative
analysis of various embedding techniques (dis-
cussed in Section 3.6) implemented for evaluat-
ing the similarity scores of learning outcomes in
proposed datasets. To evaluate the relationship be-
tween the similarity scores of human annotators
and embedding models we employ Pearson’s and
Spearman’s rank coefficients for the Anatomy and
Computer Science datasets (including the dataset
proposed by (Chandrasekaran and Mago, 2021a)
and the dataset proposed in this paper).

4.1 New Proposed datasets
4.1.1 Human Anatomy dataset
The results presented in Figure 3 demonstrate Pear-
son’s and Spearman’s correlation coefficients for
the proposed Anatomy dataset of learning out-
comes. While comparing different pre-trained em-
bedding models we found that MPNeT achieves
the best performance with 0.87 Pearson’s value and
0.88 Spearman’s value. This shows that the scores
of MPNeT are very highly correlated to the human
annotator’s ratings. Moreover, DistilRoBERTa-v1
and ALBERT models show good performance with
nearly 0.81 for both Pearson’s and Spearman’s cor-
relation predicting that the ratings are highly corre-

lated. However, every other model fails to predict a
better similarity score. An example of sentence pair
specifying how similar the sentences are accord-
ing to embedding models is highlighted in Table 2,
where we clearly observe that MPNeT is closest to
human rating.

Example 1- ChatGPT

S1: Apply the basic planes of motion and
fundamental movements associated with hu-
man movement using proper anatomical ter-
minology.
S2: Describe the structure and function of
bones and bony prominence.

There is not a strong similarity between the
two sentences. S1 is about applying knowl-
edge of human movement and anatomy,
while S2 is about describing the structure
and function of bones. They both involve
anatomy, but they are not closely related in
terms of content.

Davinci: 0.8201 Human score: 0.6667

On the other hand, where Davinci model is antic-
ipated to provide better results, we observed that
though this model is not able to predict a reliable
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similarity score, it provides a piece of genuine qual-
itative information as shown above. This sentence
pair is expected not to be similar as they are re-
lated to two different aspects of human anatomy.
However, Davinci provides a high similarity score
0.8201 which is far away from the human similar-
ity score, although it reflects a good explanation
when explored on ChatGPT.

4.1.2 Computer Science dataset

For the Computer Science dataset proposed in this
paper, the performance of embedding models is dis-
played in Figure 4. Also, an example of sentence
pair with similarity values between them from dif-
ferent models is given in Table 3. Clearly, among
the various embedding models, DistilRoBERTa-v2
shows the highest value for Pearson’s and Spear-
man’s coefficient displaying a very good correla-
tion between the two ratings. However, we ob-
served that the annotated values for this dataset fail
to follow the normal distribution. Therefore, it is
not reasonable to certainly rely on Pearson’s test
to judge the correlation between human evaluation
and embedding models. Furthermore, Davinci- the
most capable GPT-3 model fails to determine a
good correlation. However, this model provides a
justifiable interpretation of the similarity between
the two sentences as shown in the example below.

Example 2- ChatGPT

S1- Design and install operating system to
experience its functioning.
S2- Configure Package repositories and
package management.

There is some similarity between the two
sentences. Both S1 and S2 involve work-
ing with operating systems and installing
or configuring different components or fea-
tures. However, the specific tasks described
in the sentences are not closely related. S1
involves designing and installing an op-
erating system to experience its function-
ing, while S2 involves configuring package
repositories and package management.

Davinci: 0.8192 Human score: 0.0222

Here the explanation is true and acceptable, even
though the Davinci similarity score is very high i.e.
0.8192 in comparison to human rating.

4.2 Complex Sentence
dataset(Chandrasekaran and Mago,
2021a)

In this paper, the authors show how the embedding
models do not perform well to predict the similar-
ity values of complex sentence dataset proposed by
them. We try to analyze these sentence pairs using
the versions of models highlighted in Section 3.6.
Notably, we found that ALBERT model executes
best performance with 0.83 Pearson’s coefficient
and 0.77 Spearman’s value as shown in Figure 5.
Furthermore, DistilRoBERTa-v2, DistilRoBERTa-
v1, and MPNeT have high Pearson’s (Spearman’s)
value of 0.81(0.78), 0.81(0.78), and 0.79(0.77) re-
spectively which outperforms the results of the
models presented in (Chandrasekaran and Mago,
2021a). Table 4 shows the results of embedding
models for a particular sentence pair from the
dataset where ALBERT performs the best in com-
parison to human ratings. However, the Davinci
model which is expected to predict better results
is only able to provide a good explanation and not
a valid score. For example, the subjective descrip-
tion of the similarity between a chosen sentence
pair from the dataset is very well elaborated by
ChatGPT, as shown below. Whereas, this model
predicts a high similarity score of 0.7639 which
shows the sentences have a good similarity which
is not actually true as observed from the human
score.

Example 3- ChatGPT

S1: A procedure for solving a mathematical
problem in a finite number of steps that fre-
quently involves repetition of an operation.
S2: Various methods or formats for organiz-
ing data in a computer

There is not a strong similarity between the
two sentences. S1 is describing an algo-
rithm, which is a specific type of procedure
used to solve a mathematical problem. S2
is describing ways of organizing data in
a computer. While both sentences involve
some type of procedure or method, they are
not closely related in terms of content.

Davinci: 0.7639 Human score: 0.1200
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Figure 4: Pearson’s and Spearman’s correlation coefficient to analyse relationship between similarity values of
human annotators and embedding models (Section 3.6) for proposed Computer Science dataset.

S1- Manage securely remote systems.
S2- Maintain a Unix workstation and set it up as a network client.

ALBERT BERTbase BERTLarge Davinci DistilRoBERTa-v1 DistilRoBERTa-v2 MPNeT RoBERTabase RoBERTaLarge Human
0.2695 0.5247 0.5274 0.8145 0.4241 0.5708 0.4246 0.4882 0.4653 0.6667

Table 3: Similarity scores of a sentence pair from proposed Computer Science dataset, evaluated using versions of
pre-trained embedding models discussed in Section 3.6. Human ratings are normalized between 0 and 1.
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Figure 5: Pearson’s and Spearman’s correlation coefficient to analyse relationship between similarity values of
human annotators and embedding models (Section 3.6) for complex sentence dataset.

S1- A procedure for solving a mathematical problem in a finite number of steps that frequently involves repetition of an operation.
S2- Various methods or formats for organizing data in a computer.

ALBERT BERTbase BERTLarge Davinci DistilRoBERTa-v1 DistilRoBERTa-v2 MPNeT RoBERTabase RoBERTaLarge Human
0.1300 0.4967 0.5656 0.7639 0.1623 0.3924 0.2001 0.6812 0.4069 0.0667

Table 4: Similarity scores of a sentence pair from Complex sentence dataset, evaluated using versions of pre-trained
embedding models discussed in Section 3.6. Human ratings are normalized between 0 and 1.

5 Conclusion

Transfer credit assessment usually consists of
course comparisons via the evaluation of learning

outcomes, which represent an important tool for as-
sessment but are also subject to potential inconsis-
tencies and bias. Therefore, an automated system
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to assess transfer credit based on learning outcomes
across institutes can facilitate the process by provid-
ing a reliable and consistent measure of similarity.
Over the years there has been a rich advancement
in the era of large language models to measure
semantic similarity between texts. Various pre-
trained embedding models have been developed
to represent text for algorithms to understand and
compare semantic similarity. In this paper, we aim
to propose two novel datasets of learning outcomes
for courses in Human Anatomy and Computer Sci-
ence operating systems and perform an analysis
using embedding models to assist in transfer credit
assessment. We found that versions of ALBERT,
MPNeT and DistilRoBERTa outperform Davinci
(a GPT-3 model) that only provides a good qualita-
tive interpretation of the similarity between pairs
of sentences. Application of these models within
the context of transfer credit assessment can con-
tribute to greater efficiency and consistency when
determining learning outcome similarity.

6 Limitations

Due to the complexity measures (readability anal-
ysis) requiring a minimum of 100 words, some of
the smaller learning outcome sets require padding.
To try and minimize the effect this will have on the
results, we append the word “a” until the set can be
measured. Furthermore, the datasets involve learn-
ing outcomes from the same courses being offered
at different years of class. Therefore, while con-
ducting human annotation, the comparison among
learning outcomes is not consistent, which leads to
a low inter-rater agreement among human values
for both datasets. While utilizing the pre-trained
embedding models, due to fewer number of sen-
tences in the dataset we were not able to pre-train
the models. This reflects a need to further enhance
the dataset.
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Abstract

In this paper we look at how children learn the
underlying principles of commonsense reason-
ing, sometimes referred to as topoi, which are
prevalent in everyday dialogue. By examining
the utterances of two children in the CHILDES
corpus for whom there is extensive longitudi-
nal data, we show how children can elicit topoi
from their parents by asking why-questions.
This strategy for the rapid acquisition of topoi
peaks at around age three, suggesting that it is
a critical step in becoming a fully competent
language user.

1 Introduction

Children pick up language with remarkable ease.
From not being able to speak at all they learn in
a few years to be fully competent language users.
This does not just mean being able to communicate
meaning coded in words and phrases – it also in-
volves inference and association from the linguistic
expressions and non-linguistic actions used to a
meaning in use. Breitholtz (2020) discusses how
such inferences draw on globally accepted facts
(“the sun sets in the west”), norms (“one loves one’s
family”), and other principles of reasoning (“If you
can do a and a is more difficult than b you can
also do b”). Principles like these often implicitly
underpin conversational moves, episodes in conver-
sation and entire discourses, and have been claimed
to be essential to capturing linguistic meaning in
use (Ducrot, 1988; Anscombre, 1995). In their ac-
count Ducrot and Anscombre draw on Aristotelian
dialectic and rhetoric, and use the term topoi (sg.
topos) for such principles. Familiarity with the
topoi that are acceptable in a community is also
important for being proficient in a new language,
as well as interpreting the behaviour of others. We
see evidence of this in (1), discussed in Breitholtz
and Howes (2020) where a father and son engage
in a discussion about whether or not Lee, the son,

could still play football even though he is not go-
ing to school because of illness. Both Dave and
Lee are reasoning in a pragmatically competent
way, despite evoking different topoi such as “one
should rest when one is ill”, “disease spreads less
outdoors" (and possibly “fresh air is healthy”) and
“if one is well enough to do something less impor-
tant and more exerting, one is also well enough to
do something more important and less exerting”.

(1) Dave: . . . you’re gonna be home from
football until four, you gonna have
your dinner, want a bath.

Lee: Yeah, but I might not go to school
tomorrow.

Dave: Why?
Lee: Cos of my cough.

Dave: How can you play football and not go
to school then?

Lee: Cos I was going out in the fresh air,
I’m alright when I’m out in the fresh
air.

Dave: So why aren’t you going to school
then?

Lee: I’m in the class room all day dad.
[BNC KBE 10554-10561]

As this dialogue illustrates, a pre-teen child is
capable of sophisticated argumentation drawing on
principles which are also recognised by his adult
discussion partner. However, the topoi Lee draws
on in (1) have been learnt by him by explicit in-
struction, but also by via inference and induction.
Breitholtz and Howes (2020) discuss how younger
children, around four years of age, can be shown
to have adopted topoi which they then generalise
in non conventional ways. They also point out that
one way for children to acquire topoi is through
an extensive use of why-questions, and show that
these peak at around 3 years (consistent with ex-
tensive evidence about children’s stages of acquisi-
tion of wh-questions Bloom et al., 1982; Rowland
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et al., 2003; Valian and Casey, 2003). In this paper
we probe this finding by looking at the longitudi-
nal use of why-questions by two children in the
CHILDES corpus for whom extensive longitudinal
data is available.

2 Background

2.1 Reasoning in Dialogue
Reasoning is essential in communication since in-
teracting with others frequently involves making
non-logical common-sense inferences linking con-
text, background knowledge and beliefs to utter-
ances in the dialogue in order to understand one an-
other. These underpinning principles of reasoning –
referred to as topoi – have been discussed at length
in the literature on rhetoric and argumentation (e.g.
Toulmin, 2003, a.o.). However, the idea of rules
of thumb available to language users, which justify
statements, suggestions or other types of utterances
goes back to dialectic and rhetoric. In modern
times, the concept of topos was introduced in lin-
guistics as a theory of linguistic meaning where
parts of discourse are perceived as connected by
topoi (Ducrot, 1988). On this view the topoi acces-
sible to an individual do not constitute a monolithic
logical system, but represents a set of resources at
the disposal of a dialogue participant for producing
and interpreting utterances and discourse contri-
butions. Breitholtz (2020) shows how a theory of
topoi relates to semantic-pragmatic theories such as
Gricean implicature theory and Relevance theory
(Grice, 1975; Sperber and Wilson, 1995), and how
it can explain puzzles such as bridging inferences
and certain types of discourse coherence (Clark,
1975; Asher and Lascarides, 2003).1 Consider for
example the exchange in (1), where Lee is trying to
persuade his father Dave that he is well enough to
play football but not well enough to go to school:
In (1), both Lee and Dave base their argument on a
generally accepted topos that being ill restricts cer-
tain activities, with Dave drawing on topoi about
exertion, like “if you can do x and x is more exert-
ing than y, you can also do y” – in fact a version
of the “more and the less”-topos mentioned in the
introduction – and Lee on other topoi having to do
with the spread of disease and the health benefits
of fresh air. In this dialogue sequence we see that

1We should also note that, as pointed out by one of our
reviewers, our approach theoretically and methodologically
resonates with The Geneva Model of discourse analysis (see
e.g. Filliettaz and Roulet, 2002).

an everyday conversation involves reasoning which
cannot be accounted for using only traditional prag-
matic theories where implicatures (Grice, 1975;
Sperber and Wilson, 1995) are reached via assump-
tions of rationality and relevance. It also requires
familiarity with a variety of topoi – principles about
how it is acceptable to reason in different situations.
Breitholtz and Howes (2020) suggest that topoi
are learned through interaction with other agents
and the world and show examples of where chil-
dren draw on non-conventional topoi that they have
learned by overextending inferences made in other
instances of discourse. One such example is (2),
where Greta, at 4 years and 3 months old in March
2020 demonstrates awareness of a topos related to
the corona pandemic, namely that old people who
contract the disease are more likely to die:

(2) Greta: What would happen if you drank the
sea water?

Mother: It would make you poorly.
Greta: Really poorly?

Mother: Yes.
Greta: Old people would die. I don’t know

about us though.
[from Breitholtz and Howes (2020)]

In this example Greta overextends the topos that
the elderly are more likely to die, if they contract
coronavirus, to another situation where a young
person would get ill.

2.2 Acquisition through interaction
Although traditional linguistics and developmental
psychology started with the premise that there must
be an innate language learning facility due to the
presumed ‘poverty of the stimulus’ of a child’s lin-
guistic input (Berwick et al., 2011), there is a large
body of evidence that refutes this position, from
both a computational (Clark and Lappin, 2010)
and a social perspective. This work (e.g. Halliday,
1975; Tomasello, 1992) emphasises the nature of
language as action, and makes explicit the role of
interaction in language acquisition. Specifically,
research on child language acquisition underscores
the importance of the social environment for the
language learning child (Stephens and Matthews,
2014). Children are active in interactions with their
caregivers long before they produce language and
evidence suggests that it is this learning to interact
(e.g. through gaze, Gredebäck et al., 2010; and turn-
taking, Hilbrink et al., 2015; Casillas, 2014) which

49



bootstraps language acquisition (Levinson, 2006;
Rączaszek-Leonardi et al., 2019). In a longitudi-
nal study of the CHILDES-corpus (MacWhinney,
2000), Hiller and Fernández (2016) show that the
type and amount of corrective feedback received by
children affects their acquisition of particular gram-
matical phenomena. We hypothesise that adults’
responses to why-questions and corrective feed-
back directed at topoi evoked by children will af-
fect children’s ability to seamlessly draw on topoi
in conversation.

3 Why why?

Previous research shows that in adult conversa-
tion, topoi can be elicited by using why-questions
(Schlöder et al., 2016). In many instances, what
constitutes a good answer to a why-question con-
stitutes an acceptable enthymeme when combined
with the queried utterance, as is the case in (1),
where “because of my cough” is an acceptable en-
thymematic reason for not going to school because
of the acceptability of, for example, an underlying
topos that when you are ill you should not mix with
other people because you are contagious.

Where a dialogue participant cannot access or
accommodate an appropriate topos, the asking of a
why-question should be a particularly useful strat-
egy to get one’s interlocutor to make the topos more
explicit. Indeed, when asked (fake) why-questions
in a text-based dialogue experiment, people do pro-
vide the “missing” premises (Axelsson-Nord et al.,
2021).

One reason that a dialogue participant may not
have access to appropriate topoi is that there may be
more than one applicable topoi available. However,
in the case of young children it is often the case
that a child lacks any topos that would make an
argument coherent altogether.

We hypothesise that asking why-questions to in-
crease the acceptable topoi one has access to is
also a learning strategy for children, in line with
evidence that children’s why-questions are used
for explanations and arguments (Bova and Arcidia-
cono, 2013)2 once they have acquired a sufficient
grounding in areas such as syntax (Cooper et al.,
2023). Such a strategy – extrapolating and apply-
ing general principles of reasoning from minimal
input (even when these go awry as in (2)) shows

2It should be noted that why-questions can be used to
express frustration, and not seek reasons in any real sense, but
we leave this distinction to one side for future work. We thank
one of our anonymous reveiwers for this point.

how children are capable of utilising informative
learning signals to learn from limited data.

4 Method

For this exploratory study, we used two longitu-
dinal cases from CHILDES. The specific sources
and their characteristics are described in Table 1
(Henry, 1995; Rowland, 2007; Lieven et al., 2009).
These were chosen based on the data collection
being sufficiently fine-grained, and covering the
proposed critical period for why-question acquisi-
tion at around age 3 (as shown in Figure 1 taken
from Breitholtz and Howes, 2020).

Source Description
Lara Eng-UK/Lara; 120 recordings be-

tween age 1;9.13 – 3;3.25 (at
home)

Thomas Eng-UK/Thomas; 379 record-
ings between age 2;0.12 –
4;11.20 (mostly at home)

Table 1: Sources of data used

Figure 1: Frequency of ‘why’ in child language by age

We used PyLangAcq (Lee et al., 2016) to pro-
cess the data and extracted all uses of ‘why’ split
between those produced by the child and those pro-
duced by any other dialogue participant. While
this will inevitably also pick up instances of ‘why’
which do not result in the giving of reasons (e.g.
“I don’t know why she did it”) we believe it is a
reasonable starting point for analysis with more
fine-grained study left aside for future work. For
comparison, we also extracted instances of ‘be-
cause’, once again split by child/any other dialogue
participant. Because is often use to provide expla-
nations (Eaton et al., 1999), and can thus also be
analysed as making enthymemes more explicit in
dialogue (as seen in example 1, where Lee respond
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Figure 2: Lara: Frequency of ‘why’ and ’because’ per
1000 words by age in months

to his father’s questions with because clauses that
serve to illuminate the topoi that Lee is relying on
in the dialogue).

5 Results & Discussion

As can be seen in Figures 2 and 3, both children
have a peak of why-questions. For Lara, this occurs
between 27 and 36 months whilst for Thomas this
occurs between 36 and 42 months. Interestingly,
while both show a distinct peak in why-questions
(from asking none prior to this peak), this is rel-
atively lower for Thomas, who peaks at approxi-
mately 1.5 why-questions per 1000 words, com-
pared to Lara’s 4. These differences in individ-
ual children are not apparent in the data shown in
Figure 1. In this regard it is also informative to
consider the input each child received in terms of
why-questions, since acquisition of wh-questions
in general has been linked to the input from the
caregiver(s) (Rowland et al., 2003). While we can-
not, of course, extrapolate from the available data
to the total exposure of each child to why-questions,
it is notable that in the available data, Thomas is
also exposed to fewer why-questions than Lara,
though the general patterns of why-questions they
encounter is similar in both cases, rising steadily
as the child asks more why-questions themselves.
More fine-grained analysis is necessary to see how
and whether these apparent contingencies have a
direct impact on the child’s interactive behaviour.

In terms of the use of because, once again we see
that both children have a peak at around the same
age range. Interestingly though, Thomas’ peak in
the use of ‘because’ coincides with his peak in the

Figure 3: Thomas: Frequency of ‘why’ and ’because’
per 1000 words by age in months

use of ‘why’, but is greater (in the order of 5-6
words per 1000). This corresponds to the relatively
greater input of ‘because’ from other speakers that
we see in the Thomas data, as compared to Lara.

Interestingly, these children seem to have poten-
tially different strategies for acquiring topoi, with
the differences not fully explainable by broad dif-
ferences in input that we have looked at here.

5.1 Qualitative results
We now turn to some examples from the Lara cor-
pus to illustrate how why-questions can elicit topoi.
Example (3) is an early example of a why-question
from Lara, which does elicit a topos regarding what
types of behaviour are naughty. Note that in this
case a similar question to an adult might have in-
stead been answered by providing some motivation
for Peter Rabbit’s naughtiness, rather than the topos
supplied here. We hypothesise that this is because
of the expectation that competent adult users of the
language will already have access to a topos which
licences “stealing (lettuces from Mr McGregor’s
garden) is naughty”, so the question would in fact
be interpreted differently if the asker were an adult.
This suggests that people interacting with small
children who lack some rhetorical resources, are
sensitive to this fact (even if this is not a conscious
awareness), but this is an empirical question which
future work should try to investigate.

(3) CHI: is that rabby all by himself ?
MOT: yes . he’s in Mr McGregor’s garden .

he’s naughty . [. . . ]
CHI: is he naughty ?

MOT: yes .
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CHI: why ?
MOT: why what ?
CHI: why he naughty ?

MOT: because he’s gone into Mr McGregor’s
garden and he’s stealing all his carrots
and that’s naughty , isn’t it ?

[Lara 2;08;02]

Examples (4) and (5) are examples of the child
asking more than one why-question in a row. This
behaviour is very familiar to parents of children of
around three, and we suggest that the initial answer
may not satisfy the child’s desire to access or ac-
commodate an appropriate topos. Further work is
needed to see how common such chains of why-
questions are and whether these also occur at a
critical age point or around the acquisition of par-
ticularly complex topoi.

(4) ELS: watch you don’t break them now , Lara
darling .

ELS: cause
CHI: why ?
ELS: cause Auntie Linda bought me them .
ELS: because I hafta look after them .
ELS: be very careful with them .
ELS: that’s a good girl .
CHI: why ?
ELS: because I like them .
ELS: they’re my special things .
CHI: them your special things ?
ELS: yes . [Lara 2;10;14]

Example (5) is also interesting as the topos it
conveys is a normative one that in this particular
family there is a ‘rule’ that one does not open a
new treat if you already have one open. This may
be a common rule in families, but there may also
be differences between how children acquire such
normative principles as opposed to, for example,
globally accepted facts (for example, children learn
that if you drop something it falls to the ground
in the preverbal period). It is also not clear that
children make this distinction at around the age
they are producing a lot of why-questions. In ex-
ample 6, Lara produces an enthymematic utterance
which is underpinned by a normative topos which
her mother rejects (that you have to have gloves
on if you’re gardening). In this case, Lara’s why-
questions seem to be targeting finding out what it
is about this situation which means the normative
topos that she has previously acquired (when you
do gardening you wear gloves) does not apply.

(5) DAD: you’re not opening that one until
you’ve eaten all that one .

DAD: that’s the
CHI: why ?

DAD: that’s the rules , isn’t it ?
CHI: why ?

DAD: er if you go in there and open it in there
you’re gonna be in big trouble .

MOT: we’ll take it away from you .
DAD: you won’t eat it .
CHI: pardon me ?

DAD: did you hear what I said ?
MOT: if you open it mummy will eat it .
DAD: do you hear what I’m saying , sugar ?
CHI: yes . [Lara 2;10;14]

(6) MOT: I was looking at what else we could we
could plant in the garden .

CHI: you’ve gotta have gloves on .
CHI: but I haven’t got any

MOT: you don’t hafta have gloves on .
CHI: why ?

MOT: well .
MOT: you don’t hafta .
CHI: why ?

MOT: well .
MOT: it’s only (be)cause your hand get dirty .

[Lara 3;2;11]

6 Conclusions

As we have shown, children tend to have a peak of
why-questions at around 3 years of age, which we
speculate is due to their rapid acquisition of topoi
at around this age. The development of the two
children we have looked at in this paper is consis-
tent with this. They also exhibit a peak in the use of
‘because’, although even in our small sample, the
ways in which they use the available resources dif-
fers between the children suggesting there may be
different pathways to acquiring topoi. One hypoth-
esis is that if children are exposed to more explicit
topoi (in the form of ‘because’ explanations) they
may not have such a necessity to ask explicit why-
questions. Further exploration of children’s use of
linguistic and pragmatic markers and their relation-
ship to the interactive input is necessary to further
elucidate these issues.

One of our plans for future research is to look at
if and how ‘why’ and ‘because’ are complementary
(and to what degree). These are intuitively codepen-
dent strategies (if you ask me why, I might expect
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a because), but how productive these strategies are
has, to the best of our knowledge, not previously
been investigated – particularly in child language
data. More fine-grained analysis is necessary to
investigate whether there are other aspects of the
children’s pragmatic acquisition strategy that co-
varies with these two linguistic markers, but we
leave such analysis to future work.

Although our data does not conclusively say that
children whose parents use more ‘because’ expla-
nations do the same, they suggest a connection
between child behaviour and the behaviour of care
givers in this respect. However, further work is
needed to look at the relations between the fre-
quency of why-questions and because-clauses in
the language produced by caregivers and children.

Example (6) also suggests avenues for future
work, since it indicates that the child has already
acquired a topos and is now concerned with how
far this topos can be generalised (in this case, the
child has learnt that one usually wears gloves when
gardening to keep one’s hands clean, but that this
is not necessary). Learning the scope and range of
topoi is a critical –and non-trivial– task for the lan-
guage learning child, as demonstrated by Greta’s
overextention of the topos in (2). It is noteworthy
in this regard that young children are able to pick
up and modify the topoi they have access to from
very little input – something that is still beyond the
capabilities of conversational AI.
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Abstract

Large Language Models (LLMs) are often eval-
uated against massive benchmarks based on
general-purpose tasks, which, despite being
useful for concrete applications, tell us very lit-
tle about the capacity of LLMs to learn specific
and challenging aspects of the grammar. Here,
we evaluate whether LLMs learn to identify a
particular structure attested in Romance (and
French in particular), called the pseudorelative.
This structure, which is often surface-similar to
a relative clause, is linked to robust syntactic
and semantic restrictions. We present a series
of experiments to test if LLMs pretrained on
massive yet general corpora, manage to learn
those various restrictions. Our results suggest
that LLMs learn some but not all of these prop-
erties, but crucially fail at recognizing the most
specific of them: cliticization.

1 Background on pseudorelatives

Pseudorelatives (PRs) (Schwarze (1974); Radford
(1975); Kayne (1975); Guasti (1988) a.o.) resemble
relative clauses (RCs) but exhibit a specific cluster
of properties: (1) their head noun can be cliticized;
(2) they only feature subject gaps; (3) they only
appear below perception verbs; (4) they require the
matrix and embedded tenses to match; (5) they im-
ply the existence/truth of the embedded event even
under matrix negation (Moulton and Grillo, 2015).
Those various properties are illustrated below.

(1) Head noun cliticization
Jean
Jean

la
3.SG.CL

voit
sees

qui
that

sourit.
smiles.

‘Jean sees her smiling.’

(2) Object gap (+cliticization)
* Jean

Jean
la
3.SG.CL

voit
sees

que
that

Marc
Marc

salue
greets.

.

Intended: ‘Jean sees Marc greeting her.’

(3) Non-perception verb (+cliticization)
* Jean

Jean
la
3.SG.CL

pense
thinks

qui
that

sourit.
smiles.

Intended: ‘Jean thinks she is smiling.’

(4) Tense mismatch (+cliticization)
* Jean

Jean
la
3.SG.CL

voit
sees.PRS

qui
that

souriait.
smiled.PST.

Intended: ‘Jean sees her while she smiled.’

(5) Event presupposition
Jean
Jean

ne
NEG

la
3.SG.CL

voit
sees

pas
NEG

qui
that

sourit.
smiles.

‘Jean doesn’t see her smiling (she does).’

Cliticization is perhaps the most robust diagnostic
used to disambiguate PRs from RCs; without a
cliticized head, and assuming conditions (2)-(5)
are met, a PR will usually remain ambiguous with
a (string-identical) RC. This is shown in (6).

(6) No cliticization: ambiguous parse
Jean
Jean

voit
sees

Marie
Marie

qui
that

sourit.
smiles.

‘Jean sees Marie, who smiles.’ (relative).
‘Jean sees Marie smiling.’ (pseudorelative)

Because of is rareness in corpora, its ambiguity
with relative clauses, and the inability of LLMs
to access external disambiguating cues (comma,
intonation), the pseudorelative remains relatively
opaque to current NLP benchmarks (Wang et al.,
2018, 2019; Bowman et al., 2015; Williams et al.,
2018; Rajpurkar et al., 2016, 2018; Zellers et al.,
2018) which are used to assess LLMs’ perfor-
mances. Do LLMs pretrained on massive (but also
very general, non-targeted, and therefore impover-
ished) corpora learn something about pseudorela-
tives anyway?

2 Preliminary corpus study

We run a corpus study to verify the claim that LLMs
are mostly exposed to structurally ambiguous sen-
tences such as (6). We start with simple exact
Google queries following the patterns in (7), where
V denotes one of the verbs listed in Table 1, and
CL is a clitic pronoun (le or la if V starts with a
consonant, l’ if V starts with a vowel).
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(7) a. “Il
He

V
V

*
wildcard

qui”
that

b. “Il
He

{le, la, l’}
CL

V
V

qui”
that

The number of hits for these queries are gathered
in Table 1. If some perception verbs are clearly
more frequent than others (compare voir, ‘see’ vs.
épier, ‘spy on’), the tendency regarding cliticized
constructions is clear: they are between 10,000
and 100,000 times less frequent than the string-
ambiguous structures similar to (6).

exact query →
V↓ (7a) (7b) #(7b)

#(7a)+#(7b)

voit (see) 262,000,000 22,440 8.5e-5
apercoit (spot) 11,700,000 1,230 1.1e-4
regarde (look at) 192,000,000 6,370 3.3e-5
observe (watch) 51,100,000 759 1.5e-5
épie (spy on) 237,000 1 4.2e-6
surprend (catch) 21,900,000 247 1.1e-5
entend (hear) 70,200,000 7,820 1.1e-4
écoute (listen to) 121,000,000 18,200 1.5e-4

Table 1: Number of results for non-cliticized (ambigu-
ous) and cliticized (unambiguous) PR structures re-
turned by Google Search for different perception verbs.

To confirm this intuition, we matched a series of
regular expressions1 against a subset of the French
OSCAR corpus (Ortiz Suárez et al., 2019; Caswell
et al., 2021; Abadji et al., 2021), used to train mod-
els such as CamemBERT (Martin et al., 2020).
The results shown in Table 2 confirm that a typ-
ical French LLM is mostly trained on ambiguous
PR structures. Learning properties (1)-(5) would
therefore require the models to exploit weak signals
in the data to draw syntactic and semantic general-
izations. The experiments that follow test whether
LLMs achieve this goal – or not.

3 Experiment 1

Adapting a recent psycholinguistic experiment
(Pozniak et al., 2019), we test if 8 LLMs trained
on general French corpora (see Tab. 3 rows 1-8),
learned the association between properties (3)-(4),
pertaining to the type of the embedding verb and
tense anaphoricity. The expected effects are: a

1The regular expressions were refined from the templates
in (7) to include all possible subject pronouns and allowed up
to 3 unspecified words in the wildcard (*). This restricts the
search space for ambiguous relative constructions of the from
of (6) but ensures that other constructions (such as an unam-
biguous relative clause located “far away” from the perception
verb) are not matched by accident. It also allows to speed-up
the search. Consequently, the matches and the proportions
gathered respectively in the second and last columns of Table
2 should be respectively read as lower- and upper-bounds.

regular expression →
V↓ (7a)’ (7b)’ #(7b)′

#(7a)′+#(7b)′

voir 15157 168 1.1e-2
apercevoir 725 1 1.4e-3
regarder 2442 28 1.1e-2
observer 813 0 0.0
épier 13 0 0.0
surprendre 99 0 0.0
entendre 1975 27 1.3e-2
écouter 632 1 1.6e-3

Table 2: Number of matches for non-cliticized (ambigu-
ous) and cliticized (unambiguous) regular expressions
on 10,160,000 documents from the OSCAR corpus (con-
taining a total of 52,037,098 documents).

preference for embedding of (pseudo)relatives un-
der perception verbs (as opposed to e.g. stative
verbs); a preference for matching tenses between
the matrix clause and the embedded clause; an in-
teraction between those two factors, favoring tense
matching specifically under perception verbs. We
take the interaction to be the most critical effect.
These predictions were assessed reusing the 2×2
design (verb_type×tense_match) introduced by
the original study. Example stimuli illustrating this
design are given in (8) and their parameters are
summarized in Table 4.

ID Model Lang. Reference
1 flaubert_base_uncased fr Le et al. (2020)
2 camembert-base fr Martin et al. (2020)
3 gpt2-base-french fr (Cla)
4 gpt2-wechsel-french fr Minixhofer et al. (2022)

5 bert-base-multi-
lingual-cased multi Devlin et al. (2018)

6 xlm-roberta-base multi Conneau et al. (2019)
7 xlm-roberta-large multi Conneau et al. (2019)
8 xlm-mlm-17-1280 multi Lample and Conneau (2019)
9 bert-large-cased en Devlin et al. (2018)

10 gpt2-large en Radford et al. (2019)
11 xlnet-large-cased en Yang et al. (2019)

Table 3: Models used in Exp. 1 and 2

(8) Example stimuli reused from (Pozniak et al., 2019).

a. Marie a écouté le ministre qui critiquait le président.
b. ?Marie écoute le ministre qui critiquait le président.
c. Marie a été mariée au ministre qui critiquait le président.
d. Marie est mariée au ministre qui critiquait le président.

Sentence verb_type tense_match
(a.) perception y
(b.) perception n
(c.) stative y
(d.) stative n

Table 4: Summary of the 2×2 design of (Pozniak et al.,
2019) reused in Exp. 1

Building on (Hale, 2001; Levy, 2008), our
proxy for grammaticality was taken to be the log-
probability assigned to a given sentence by the
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LLM (see equations below). It was computed us-
ing the minicons library (Misra, 2022).

GRAMMATICALITY(wt) ≃ −SURPRISAL(wt)

= logP (wt|w1 . . . wt−1)
2

GRAMMATICALITY(w1 . . . wt) ≃ −
t∑

i=1

SURPRISAL(wi)

Linear mixed-effect modeling (performed with
statsmodels, (Seabold and Perktold, 2010)) re-
veals that 6/8 LMs favor matching tenses, and 4/8
more so under perception verbs (verb*tense in-
teraction) – supporting the expected interaction
between (3) and (4) in French. Among the best
performing models are a French-only (autoregres-
sive) GPT-2 model (model 3) and a (bidirectional)
multilingual RoBERTa model (model 7).

ID best AIC? verb_type tense interaction
1 n . ✗ n.s. . ✓
2 n . ✓ ** ✓ n.s.
3 y n.s. ** ✓ * ✓
4 y n.s. ** ✓ . ✓
5 n n.s. ** ✓ n.s.
6 y n.s. ** ✓ . ✓
7 y n.s. ** ✓ * ✓
8 n ** ✓ n.s. n.s.

Table 5: Significance results of LME modeling for
grammaticality ∼ verb_type+tense+verb_type∗
tense + (1|frame), where frame refers to the lexical
skeleton shared by all stimuli in e.g. (8).3

English models (cf Tab. 3, rows 9-11) tested
on English equivalents of the stimuli exemplified
in (8), did not exhibit similar effects – consistent
with English not allowing pseudorelatives. Plots of
the distributions of grammaticality scores obtained
with xlm-roberta-large (model 7) in both lan-
guages are given in Figure 1.

4 Experiment 2

We test the same LLMs on 4800 semi-automatically
generated sentences following the template in (9)
and differing in (1) head noun cliticization; (2) the
gap’s position (subject/object) and (3) the matrix
verb’s type (perception vs. attitude/action).

2In the case of BERT-like bidirectional models, this for-
mula is adapted to masked language modeling: the probability
of a word is computed given its left and right context.

3The ‘best AIC?’ column specifies if the formula yielded
the lowest Akaike Information Criterion, as opposed to other
simpler formulas without interactions or main effects. Other
notations: ‘.’ = p ∈].05; .1], ‘*’= p ∈].01; .05]; ‘**’= p ∈
[0; .01]; ✓=coefficient validates the hypothesis; ✗=coefficient
disproves the hypothesis.

4The scores are overall negative because they correspond
to negative log probabilities (cf. equations above).

ID best AIC? verb type tense interaction
5 y ** ✓ * ✗ * ✗
6 n . ✓ . ✗ . ✗
7 n n.s. * ✗ n.s.
8 n ** ✓ n.s. n.s.
9 n n.s. n.s. . ✓
10 n ** ✓ * ✓ n.s.
11 n n.s. n.s. n.s.

Table 6: Significance results of LME modeling with
English data. Same notations and parameters as Table
5. Strikingly, all but 1 model did not yield the best AIC
for the formula involving an interaction term.

(a) French (b) English

Figure 1: Distributions of the grammaticality scores4 for
Exp. 1 with xlm-roberta-large. ∆ refers to Cliff’s
Delta (non-parametric measure of effect size). N, S, M
resp. mean ‘negligible’, ’small’, ’medium’.

(9) Template for the stimuli of Exp. 2

{
Il/Elle

}
–

{
le/la/l’

∅

}
–

{
voit/...

pense/...

}
–

PRO – (CL) – V –{
∅

Marie/Jean

}
–

{
subject-gap relative
object-gap relative

}

(N) – CP

(10) Example stimuli for Exp. 2

a. Il voit Marie qui embrasse Jean.
b. Il voit Jean que Marie embrasse.
c. Il la voit qui embrasse Jean.
d. * Il le voit que Marie embrasse.
e. * Il pense Marie qui embrasse Jean.
f. * Il pense Jean que Marie embrasse.
g. * Il la pense qui embrasse Jean.
h. * Il le pense que Marie embrasse.

Given this design, we expect an overall pref-
erence for matrix perception verbs, subject gaps
and non-cliticized constructions, but also a positive
interaction between perception verbs and clitics,
perception verbs and subject gaps, clitics and sub-
ject gaps, and all three variables together. As Tab.
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Sentence clitic? gap verb_type
(10a) n S perception
(10b) n O perception
(10c) y S perception
(10d) y O perception
(10e) n S attitude
(10f) n O attitude
(10g) y S attitude
(10h) y O attitude

Table 7: Summary of the 2×2×2 design of Exp. 2

8 shows, linear mixed-effect modeling reveals a
robust preference for subject-gaps (8/8 models, cf.
col. 3) and more so under perception verbs (5/8
models, cf. col. 6), supporting (2)+(3). The desired
clitic*gap*verb_type interaction however, was
only captured by 1/8 models (cf. col. 8). Strikingly
also, the interaction between cliticization and sub-
ject gaps is predicted by most models to have a
negative effect on grammaticality, contra (1)+(2).

ID v g c v*c v*g c*g v*c*g
1 . ✓ ** ✓ ** ✓ ** ✗ . ✗ ** ✓ n.s.
2 . ✓ ** ✓ ** ✓ ** ✗ ** ✓ ** ✗ n.s.
3 n.s. ** ✓ ** ✗ ** ✓ ** ✓ ** ✗ . ✓
4 n.s. ** ✓ ** ✗ ** ✗ ** ✗ ** ✗ ** ✓
5 n.s. ** ✓ ** ✗ ** ✓ n.s. ** ✗ n.s.
6 n.s. ** ✓ ** ✗ ** ✓ ** ✓ ** ✗ . ✗
7 n.s. ** ✓ ** ✗ ** ✓ ** ✓ ** ✗ ** ✗
8 n.s. ** ✓ * ✗ ** ✗ ** ✓ ** n.s.

Table 8: Significance results of LME modeling for
grammaticality ∼ verb_type + gap + clitic +
verb_type ∗ clitic ∗ gap. Same notations as before.

The best performing model for this experiment
appears to be a French-only GPT-2 model (model
3) – which was also among the best models for
Exp. 1. Grammaticality scores corresponding to
this model are plotted in Fig. 4.

(a) Perception verbs (b) Attitude/action verbs

Figure 2: Distributions of the grammaticality scores for
Exp. 2 with gpt2-base-french. Same notations as
before.

5 Experiment 3

We finally test property (5) on 4 BERT-like LMs
fine-tuned to perform natural language inference

(see Table 9).

ID Model Lang. Reference
12 camembert-base-xnli fr (Doy)

13 xlm-roberta-large-
xnli-finetuned-mnli multi (Ozs)

14 mDeBERTa-v3-
base-mnli-xnli multi (Laurer et al., 2022)

15 mDeBERTa-v3-base-xnli-
multilingual-nli-2mil7 multi (Laurer et al., 2022)

Table 9: Models used in Exp. 3

Given a negated matrix perception verb em-
bedding a clause C either as an infinitive or as a
(pseudo)relative, with or without cliticization of its
subject (2×2 design, see (11)), we measure how
likely LLMs are to infer the truth of C (“target
inference”, TI).

(11) Template for the stimuli of Exp. 3

{
Il/Elle

}
ne

{
le/la/l’

∅

}{
voit/...

}
pas –

PRO NEG (CL) V NEG–{
∅

Marie/Jean

}
–

{
subject-gap relative

subject-gap infinitive

}

(N) – CP

(12) Example stimuli for Exp. 2
a. Il

He
ne
NEG

voit
sees

pas
NEG

Marie
Marie

qui
that

danse.
dances.

=⇒ Marie is dancing. TI ✓

b. Il
He

ne
NEG

la
CL

voit
sees

pas
NEG

qui
that

danse.
dances.

=⇒ She is dancing. TI ✓

c. Il
He

ne
NEG

voit
sees

pas
NEG

Marie
Marie

danser.
dancing.

̸=⇒ Marie is dancing. TI ✗

d. Il
He

ne
NEG

la
CL

voit
sees

pas
NEG

danser.
dancing.

̸=⇒ She is dancing. TI ✗

Sentence clitic? emb_clause
(12a) n relative
(12b) y relative
(12c) n infinitive
(12d) y infinitive

Table 10: Summary of the 2×2 design of Exp. 3

We expect the TI to be overall stronger when
the embedded clause is a relative as opposed to
an infinitive, whether of not the head noun is
cliticized. The effect of cliticization in the case
of a structure embedding a relative is a little bit
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less clear: in the absence of cliticization the clause
is ambiguous between a PR and a RC, and it is
reasonable to think that both parses encourage a TI.
Assuming that the RC parse imposes a somewhat
stronger TI than a PR parse, then we might expect
sentences like (12b), which are unambiguously
PRs due to cliticization, to lead to a slightly weaker
TI than sentences like (12a) which allow a RC
parse. In other words, we expect non-cliticized
sentences embedding an RC to yield the strongest
TI.

Linear mixed-effect modeling reveals that em-
bedded relative constructions systematically lead
to a stronger target inference as opposed to infini-
tives (cf. Table 11 col. 3), which is consistent
with property (5), might be driven by the RC-parse
only. Non-cliticized subjects also lead to a stronger
target inference across the board (col. 4). This
is made particularly clear in Figure 3. This pat-
tern cannot be fully explained by the theory but
makes sense if we consider that non-cliticized con-
structions are way more frequent in the data (so
that LLMs may be more confident about the in-
ferences related to such constructions, as opposed
to cliticized ones). Finally, 2/4 models associate
non-cliticized RC-embedding constructions to a
stronger TI, which corresponds to the stipulation
discussed in the previous paragraph. This all sug-
gests that LLMs associate the target inference with
the occurrence of RCs, but not really PRs: other-
wise, cliticized relative constructions (unambigu-
ously PRs) would have lead to stronger target infer-
ences. Figure 3 in particular, shows that cliticized
constructions featuring an embedded relative (un-
ambiguously PRs), do not lead at all to a strong TI,
suggesting the RC-parse (and not the PR-parse), is
driving this inference.

ID best AIC? embedded
clause (RC) clitic RC/clitic

interaction
12 y ** (+) ** (-) ** (-)
13 y ** (+) ** (-) ** (+)
14 y ** (+) ** (-) ** (+)
15 y ** (+) ** (-) ** (-)

Table 11: Significance results of LME modeling
for target_inference_strength ∼ emb_clause +
clitic+ emb_clause ∗ clitic.

6 Discussion and outlook

In this work, we investigated a structure (the
pseudorelative) with two interesting distributional
properties: (1) it can be ambiguous with a relative

(a) CamemBERT (b) mDeBERTa

Figure 3: Distributions of the TI strength scores (/100)
for Exp. 3 and models 12 and 15.

clause when the head noun is not cliticized; (2)
the disambiguating (cliticized) structure is less
frequent in corpora by several orders of magnitude.
We think that the conjunction of these two
properties makes learning the specific syntactic
and semantic properties of PRs particularly
challenging, even for models trained on large
amount of data.

The experiments we run show that LLMs capture
certain properties of PRs, pertaining to acceptable
filler-gap dependencies, matrix verbs, and tense
combinations. Interestingly, 3/4 multilingual mod-
els exposed to both French (a PR-language) and En-
glish (devoid of PRs) in Exp. 1 managed to contrast
the two languages. Yet, the property that is perhaps
the most specific to pseudorelatives, cliticization,
does not seem to influence sentence probability
scores in Exp. 2, and inference patterns in Exp. 3.
This raises the question whether LLMs really get
the specificity of the pseudorelative as a syntactic
construction (Exp. 2) with a specific semantics
(Exp. 3); or whether they simply recycle general
processing heuristics applicable to other structures
(e.g. standard RCs). Such heuristics may involve a
preference for shorter dependencies (subject-gaps)
across the board; or learning a statistical correla-
tion between the use of perception verbs and the
agentive structure of the perceived event.
Future work may involve investigating other lan-
guages allowing the pseudorelative, but also refin-
ing the current design by looking at the influence
of the different perception verbs. We think this
might be particularly relevant given the rather large
frequency differences between these verbs in ac-
tual corpora (cf. Tables 1 and 2), and the potential
imbalance between ambiguous vs. unambiguous
PR-structures for each of those verbs.
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Abstract 

The aim of this paper is to describe ongoing 
work on an annotated corpus of spoken 
Xhosa. The data consists of natural spoken 
language and includes regional and social 
variation. We discuss encountered 
challenges with preparing such data from a 
lower-resourced language for corpus use. 
We describe the annotation, the search 
interface and the pilot experiments on 
automatic glossing of this highly 
agglutinative language.  

1 Introduction 

Xhosa, or isiXhosa, is a Bantu language of the 
Nguni sub-group, spoken in South Africa. 
Approximately 16 percent of South Africa’s 
population speak the language as their first 
language, and it is one of 11 official languages of 
the country (Statistics South Africa 2012). Xhosa is 
to a large extent mutually intelligible with the other 
Nguni languages Ndebele, Swati and especially 
Zulu. Although a relatively large language, it can 
be considered a lower-resourced language in 
several respects including in terms of its digital 
resources. There exist unannotated text collections 
made available through the South African Centre 
for Digital Language Resources (SADiLaR), and 
since recently also an annotated parallel corpus for 
the four Nguni languages (Gaustad and 
Puttkammer 2022). The corpus consists of ca. 50 
000 tokens of government texts for each language 
(translated from English) (Gaustad and 
Puttkammer 2022). Annotated spoken language 
corpora are lacking altogether. There exists a small 
collection of audio resources (available through 
SADiLaR) such as orthographically transcribed 

audio recordings (6 hours) for the development of 
text-to-speech (Louw and Schlünz 2018). None of 
these resources contain natural conversation data. 
The aim of the current project is to fill this gap by 
creating an annotated corpus of spoken Xhosa. One 
important reason for this is that many speakers who 
were recorded, especially those belonging to 
minority communities in the area, requested that 
their contributions of data be well preserved and 
disseminated. 

Consequently, a collaboration was initiated with 
the aim to make the data available and searchable. 
Besides providing the digital infrastructure, we aim 
to explore the possibilities of reducing the manual 
workload by using automated annotation tools. 

2 Fieldwork and content of the data 

The recordings included in the corpus all stem from 
fieldwork by the first author. These recordings have 
been made in different parts of the Eastern Cape, 
the province in South Africa where a majority of 
the population speak Xhosa. Not all speakers 
identify as Xhosa, however, since the identification 
as Xhosa implies a certain ancestral line. They 
identify as belonging to other communities with 
their own languages. In present-day South Africa, 
however, differences between these varieties are 
small as evidenced from the collected data (Bloom 
Ström 2018). Our material is therefore not 
necessarily in accordance with standard Xhosa 
norms. This gives a unique opportunity to study the 
language in all its facets, as the language is actually 
used in the communities. The recordings vary in 
spontaneity. The collection of texts includes 
dialogues with several speakers. Some of these 
dialogues are about a certain topic and others are 

Preparing a corpus of spoken Xhosa 
 

 
Eva-Marie Bloom Ström1, Onelisa Slater2, Aron Zahran1,  

Aleksandrs Berdicevskis3 and Anne Schumacher3 
 

1Department of Philosophy, Linguistics and Theory of Science, University of Gothenburg 
2 Department of Linguistics and Applied Language Studies, Rhodes University 

3 Språkbanken Text, Department of Swedish, Multilingualism, Language Technology,  
Gothenburg University 

 
eva-marie.strom@gu.se, onelisaslater@outlook.com, aron.zahran@hotmail.com,  

aleksandrs.berdicevskis@gu.se, anne.schumacher@svenska.gu.se   
 

62



completely free. There are monologues in which 
one speaker explains a certain procedure (e.g., 
cooking), or tells a traditional story, mostly 
including an audience. A minority of recordings are 
more controlled and based on stimuli, i.e., the 
speaker explains the content of a series of pictures 
or a film. 
This is still a small corpus, with the aim of 
expanding when the infrastructure is in place. At 
present, there are approximately 10 hours of 
transcribed recordings. This is estimated to sum up 
to ca. 40 000 tokens. Metadata for each recording 
is noted, including the date, location, speaker 
information, topic of discussion, length of 
recording, and audio quality. 

3 Premises for data preparation  

The overall guideline in the process of making the 
data available has been maximal searchability for 
linguistic researchers. 

3.1 Transcription Process 

The time-consuming transcription process by 
language students at Rhodes University ensures 
that recorded audio is represented as accurately as 
possible in written form.  Although standard 
orthography has been used for transcriptions, we 
take a descriptive approach to language. This 
means that we do not adjust the transcribed speech 
to prescriptive norms.  

The idea is that this approach will provide 
potential corpora users with a rich set of data in 
which one can investigate things like phonological 
and/or morphosyntactic variation, but also 
potential developments and grammaticalization 
processes based on systematic distribution of 
different forms encoding the same function. A good 
illustration of this concerns future tense marking, 
see Example (1) (glossing follows the Leipzig 
glossing rules (Comrie et al. 2008/2015); 
abbreviations are listed at the end of this paper). A 
construction that originally involved the auxiliary 
verb -za ‘come’ followed by a verb in the infinitive, 
has then evolved into a verb form that to different 
degrees retains the infinitival marker uku-/ku-. 

 
1. a) ba-za   uku-fika  

  SM.2-come  INF-arrive  
  ‘They will arrive’ 
 
      b) si-zaku-ya  kwa-malume!    
  SM.1PL-come.INF-go LOC-1a.uncle  

 ‘We are going to (our) uncle!’ 
 
While in the utterance (1a) we can assume, 

based on phonological criteria, that the verb -za and 
the infinitival marker -uku follow each other as 
segmentable morphemes, in (1b) they are fused 
into a non-segmentable future marker. Further 
evidence for this fusion or grammaticalization is 
that this future marker, originating in a verb 
meaning ‘to come’, can in (1b) unproblematically 
be used with a verb ‘to go’ due to semantic 
bleaching of the original meaning of -za. 

Hence, due to the variation in our data in the 
realization of this marker, e.g., zu-, zaku-, zoku-, 
za-, zo-, zau-, the grammaticalization process can 
be investigated. This variation is likely to be higher 
in our spoken data, than if the corpus was based on 
standardized written Xhosa. 

3.2 Annotation 

The morphemic annotation, or glossing, has 
proven to be a challenge since many areas of Xhosa 
grammar remain un(der)described. Deciding on a 
suitable translation for a certain morpheme has 
more often than not implied thorough investigation 
of available publications on the language, in 
combination with our own analysis together with 
mother tongue speaker and team member Onelisa 
Slater. There is no modern and comprehensive 
reference grammar of the language in which one 
can search for the right abbreviation. All decisions 
have been made with consideration to the Leipzig 
glossing rules (Comrie et al. 2008/2015), while 
also adhering to conventions used by researchers in 
Bantu linguistics. Ensuring searchability includes, 
for example, finding a balance between making the 
glossing general enough to include comparable 
forms, but also specific enough for the user to be 
able to unambiguously find what they are looking 
for. One example is the so-called augment, a vowel 
that in certain environments occurs before the noun 
class prefix or the nominal root. While it can 
certainly be interesting to consider all occurrences 
of the augment, the researcher might also be 
interested in only looking at the occurrences of the 
augment in more restricted settings, say in one 
specific noun class at a time. Since the augment 
itself is not noun class specific, search features can 
be combined to include only those augments that 
are followed by a nominal prefix or root of a certain 
noun class. 
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Another challenge with the glossing stems from 
the fact that surface forms of (especially spoken) 
Xhosa do not always show all the information 
contained in the underlying form, for example 
because of vowel elision. For this reason, we make 
use of underlying forms in our glossing, while also 
showing the surface form in transcription. Again, 
the augment provides an interesting case in point. 
In example (2a), the vowel of the comitative 
marker na- coalesces with the augment vowel i, 
forming e. In example (2b), the augment vowel of 
noun class 6 is a, i.e. the same as the vowel of the 
comitative. In (2b), it is therefore not transparent in 
the surface form that the augment occurs, although 
it would definitely be in the interest of the 
researcher to find these constructions as well, when 
looking for environments with the augment. 

 
2. a) badibana   nendoda 

  ba-dib-an-a   na-i-ndoda   
  SM.PST.2-meet-RECP-FV COM-AUG-9.man 

 ‘they met with a man’ 
 
      b) namakhwenkwe  
  na-a-ma-khwenkwe  
  COM-AUG-NCP.6-6.boy 
  ‘with the boys’ 
 
While this is a very effective way of making 

forms more transparent to the user, and making 
underlying morphemes searchable in the corpus, it 
also requires further analysis and decision making 
on the extent to which these underlying forms can 
be safely assumed.  

Moreover, considerations are made on how the 
glossing conventions can be combined with part-
of-speech (POS) tags when searching in the corpus, 
as these combinations can serve to make searches 
more inclusive or exclusive depending on the aim 
of the user. POS tags add information that is not 
encoded in the glossing, which could help the 
potential corpus user to identify the functions of 
different constructions in Xhosa. In cases where 
tokens are homonymous, POS-tagging can help 
disambiguate. Example (3), for instance, 
demonstrates that the token ukuhamba from the 
lexical root hamb- ‘walk’, can be labelled either as 
verb or a noun based on its syntactic properties. In 
(3a) ukuhamba is a verbal noun/gerund, tagged as 
a noun in the corpus, while in (3b) it is a verbal 
infinitive following the inflected first verb ‘want’ 
and tagged as a verb: 

 
3. a)  u-ku-hamba   kw-am   

AUG-NCP.15-walk  15-POSS.1 
 ‘my walking’ 
 
    b)  ndi-fun-e   uku-hamba  

SM.1SG-want-REC.CJ  INF-walk 
 ‘I wanted to walk’ 
 
One of the main challenges in this regard has 

been the universality of established part of speech 
categories, and to what extent tags like the ones 
used by Universal Dependencies (de Marneffe et 
al. 2021) are applicable to Xhosa. A relevant 
example concerns non-verbal predication in 
Xhosa, in which a copula is prefixed to a noun as 
in example (4). The copula ngu- is verb-like in that 
it takes some inflectional morphology, although 
there is not enough diachronic nor synchronic 
evidence for it to be considered a verb. For 
example, it does not possess other verbal properties 
like taking derivational morphology or having an 
infinitival form. Tagging the whole construction as 
either a copula or a noun would however not make 
it justice, but rather, we identify the need of a 
specialized part-of-speech category called 
“nominal copula”; NCOP in this case (while the 
morpheme abbreviation remains COP): 

 
4. Ndandi-ngu-m-ntu 

SM.PST.IPFV.1SG-COP.1-NCP.1-1.person 
‘I am a person’ 

4 Pilot experiments on automatic 
annotation 

Automatic annotation of spoken Xhosa texts faces 
several challenges: first, the small amount of data 
available, second, frequent variation and usage of 
non-standard forms. Third, the annotation 
guidelines are being finalized as the manual 
annotation progresses, which means that the tag 
sets have not been finalized yet. Despite that, we 
make a preliminary attempt to estimate whether 
parts of the pipeline can be automated. 

As mentioned above, a corpus of written Xhosa 
(Gaustad and Puttkammer 2022) has recently 
been released, and an annotation tool used to 
create it have also been made available by 
SADiLaR (du Toit and Puttkammer 2021). 
SADiLaR, however, uses different glossing 
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principles. The POS tag set, on the other hand, 
was judged to be compatible with the purposes of 
the current project. Du Toit and Puttkammer 
(2021) report the accuracy of their POS tagger, 
based on the Marmot tagger (Mueller et al. 2013) 
and trained on the parliamentary texts, to reach 
96% in the same domain. On our data, the 
accuracy is 74%. The drop in accuracy is 
unsurprising, given the high number of out-of-
vocabulary items and the systematic differences in 
the usage of grammatical forms. 

Since the SADiLaR corpus cannot be used to train 
a morphemic (glossing) tagger, we ran a pilot 
experiment, training Marmot on our own data. 
Despite a very small training set of 1122 
morphemes, Marmot achieves 67% on the test set 
(267 morphemes). As is common in such tasks 
(Barriga Martínez et al. 2021), we did not attempt 

 
1 https://spraakbanken.gu.se/korp/?mode=xhosa  

glossing stems, using the LEX tag for all stems 
instead. 

On the grammatical morphemes only, the 
accuracy is 51%, with some of the ambiguous 
morphemes being correctly tagged. 

Pre-annotating the texts automatically and 
manually post-correcting them is likely to be more 
efficient than manually annotating them from 
scratch. As the amount of manually annotated data 
increases, the performance of the tagger will 
hopefully improve. It remains to be seen whether, 
given the small training set, “fast learners” like 
Marmot can be beaten by large languages models 
(e.g. Eiselen 2023), fine-tuned on the same data. 

We have not yet attempted automatically 
segmenting words into morphemes. 

5 The search interface 

The corpus is hosted by Språkbanken Text  (SBX) 
and available 1  through the corpus search tool 
Korp (Borin et al. 2012). Korp can be used to 
perform advanced corpus search queries where 

 

Figure 1: Search for the copulative 
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transcriptions along with their annotations 
(segmentation, glosses, POS, lexical meanings 
etc.) can be used as search parameters. The 
parameters can be combined in various ways in 
order to refine the search. 

Note that the parameters apply to different levels 
of analysis; some are on sentence level (e.g., 
idiomatic translation of the whole sentence), some 
are on token level (e.g., POS, lexical meaning), 
some are on sub-word (morpheme) level (gloss). 

For querying purposes, we distinguish between 
“microglosses” and “macroglosses”. A 
microgloss is any single gloss, the smallest 
possible unit of glossing, e.g., PST: ‘past tense’. 
Macrogloss is any gloss of a non-segmentable 
morph. It may contain one microgloss (e.g., RECP 
for an in example 2a) or several microglosses if 
the morph expresses several grammatical 
meanings at once, e.g., SM.PST.2 (the gloss for ba 
in example 2a) or SM.PST.IPFV.1SG (the gloss 
for ndandi in example 4). Depending on the users’ 
needs, they may either search for a micro- or 
macrogloss. The search for microgloss PST, for 
instance, would return both example (2a) and (4), 
but it is also possible to search specifically for the 
macrogloss SM.PST.2. 

As an example, Figure 1 shows a search for all 
copulatives in the corpus (COP).  

For this particular corpus a special button was 
added to the interface which allows the user to 
copy a traditional four-row representation of 
glossed examples in linguistics (surface form, 
underlying form, glossing and translation, cf. 
example 2b). This was done to facilitate using 
examples from search results in publications or 
for teaching purposes. 

The corpus will be publicly available, both in 
Korp and as a downloadable data set. 

In the future we will also incorporate the original 
audio recordings into Korp, and, ideally, 
synchronize them with the transcriptions (cf. the 
implementation in the IVIP corpus 2 ).  
 
Limitations 

The limitations of this project first and foremost 
concern the amount of data. As automatic 
annotation starts to improve, the idea is to keep 
adding transcribed texts to the corpus and this is 

 
2 https://spraakbanken.gu.se/korp/#?corpus=ivip-demo  

expected to improve accuracy.  Further tests of 
different kinds of automatic annotation are 
required. 
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Abbreviations 

AUG augment, a nominal prefix combined     
with the noun class prefix 
CJ conjoint; one of two morphological 
forms in certain tenses 
COM comitative 
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COP copulative 
FV final vowel, indicative mood 
INF infinitive prefix 
IPFV imperfective 
LOC locative 
NCP noun class prefix 
POSS possessive 
PST past 
REC recent past 
RECP reciprocal 
SM subject marker 
Numbers not followed by SG or PL identify 
noun class. 
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Abstract 

Can Large Language Models translate texts 
with rich cultural elements? How 
“cultured” are they? This paper provides an 
overview of an experiment in Machine 
Translation of Ukrainian folktales using 
Large Language Models (Open AI), 
Google Cloud Translation API, and Opus 
MT. After benchmarking their 
performance, we have fine-tuned an Opus 
MT model on a domain-specific small 
dataset specially created to translate 
folktales from Ukrainian to English. We 
have also tested various prompt 
engineering techniques on the new Open AI 
models to generate translations of our test 
dataset (folktale ‘The Mitten’) and have 
observed promising results. This research 
explores the importance of both small data 
and Large Language Models in Machine 
Learning, specifically in Machine 
Translation of literary texts, on the example 
of Ukrainian folktales. 

1 Introduction 

“ChatGPT has already become a good translator” 
(Jiao et al., 2023) is an increasingly popular 
statement. We see an exponential increase in using 
Open AI models for various Machine Learning 
tasks and wanted to further explore this new 
tendency.  

In addition to human translation, machine 
translation has undeniable potential in connecting 
people and cultures. Therefore, improving 
accuracy and accessibility to high-quality machine 
translation tools is very important. 

 
1 https://www.gutenberg.org/cache/epub/29672/pg29672.txt 

We chose Ukrainian folktales for this 
experiment due to their unique nature and rich 
linguistical ecosystem. Folktales are usually passed 
on from one generation to another, going back 
hundreds and sometimes thousands of years, 
creating immense depth of knowledge and layers 
of cultural relevance.   

The Ukrainian language has an extensive 
collection of myths, legends, proverbs, songs, and 
folktales. Even though these texts have literary 
translations available, many of them are rather 
transcreations, meaning that stories are retold and 
adapted to the target language and culture. 

This experiment uses a recently created corpus 
of domain-specific curated parallel training data: 
Ukrainian-To-English Folktale Corpus (Burda-
Lassen, 2022). 

We wanted to use this curated corpus for fine-
tuning machine translation models and see the 
impact on the accuracy and quality of translation.  

2 Machine Translation Process  

2.1 Overview of resources and machine 
translation models 

For the creation of the Ukrainian-To-English 
Folktale Corpus, we used familiar Ukrainian 
folktales that were available in English: folktales 
from various websites for children's literature, 
blogs about Ukrainian traditions, bilingual 
children's books, as well as English translations 
from the Gutenberg Project1.  

Training a reliable machine translation system 
requires a large number of parallel sentences in two 
languages, which is often widely unavailable in 
low-resource language pairs (Sánchez-Cartagena 
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et al., 2021). Even though Ukrainian is not 
considered a low-resource language anymore, the 
availability of the Ukrainian-To-English Folktale 
Corpus was very helpful in our experiment. 

2.2 Applied Methods 

Since the focus of our research was comparing the 
performance of 3 machine translation approaches 
and models for the translation of Ukrainian 
folktales, we have selected specific cultural terms 
that would be more domain-specific and, therefore, 
more challenging to translate. 

While most common phrases are already being 
translated accurately by available machine 
translation engines, rare or cultural terms are often 
mistranslated or generalized. Adding an extra layer 
of culturally significant information can 
significantly improve the outcome of the 
translation process. 

We have tested the translation at the word and 
text levels. We have chosen a subset of the words 
that have a high level of cultural sensitivity and are 
challenging to translate (Table 1). 

For text-level translation, we have chosen as our 
test dataset the Ukrainian folktale ‘The Mitten.’ We 
have translated this folktale into English, using 
carefully selected human translation techniques, to 
preserve culturally specific elements, their 
meaning, and literary style. We have then translated 
this text using Google Cloud Translation API, the 
pre-trained model ‘Helsinki-NLP/opus-mt-uk-en’ 
and 2 Open AI models (‘text-davinci-002’ and the 
more recent ‘gpt-3.5-turbo-16k’). We have also 
fine-tuned ‘Helsinki-NLP/opus-mt-uk-en’ on the 
Ukrainian-To-English Folktale Corpus and tested 
the accuracy of the translation by the fine-tuned 
version of the model. We have used sacreBLEU 
and BERTScore as evaluation metrics.  

 
 
 
 
 
 
 
 
 
 
 
 

2.3 Key Findings 

After reviewing machine translation predictions, 
we can identify a few specific translation 
techniques and tendencies: calque (loan 
translation), generalization, and transcription. 

As we can see in Table 1, many examples were 
mistranslated (especially the word to describe one 
of the female spirits in Ukrainian mythology 
Mavka, the forest spirit). If a term consisted of 
commonly known words, it was translated more 
precisely. Therefore, all tested models heavily rely 
on general language corpora and do not predict the 
values of specialized terminology, which 
formalizes the need for fine-tuning these models on 
small datasets that are very specific and rich in such 
valuable domain information. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Word level measurements refer to the accuracy 

of translation of the specific subset of cultural 
terms, while text level accuracy evaluates the 
translation of the folktale ‘The Mitten.’ 

We have observed an increase in sacreBLEU 
score on the word level after fine-tuning the Opus 
MT model (from 2.05 to 3.70), and not on the text 
level. The highest accuracy in translating ‘The 
Mitten’ was observed by running predictions using 
the Open AI model ‘gpt-3.5-turbo-16k’. We 
noticed that it outperformed all other models on the 
text level, and not on the word level (where Google 
Cloud Translation API was in the lead). 

However, BERTScore showed the highest 
accuracy values for word and text levels for Open 
AI ‘gpt-3.5-turbo-16k’, with Google Cloud 
Translation API consistently showing second-best 
accuracy scores.  

Additionally, we have noticed a rather 
significant difference between the two tested Open 

Table 2: BERTScore and sacreBLEU scores for models 
at text and word levels. 

Table 1: Translation examples of selected culture-
specific terms. 
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AI models. While no notable accuracy 
improvement was observed from using ‘text-
davinci-002’ at the word level translation, the 
translation of ‘The Mitten’ was unsuccessful: the 
story was simply summarized into eight sentences 
with most of the plot missing. 

Open AI model ‘gpt-3.5-turbo-16k’, on the other 
hand, performed really well. We have applied 
several prompt engineering techniques, and the 
model was able to translate text according to the 
requirements of applying different styles. For 
example, when prompted with ‘This text is for a 
children's book and needs to be fun and 
interactive.\ Create interesting compound words.’, 
it created new compound words, very similar to the 
ones from the human translation. While prompted 
with ‘This text is informational for English-
speakers to learn more about Ukrainian culture’, 
the model translated all terms as a combination of 
two very appropriate human translation techniques: 
transliteration with an explanation.  

Here are a few examples: 
"Mishka-shkryabotushka" - A term used to 
describe a small bear that scratches itself. 
"Zhabka-skrekotushka" - A term used to describe 
a small frog that makes a screeching sound. 
"Vedmid-nabrid" - A term used to describe a bear 
that is annoying or bothersome. 
"Kaban-iklan" - A term used to describe a boar 
with long tusks. 
"Koza-dereza" - A term used to describe a goat 
with sharp horns. 
"Solom'yanyi bychok" - A term used to describe a 
scarecrow made of straw. 
"Bychok-tretyachok" - A term used to describe a 
small bull or young bull. 
"Mavka" - A term used to describe a mythical 
creature from Ukrainian folklore, often depicted 
as a forest nymph or spirit. 
"Med-vyno" - A term used to describe mead, an 
alcoholic beverage made from fermented honey. 

Even though there is an error in translating the 
term ‘Mishka-shkryabotushka’ (it is a small 
mouse, not a bear), with the correct transliteration 
being ‘Myshka-shkryabotushka’, this definitely 
was an interesting machine translation output, 
which calls for further study and research.  

While small datasets with domain-specific 
information can help train the traditional neural 
machine translation models and increase accuracy, 
especially if examples are carefully curated and 
hand-picked, Large Language Models have the 
potential to increase translation accuracy and 
create style-specific translations. 

3 Conclusion 

More research is necessary to increase the size of 
the Ukrainian-To-English Folktale Corpus to 
include a broader range of cultural terms, which 
will help further explore the preferable size of 
small data to make a more noticeable impact on 
accuracy score.  

Since we have noticed an increase in translation 
accuracy at the word level after fine-tuning an 
Opus MT model, it would be valuable to explore 
the depth and volume of cultural terms needed to 
increase the accuracy score even further. 

Another area of research could be prompt 
engineering and fine-tuning LLMs, while 
exploring their added benefit of creating machine 
translation tailored to specific literary styles. 

Contrary to human translation of folklore, 
machine translation techniques must be more 
literal and descriptive. Therefore, a significant 
difference exists between human and machine 
translation techniques for folktales. That’s where 
using a more informational translation style could 
be very valuable. 

We believe that this type of research would be 
important for other language pairs as well. The 
domain of literary translation, specifically the 
translation of folklore and other culturally specific 
texts, is a vibrant environment full of fascinating 
challenges and great potential. 
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Abstract

Neural Machine Translation (NMT) has now
attained state-of-art performance on large-scale
data. However, it does not achieve the best
translation results on small data sets. Example-
Based Machine Translation (EBMT) is an ap-
proach to machine translation in which exist-
ing examples in a database are retrieved and
modified to generate new translations. To com-
bine EBMT with NMT, an architecture based
on the Transformer model is proposed. We
conduct two experiments respectively using
limited amounts of data, one on an English-
French bilingual dataset and the other one on
a multilingual dataset with six languages (En-
glish, French, German, Chinese, Japanese and
Russian). On the bilingual task, our method
achieves an accuracy of 96.5 and a BLEU score
of 98.8. On the multilingual task, it also outper-
forms OpenNMT in terms of BLEU scores.

1 Introduction

An analogy is a relationship between four objects,
A is to B as C is to D. Studies on analogies have
investigated their utility in different applications,
like machine translation. Solving analogies be-
tween sentences involves the task of generating an
unknown D that satisfies an analogical equation
A : B :: C : D , where A, B, and C are given.
Here is an example of a sentence analogy:

he ’s coming . : i am coming . ::
he ’s eating
an apple .

: x

⇒ x = i am eating
an apple .

EBMT extracts knowledge from a corpus in two
languages to perform translation. Concretely, the
process of EBMT by analogy involves extracting
analogical relationships in the source language to
find the corresponding sentences in the target lan-
guage and solve a sentence analogy.

Formula (1) defines the notation of analogies be-
tween sentences in two languages. As instantiated

in Formula (2), the translation result for “i am eat-
ing an apple .” is “je manger une pomme .”, which
can be obtained through the reasoning process.

A : B :: C : D

↕ ↕ ↕ ↕
A′ : B′ :: C ′ : D′

(1)

he ’s
coming .

:
i am
coming . ::

he ’s
eating an
apple .

:
i am
eating an
apple .

↕ ↕ ↕ ↕

il est en
train d’
arriver .

: j’ arrive . ::

il est en
train de
manger une
pomme .

: ??

(2)
EBMT by analogy is a translation method that

involves generating a target translation by using
multiple example sentences for reference and rea-
soning. However, the vanilla Transformer (Vaswani
et al., 2017) model can only handle one input at
a time. To address this limitation, we propose a
multi-sentence construction Transformer architec-
ture designed specifically for EBMT by analogy.

2 Previous work and proposal

To perform translation, Nagao (1984) proposed
an approach to EBMT that considers a bilingual
analogy across two languages. Translations are
made by transferring symbolic knowledge from
the source language to the target language. In Fig-
ure 1(a), the translation of “i am eating an apple .”
is achieved by solving a bilingual analogy:

i am
coming . :

j’ arrive . ::
i am eating
an apple . : ??

Figure 1(b) outlines the indirect approach to
EBMT. As previously shown in Formula (2), pre-
vious research considered two monolingual analo-
gies in two different languages that correspond to
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??

il est en train 
d’ arriver .

il est en train de 
manger une pomme .

j’ arrive .

he ’s coming .
i am coming .

i am eating 
an apple .

English French

he ’s eating 
an apple .

(a) direct approach (Nagao, 1984)

??

il est en train 
d’ arriver .

il est en train de 
manger une pomme .

j’ arrive .

he ’s coming .
i am coming .

i am eating 
an apple .

English French

he ’s eating 
an apple .

(b) indirect approach (Lepage and Denoual, 2005)

??

il est en train 
d’ arriver .

il est en train de 
manger une pomme .

j’ arrive .

he ’s coming .
i am coming .

i am eating 
an apple .

English French

he ’s eating 
an apple .

(c) combination of direct and indirect approaches (Tail-
landier et al., 2020)

??

il est en train 
d’ arriver .

il est en train de 
manger une pomme .

j’ arrive .

he ’s coming .
i am coming .

i am eating 
an apple .

English French

he ’s eating 
an apple .

(d) our proposed method

Figure 1: Different approaches to EBMT by analogy (adapted from (Taillandier et al., 2020)). In each sub-figure,
the left half shows the embedding space for English sentences while the right half shows the embedding space for
French sentences. Relationships between the sentences are represented by connecting lines.

generate translations (Lepage and Denoual, 2005;
Langlais et al., 2008; Dandapat et al., 2010).

A step further, Taillandier et al. (2020) proposed
to fuse the direct approach with the indirect ap-
proach. See Figure 1(c). The translation output can
be obtained by solving the following three analogi-
cal equations.

i am
coming . :

j’ arrive . ::
i am eating
an apple . : ??

he ’s
eating an
apple .

:

il est en
train de
manger une
pomme .

::
i am eating
an apple . : ??

il est en
train d’
arriver .

: j’ arrive . ::

il est en
train de
manger une
pomme .

: ??

Here, our proposal is to use the Transformer
model to establish direct connections between each
input sentence and the output sentence, in contrast
to the fusion approach of using three quadrilateral
relations to obtain the translation result as shown in
Figure 1(c). With our approach, the input sentence
information is better synthesized to generate the
target translation as illustrated in Figure 1(d). The
use of multiple attention is expected to enhance the
translation accuracy of the results.

3 Multi-sentence construction
Transformer architecture

We propose a novel Transformer structure that al-
lows for multiple sentences to be inputted simul-
taneously, compared to the vanilla Transformer’s
single-sentence input. Concretely, this multi-
sentence construction Transformer architecture
takes seven sentences A,B,C,D,A′, B′, C ′ as in-
put to generate the target translation D′. Rather
than concatenating them into a single input, we
employ seven distinct inputs, which allows each in-
dividual input to compute attention with the output.

3.1 Structure of the decoder

The vanilla Transformer’s decoder only receives
two inputs to establish their connection: the se-
quence of vector representation of the source sen-
tence from the encoder and the sequence of the
target sentence. As an initial step towards building
our multi-sentence construction Transformer archi-
tecture, a new decoder that can accommodate three
inputs is designed in Figure 2.

To learn the relationship with the upper decoder,
we add an extra layer of cross-attention after self-
attention. This layer calculates the attention be-
tween the upper decoder’s output and the target
sentence, enabling the computation of attention to
each input with the target output and establishing a
connection. As a result, we create a decoder with
three inputs for follow-up use.
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Figure 2: Structure of the decoder

3.2 Architecture for EBMT Transformer

Figure 3 illustrates the contrast between our pro-
posed model architecture and the vanilla Trans-
former. Our proposal transforms the Transformer’s
single input into several independent encoder-
decoder pairs. With multiple decoder layers over-
laying each other, our EBMT Transformer can au-
tomatically encode the semantic information of the
input sequence and use it to generate the appropri-
ate target sequence.

Therefore, in the multi-sentence construction
Transformer architecture for EBMT by analogy:

• All the encoders have the same structure as
the vanilla Transformer’s encoder, but each
encoder has a weight specific to the corre-
sponding input.

• Except for decoder_A which has the same
structure as the vanilla Transformer’s decoder
(a two-input decoder), the other six decoders
are the three-input decoders introduced in Sec-
tion 3.1.

4 Datasets and metrics

4.1 Datasets
We use experimental data obtained directly from
the bilingual analogy dataset developed by Tail-
landier et al. (2020) for comparison. For the task
of multilingual machine translation, it will be nec-
essary to create a multilingual analogy dataset.

4.1.1 Bilingual dataset
All sentences in the bilingual analogy dataset (Tail-
landier et al., 2020) are from Tatoeba1. The dataset
is randomly divided into a training set (80%), vali-
dation set (10%), and test set (10%) by the number
of analogies. As shown in Table 1, the average sen-
tence length is approximately 5 words. Table 1 also
counts the number of unique sentences contained in
the dataset. Despite the fact that the whole dataset
contains 239,594 analogies between sentences, it
only contains 8,867 English sentences and 10,437
French sentences without repetition.

4.1.2 Multilingual dataset
To produce an analogy dataset for multiple lan-
guages, we extract analogies from the Tatoeba
corpus using the Nlg package2 (Fam and Lepage,
2018). Tatoeba is a collection of sentences in
over 100 languages. In this work, we use English,
French, German, Chinese, Japanese and Russian.
Thus, we construct a multilingual dataset in six lan-
guages with 7,099 analogies and divide it into 80%,
10%, 10%.

Table 2 shows the statistics of the extracted mul-
tilingual dataset. In particular, each language has
approximately 1,700 unique sentences. When con-
sidering the sentence length on the word level,
Japanese has the longest average length and Rus-
sian has the shortest one.

4.2 Evaluation metrics
We automatically assess experimental results by
comparing the translation output to the reference
sentence in the test set. We use the three metrics
listed below.

BLEU (Bilingual Evaluation Understudy) evalu-
ates the similarity between the translated and refer-
ence sentences (Papineni et al., 2002). It features
a 0 to 100 scale. The closer the translation output

1https://tatoeba.org
2http://lepage-lab.ips.waseda.

ac.jp/media/filer_public/64/52/
64528717-c3ce-4617-8208-c1fb70cf1442/nlg-v321.
zip
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Figure 3: Model architecture: on the left, the vanilla Transformer, on the right, our EBMT Transformer.

Table 1: Statistics of the bilingual dataset

Dataset Analogies # of unique sentences words/sentence characters/sentence
English French English French English French

train 191,676 8,867 10,437 5.50±1.45 5.66±1.57 21.31±6.04 24.54±7.33
valid 23,959 7,734 8,868 5.49±1.45 5.65±1.56 21.27±6.01 24.48±7.30
test 23,959 7,768 8,955 5.51±1.46 5.66±1.57 21.35±6.06 24.53±7.33

Table 2: Statistics of the multilingual dataset

Dataset Analogies Language # of unique
sentences words/sentence characters/sentence

train 5,679

English 1,746 5.65±1.50 21.39±6.41
French 1,676 5.75±1.82 24.78±8.44
German 1,665 5.17±1.34 24.14±7.68
Chinese 1,628 4.95±1.33 11.35±3.08
Japanese 1,662 6.90±2.42 17.17±5.82
Russian 1,664 4.50±1.40 20.25±7.46

valid 710

English 956 5.61±1.45 21.13±6.20
French 927 5.73±1.75 24.51±8.14
German 928 5.14±1.29 23.88±7.51
Chinese 915 4.91±1.30 11.22±2.99
Japanese 916 6.91±2.35 17.17±5.69
Russian 925 4.50±1.37 20.31±7.39

test 710

English 946 5.67±1.53 21.40±6.37
French 915 5.74±1.82 24.63±8.43
German 917 5.18±1.40 24.08±7.83
Chinese 900 4.92±1.33 11.30±3.04
Japanese 912 6.92±2.42 17.18±5.84
Russian 916 4.49±1.38 20.11±7.40
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is to the reference sentence, the higher the BLEU
score is. We use SacreBLEU3 (Post, 2018).

Accuracy refers to the percentage of translation
results where the model outputs are identical to the
reference sentences. This value can be expressed as
the ratio of the number of identical results, denoted
by n, to the total number of references, denoted
by m. Mathematically, it can be represented as
Accuracy = n/m.

Levenshtein edit distance (Levenshtein, 1966) is
defined as the minimum number of edit operations
(insertions, deletions or substitutions) required to
transform one string into another. We evaluate the
results using two units: word and character. A
smaller edit distance indicates better results.

5 Experiments and analysis

To evaluate the performance of our proposed model,
we compare its translation results to those of other
methods. For the bilingual translation task from
English to French, we use OpenNMT4 (Klein et al.,
2017) and the method proposed by Taillandier et al.
(2020) as baselines. For the multilingual transla-
tion task across six languages, we use OpenNMT
only. The parameter settings for OpenNMT and
our proposal are detailed in Appendix A.

5.1 Bilingual translation task

Table 3 shows the translation results of various
methods on the bilingual dataset mentioned in
Section 4.1.1. Our proposed EBMT Transformer
achieved a BLEU score of 98.8, outperforming
OpenNMT’s 90.3 and Taillandier et al. (2020)’s
94.7. Additionally, our model outperformed the
baselines in terms of accuracy and edit distance
metrics, demonstrating the stability of the results.
Therefore, the multi-sentence construction Trans-
former architecture clearly provides a substantial
improvement on this task.

Appendix B provides an error case for transla-
tion into French. Our proposed method faces chal-
lenges when it comes to accurately incorporating
punctuation marks during the inference process.

5.2 Multilingual translation task

For multilingual translation across six languages, a
total of C6

2 × 2 = 30 models need to be trained for
each translation direction. The complete results are
attached in Appendix C. Figures 4 and 5 present

3https://github.com/mjpost/sacrebleu
4https://opennmt.net/

the BLEU score and accuracy of multilingual trans-
lation across six languages, respectively.

As shown in Figure 4(a), all OpenNMT models
achieved a BLEU score of over 75. This is im-
pressive given that OpenNMT typically requires
a large amount of training data to achieve good
results. However, as discussed in Section 4.1.2, the
multilingual dataset used in this experiment only
contains a total of 7,099 analogies, indicating that
the dataset is very particular. We further observe
that when English, French and Russian are the tar-
get language, the results are generally better than
for other languages.

After comparing the BLEU score and accuracy
in Figures 4 and 5, it can be concluded that the
EBMT Transformer outperforms OpenNMT for
all six languages. Although both methods have
high translation performance, this is likely due to
the fact that the languages involved do not have a
large vocabulary and the sentences are short. The
BLEU scores for Chinese as the target language are
lower than those of other languages. This is mainly
because Chinese has the lowest average number of
characters per sentence, which results in a lower
BLEU score calculation.

6 Conclusion

We proposed a multi-sentence construction Trans-
former architecture model to implement EBMT by
analogy. Our proposal outperformed the two base-
lines on the bilingual dataset, achieving a BLEU
score of 98.8 and an accuracy of 96.5. Addition-
ally, for the multilingual translation task across six
languages, our proposed method produced signifi-
cantly better results than OpenNMT.

Limitations

Note that the used datasets are relatively easy ones.
This raises questions about the generalizability of
our proposed model when used in a real EBMT by
analogy setting where retrieval of analogies from an
input sentence should be taken into consideration.
Future research will explore this issue using more
complex datasets.
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Table 3: Translation results of different methods on the bilingual dataset (en → fr)

Method BLEU Accuracy Edit distance
in word in char.

OpenNMT 90.3 82.7 0.5 1.0
(Taillandier et al., 2020) 94.7 90.2 0.2 0.6
EBMT Transformer 98.8 96.5 0.1 0.2
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Figure 4: BLEU scores of multilingual translation across six languages
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Figure 5: Accuracy of multilingual translation across six languages
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A Experimental setup

Encoder&Decoder
Type Transformer
Embedding dimension 512
Number of layers 6
Number of heads 8
Size of feedforward layer 2048
Optimizer Adam
Learning rate 1.0

Table 4: Parameter settings for OpenNMT

Encoder&Decoder
Embedding dimension 512
Number of layers 1
Number of heads 8
Size of feedforward layer 2048
Optimizer Adam
Learning rate 0.0001
Dropout 0.1
Max length 80

Table 5: Parameter settings for our proposal

B Error case in bilingual translation task

Table 6: Error case in bilingual translation task

IDs Sentences

A you’re the love of my life .
B you’re such a jerk .
C he’s the love of my life .
D he’s such a jerk .
A′ tu es l’amour de ma vie .
B′ tu es un de ces pauvres types !
C ′ c’est l’amour de ma vie .

Output c’est un de ces pauvres .
Reference c’est un de ces pauvres types !

C Results of multilingual translation task

See next pages.
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Table 7: Result of multilingual translation task with OpenNMT

Source Target
BLEU Accuracy

Edit distance

Language Language in word in char.

English French 90.2 ± 2.7 87.5 ± 1.1 0.5 ± 0.2 1.9 ± 0.6

English German 75.1 ± 1.5 73.7 ± 1.6 1.0 ± 0.1 4.3 ± 0.3

English Chinese 76.2 ± 8.5 84.5 ± 1.4 1.1 ± 0.5 2.1 ± 1.0

English Japanese 87.4 ± 1.2 80.3 ± 1.5 0.9 ± 0.1 1.8 ± 0.2

English Russian 89.1 ± 1.2 85.9 ± 1.3 0.3 ± 0.1 1.6 ± 0.2

French English 90.1 ± 0.9 81.6 ± 1.5 0.5 ± 0.1 1.7 ± 0.2

French German 85.2 ± 1.3 81.3 ± 1.5 0.6 ± 0.1 2.8 ± 0.3

French Chinese 87.7 ± 1.1 81.3 ± 1.4 0.4 ± 0.1 1.0 ± 0.1

French Japanese 85.5 ± 1.2 78.5 ± 1.6 1.0 ± 0.1 2.1 ± 0.2

French Russian 89.0 ± 1.3 87.4 ± 1.2 0.3 ± 0.0 1.5 ± 0.2

German English 89.8 ± 0.9 80.9 ± 1.6 0.5 ± 0.1 1.6 ± 0.2

German French 91.9 ± 0.9 86.1 ± 1.3 0.5 ± 0.1 1.8 ± 0.2

German Chinese 85.3 ± 1.2 79.6 ± 1.4 0.5 ± 0.1 1.1 ± 0.1

German Japanese 88.1 ± 1.1 80.5 ± 1.5 0.8 ± 0.1 1.7 ± 0.2

German Russian 93.2 ± 1.1 92.5 ± 1.0 0.2 ± 0.0 0.9 ± 0.1

Chinese English 90.6 ± 0.8 82.9 ± 1.5 0.5 ± 0.1 1.6 ± 0.2

Chinese French 91.4 ± 1.4 88.9 ± 1.2 0.4 ± 0.1 1.6 ± 0.2

Chinese German 81.7 ± 1.7 75.4 ± 1.7 0.8 ± 0.1 3.8 ± 0.4

Chinese Japanese 86.1 ± 1.1 78.0 ± 1.6 0.9 ± 0.1 1.9 ± 0.2

Chinese Russian 85.6 ± 1.4 82.9 ± 1.3 0.5 ± 0.1 2.0 ± 0.2

Japanese English 92.1 ± 0.8 86.5 ± 1.2 0.4 ± 0.1 1.3 ± 0.2

Japanese French 91.7 ± 0.9 87.3 ± 1.2 0.4 ± 0.1 1.7 ± 0.2

Japanese German 83.2 ± 6.1 85.4 ± 1.3 0.8 ± 0.4 3.3 ± 1.6

Japanese Chinese 92.5 ± 1.1 92.7 ± 1.0 0.2 ± 0.0 0.5 ± 0.1

Japanese Russian 90.8 ± 1.2 92.0 ± 1.0 0.2 ± 0.0 1.1 ± 0.1

Russian English 88.5 ± 0.9 80.5 ± 1.5 0.6 ± 0.1 1.9 ± 0.2

Russian French 90.8 ± 0.9 84.1 ± 1.4 0.5 ± 0.1 2.0 ± 0.2

Russian German 78.2 ± 1.4 72.5 ± 1.6 0.8 ± 0.1 3.8 ± 0.3

Russian Chinese 82.6 ± 1.4 77.1 ± 1.7 0.7 ± 0.1 1.4 ± 0.1

Russian Japanese 82.0 ± 1.4 74.4 ± 1.7 1.2 ± 0.1 2.4 ± 0.2
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Table 8: Result of multilingual translation task with EBMT Transformer

Source Target
BLEU Accuracy

Edit distance

Language Language in word in char.

English French 95.8 ± 0.6 91.6 ± 1.0 0.2 ± 0.0 0.8 ± 0.1

English German 95.6 ± 0.7 91.6 ± 1.1 0.2 ± 0.0 0.8 ± 0.1

English Chinese 91.9 ± 0.9 89.4 ± 1.1 0.3 ± 0.0 0.4 ± 0.1

English Japanese 95.7 ± 0.7 93.6 ± 1.0 0.3 ± 0.1 0.6 ± 0.1

English Russian 95.1 ± 0.8 91.2 ± 1.1 0.2 ± 0.0 0.8 ± 0.1

French English 98.1 ± 0.4 93.9 ± 0.9 0.1 ± 0.0 0.3 ± 0.1

French German 93.9 ± 2.1 91.9 ± 1.0 0.3 ± 0.1 1.2 ± 0.4

French Chinese 91.2 ± 1.0 89.1 ± 1.2 0.3 ± 0.0 0.4 ± 0.1

French Japanese 95.4 ± 0.7 92.9 ± 1.0 0.3 ± 0.1 0.6 ± 0.1

French Russian 94.6 ± 0.7 90.2 ± 1.0 0.2 ± 0.0 0.9 ± 0.1

German English 97.3 ± 0.5 92.9 ± 1.0 0.1 ± 0.0 0.5 ± 0.1

German French 96.6 ± 0.5 92.5 ± 0.9 0.2 ± 0.0 0.6 ± 0.1

German Chinese 91.6 ± 1.0 90.0 ± 1.1 0.3 ± 0.0 0.3 ± 0.1

German Japanese 96.6 ± 0.6 94.6 ± 0.9 0.2 ± 0.1 0.5 ± 0.1

German Russian 96.0 ± 0.7 92.4 ± 1.0 0.2 ± 0.0 0.7 ± 0.1

Chinese English 97.8 ± 0.4 93.1 ± 0.9 0.1 ± 0.0 0.4 ± 0.1

Chinese French 95.4 ± 0.7 90.1 ± 1.2 0.3 ± 0.1 0.9 ± 0.1

Chinese German 96.3 ± 0.6 92.3 ± 1.1 0.2 ± 0.0 0.6 ± 0.1

Chinese Japanese 95.3 ± 0.7 92.6 ± 1.0 0.3 ± 0.1 0.7 ± 0.1

Chinese Russian 95.6 ± 0.6 91.7 ± 1.0 0.2 ± 0.0 0.7 ± 0.1

Japanese English 97.7 ± 0.4 93.2 ± 0.9 0.1 ± 0.0 0.4 ± 0.1

Japanese French 95.4 ± 0.6 91.2 ± 0.9 0.3 ± 0.1 0.9 ± 0.1

Japanese German 95.8 ± 0.7 91.8 ± 1.1 0.2 ± 0.0 0.8 ± 0.1

Japanese Chinese 91.6 ± 0.9 89.1 ± 1.1 0.3 ± 0.0 0.4 ± 0.1

Japanese Russian 95.2 ± 0.7 91.4 ± 1.1 0.2 ± 0.0 0.8 ± 0.1

Russian English 97.9 ± 0.4 93.1 ± 0.9 0.1 ± 0.0 0.4 ± 0.1

Russian French 93.9 ± 1.7 91.0 ± 1.0 0.3 ± 0.1 1.1 ± 0.3

Russian German 94.3 ± 1.9 91.7 ± 1.0 0.3 ± 0.1 1.1 ± 0.4

Russian Chinese 91.8 ± 1.0 90.3 ± 1.1 0.3 ± 0.0 0.3 ± 0.1

Russian Japanese 95.8 ± 0.6 93.4 ± 0.8 0.3 ± 0.1 0.5 ± 0.1
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Abstract
An important and resource-intensive task in
journalism is retrieving relevant foreign news
and its adaptation for local readers. Given the
vast amount of foreign articles published and
the limited number of journalists available to
evaluate their interestingness, this task can be
particularly challenging, especially when deal-
ing with smaller languages and countries. In
this work, we propose a novel method for large-
scale retrieval of potentially translation-worthy
articles based on an auto-encoder neural net-
work trained on a limited corpus of relevant
foreign news. We hypothesize that the repre-
sentations of interesting news can be recon-
structed very well by an auto-encoder, while
irrelevant news would have less adequate recon-
structions since they are not used for training
the network. Specifically, we focus on extract-
ing articles from the Latvian media for Esto-
nian news media houses. It is worth noting
that the available corpora for this task are par-
ticularly limited, which adds an extra layer of
difficulty to our approach. To evaluate the pro-
posed method, we rely on manual evaluation
by an Estonian journalist at Ekspress Meedia
and automatic evaluation on a gold standard
test set.

1 Introduction

Media houses often report relevant foreign news
and adapt them to the local readership. With the
ever-rising number of published articles and the
limited number of people retrieving and curating
the stories, the task becomes harder for media
houses. The media houses often need to allocate
scarce resources available, such as translators of
specific languages and journalists, to curate and
adapt the stories. In this work, we propose an ap-
proach that, given a handful of articles in a given

language (Estonian), automatically suggests a set
of potentially interesting news in a chosen foreign
language (Latvian), employing a deep auto-encoder
network to reconstruct and retrieve the relevant for-
eign articles. The task of identifying foreign inter-
esting news is defined by the Estonian media house,
interested in retreival of Latvian articles. For ex-
ample, articles covering international politics (e.g.
American elections ) are not interesting, as the Esto-
nian house would have other sources for these news.
Also, many local articles are not interesting, as they
are irrelevant for Estonians. However, very specific
articles are of their interest, including the ones,
covering Estonians in Latvia, topics relevant to Es-
tonian readership (e.g. discussion on electronic
scooters, doping affairs. These topics are however
not predefined, but there is a small dataset of re-
trieved interesting news. The ratio of interesting to
non-interesting news is very small, suggesting the
task to be considered as imbalanced classification.
In many imbalanced classification tasks (such as
phishing detection (Douzi et al., 2017), software
defect prediction(Tong et al., 2018), wind-turbine
(Roelofs et al., 2021) anomaly detection), auto-
encoders models have been utilized due their ability
to reconstruct subgroups of examples well. Zhang
and Zhu (2020) used Wasserstein auto-encoders for
document retrieval, while Liou et al. (2014) used
word-based auto-encoders for document retrieval.

This work extends the previous work on inter-
esting cross-border news retrieval by Koloski et al.
(2021), where the authors define a custom metric
– SNIR (Seed news of interest ratio). First, the
method embeds both the set of interesting articles
and the set of candidate articles into a multilingual
space (Conneau et al., 2020). Next, the SNIR score
of each candidate is calculated as the fraction of
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the interesting articles in a neighborhood of m ar-
ticles. This metric follows the nearest-neighbor-
based approach, where they check the ratio of inter-
esting versus non-interesting news in the neighbor-
hood for a given article. If the ratio is bigger than
a given threshold, then the article is considered
as interesting and thus relevant for translation and
adaptation. They define an article as interesting if it
is highly relevant to the Estonian readership at the
time of publishing. To our knowledge, this is the
only related work for the addressed task. We extend
this work by proposing a novel method, as well as
by proposing an automated evaluation setting for
our task.

In the rest of this paper, Section 2 analyzes re-
lated work, Section 3 describes the data used, fol-
lowed by the explanation of the proposed method
in Section 4, and its evaluation in Section 5. Con-
clusions and further work are presented in Section
6.

2 Related work

In the field of journalism, one of the crucial re-
sponsibilities is to search for and gather captivating
news stories from neighboring countries. Recent
research by Asim et al. (2019) examines the use
of ontologies, a type of language technology, in
the domain of news retrieval. According to their
findings, ontologies are primarily used for semantic
search in news retrieval systems. Additionally, the
collaboration between translation and journalism
is essential in the process of news retrieval (Con-
way and Davier, 2019; Valdeón, 2020). Machine
translation plays a significant role in automatically
converting news stories in different languages to
a language that is familiar to the news media cu-
rator (Utiyama and Isahara, 2003; Kumano et al.,
2002; Eck et al., 2004; Bielsa and Bassnett, 2008;
Almahasees, 2018).

Large Language Models (LLMs) are currently
at the forefront of the field of machine translation.
There are mainly two types of LLMs: autoregres-
sive and autoencoding. Autoregressive models
generate text by predicting the next word in a se-
quence given all the previous words. Examples
of autoregressive models include GPT-3 (Brown
et al., 2020) - model based on the Casual Language
Modeling (CLM) task and BERT (Devlin et al.,
2018) - model trained with the Masked Language
Modeling (MLM) objective. Autoencoding mod-
els, on the other hand, are trained to reconstruct

the original input given a corrupted version of it.
These models learn to represent the input in a com-
pact form that captures the most important infor-
mation. Examples of autoencoding models include
T5 (Raffel et al., 2020) and BART (Lewis et al.,
2020). Both types of LLMs are highly effective
for a wide range of tasks in interest to journal-
ism: genre identification (Kuzman et al., 2023),
text classification (Sun et al., 2019; Koloski et al.,
2022a), sentiment analysis (Shirsat et al., 2017;
Godbole et al., 2007; Bautin et al., 2008; Balahur
et al., 2013; Keivandarian and Carvalho, 2023),
machine translation (Zhu et al., 2020; Clinchant
et al., 2019; Weng et al., 2020; Hendy et al., 2023),
keyword extraction (Martinc et al., 2022; Koloski
et al., 2022b) and more. Moreover, multilingual
variants of these models (such as XLMR(Conneau
et al., 2020)) have been developed to support mul-
tiple languages, making them even more useful for
cross-lingual NLP tasks.

Autoencoder networks have found widespread
use for input retrieval via reconstruction in various
domains. For instance, Lu et al. (2021) developed
a Siamese autoencoder for dense text retrieval, Xu
et al. (2021) benchmarked a network consisting of
an autoencoder and a generative adversarial net-
work for zero-shot cross-modal retrieval, reporting
promising results. Additionally, Ma et al. (2022)
investigated the effect of contrastive pre-training
for dense retrieval via autoencoder networks and
achieved highly favorable outcomes. In this pa-
per, we apply autoencoders to discover interesting
news by reconstructing documents. We define In-
teresting news (based on prior work (Koloski et al.,
2021)) as news that readers relate to and originates
from foreign countries.

3 Data

The data used in this work consists of Estonian and
Latvian articles (published in the period between
01.01.2018 until 01.12.2019) by media houses be-
longing to the Ekspress Meedia Group. We used
the following corpora from the EMBEDDIA news
archives data set (Pollak et al., 2021).

• The collection of Estonian news articles from
the archives of Ekspress Meedia, resulting in
17,148 articles

• The collection of Latvian news articles pub-
lished by the DELFI portal - a Latvian sub-
sidiary of the Ekspress Meedia Group. We
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used the data before 1.12.2019 for training
(29,178 articles) and the data after for testing
(1,339 articles). We split the data in this man-
ner to assess the method’s ability to generalize
over unseen news and events for the future.

• The set of 21 Latvian news, consisting of
articles published (between 01.01.2019 and
31.12.2019) in the Latvian journal and iden-
tified by an Estonian journalist as being inter-
esting for the Estonian public. We also dis-
pose of their aligned Estonian counterparts,
which are the news that was published in the
Estonian newspaper after translation and adap-
tation.

4 Method

4.1 Data Acquisition
Automated Acquisition of Estonian Ground
Truth Our method follows the work by (Koloski
et al., 2021) consists of two steps. In the first step,
we use exact string matching to extract Estonian
articles that mention Latvian Delfi1 (Läti Delfi, Lati
Delfi, Delfi.lv) in the article body text as a source
of news. The hypothesis is that these articles were
identified as significant for translation/adaptation
from their original Latvian counterparts. In this
manner, we acquired 100 Estonian articles, and we
denote them as Estonianground.

4.1.1 Cross-Lingual Mapping
We hypothesize that the potentially interesting Lat-
vian news are the ones that are in a joint multilin-
gual space of Estonian and Latvian articles, gravi-
tating closer to the surrounding of each article of
the Estonianground. To do so, we follow the (Zosa
et al., 2020) methodology for extracting articles in
a multilingual setting:

1. We use sentence-transformers (Reimers and
Gurevych, 2019) XLM-r-distilRoBERTa-base-
paraphrase-v1 embeddings to embed the ar-
ticles from Estonianground and the Latviantrain
articles in a common, multilingual space.

2. For each article Ei ∈ Estonianground collec-
tion, we select k ∈ {1, 100} closest Latvian
articles (based on the Euclidean distance, ef-
ficiently computed via a KD-tree (Bentley,

1Delfi is one of the biggest news portals in Estonia and
Latvia, many other media outlets (some of which contributed
to the original dataset) often cite this source.

1975) structure), obtaining a collection of
Latvian articles LEi,k for each article of the
Estonianground articles.

3. Finally, we join all of the sets LEi,k

from the previous step, obtaining the final
Latvianextracted@k - Latvian extracted set of
articles.

At the end of this step, for a given k, we obtain
a collection of training articles. The number of
articles in the Latvianextracted@k, for a chosen k is
shown in Figure 2.

Figure 2: Distribution of articles for given k-
neighborhood.

To evaluate the mapping, the Mean Reciprocal
Rank (MRR) between the mappings of Estonian to
Latvian articles, and vice-versa, were computed for
the 21 pairs, where we obtained an average MRR
of 66.67%. Even if the linking is incorrect, we
assume that even when we do not retrieve the exact
match, the articles in the identified neighborhood
k still represent a neighborhood of potentially
interesting source articles.

4.1.2 Validation Set of Manually Labeled
Positive and Negative Examples

For positive examples, we used the 21 manually
identified interesting Latvian news 21P (see Sec-
tion 3). However, no negative examples were pro-
vided. Therefore, we extracted five random arti-
cles for every Latvian article in the 21P collection,
obtaining a list of 105 articles. A journalist from
Ekspress Media manually checked the list and iden-
tified 38 articles as unimportant for retrieval. We
denote these articles as NL. We combined the 21
Latvian examples from the 21P collection with the
38 negative articles from the NL set, forming a
validation set V.
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Figure 1: Summarization of our data-acquisition approach.

4.1.3 Experimental Data
We used the following experimental data sets, con-
structed as explained above:

• The training set Latvianextracted@k consisting
of the mapped Latvian k-neighborhood arti-
cles obtained for every Estonianground article.
Figure 2 represents the distribution of articles
per various k.

• The validation set V consists of 21 positive
and 37 negative Latvian examples. The val-
idation set was used to set the classification
threshold and evaluate the auto-encoder net-
work, as presented in Section 4.2.

4.2 Learning
We postulate that articles of interest share similar
representation patterns. To investigate this hypoth-
esis, we use a set of k Latvian articles from the
Latvianextracted@k set to learn representations us-
ing deep auto-encoder network architectures. We
experiment with several deep auto-encoder net-
work architectures to identify the most effective
approach. The core concept of the network is to
take the original representation of an article, de-
noted by Li, and encode it into a lower dimension,
obtaining a compressed intermediate representation
denoted by CLi . The encoder part of the network
performs the encoding, while the decoder learns to
reconstruct the code back to the original represen-
tation, yielding a reconstructed representation de-
noted by L∗

i . By learning these representations, we

can better understand the common patterns shared
by articles of interest and use this knowledge to
improve our retrieval method.

4.2.1 Hyperparameters
We consider using two types of networks for our
auto-encoder-based neural network: regularized
and non-regularized. To embed the articles, we
use the XLM-r-distilRoBERTa-base-paraphrase-v1
model from sentence-transformers (Reimers and
Gurevych, 2019), which converts them to 768-
dimensional vectors that serve as input. Our en-
coder architecture has five layers with 512, 256,
128, 64, and 32 dimensions, while the decoder re-
verses the same architecture. We use the ReLU
(Nair and Hinton, 2010) activation function be-
tween layers for all architectures. Figure 3 illus-
trates the architecture setup.

We optimize our network by using the Mean
Squared Error between the reconstructed (L∗) and
original (L) representations as the loss function,
with the Adam optimizer (Kingma and Ba, 2014)
and a learning rate of 0.001. We train for up to
1000 epochs and stop early if we don’t improve the
validation score in 10 consecutive epochs.

4.2.2 Classification Settings
The auto-encoder outputs the reconstructions of
the original input and cannot be used directly for
classification. However, in many imbalanced classi-
fications (Zhang et al., 2016) and outlier detection
(Chaurasia et al., 2020) problems, the auto-encoder
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Figure 3: Architecture configuration. The encoder and
decoder consist of the same architecture.

is used to prioritize outputs based on its reconstruc-
tion error (via thresholding). We use the following
scoring function:

g(L∗, L, t) =

{
1 cosineSimilarity(L∗, L) ≥ t;

0 otherwise;

where L∗ is the reconstructed and, L is the origi-
nal representation. The classification threshold is
denoted by t. To classify an example after a net-
work is trained, we first reconstruct it through the
network and apply the classifying function g.

4.2.3 Threshold Learning
In each learning epoch, we reconstruct the valida-
tion examples from the set V , which includes 21
positive and 37 negative gold standard examples.
This produces a list of reconstructed articles, de-
noted by V ∗. Then, we measure the reconstruction
errors and create a list of errors Rk,e, where k de-
notes the population size and e denotes the epoch.

To determine the classification threshold, we
search the grid with a step size of 0.01, denoted
by stepRange = [min(Rk,e),max(Rk,e)]. We test
each step value as a potential threshold value t. We
apply the classifying function g with t and compute
the weighted F1-score of the classified reconstruc-
tions. We select the t value that yields the optimal
F1 score. Formally, we choose t such that:

argmax
t∈stepRange

[
F1-score

(
(g(V ∗, V, t), gold-standard)

)]

This process enables us to determine the clas-
sification threshold that maximizes the F1-score
for the reconstructed articles in the validation set,
thus providing an effective means for classifying
the reconstructed articles.

Figure 4: Distribution of F1-scores for the optimal
threshold parameter at given k-neighborhood.

The non-regularized Model32 outperformed the
regularized model. Table 1 lists the parameters
and evaluations. The model achieved2 weighted
F1-score of 0.81, recall-score of 0.8103, precision
score of 0.8087 and accuracy of 0.8103. Figure
4 represents the effect of the training size to the
validation score. The confusion matrix for the best-
performing validation is listed in Figure 5.

Although the approach necessitates the utiliza-
tion of negative examples for acquiring the opti-
mal threshold, its purpose is to "regularize" the
auto-encoder within the latent space. This ensures
that the method doesn’t retain specific events in
memory but instead contributes to a more effective
regularization process.

Figure 5: Confusion matrix of the best-performing vali-
dation.

5 Evaluation

We evaluate the method in two scenarios, manual
and automated. In both systems, we use the test-

2True-negatives = 32, False-negatives = 6, False-positives
= 5, True-positives = 15

85



Name Type train-size k-neigh threshold epoch F1-score Yes Maybe No
Model32 Non-regularized 712 10 0.6035 11 0.8093 2 2 6

Model32D Regularized 1951 32 0.5961 5 0.7608 0 2 8
Baseline Randomized x x x x 0.4967 0 0 10

Table 1: Summary of the settings and evaluations for the best-performing networks. The optimal threshold is shown
in the threshold column, followed by the number of epochs trained in the epoch column. Finally, the F1-score
represents the validation score, followed by the manual evaluations (YES/MAYBE/NO). The human evaluator carried
out the evaluations.

ing data for retrieving the top-ranked articles as
interesting and relevant.

5.1 Manual Evaluation

We retrieved the top 10 articles (20 in total) in two
different network settings and compared them to a
baseline (10 randomly chosen articles). To assess
the task, we use two different network configura-
tions and a baseline:

• Model32, non-regularized network

• Model32D, regularized network

• Baseline, a random selection of articles sent
to the evaluator. We consider the majority NO
in the F1-score.

The testing data set consists of 1339 articles,
which are input to our network and the reconstruc-
tion error is measured. The top-10 reconstructed
articles with the smallest reconstruction errors are
considered potentially interesting and sent to a jour-
nalist expert.

A journalist at Ekspress Media manually eval-
uates the retrieved articles in the categories intro-
duced in (Koloski et al., 2021), i.e., YES - the article
is definitely relevant, MAYBE - the article is rele-
vant to some extent and NO - the article is of no
relevance. The results are described in Table 1. The
journalist found two articles of definitive relevance
and 2 of possible relevance for retrieval in the best
settings. Given that the problem is difficult, i.e., re-
trieving very special articles from a large set of all
articles, the results still indicate that for Model32,
40% of the articles are potentially interesting. This
is slightly lower than the results of (Koloski et al.,
2021), wherein the best setting, one more article,
was labeled as MAYBE. Of the 30 articles we sent
for evaluation to the human evaluator, two were
chosen as interesting, four as MAYBE, and the
remaining as not interesting.

5.2 Automated Evaluation

This subsection demonstrates that our method per-
forms better than random article retrieval. We first
create a test set comprising of 21P labeled Latvian
articles and the Latviantest set for automatic evalu-
ation. Next, we run an auto-encoder and measure
the reconstruction errors without applying thresh-
old classification. Then, we sort the articles by
their reconstruction scores and search for the 21P
relevant articles while retrieving the top-k articles.
We use Model32 to calculate the recall@k to as-
sess the performance, treating the 21P articles as
the gold standard. We also establish a baseline us-
ing random scoring of articles, where we randomly
shuffle the articles in the test set and conduct 106

random evaluations. As shown in Figure 6, the
results suggest that our method outperforms the
random retrieval method for identifying interest-
ing articles for Estonian readers. Therefore, our
method shows promise for further investigation
and improvement in the future.

0 200 400 600 800 1000 1200
0.0

0.2

0.4

0.6

0.8

1.0 random-recall@k
recall@k

Figure 6: Recall comparison of the distributions. X-axis
showcases the number of documents k, while y-axis
shows the cumulative recall (recall@k).

6 Conclusion and further work

In this work, we have developed an auto-encoder-
based approach for detecting and retrieving cross-
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border news. The method is trained unsupervised,
given news datasets in two languages, relevant and
non-relevant articles, and potential media houses
hot words. The approach is shown to retrieve ar-
ticles with 40% relevance, as evaluated manually
by a media expert, and outperforms random-based
approaches through recall@k evaluation.

For further work, we suggest exploring the sig-
nificance of certain topics and keywords in a given
time window, hypothesizing that story/topic rel-
evance is time-dependent. We also propose ex-
ploring a term-matching approach that considers
named entities and keyword matching to rank the
relevance of an article. Lastly, we suggest investi-
gating how combining the SNIR and auto-encoder
as a weighted rank score could improve retrieval
quality. To improve the relevance of retrieved arti-
cles, future work could explore the use of user feed-
back and relevance feedback mechanisms (such
as RLHF). By incorporating user preferences and
feedback, the system may be able to better tailor
its results to the needs and interests of individual
users.

Availability

The code required to replicate the experiments can
be found at the following link: https://github.com/
bkolosk1/reconstruct_to_retrieve.
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Abstract 

To understand the global trends of human 

opinion on climate change in specific 

geographical areas, this research proposes a 

framework to analyse linguistic features 

and cultural differences in climate-related 

tweets. Our study combines transformer 

networks with linguistic feature analysis to 

address small dataset limitations and gain 

insights into cultural differences in tweets 

from the UK and Nigeria. Our study found 

that Nigerians use more leadership 

language and informal words in discussing 

climate change on Twitter compared to the 

UK, as these topics are treated as an issue 

of salience and urgency. In contrast, the 

UK's discourse about climate change on 

Twitter is characterised by using more 

formal, logical, and longer words per 

sentence compared to Nigeria. Also, we 

confirm the geographical identifiability of 

tweets through a classification task using 

DistilBERT, which achieves 83% of 

accuracy. 

1 Introduction 

The IPCC reported in 2022 that climate change is 

currently impacting all inhabited regions 

worldwide, with human activities contributing to 

many observed changes in physical and biological 

systems (IPCC, 2022). The electronic data 

produced by internet users during climate-related 

events can offer valuable insights into how 

different geographic areas perceive the risks 

associated with climate change (Vicari et al., 

2019). However, intercultural dialogue and 

discourse are increasingly being studied in 

linguistics, as culture is seen as a fundamental 

aspect of human activity (Hong et al., 2003). One 

such area of study is conversation culturomics, 

which uses language analysis to understand human 

culture and can help conservationists respond to 

cultural trends while staying socially relevant. 

Previous research by Ladle et al. (2016) identified 

ways in which this analysis can be useful, such as 

assessing the cultural impact of conservation 

interventions and promoting public understanding. 

Our research aims at contributing to the 

comprehension of the interactions that exist across 

the UK and Nigeria by analysing and identifying 

linguistic features that each group uses to 

communicate the climate change narrative and 

therefore gain insights into the factors that shape 

these opinions and identify areas where more 

education and conservation interventions are 

needed. This is relevant as previous research by 

Diehl et al. (2019) highlighted a focus on 

Anglophone culture in studying climate change 

and conceptions on social media. Therefore, this 

study's inclusion of African perspectives 

contributes to the overall understanding of cultural 

differences in climate-related discourse. 

       In this paper, we use linguistic feature analysis 

supported by transformer networks to enhance 

classification performance and generate insights on 

cultural differences in climate-related discourse. 

Seen as only roughly 2% of Twitter data is geo-

tagged (Karami et al., 2021), our study is based on 

a small dataset, and we look to overcome the 

limitations of data sparsity when analysing specific 

cultures through the inclusion of linguistic and 

socio-cultural features. 
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2 Related Works 

Researchers have contributed to the field of NLP 

by providing a wide range of approaches and 

techniques for analysing and predicting sentiments. 

Recent research by Tyagi et al. (2020) proposed a 

framework to examine the conversations on 

climate change between two communities on 

Twitter, namely activists and sceptics. The 

framework compares users' hashtags, bot 

percentage, and messaging to understand the 

differences between the communities. The study 

found that sceptics' messages focused more on 

attacking personalities, while activists' messages 

aimed to call for action against climate change. In 

addition to polarising tweet users, social media 

have been used to analyse emotions in tweets.  

Loureiro and Alló, (2020) studied climate policy 

opinions on Twitter in the UK and Spain. Results 

show UK sentiment is more positive, with 

anticipation prevailing, while fear is dominant in 

Spain. Gender analysis also indicates higher male 

tweeting in both countries, yet Spain demonstrates 

a more balanced gender distribution. Also,  Hannak 

et al. (2012) research investigated sentiment 

patterns in tweets, particularly weather and time's 

impact on aggregate sentiment, and evaluated how 

clearly the well-known individual patterns translate 

into population-wide patterns. Machine learning 

techniques with weather-correlated tweets shows 

aggregate sentiment follows distinct climate, 

temporal, and seasonal patterns. 

      Furthermore, Chen et al. (2019) used deep 

neural networks to detect climate change skeptics 

from tweet content and analyzed Twitter's climate 

change discussions and influencing factors over 

time. They created a neural network model with an 

88% accuracy in identifying deniers. Extreme 

weather events and policy shifts were noted to 

influence public interest and attitudes toward 

climate change. 

  Studies that systematically explore 

intercultural differences are rare. Liu and Zhao, 

(2017) show that NGOs in China typically work to 

frame climate change within national Chinese 

context, to highlight the relevance and impact for 

all Chinese people. This common perspective is 

typical in collectivist cultures (Diehl et al., 2021). 

In contrast, African NGO outlets often frame 

climate change discourse in terms of increased 

agricultural hardships and social hardships and 

place an emphasis on educating citizens on the 

matter (Ford et al., 2015). Education is also a topic 

in other Asian countries, including Afghanistan, 

Bhutan, Kiribati, Nepal, and Tuvalu, where NGOs 

additionally work towards implementing adaptive 

strategies to climate change risks and increasing 

scientific scholarship (McGregor et al., 2018). All 

these studies are based on social science 

methodology and often rely on extensive manual 

annotation. In this paper we want to explore how 

linguistic features can overcome the burden of 

annotation. Also, Schäfer and Painter, (2021) 

contrast climate journalism in the global north and 

south. The authors find that while climate coverage 

has changed globally over the last decade to move 

increasingly online, there are fewer journalists who 

specialise specifically on climate in the global 

south, which impacts public information in those 

regions accordingly. 

      This paper proposes a new method to analyse 

linguistic features and cultural differences in 

climate-related tweets. Our study combines 

transformer networks with linguistic feature 

analysis to address small dataset limitations and 

gain insights into cultural differences. We conclude 

by highlighting the importance of understanding 

cultural differences, particularly in the 

Nigerian/African perspective, in climate discourse 

to facilitate effective action against climate change. 

The focus on the Nigerian/African perspective 

adds a novel contribution to the existing literature. 

3 Methodology 

3.1 Data Collection and Curation 

 

Key 

words 

Nigeria UK 

“climate 

change” 

“my believe is 

that climate 

change will 

eventually lead to 

lives extinction” 

“net zero is a hoax 

that nobody is falling 

for manmade climate 

change is a lie and is 

impossible” 

“global 

warming

” 

“climate change 

global warming is 

a scam tho” 

“yes to solve global 

warming is not about 

carbon banks and not 

filling ones kettle 

society will have to 

take look at itself and 

decide what kind of 

future we our children 

and grandchildren will 

have” 

 

 
Table 1: Sample tweets across Nigeria and UK based on 

key words. 
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Twitter has provided a wealth of data for analysis 

with 1 billion monthly visitors and 313 millions 

active users (Li et al., 2013), including topics such  

as climate change. Therefore, the datasets for this 

research were gathered from the Twitter API 

between September 2010 to April 2023. Tweets 

were filtered based on the key words shown in Table 

1. 

      A total of 81,507 tweets were collected for the 

analysis, comprising 44,071 from the UK and 

37,436 from Nigeria. Also, only English-language 

tweets (since the English set is the focus of this 

project) were kept. These are identified by running 

the tweets through a langdetect algorithm (a model 

that identifies the language used in the text within 

the specified range). 

3.2 LIWC 

Our study uses Linguistic Inquiry and Word Count 

(LIWC-22) to perform linguistic analysis on geo-

tagged data collected from Twitter. LIWC-22 is a 

software developed by Boyd et al. in 2022. It 

analyses word use within a text and calculates the 

percentage of word use for certain linguistic 

categories. A study in Indonesia had previously 

used LIWC to filter names from tribe, religion, and 

race and observed that the use of names is mostly 

followed by negative sentiments (Adi and Eka, 

2021). This paper uses LIWC to investigate the 

linguistic differences in climate change discourse 

in English tweets from the UK and Nigeria. The 

LIWC analysis produced 124 variables of word 

categories, and the top 20 variables with the highest 

variance were selected for further analysis. In 

addition to linguistic features, valence (degree of 

positiveness or negativeness) was also calculated 

using VADER (Valence Aware Dictionary for 

sEntiment Reasoning), a sentiment analysis tool 

commonly used for analysing social media data 

(Hutto, 2022). 

3.3 Classification Task 

Our study proposes a transformer network to 

classify country distribution based on geo-tagged 

tweets to verify the geographical origin of the 

tweets. As fine-tuning BERT can be challenging 

due to its complex structure and parameters, we use 

DistilBERT created by Sanh et al. (2020), a 

compressed version with fewer parameters that is 

easier and faster to fine-tune with moderate 

resources. The study explores the use of 

DistilBERT in pre-training and fine-tuning to build 

the model.  

4 Results and Discussion 

4.1 Linguistics Feature Analysis across 

Nigeria and UK 

For each tweet, we take the average of the valence 

and LIWC values of each of the words in the tweet 

 Description Niger

ia  

UK  p-

val

ue 

Valence Positiveness-

negativeness 

0.17 0.13 <0.

000

1 

     LIWC 

variables 

   

Tone Degree of 

positive 

(negative) 

tone 

 

41.51 
40.48 <0.

000

1 

Authentic Perceived 

honesty, 

genuineness 

31.79 31.49 >0.

000

1 

Clout Language of 

leadership, 

status 

58.14 31.49

0 

<0.

000

1 

Analytic 

thinking 
Metric of 

logical, formal 

thinking 

72.96 75.13 <0.

000

1 

Linguistic

s 
Linguistics 

dimensions 

45.78 46.86 <0.

000

1 

Pronoun I, you, that, it 7.53 6.92 <0.
000

1 

Determin

ants 
the, at, that, 

my 

9.05 9.51 <0.

000

1 

WPS Average 

words per 

sentence 

28.88 31.46 <0.

000

1 

WC Total word 

count 

28.88 31.46 <0.

000

1 

Cognitio
n 

 

Social 

Psychological 
processes (is, 
was, but, are) 

Social 

processes  

9.25 

 

 

9.32 

8.84 

 

 

7.61 

 

 

 

<0.

000

1 

<0.

000

1 92



 
 

Big words Percent 

words 7 

letters or 

longer 

27.61 28.10 <0.00 

01 

 

Cogproc Cognitive 

processes 

(but, not, 

if, or, 

know) 

8.34 7.93 <0.00 

01 

 

Perception in, out, 

up, there 

7.86 8.37 <0.00 

01 

 

Verb is, was, 

be, have 

9.88 9.57 <0.00 

01 

 

Dictionary 

words 

Percent 

words 

captured 

by LIWC 

64.69 64.76 >0.00 

01 

 

Function the, to, 

and, I 

35.09 35.26 >0.00 

01 

 

Adjective more, 

very, 

other, 

new 

5.34 6.37 <0.00 

01 

 

Preposition to, of, in, 

for 

10.53 10.76 <0.0001 

 

Allure have, 

like, out, 

know 

5.82 5.13 <0.0001 

 

text. The average of the variables was computed at 

the country level. Table 2 displays the valence and  

20 selected variables for the study, with the highest 

value being highlighted, and presenting the 

distribution p-value for each. We observe the 

average valence of Nigerian tweets is higher (more 

positive) than the tweets from the UK. 

4.2 Interpretation of Findings 

According to the study, Nigerians tend to use more 

leadership language in climate change discourse on 

Twitter compared to the UK, which may be due to 

cultural and social norms. Nigerian culture places 

more emphasis on leadership and authority figures, 

given the country's political instability and history 

of leadership challenges in climate change and 

environmental degradation (Uyigue and Agho, 

2007).  As a result, climate-related tweets in 

Nigeria may be targeted toward government 

officials or policymakers, leading to the use of 

more leadership language to convey a sense of 

urgency and importance. Examples of tweets to 

support this claim are “save niger delta 

environment from pollution extinction of sea foods 

activist pleads portharcourt the federal 

government and indeed the people of the niger 

delta have been urged to pull resources together 

amp save the region s environment from further 

pollution” and “climateaction requires significant 

investments by governments and businesses but 

climate inaction is vastly more expensive lets all 

unite to take climate actions now”. In addition to 

leadership, Nigeria's vulnerability to the impacts of 

climate change may be reflected in the use of 

emotional and informal language when discussing 

climate-related matters (Adelekan, 2010), making 

such issues more salient and urgent to them. Also, 

the study finds that Nigerian climate-related tweets 

have a higher frequency of verbs and pronouns 

compared to UK tweets. This may be because 

leadership is often expressed through specific 

linguistic features in text, such as the use of certain 

pronouns and verbs. (Tweets above use verbs such 

as ‘save’, ‘take’ which could be an attempt to 

convey a sense of urgency to the government). 

Furthermore, cognitive terms like “but”, “if”, etc, 

and social terms like “you”, “we”, “he”, etc, are 

also higher in tweets from Nigeria compared to the 

UK.  

       The study finds that the discourse about 

climate change on Twitter in the UK is 

characterised by using ‘bigger’ and more 

formal/logical words, frequent use of adjectives 

and prepositions, and longer words per sentence 

compared to discourse from Nigeria. This 

difference could be attributed to the demographics 

of the authors of tweets, including NGOs and news 

outlets with more technical knowledge in climate 

science or related fields. This results in the use of 

specialised and technical lexicons, which is more 

evident in the UK than in Nigeria. Examples of 

tweets to support the claim are “discovering 

different life perspectives could be just around the 

Table 2: Description of variables, average valence, 

LIWC scores, and p-value at country level. 
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corner join climate solutions book club to make 

new friends from around the world and start 

exploring we read one book a month on climate 

change and then meet up on zoom to discuss https” 

and “human tiger conflicts seen to rise as migrants 

move into nepal national park conservationists 

raise concerns that the growing human presence in 

the chitwan district will pose additional challenges 

to conservation efforts https” Additionally, the 

cultural emphasis on politeness and formality in the 

UK could also influence language use on social 

media (Sifianou, 1999). Another possible factor is 

that the urgency of climate change issues may not 

be as immediately felt or apparent in the UK as the 

nation is developed and her government is more 

proactive in addressing climate change policies 

compared to the Nigerian government, leading to a 

more detached and analytical discussion (O’Neill 

and Nicholson-Cole, 2009; Loureiro and Alló, 

2020; Vu, 2020). 

      To further investigate individual differences in 

formal and informal language use, a cluster 

analysis was conducted on the dataset using the 

KMeans++ algorithms with 2 clusters, valence, and 

20 LIWC variables as the experimental setup. The 

goal was to further explore formal-informal 

linguistic differences and observe whether clusters 

would automatically divide along this dimension. 

Specifically, we wanted to understand whether UK 

tweets were generally more formal than Nigeria 

tweets, or whether the type of user account that puts 

out a formal tweet is just more frequent in the UK 

than Nigeria. This is in line with research by Hopke 

and Hestres, (2018), who analyse the social media 

coverage during COP 21 (Paris) climate talks by  

different stakeholders. The authors show that while 

idiosyncrasies exist at a national level, pro-climate 

stakeholders, such as mainstream media outlets, 

NGOs, and prominent activists, showed notable 

similarities in the way they communicated about 

climate change and risks across countries and 

continents. Their analysis is manual and based on 

framing but seems in line with our linguistic 

findings. At a more detailed level, these findings 

imply that categorization of tweets using linguistic 

patterns and word use might assist environmental 

stakeholders in gaining knowledge of the target 

location to address scepticism about climate 

change and identify regions that require more 

education and advocacy. 

 

 

4.3 Experimental Results and 

Interpretation (classification tasks) 

For our classification study, we randomly set the 

training size to 80% and we conduct experiments 

using 2 layers, 100 hidden units, dropout of 0.1, 

learning rate of 0.0001, Adam optimisation and 10 

epochs. We achieved 83% of accuracy from the 

DistilBERT model when predicting the originating 

country of a tweet. We present qualitative analysis 

of a set of examples in Table 3. As can be seen, our 

classifier was able to correctly predict the country 

origin of 4 out of 5 non-geotagged tweets, 

indicating its potential use in identifying the origin 

of climate-related tweets.  This can help 

policymakers in promptly addressing climate 

change disasters in specific regions. The model's 

predictions suggest that certain linguistic features 

may have played a role in predicting the country 

origin of tweets. As discussed in section 4.2, use of 

longer and bigger words per sentence is more 

common in the UK's climate-related discourse than 

in Nigeria, and this could have affected the model's 

ability to make accurate predictions. An example is 

the third non-geotagged tweet in Table 3, which 

had longer words per sentence and was wrongly 

predicted as originating from the UK. The accuracy 

of the study's predictions may have been influenced 

by factors such as dataset size, bias in training data, 

20.632 20.237

16.804

23.834

0

5

10

15

20

25

30

Nigeria UK

Tweet classification

Formal and informal tweets

Informal
Formal

Figure 1: A figure showing Tweet classification 

across Nigeria and UK. 
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or other issues. A dataset including tweets from a 

wider variety of countries and regions could help to 

better train the model to recognize linguistic 

patterns that are specific to different cultural 

contexts. Also, testing the model on different types 

of tweets, such as those related to other 

environmental issues or different types of disasters, 

could help to determine whether the model's 

performance is specific to climate-related tweets or 

whether it can be applied more broadly. Therefore, 

further research could be done in those areas to 

optimise the model's accuracy. 

5 Conclusion 

The study employed linguistic feature analysis 

supported by transformer networks to investigate 

cultural differences in climate-related discourse 

between Nigerian and British tweets, aiming to 

identify trends in their respective lexicons. 

Through this approach, we were able to achieve a 
respective baseline classification performance 

and mitigate the limitations of working with small 

datasets. Our findings suggest that studying 

linguistic patterns and word use are crucial areas 

of research in socio-cultural analysis tasks, 

particularly in the classification of tweets based 

on their location. This is particularly useful in 

quickly addressing climate change disasters in 

specific geographic areas, as well as gauging 

public interest in climate change, and 

characterising discourse in different cultures even 

with limited data availability. Our experiments 

with DistilBERT on small data yielded promising 

results, with an accuracy of 83% in correctly 

classifying the country of origin for climate 

discourse tweets.  

     Based on these findings, we could recommend 

that those interested in identifying the country of 

origin of climate discourse tweets using 

linguistics patterns should focus on language that 

conveys a clear positive or negative sentiment and 

complex language in a way that is perceived as 

authoritative. Additionally, while the level of 

analytical thinking and linguistic complexity may 

also be important in predicting the country of 

origin of climate discourse tweets, they may not 

have as significant an impact as the overall 

sentiment and complexity of language. Future 

research will examine tweets in languages other 

than English as well as tweets from other 

countries. In addition to the linguistics pattern, we 

will look at the emotional dynamics surrounding 

climate change in these countries over an 

extended period. 

Limitations 

Although the present research identified patterns 

in the linguistic features of tweets, it only analysed 

English tweets. Therefore, the multilingualism of 

Twitter users should be considered to gain deeper 

insights into linguistic patterns and word use, as 

this can improve the analysis and prediction of such 

patterns. Also, given the scope of this research, it's 

important to acknowledge its limitation in 

definitively establishing whether the observed 

cultural disparities are attributed to climate change 

or general language differences. This opens the 

door for future investigations, potentially applying 

our methods to other disciplines for broader 

insights. Furthermore, given the potential 

limitation that geotagging may lead to a non-

representative Twitter sample, our research's 

utilization of DistilBERT for training becomes 

pivotal in addressing this concern. Thus, the 

integration of non-geotagged tweets into the 

classifier presents a promising direction for future 

Non-geotagged 

tweet 

Actual 

label 

Predicted 

label 

‘i m in love with 

nature’ 

Nigeria Nigeria 

‘no you said there is 

no link and 

deforestation is solely 

a problem for 

overpopulation’ 

UK UK 

‘revealed rampant 

deforestation of 

amazon driven by 

global greed for meat 

https t co’ 

UK UK 

 ‘it is a very good 

season with a lot of 

rain so please plant 

any native flora it will 

be a great service to 

nature here you can 

see the benefits of 

trees biodiversity 

native’ 

Nigeria UK 

 ‘what a nice gift from 

nature why bother it 

greeniewo 

savetheplanet 

gogreenie’ 

UK UK 

 

 

 

Table 3:  Classification performance of non-

geotagged tweet. 
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investigations, effectively addressing potential 

limitations. 
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Abstract

In this work, we investigate cross-lingual meth-
ods for metaphor detection of adjective-noun
phrases in three languages (English, German
and Polish). We explore the potential of min-
imalistic neural networks supported by static
embeddings as a light-weight alternative for
large transformer-based language models. We
measure performance in zero-shot experiments
without access to annotated target language
data and aim to find low-resource improve-
ments for them by mainly focusing on a k-shot
paradigm. Even by incorporating a small num-
ber of phrases from the target language, the gap
in accuracy between our small networks and
large transformer architectures can be bridged.
Lastly, we suggest that the k-shot paradigm
can even be applied to models using machine
translation of training data.

1 Introduction

Metaphors are a phenomenon of figurative lan-
guage where meaning about a more abstract con-
cept is expressed by applying it to a more concrete
domain. According to cognitive linguistic theories
by Lakoff and Johnson (1980), they are systematic
linguistic instantiations of so-called Conceptual
Metaphors. An example of a conceptual metaphor
is EMOTION IS LIQUID, which manifests in ex-
pressions such as bubbly personality, his anger
boiled over and overflowing joy. Other definitions
describe metaphors as novel usages of words, in
which the semantic preference of the syntactic ar-
guments is violated. As an example, to eat prefers
animate subjects and edible objects. The metaphor
The job ate his confidence violates this preference
(Wilks, 1975). Previous studies show metaphors to
make up a substantial portion of natural language1

and heavily influence decision-making in discourse
(Thibodeau and Boroditsky, 2011), making their

1The VUA Metaphor Corpus by Steen et al. (2010) anno-
tates around 12% as metaphoric.

detection a valuable topic in NLP. Since concep-
tual metaphors are based around semantic concepts
and not words, they are shared throughout simi-
lar cultures and can sometimes be directly trans-
lated (Er griff mein Argument an - He attacked
my argument). In other cases, the same concep-
tual metaphor might exist in two languages, but is
lexicalized differently. While a direct translation
of Seine Stimmung war im Keller - His mood was
in the basement could most likely still be under-
stood, a more conventional phrasing would be His
mood plummeted or He was feeling down. There-
fore, metaphor detection across different languages
is an interesting topic worth exploring. However,
most annotated metaphor resources center on En-
glish.

In this paper, we investigate the application
of modern zero-shot methods without access to
annotated target language data for cross-lingual
metaphor detection of adjective-noun phrases in
three different languages. We go on to soften
the zero-shot limitation and measure how smaller
feed-forward models can become competitive to
transformer-based systems, by incorporating a
small number of target language phrases into
the training process. Lastly, we apply the same
few-shot paradigm to improve models which use
machine-translated data and discuss the results.

2 Related Work

Previous works about metaphor detection were
mostly monolingual and supervised. They often
leveraged additional resources, static word embed-
dings and in more recent experiments pre-trained
transformer models (Wilks et al. (2013), Do Dinh
and Gurevych (2016), Choi et al. (2021)). The lat-
ter is currently the most commonly used option.
In a shared task about metaphor detection in 2020
(Leong et al., 2020), more than half of all partici-
pants used some variation of a transformer archi-
tecture. Recent concerns regarding the alternative
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usage of static word embeddings for metaphor de-
tection were also voiced for theory based reasons
(Maudslay and Teufel, 2022). Work addressing
cross-lingual metaphor detection includes Tsvetkov
et al. (2014), where semantic features and word vec-
tors were used to transfer English metaphor knowl-
edge about adjective-noun or verb-subject-object
phrases into Spanish, Farsi and Russian, Schneider
et al. (2022), an unsupervised approach for a trans-
fer from German to middle high German based
on self-trained fasttext embeddings (Grave et al.,
2018) and Sanchez-Bayona and Agerri (2022) who
present first zero-shot results between their newly
created Spanish corpus and the English VUAMC
by Steen et al. (2010) by using XLM-RoBERTa
(Conneau et al., 2019), a transformer based multi-
lingual language model.

This leaves many possible approaches to cross-
lingual transfer-learning for metaphor detection un-
explored. A common way to allow for this trans-
fer in other tasks is machine translation to convert
training data from the source language into the
target language or vice versa (Eger et al., 2018).
Joulin et al. (2018a) provide a lightweight alterna-
tive to bigger transformer models, by aligning static
fasttext embeddings across 44 languages through
a cross-domain similarity local scaling criterion.
While multilingual models do work in zero-shot
scenarios, Lauscher et al. (2020) show the benefit
of shifting to a k-shot scenario, in which small tar-
get language datasets of size k are incorporated into
training. Similarly, Keung et al. (2020a) present
findings which support that using a development set
in the target language can improve performance by
preventing catastrophic forgetting of multilingual
knowledge during training. More recently, Large
Language Models such as ChatGPT2, are used as
zero-shot or few-shot in-context learning systems
(Laskar et al. (2023), Yuan et al. (2023)). ChatGPT
is a model of the GPT-3.5 or GPT-4 series, which is
trained through a reinforcement learning from hu-
man feedback component (Christiano et al., 2017)
and also possesses multilingual knowledge.

3 Task and Data

This paper focuses on binary classification of the
metaphoricity of adjective-noun tuples, since this
setup had the most available data in several lan-
guages. In these phrases, the metaphoric meaning
can stem from the conceptual transfer of either the

2https://chat.openai.com/

Example Inputs Gold Label
wet towel, old man, . . . 0
broken home, cultural barrier, . . . 1

Table 1: Example classification schema for the metaphor
detection task of adjective-noun phrases. 1 indicates a
metaphorical and 0 a literal meaning.

Size %M #adj ppa
DE 1677 25.5 297 5.6
EN 1968 50.0 668 2.9
PL 2052 50.4 241 8.5

Table 2: Comparison of the annotated source datasets.
By measuring the simple attributes share of metaphoric
phrases (%M), number of adjective types (#adj) and
phrases per adjective (ppa), we can show how the dif-
ferent strategies result in different distributions.

meaning of the adjective (stale idea) or the noun
(economic slump). We collected corpora of labeled
phrases big enough for both training and testing in
English, German and Polish. A small sample can
be seen in Table 1.

The English corpus (Tsvetkov et al., 2014) is
balanced for both classes, and consists of metaphor
annotations of the 1000 most common adjectives
and their co-occuring nouns in the TenTen Web
corpus.3 It has been filtered to exclude phrases
which without context can be interpreted literally
and metaphorically (e.g. drowning students).

The German corpus (Sick, 2020) follows the
same annotation procedure as Tsvetkov et al. and
is extracted from the German deTenTen134 cor-
pus. The resulting dataset is not balanced be-
tween classes, but rather reflects the distribution of
metaphoric tokens in natural language. The Fleiss’
κ (Fleiss, 1971) measuring inter-annotator agree-
ment is 0.34. Since this is a low IIA, we filter the
corpus and only include phrases for which at least
4 of the 5 annotators agreed.

The Polish corpus (Mykowiecka et al., 2018)
is constructed by preparing a list of metaphori-
cal phrases and enriching it with additional com-
mon phrases in the National Corpus of Polish
(Przepiórkowski and Patejuk, 2014), using the
same adjectives. After we removed phrases that
were labeled as Both metaphorical and literal,

3https://www.sketchengine.eu/
ententen-english-corpus/

4https://www.sketchengine.eu/
detenten-german-corpus/
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the corpus is almost perfectly balanced (1018
metaphors and 1034 literal phrases).

Due to the similar collection strategies, we
can observe examples of the same concep-
tual metaphors being present in every corpus.
(EMOTIONALLY INDIFFERENT IS COLD: cold jus-
tice, kalte Grausamkeit and zimna kalkulacja). A
comparison of all sources can be seen in Table 2.
To even out the differences in size, we trim every
corpus down to the size of DE, while keeping the
overhang in a separate set for later experiments. We
then perform a 70:15:15 train, dev, test split, result-
ing in 1173 phrases for training and 252 each for
developing and testing. Since we use our own test
splits, we have no previous results from literature
to compare against.

4 Experiments

In this section, we describe a series of binary classi-
fication experiments of our collected phrases. Each
experiment described is conducted for all six possi-
ble combinations of training and test splits of our
three available languages. We prioritize stability
of our results over ideal hyperparameters and aim
to ensure a fair comparison. Therefore, in all fol-
lowing experiments, we incorporate early stopping,
learning rate warm-up and report the average result
of ten majority vote ensembles with seven seeds
each.

4.1 Upper Bound

Previous work for similar semantic tasks have
shown big gaps in performance between cross-
lingual and monolingual set-ups (Nozza, 2021; Hsu
et al., 2019). As an approximation of an achievable
upper-bound for our cross-lingual models, we first
conduct monolingual experiments with language-
dependent BERT variations5 and light-weight, fully
connected feed forward neural networks, using fast-
text word embeddings6.

4.2 Zero-shot Models

The cross-lingual zero-shot experiments of this sec-
tion are defined by the absence of annotated target
language examples in the training dataset. We com-
pare models of three different categories for cross-
lingual zero-shot metaphor detection. The first

5All BERT variations are finetuned with a learning rate of
2e-5 and Adam’s epsilon of 1e-8 for 8 epochs

6All our fasttext networks consist of three hidden layers
(h1 = 300, h2 = 150, h3 = 50), with a dropout chance of
5% and are trained for 5 epochs.

category consists of networks powered by aligned
fasttext word embeddings by Joulin et al. (2018b).
We train three additional variations of this architec-
ture:

• fasttext+TrTr and fasttext+TrTe, with trans-
lations of the training data into the target lan-
guage or the test data into the source lan-
guage.7

• fasttext+TarDev which employs a develop-
ment set in the target language as proposed by
Keung et al. (2020b). Using a development set
in the target language can enable a checkpoint
selection that best suits the test data.

The second category encompasses the two mul-
tilingual pre-trained transformer models MBERT
(Devlin et al., 2018) and XLM-R8, which are fine-
tuned on the source language for the classification.

The final category describes a set of experiments,
utilizing ChatGPT 9 as a classifier via prompting:

• ChatGPT is not given any additional infor-
mation.

• ChatGPT+ex is provided with 20 random
examples from the source language’s training
split before (In-Context Few-shot Learning)

• ChatGPT+MIP is provided with the (trans-
lated) Metaphor Identification Procedure by
Group (2007) and asked for corresponding
annotations (In-Context Instruction Learning)

Example prompts for all three ChatGPT methods
can be found in the Appendix.

4.3 k-shot for Fasttext Models
Just as proposed by Lauscher et al. (2020), in
this series we relax the zero-shot limitation to ex-
plore an inexpensive approach of mitigating the
gap between cross-lingual and monolingual perfor-
mance. We incorporate k randomly sampled data
points from the target language’s training, devel-
opment or overhang data into the training process
of the fasttext baseline. This sample is different

7We use the neural machine translation Amazon Translate,
provided by the Amazon Web Service. It has to be noted that
using a big NMT service such as Amazon Translate adds a
hidden compute to all related experiments.

8XLM-R is finetuned with a learning rate and Adam’s
epsilon of 10e-5 for 6 epochs

9GPT-3.5 model of the May 3, 16k version with a tempera-
ture of 0.05
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huggingface
transformer model

BERT
ACC

fasttext
ACC

DE german-bert 80.5 79.3
EN bert-base 88.9 83.7
PL dkleczek/bert-base-polish-uncased-v1 85.9 86.9

Table 3: For each language, the used monolingual
BERT model from the huggingface model hub and the
accuracies produced by said monolingual BERT’s exper-
iments and the monolingual experiments using fasttext
word embeddings.

for each seven seed ensembles and each set of size
k is a subset of another set of a larger k. We re-
port results for k ∈ {0, 10, 25, 50, 100, 200, 1173},
where k = 1173 shows the maximum achievable
effect by including the whole training split of the
target language.

4.4 k-shot for Translated Train Models

Lastly, we examine if even transformer-based
language models, which are supported by ma-
chine translation, can still benefit from the k-shot
paradigm. For this, we finetune monolingual BERT
models in the target language on the translated train-
ing data as our k = 0 baselines. We then add addi-
tional k phrases of the training, development and
overhang split of the target language. These are un-
translated and authentical data points. To contrast
their effect to the addition of more translated train-
ing data, we use the test split of the source language
dataset to also finetune models with additional k
translated phrases.

5 Results

In this section, we present the results of the experi-
ments we conducted. For all of them, we report the
accuracy on the test sets.

5.1 Upper Bound

Table 3 contains the results of the monolingual
experiments. Overall, the BERT baselines outper-
form the fasttext model and the German dataset
yields the lowest accuracy. However, this mainly
serves as a potential upper-bound for the upcoming
cross-lingual experiments.

5.2 Zero-Shot Models

Table 4 displays the accuracy of all zero-shot mod-
els. Generally, accuracy of all zero-shot systems
varies across language pairs and models, with the
inclusion of the German dataset seemingly often
leading to worse results. Across all systems and

DE
->EN

DE
->PL

EN
->DE

EN
->PL

PL
->DE

PL
->EN

avg.

fasttext 48.2* 60.0 63.6 68.3 59.0 62.9 60.3
fasttext+TrTr 59.9 65.8 47.6* 72.2 63.1 68.6 62.8
fasttext+TrTe 44.4* 55.1 56.7 65.4 60.7 68.6 58.4
fasttext+TarDev 48.1* 59.9 65.4 68.2 59.5 62.3 60.5
XLM-R 59.3 60.8 62.5 67.3 49.5* 74.6 62.3
MBERT 60.2 63.0 66.3 66.8 49.4* 68.0 62.2
ChatGPT 57.1 63.1 62.6 63.1 62.6 57.1 60.9
ChatGPT+ex 56.7 63.1 55.1 68.6 53.1 48.0* 57.4
ChatGPT+MIP 77.3 65.0 57.9 65.9 56.0 74.6 66.1

Table 4: Report of all the zero-shot baseline systems
for every available language pair and the average across
all language pairs. For ChatGPT, there is no actual
source language from which we transfer knowledge to
a target language. Therefore, the results for the two
source languages are always identical. We mark every
model worse than a random baseline with *.

languages, ChatGPT+MIP performed the best and
achieves an average accuracy of 67%. On average,
the other transformer models were able to outper-
form the plain fasttext architecture, albeit not for
every language pair. When utilizing machine trans-
lation however, the models with translated training
data nullified the gap to the transformer models in
almost every pair, while the models with translated
test data became worse overall. How dependent
this behaviour is on the used translation service
was not examined. We also observe that the inclu-
sion of a development set in the target language
does not bring a notable improvement to our fast-
text architecture. This could be due to the small
training data size, where not enough meaningfully
different checkpoints are available for choosing. It
is important to mention that all three of the cate-
gories feature models which performed worse than
a random baseline. Models based on ChatGPT also
display peculiar behaviour, with the additional in-
formation through examples of a source language
seemingly weakening its predictive power. As ex-
pected, a comparison of Table 3 and Table 4 shows
that transfer-learning across languages leads to a
strong drop in performance for this task.

5.3 k-shot for fasttext Models

Figure 1 displays heatmaps of the change in ac-
curacy for all language pairs for rising k. Iden-
tically to the findings of Lauscher et al., we can
observe a static incline of accuracy with rising k.
Combinations that performed poorly in zero-shot
rapidly improve, even for small values of k. On av-
erage, fasttext outperforms MBERT and XLM-R at
k = 25 and even our best ChatGPT+MIT model for
k = 100. Comparisons of k = 200 and k = 1173
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Figure 1: Heatmaps of accuracy across language pairs
and the average across all pairs for rising values of k for
vanilla fasttext models

Figure 2: Learning curve of all language pairs for in-
creasing source language training set size and additional
k-shot data. The vertical line signifies the initiation
of adding k-shot points to the complete training data
set. Ten models area averaged for the reported accuracy
score.

show that by only using 17% of the target language
data, we can already obtain more than half of its
potential increase in accuracy.

Another visual representation of the effective-
ness of softening of the zero-shot limitation can
be seen in Figure 2. The plot shows every avail-
able language pair’s learning curve. By starting at
an empty set and continuously adding data points
of the source language to the training data set, it
can be measured how much a model profits from
more training data from that source. After adding
the whole training data set, we then shift to further
adding k-shot points. The vertical line indicates the
point of this shift. It is evident that every model’s
learning curve slope gets steeper when switching

Figure 3: Comparison of accuracy across language pairs
for rising values of k. Using the monolingual BERT
models listed in Table 3 and additional translated train-
ing data (dashed line) or authentic data from the target
corpus (solid line).

to the k-shot paradigm. This applies to pairs where
the accuracy appears to plateau (EN → PL, PL →
EN), to DE → EN, which seems to not improve
at all and is outperformed by a random baseline,
and to models which were past their stronger initial
incline, but were still slightly improving.

5.4 k-shot for Translated Train Models

The zero-shot models of this experiment, while be-
ing not as light-weight due to the compute of BERT
and the NMT, are roughly comparable to fasttext’s
k = 100 and k = 200 models in accuracy. The
overall best models presented in this paper were
obtained by this method for k = 50 for authentic
k-shot, reaching an average accuracy of 73.47%.
When comparing both methods in Figure 3, we can
note that the models do not noticeably improve by
additional translated training data. The same does
not apply to the k-shot set of authentic data, where
we observe a similar improvement to the k-shot
experiments with fasttext - stronger improvements
for models with worse performance in zero-shot.

6 Discussion

Impact of Machine Translation By looking at
our translated data, we try to explain why the trans-
lation based zero-shot BERT experiments benefited
more from the translations than the fasttext base-
lines. By our choice of method, we end up with
translations of individual data points where the two
word adjective-noun pair structure is lost (warmer
Milchschokoladenton to warm milk chocolate tone,
crushed stone to Schotter). By automatically POS-
tagging the translated test data with spaCy (Honni-
bal and Montani (2017)), we measure these devia-
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Figure 4: Distribution of abstractness/concreteness from
the ratings provided by (Köper and Schulte im Walde,
2017) for the different corpora, separated into adjectives
(top row) and nouns (bottom row). Words are rated on
a scale of 0 to 10. Lower scores are given to abstract
words (irresponsibly), higher to concrete words (razor
blade).

tions in syntactic structure. Depending on language
pair and direction, they make up between 7.5% and
38.4% of the translations. In general, length dif-
ference of the translations is less of a problem for
the scalable transformer models, than for our 600
dimensional, fixed length neural network. This
can be circumvented by using recurrent neural net-
works. Analogue to our findings of preferring sim-
ple models to large ones for this task, the same
could possibly apply to the translation methods,
since statistical or dictionary based methods could
lead to less deviation in syntax and therefore to
better results. This deviation can also explain how
our models profit more from the authentic k-shot
data, since it better represents the test data. We also
observed the NMT already implicitly performing
metaphor detection to better lexicalize concepts in
the target language (schwieriger Spagat to difficult
balancing act instead of a less conventional diffi-
cult split for the conceptual mapping LIFE IS A
SEQUENCE OF MOTION).

Performance Difference Between Languages
In order to try and explain the differences in per-
formance for the individual language pairs, we
investigated the semantic composition of the cor-
pora. Using abstractness/concreteness ratings from
Schulte im Walde (2022), we display the distribu-
tion of abstractness for the adjectives and nouns
of our datasets in Figure 4. The DE corpus differs
heavily, by having similar distributions of abstract-
ness for metaphoric and literal words. In compari-

son, EN and PL contain more concrete nouns in lit-
eral and abstract nouns in metaphoric phrases. This
is more in line with work by Turney et al. (2011),
Tsvetkov et al. (2013) and Schulte im Walde (2022),
where abstractness served as a classification fea-
ture and can serve as an indicator for the lower
performance on the German test set.

Impact of k-shot Selection To gain insight into
the effect of the selection of the k datapoints, we
look at the performance of individual ensemble
seeds with different k-shot sets. We investigate
the intuitive connection between the seed’s perfor-
mance and the coverage of the test set adjectives
by the k-shot data and show an exemplary scatter
plot for our fasttext model and EN → PL in Figure
5. While larger values of k lead to a better perfor-
mance and also naturally to a higher coverage of
adjectives, when looking the distribution inside a
cluster of k, there seems to be no strong connec-
tion. This makes the k-shot paradigm robust, since
no knowledge about the word content of the test
dataset is therefore needed. The plot also shows
the k-shot data to improve both the detection of
metaphors and the detection of literals. It is worth
noting that the variance in performance appears
to be higher for smaller values of k, with some
poor performing outliers, while higher values of k
produce more stable results.

Multiple efforts have been made to enhance the
selection of k-shot data, similar to Lauschers se-
lection based on length. Experiments based on
attributes such as class label, frequency, distance
of the data points in the vector space or other small
handcrafted feature vectors were all unreliable and
too dependent on the language pair and k. However,
based on the variance in performance for smaller
k, we can not rule out the potential benefit of a
more sophisticated selection process and leave it
for future work.

7 Conclusion and Future Work

The findings of this paper serve to reinforce the
idea that larger language models are not always in-
herently superior at every task and should therefore
not automatically be considered the default choice.
We have shown how primitive fasttext models can
be competitive with large transformer based lan-
guage models for syntactically trivial but semanti-
cally complex tasks such as cross-lingual metaphor
detection of adjective-noun phrases. Furthermore,
these small models can easily be enhanced to out-
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Figure 5: Scatter plot of the different fasttext seeds for
rising k and exemplary for EN to PL. We distinguish be-
tween the F1 score of literals, metaphors and accuracy.
The points are coloured for k and scattered by their per-
centage of seen adjectives of the test data through the
k-shot data (OL%). Line plots are provided for the aver-
age performance and adjective overlap when including
the whole training data and the average performance for
zero-shot.

perform their substantially larger competitors by
softening the zero-shot limitation and including
small amounts of data from the target language.
Based on our experiments, we recommend using
k-shot data as a quick and cost-effective measure,
over upscaling to a substantially bigger language
model. This has the benefit of a computationally
less demanding training environment, almost imme-
diate results and a more environmentally friendly
model.10 The claim about static word embeddings
being ill-suited for metaphor detection (Maudslay
and Teufel (2022)) can not be validated by our find-
ings, since they performed similarly to the contex-
tualized representations. Additionally, we showed
that the k-shot paradigm can also benefit archi-
tectures utilizing automatically translated training
data.

Investigation of the peculiar behaviour of Chat-
GPT’s dependence on the prompts, as seen in Table
4, would be interesting but was beyond the scope
of this paper. Finally, we leave expanding the k-
shot experiments to sequence labeling for metaphor
detection open for future work.

10Finetuning the BERT models took more than 3 hours,
while our training of our fasttext models concluded after just
30 seconds.
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Appendix

A ChatGPT Prompts

role content

system

You are a multilingual metaphor detection system.
You classify incoming adjective-noun phrases acording
to their metaphoricity. Returning 1 if a phrase is a
metaphor and returning 0 if a phrase is literal.
You return your answers in JSON format,
with the prediction at attribute ’label’.

user

[{"id": 1,"phrase": "grünes Landschaftsparadies"},
{"id": 2,"phrase": "knapper Fragenbogen"},
{"id": 3,"phrase": "jährlicher Fleischverzehr"},
{"id": 4,"phrase": "feine Grilladen"},
{"id": 5,"phrase": "amerikanische Erforscher"}. . . ]

Table 5: Example prompt for the ChatGPT model

role content

system

You are a multilingual metaphor detection system.
You classify incoming adjective-noun phrases acording
to their metaphoricity. Returning 1 if a phrase is a
metaphor and returning 0 if a phrase is literal.
You return your answers in JSON format,
with the prediction at attribute ’label’.

user

[{"id": 1,"phrase": "unreadable face"},
{"id": 2,"phrase": "drowsy heat"},
{"id": 3,"phrase": "turbulent water"},
{"id": 4,"phrase": "smokey eyes"},
{"id": 5,"phrase": "metallic surface"}. . . ]

assistant

[{"id": 1,"phrase": "unreadable face", "label": 1 },
{"id": 2,"phrase": "drowsy heat", "label": 1 },
{"id": 3,"phrase": "turbulent water", "label": 0 },
{"id": 4,"phrase": "smokey eyes", "label": 1},
{"id": 5,"phrase": "metallic surface", "label": 1 }. . . ]

user

[{"id": 1,"phrase": "grünes Landschaftsparadies"},
{"id": 2,"phrase": "knapper Fragenbogen"},
{"id": 3,"phrase": "jährlicher Fleischverzehr"},
{"id": 4,"phrase": "feine Grilladen"},
{"id": 5,"phrase": "amerikanische Erforscher"}. . . ]

Table 6: Example prompt for the ChatGPT+ex model

role content

system

You are a multilingual metaphor detection system.
You classify incoming adjective-noun phrases according
to their metaphoricity based on the Metaphor Identification
Procedure. Returning 1 if a phrase is a
metaphor and returning 0 if a phrase is literal.
You return your answers in JSON format,
with the prediction at attribute ’label’.
This is the Metaphor Identification Procedure:
1. Read the text to get a general understanding of the
meaning
2. Determine the lexical units
3a. Establish the contextual meaning of the unit
3b. Determine if it has a more basic meaning. Basic
meaning ’more concrete, body-related, more precise,
historically older; not necessarily the most
frequent meaning!
Does the contextual meaning contrast
with the basic meaning but can it be understood in
comparison with it?
4. If yes, mark the unit as metaphorical.

user

[{"id": 1,"phrase": "grünes Landschaftsparadies"},
{"id": 2,"phrase": "knapper Fragenbogen"},
{"id": 3,"phrase": "jährlicher Fleischverzehr"},
{"id": 4,"phrase": "feine Grilladen"},
{"id": 5,"phrase": "amerikanische Erforscher"} . . . ]

Table 7: Example prompt for the ChatGPT+MIP
model
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Abstract

The syntactic categories of categorial gram-
mar formalisms are structured units made of
smaller, indivisible primitives, bound together
by the underlying grammar’s category forma-
tion rules. In the trending approach of con-
structive supertagging, neural models are in-
creasingly made aware of the internal category
structure. In turn, this enables them to more
reliably predict rare and out-of-vocabulary cat-
egories, with significant implications for gram-
mars previously deemed too complex to find
practical use. In this work, we revisit con-
structive supertagging from a graph-theoretic
perspective, and propose a framework based
on heterogeneous dynamic graph convolutions,
aimed at exploiting the distinctive structure
of a supertagger’s output space. We test our
approach on a number of categorial gram-
mar datasets spanning different languages and
grammar formalisms, achieving substantial
improvements over previous state of the art
scores.

1 Introduction

Their close affinity to logics and lambda calculi
has made categorial grammars a standard tool of
trade for the formally-inclined NLP practitioner.
Modern flavors of categorial grammar, despite their
(sometimes striking) divergences, share a common
architecture. At its core, a categorial grammar is a
formal system consisting of two parts. First, there
is a lexicon, a mapping that assigns to each word
a set of categories. Categories are quasi-logical
formulas recursively built out of atomic categories
by means of category forming operations. The in-
ventory of category forming operations at the mini-
mum has the ability to express linguistic function-
argument structure. If so desired, the inventory can
be extended with extra operations, e.g. to handle
syntactic phenomena beyond simple concatenation,
or to express additional layers of grammatical infor-
mation. The second component of the grammar is

a small set of inference rules, formulated in terms
of the category forming operations. The inference
rules dictate how categories interact and, through
this interaction, how words combine to form larger
phrases. Parsing thus becomes a process of de-
duction comparable (or equatable, depending on
the grammar’s formal rigor) to program synthesis,
providing a clean and elegant syntax-semantics in-
terface.

In the post-neural era, these two components
allow differentiable implementations. The fixed
lexicon is replaced by supertagging, a process that
contextually decides on the most appropriate su-
pertags (i.e. categories), whereas the choice of
which rules of inference to apply is usually deferred
to a parser further down the processing pipeline.
The highly lexicalized nature of categorial gram-
mars thus shifts the bulk of the weight of a parse
to the supertagging component, as its assignments
and their internal make-up inform and guide the
parser’s decisions.

In this work, we revisit supertagging from a ge-
ometric angle. We first note that the supertagger’s
output space consists of a sequence of trees, which
has as of yet found no explicit representational
treatment. Capitalizing on this insight, we employ a
framework based on heterogeneous dynamic graph
convolutions, and show that such an approach can
yield substantial improvements in predictive accu-
racy across categories both frequently and rarely
encountered during a supertagger’s training phase.

2 Background

The supertagging problem revolves around the de-
sign and training of a function tasked with map-
ping each word (in the context of a sentence) to a
category, thus inducing a sequence of categories
{c1, . . . , cn} from a sentence {w1, . . . , wn}. Exist-
ing supertagging architectures differ in how they
implement this mapping, with each implementation
choice boiling down to (i) which of the temporal
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and structural dependencies within and between
the input and output are taken into consideration,
and (ii) how these dependencies are materialized.

Earlier work would utilize solely occurrence
counts from a training corpus to independently map
word n-grams to their most likely categories, and
then attempt to filter out implausible sequences via
rule-constrained probabilistic models (Bangalore
and Joshi, 1999). The shift from sparse feature vec-
tors to distributed word representations facilitated
integration with neural networks and improved gen-
eralization on the mapping domain, extending it to
rare and previously unseen words (Lewis and Steed-
man, 2014). Later, the advent of recurrent neural
networks offered a natural means of incorporating
temporal structure, widening the input receptive
field through contextualized word representations
on the one hand (Xu et al., 2015), but also permit-
ting an autoregressive formulation of the output
generation, whereby the effect of a category assign-
ment could percolate through the remainder of the
output sequence (Vaswani et al., 2016). Regard-
less of implementation specifics, the discriminative
paradigm employed by all above works fails to ac-
count for the skewness of the data; exceedingly
rare categories are practically impossible to learn,
and categories absent from the training data are
completely ignored.

As an alternative, the recently emerging con-
structive paradigm seeks to explore the structure
hidden within categories. By inspecting their for-
mation rules, Kogkalidis et al. (2019) equates cate-
gories to CFG derivations, viewing each category
as a tiny compositional expression, and a category
sequence as the concatenation of their flattened
depth-first projections. The goal sequence is now
incrementally generated on a symbol-by-symbol
basis using a transformer-based seq2seq model; a
twist which provides the decoder with the means to
construct novel categories on demand, bolstering
co-domain generalization. The decoder’s global
receptive field, however, comes at the heavy price
of quadratic memory complexity, which also bodes
poorly with the elongated output sequences, lead-
ing to a slowed down inference speed. Expanding
on the idea, Prange et al. (2021) explicates the cat-
egories’ tree structure, embedding symbols based
on their tree positions and propagating contextual-
ized representations through tree edges, using ei-
ther residual dense connections or a tree-structured
GRU. This adaptation completely eliminates the

burden of learning how the categorial trees are con-
structed, instead allowing the model to focus on
what trees to construct, leading to drastically im-
proved performance. Simultaneously, since the de-
coder is now token-separable, it permits construc-
tion of categories for the entire sentence in parallel,
speeding up inference and reducing the network’s
memory footprint. In the process, however, it loses
the ability to model interactions between autore-
gressed nodes belonging to different trees, morally
reducing the task once more to sequence classifica-
tion (albeit now with a dynamic classifier).

Despite their common goal of accounting for
syntactic categories in the zipfian tail, there are
tension points between the above two approaches.
In flattening categories and concatenating them to-
gether, the first breaks the input-to-output align-
ment and obfuscates the categorial tree structure.
In opting for a tree-wise bottom-up decoding, the
second forgets about meaningful inter-tree output-
to-output dependencies. In this paper, we seek
to resolve these tension points with a novel, uni-
fied and grammar-agnostic supertagging frame-
work based on heterogeneous dynamic graph con-
volutions. Our architecture combines the merits of
explicit tree structures, strong autoregressive prop-
erties, near-constant decoding time, and a mem-
ory complexity that scales with the input, boasting
high performance across the full span of the fre-
quency spectrum and surpassing previously estab-
lished benchmarks on all datasets considered.

3 Methodology

3.1 Breadth-First Parallel Decoding

Despite seeming at odds, both architectures de-
scribed fall victim to the same trap of conflating
problem-specific structural biases and general pur-
pose decoding orders: one forgets about tree struc-
ture in opting for a sequential decoding, whereas
the other does the exact opposite, forgetting about
sequential structure in opting for a tree-like de-
coding. We note first that the target output is (a
batch of) neither sequences nor trees, but rather
sequences of trees. Having done that, our task is
of a purely technical nature: we simply need to
come up with the spatiotemporal dependencies that
abide by both structural axes, and then a neural
architecture that can accommodate them.

Prange et al. (2021) make a compelling case for
depth-parallel decoding, given that it’s incredibly
fast (i.e., not temporally bottlenecked by left-to-
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right sequential dependencies) but also structurally
elegant (trees are only built when/if licensed by
non-terminal nodes, ensuring structural correctness
virtually for free). Sticking with depth-parallel
decoding means necessarily foregoing some au-
toregressive interactions: we certainly cannot look
to the future (i.e., tree nodes located deeper than
the current level, since these should depend on
the decision we are about to make), but neither to
the present (i.e., tree nodes residing in the current
level, since these will be all decided simultane-
ously). This still leaves some leeway as to what
could constitute the prediction context. The maxi-
malist position we adopt here is nothing less than
the entire past, i.e. all the nodes we have so far de-
coded. Crucially, this extends beyond the ancestry-
bound “vertical interactions” of a tree unfolding
function implemented à la treeRNN, allowing “di-
agonal” interactions between autoregressed nodes
living in different trees.

Such exotic interactions do not follow the induc-
tive biases of any run-of-the-mill architecture, forc-
ing us to turn our attention to structure-aware dy-
namic convolutions. To make the architecture con-
ducive to learning while keeping its memory foot-
print in check, we repurpose the encoder’s word
vectors from initial seeds to recurrent state-tracking
vectors that arbitrate the decoding process across
both sequence length and tree depth, respecting the
“regularly irregular” structure of the output space.
In high level terms, the process can be summarized
as an iteration of three alternating stages of mes-
sage passing rounds.

1. Lexical state vectors are initialized by some ex-
ternal encoder.

2. An empty fringe consisting of blank nodes is
instantiated, one such node per word, rooting
the corresponding categorial trees.

3. Until a fix-point is reached (there is no longer
any fringe):

(i) Node Prediction States project class
weights to their respective fringe nodes in
a one-to-many fashion. Depending on the
arity of the decoded symbols, a next fringe
of unfilled nodes is constructed at the ap-
propriate positions; e.g., binary operators
expand the fringe by introducing two new
blank nodes located directly above them.

(ii) Autoregressive Feedback Each state vec-
tor receives feedback in a many-to-one
fashion, originating from the lexically-

aligned nodes just decoded (i.e., the fringe
at the previous time step). This way, state
vectors are iteratively updated and progres-
sively aggregate information from the tree
as it is being dynamically constructed.

(iii) Sequential Feedback The updated state
vectors emit and receive messages to one
another in a many-to-many fashion, allow-
ing states to be informed by the decoding
progress of their neighbors.

For a visual rendition, refer to Appendix A.

3.2 Architecture
We now move on to detail the individual blocks
that together make up the network’s pipeline.

3.2.1 Node Embeddings
State vectors are temporally dynamic; they are ini-
tially supplied by an external encoder, and are then
updated through a repeated sequence of three mes-
sage passing rounds, described in the next subsec-
tions. Tree nodes, on the other hand, are not subject
to temporal updates, but instead become dynam-
ically “revealed” by the decoding process. Their
representations are computed on the basis of (i)
their primitive symbol and (ii) their position within
a tree.

Primitive symbol embeddings are obtained from
a standard embedding table We : S → Rdn that
contains a distinct vector for each symbol in the
set of primitives S. When it comes to embedding
positions, we are presented with a number of op-
tions. It would be straightforward to fix a vocab-
ulary of positions, and learn a distinct vector for
each. Such an approach would however lack ele-
gance, as it would impose an ad-hoc bound to the
shape of trees that can be encoded (contradicting
the constructive paradigm), while also failing to
account for the compositional nature of trees. We
thus opt for a path-based approach, inspired by
and improving upon the idea of Shiv and Quirk
(2019). We note first that paths over binary branch-
ing trees form a semi-group, i.e. they consist of
two primitives (namely a left and a right path), and
an associative non-commutative binary operator
that binds two paths together into a single new
one. The archetypical example of a semigroup is
matrix multiplication; we therefore instantiate a
tensor P ∈ R2×nd×nd encoding each of the two
path primitives as a linear map over symbol em-
beddings. From the above we can derive a func-
tion p that converts positions to linear maps, by
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performing consecutive matrix multiplications of
the primitive weights, as indexed by the binary
word of a node’s position; e.g. the linear map cor-
responding to position 1210 = 11002 would be
p(12) = P0P0P1P1 ∈ Rdn×dn . We flatten the fi-
nal map by evaluating it against an initial seed vec-
tor ρ0, corresponding to the tree root.1 To stabilize
training and avoid vanishing or exploding weights,
we model paths as unitary transformations by pa-
rameterizing the two matrices of P to orthogonality
using the exponentiation trick on skew-symmetric
bases (Bader et al., 2019; Lezcano Casado, 2019).

The representation ni,k of a tree node σ ∈ S
occupying position k in tree i will then be given as
the element-wise product of its tree-positional and
content embeddings:

ni,k = p(k)(ρ0)� (We(σ)) ∈ Rdn

The embedder is then essentially an instantiation of
a binary branching unitary RNN (Arjovsky et al.,
2016), where the choice of which hidden-to-hidden
map to follow at each step depends on the node’s
position relative to its ancestor.2 Since paths are
shared across trees, their representations are in prac-
tice efficiently computed once per batch for each
unique tree position during training, and stored as
fixed embeddings during inference.

3.2.2 Node Prediction
Assuming at step τ a sequence of globally contex-
tualized states hτ , we need to use each element hτi
to obtain class weights for all of the node neighbor-
hood Ni,τ consisting of all nodes (if any) of tree i
that lie at depth τ . We start by down-projecting the
state vector into the node’s dimensionality using a
linear mapWn. The resulting feature vectors are in-
distinguishable between all nodes of the same tree
– to tell them apart (and obtain a unique prediction
for each), we gate the feature vectors against each
node’s positional embedding. From the latter, we
obtain class weights by matrix multiplying them
against the transpose of the symbol embedding ta-
ble (Press and Wolf, 2017):

weightsi,k = (p(k)(ρ0)�Wnh
τ
i )W

>
e

1In practice, paths are efficiently computed once per batch
for each unique tree position during training, and stored as
fixed embeddings during inference.

2Concurrently, Bernardy and Lappin (2022) follow a sim-
ilar approach in teaching a unitary RNN to recognize Dyck
words, and find the unitary representations learned to respect
the compositional properties of the task. Here we go the other
way around, using the unitary recurrence exactly because we
expect them to respect the compositional properties of the
task.

The above weights are converted into a probability
distribution over the alphabet symbols S by appli-
cation of the softmax function.

3.2.3 Autoregressive Feedback
We update states with information from the last
decoded nodes using a heterogeneous message-
passing scheme based on graph attention net-
works (Veličković et al., 2018; Brody et al., 2021).
First, we use a bottleneck layerWb to down-project
the state vector into the nodes’ dimensionality. For
each position i and corresponding state hτi , we
compute a self-loop score:

α̃i,	,τ = wa · (Wb(h
τ
i ) || 0)

where wa ∈ R2dn a dot-product weight and 0 a
dn-dimensional zero vector. Then we use the (now
decoded) neighborhood Ni,τ to generate a hetero-
geneous attention score for each node ni,k ∈ Ni,τ :

α̃i,k,τ = wa · (hτi || ni,k)

Scores are passed through a leaky rectifier non-
linearity before being normalized to attention coef-
ficients α. These are used as weighting factors that
scale the self-loop and input messages, the latter
upscaled by a linear map Wm:

h̃τi =
∑

ni,k∈Ni,τ
αi,k,τWmni,k + αi,	,τh

τ
i

This can also be seen as a dynamic residual con-
nection – αi,	,τ acts as a gate that decides how
open the state’s representation should be to node
feedback (or conversely, how strongly it should re-
tain its current values). States receiving no node
feedback (i.e. states that have completed decod-
ing one or more time steps ago) are thus protected
from updates, preserving their content. In practice,
attention coefficients and message vectors are com-
puted for multiple attention heads independently,
but these are omitted from the above equations to
avoid cluttering the notation.

3.2.4 Sequential Feedback
At the end of the node feedback stage, we are left
with a sequence of locally contextualized states h̃τi .
The sequential structure can be seen as a fully con-
nected directed graph, nodes being states (words)
and edges tabulated as the square matrix E , with
entry Ei,j containing the relative distance between
words i and j. We embed these distances into the
encoder’s vector space using an embedding table
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Wr ∈ R2κ×dw , where κ the maximum allowed
distance, a hyper-parameter. Edges escaping the
maximum distance threshold are truncated rather
than clipped, in order to preserve memory and fa-
cilitate training, leading to a natural segmentation
of the sentence into (overlapping) chunks. Fol-
lowing standard practices, we project states into
query, key and value vectors, and compute the at-
tention scores between words i and j using relative-
position weighted attention (Shaw et al., 2018):

ãi,j = d−1/2w (Wqh̃
τ
i �WrEi,j) ·Wkh̃

τ
j

From the normalized attention scores we obtain a
new set of aggregated messages:

m′i,t =
∑

j∈{0..s}

exp(ãi,j)Wvh̃
τ
j∑

k∈{0..s} exp(ãi,k)

Same as before, queries, keys, values, edge em-
beddings and attention coefficients are distributed
over many heads. Aggregated messages are passed
through a swish-gated feed-forward layer (Dauphin
et al., 2017; Shazeer, 2020) to yield the next se-
quence of state vectors:

hτ+1
i =W3

(
swish1(W1m

′
i,τ )�W2m

′
i,τ

)

where W1,2 are linear maps from the encoder’s
dimensionality to an intermediate dimensionality,
and vice versa for W3.

3.2.5 Putting Things Together
We compose the previously detailed components
into a single layer, which acts a sequence-wide,
recurrent-in-depth decoder. We insert skip connec-
tions between the input and output of the message-
passing and feed-forward layers (He et al., 2016),
and subsequently normalize each using root mean
square normalization (Zhang and Sennrich, 2019).

4 Experiments

We employ our supertagging architecture in a range
of diverse categorial grammar datasets spanning
different languages and underlying grammar for-
malisms. In all our experiments, we bind our model
to a monolingual BERT-style language model used
as an external encoder, fine-tuned during train-
ing (Devlin et al., 2018). In order to homogenize
the tokenization between the one directed by each
dataset and the one required by the encoder, we
make use of a simple localized attention aggrega-
tion scheme. The subword tokens together com-
prising a single word are independently projected

to scalar values through a shallow feed-forward
layer. Scalar values are softmaxed within their lo-
cal group to yield attention coefficients over their
respective BERT vectors, which are then summed
together, in a process reminiscent of a cluster-wide
attentive pooling (Li et al., 2016). In cases of data-
level tokenization treating multiple words as a sin-
gle unit (i.e. assigning one type to what BERT per-
ceives as many words), we mark all words follow-
ing the first with a special [MWU] token, signifying
they need to be merged to the left. This effectively
adds an extra output symbol to the decoder, which
is now forced to do double duty as a sequence chun-
ker. To avoid sequence misalignments and metric
shifts during evaluation, we follow the merges dic-
tated by the ground truth labels, and consider the
decoder’s output as correct only if all participating
predictions match, assuming no implicit chunking
oracles.

4.1 Datasets

We conduct experiments on the two variants of the
English CCGBank, the French TLGbank and the
Dutch Æthel proofbank. A high-level overview of
the datasets is presented in Table 1, and short de-
scriptions are provided in the following paragraphs.
We refer the reader to the corresponding literature
for a more detailed exposition.

CCGbank TLGbank Æthel
original rebank

Primitives 37 40 27 81
Zeroary 35 38 19 31
Binary 2 2 8 50

Categories 1323 1619 851 5762
in train 1286 1575 803 5146
depth avg. 1.94 1.96 1.99 1.82
depth max. 6 6 7 35

Test Sentences 2407 2407 1571 5770
length avg. 23.00 24.27 27.58 16.52

Test Tokens 55371 56395 44302 95331
Frequent (100+) 54825 55690 43289 91503
Uncommon (10-99) 442 563 833 2639
Rare (1-9) 75 107 149 826
Unseen (OOV) 22 27 31 363

Table 1: Bird’s eye view of datasets employed and rele-
vant statistics. Test tokens are binned according to their
corresponding categories’ occurrence count in the re-
spective dataset’s training set. Token counts are mea-
sured before pre-processing. Unique primitives for the
type-logical datasets are counted after binarization.

CCGBank The English CCGbank (origi-
nal) (Hockenmaier and Steedman, 2007) and its
refined version (rebank) (Honnibal et al., 2010) are
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resources of Combinatory Categorial Grammar
(CCG) derivations obtained from the Penn
Treebank (Taylor et al., 2003). CCG (Steedman
and Baldridge, 2011) builds lexical categories with
the aid of two binary slash operators, capturing
forward and backward function application. Some
additional rules lent from combinatory logic (Curry
et al., 1958) permit constrained forms of type rais-
ing and function composition, allowing categories
to remain relatively short and uncomplicated
while keeping parsing complexity in check. The
key difference between the two versions lies in
their tokenization and the plurality of categories
assigned, the latter containing more assignments
and a more fine-grained set of syntactic primitives,
which in turn make it a slightly more challenging
evaluation benchmark.

French TLGbank The French type-logical tree-
bank (Moot, 2015) is a collection of proofs ex-
tracted from the French treebank (Abeillé et al.,
2003). The theory underlying the resource is that
of Multi-Modal Typelogical Grammars (Moortgat,
1996); annotations are deliberately made compat-
ible with Displacement Calculus (Morrill et al.,
2011) and First-Order Linear Logic (Moot and Pi-
azza, 2001) at the cost of a small increase in lexical
sparsity. In short, the vocabulary of operators is
extended with two modalities that find use in licens-
ing or restricting the applicability of rules related
to non-local syntactic phenomena. To adapt their
representation to our framework, we cast unary
operators into pseudo-binaries by inserting an arti-
ficial terminal tree in a fixed slot within them. Due
to the absence of predetermined train/dev/test splits,
we randomize them with a fixed seed at a 80/10/10
ratio and keep them constant between repetitions.

Æthel Our last experimental test bed is
Æthel (Kogkalidis et al., 2020a), a dataset of
type-logical proofs for written Dutch sentences,
automatically extracted from the Lassy-Small
corpus (Noord et al., 2013). Æthel is geared
towards semantic parsing, which means categories
employ linear implication( as their single binary
operator. An additional layer of dependency infor-
mation is realized via unary modalities, now lifted
to classes of operators distinguishing complement
and adjunct roles. The grammar assigns concrete
instances of polymorphic coordinator types, as
a result containing more and sparser categories
(some of which distinctively tall); considering also

its larger vocabulary of primitives, it makes for a
good stress test for our approach. We experiment
with the latest available version of the dataset
(version 1.0.0a5 at the time of writing). Same
as before, we impose a regular tree structure,
this time by merging adjunct (resp. complement)
markers with the subsequent (resp. preceding)
binary operator, which makes for an unambiguous
and invertible representational translation.

4.2 Implementation
We implement our model using PyTorch Geomet-
ric (Fey and Lenssen, 2019), which provides a high-
level interface to efficient low-level protocols, fa-
cilitating fast and pad-free graph manipulations.
We share a single hyper-parameter setup across all
experiments, obtained after a minimal logarithmic
search over sensible initial values. Specifically, we
set the node dimensionality dn to 128 with 4 hetero-
geneous attention heads and the state dimensional-
ity dw to 768 with 8 homogeneous attention heads.
We train using AdamW (Loshchilov and Hutter,
2018) with a batch size of 16, weight decay of
10−2, and a learning rate of 10−4, scaled by a linear
warmup and cosine decay schedule over 25 epochs.
During training we provide strict teacher forcing
and apply feature and edge dropout at 20% chance.
Our loss signal is derived as the label-smoothed
negative log-likelihood between the network’s pre-
diction and the ground truth label (Müller et al.,
2019). We procure pretrained base-sized BERT
variants from the transformers library (Wolf et al.,
2020): RoBERTa for English (Liu et al., 2019),
BERTje for Dutch (de Vries et al., 2019) and
CamemBERT for French (Martin et al., 2020),
which we fine-tune during training, scaling their
learning rate by 10% compared to the decoder.

4.3 Results
We perform model selection on the basis of vali-
dation accuracy, and gather the corresponding test
scores according to the frequency bins of Table 1.
Table 2 presents our results compared to relevant
published literature. Evidently, our model sur-
passes established benchmarks in terms of overall
accuracy, matching or surpassing the performance
of both traditional supertaggers on common cate-
gories and constructive ones on the tail end of the
frequency distribution.

We observe that the relative gains appear to scale
with respect to the task’s complexity. In the original
version of the CCGbank, our model is only slightly
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accuracy (%)

model overall frequent uncommon rare unseen
CCG (original)
Symbol Sequential LSTM /w n-gram oracles (Liu et al., 2021) 95.99 96.40 65.83 8.65!

Cross-View Training (Clark et al., 2018) 96.10 – – – n/a
Recursive Tree Addressing (Prange et al., 2021) 96.09 96.44 68.10 37.40 3.03
BERT Token Classification (Prange et al., 2021) 96.22 96.58 70.29 23.17 n/a
Attentive Convolutions (Tian et al., 2020) 96.25 96.64 71.04 n/a n/a

Heterogeneous Dynamic Convolutions (this work) 96.29±0.04 96.61±0.04 72.06±0.72 34.45±1.58 4.55±2.87

CCG (rebank)
Symbol Sequential Transformer† (Kogkalidis et al., 2019) 90.68 91.10 63.65 34.58 7.41
TreeGRU (Prange et al., 2021) 94.62 95.10 64.24 25.55 2.47
Recursive Tree Addressing (Prange et al., 2021) 94.70 95.11 68.86 36.76 4.94
Token Classification (Prange et al., 2021) 94.83 95.27 68.68 23.99 n/a

Heterogeneous Dynamic Convolutions (this work) 95.07±0.04 95.45±0.04 71.40±1.15 37.19±1.81 3.70±0.00

French TLGbank
ELMo & LSTM Classification (Moot, 2019) 93.20 95.10 75.19 25.85 n/a
BERT Token Classification‡ 95.93 96.44 81.39 47.45 n/a

Heterogeneous Dynamic Convolutions (this work) 95.92±0.01 96.40±0.01 81.48±0.97 55.37±1.00 7.26±2.67

Æthel
Symbol Sequential Transformerb (Kogkalidis et al., 2020b) 83.67 84.55 64.70 50.58 24.55
BERT Token Classification‡ 93.52 94.83 71.85 38.06 n/a

Heterogeneous Dynamic Convolutions (this work) 94.08±0.02 95.16±0.01 75.55±0.02 58.15±0.01 18.37±2.73

!Accuracy over both bins, with a frequency-truncated training set (authors claim no difference when using the full set).
†Numbers from Prange et al. (2021).
‡Our replication.
bModel trained and evaluated on an older dataset version and tree sequences spanning less than 140 nodes in total.

Table 2: Model performance across datasets and compared to recent studies. Numbers are taken from the papers
cited unless otherwise noted. For our model, we report averages and standard deviations over 6 runs. Bold face
fonts indicate (within standard deviation of) highest performance.

superior to the next best performing model (in turn
only marginally superior to the token-based clas-
sification baseline), whereas in the rebank version
the absolute difference is one order of magnitude
wider. The effect is even further pronounced for
the harder type-logical datasets, which are char-
acterized by a longer tail, leading to performance
comparable to CCGbank’s for the French TLGbank
(despite it being significantly smaller and sparser),
and a 10% absolute performance leap for Æthel
(despite its unusually tall and complex types). We
attribute this to increased returns from performance
in the rare and uncommon bins; there is a syner-
gistic effect between the larger population of these
bins pronouncing even minor improvements, and
acquisition of rarer categories apparently benefit-
ing from the plurality of their respective bins in
a self-regularizing manner. Put simply, learning
sparse categories is easier and matters more for
grammars containing many rare categories.

Finally, to investigate the relative impact of each
network component, we conduct an ablation study
where message passing components are removed

from their network in their entirety. Removing the
state feedback component collapses the network
into a token-wise separable recurrence, akin to a
graph-featured RNN without a hidden-to-hidden
affine map. Removing the node feedback com-
ponent turns the network into a Universal Trans-
former (Dehghani et al., 2018) composed with a
dynamically adaptive classification head. Remov-
ing both is equatable to a 1-to-many contextualized
token classification that is structurally unfolded in
depth. Our results, presented in Table 3, verify first
a positive contribution from both components, indi-
cating the importance of both information sharing
axes. In three out of the four datasets, the rela-
tive gains of incorporating state feedback outweigh
those of node feedback, and are most pronounced
in the case of Æthel, likely due to its positionally
agnostic types. With the exception of CCGrebank,
relinquishing both kinds of feedback largely under-
performs having either one, experimentally affirm-
ing their compatibility.
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-sf -nf -sf-nf
CCG (original) -0.05 -0.01 -0.08
CCG (rebank) -0.12 -0.04 -0.07
French TLGbank -0.13 -0.14 -0.23
Æthel -0.24 -0.12 -0.37

Table 3: Absolute difference in overall accuracy when
removing the state and node feedback components (av-
erages of 3 repetitions).

5 Related Work

Our work bears semblance and owes credit to vari-
ous contemporary lines of work. From the architec-
tural angle, we perceive our work as an application-
specific offspring of weight-tied architectures, dy-
namic graph convolutions and structure-aware self-
attention networks. The depth recurrence of our de-
coder is inspired by weight-tied architectures (De-
hghani et al., 2018; Bai et al., 2019) and their graph-
oriented variants (Li et al., 2016), which model neu-
ral computation as the fix-point iteration of a single
layer against a structured input, thus allowing for a
dynamically adaptive computation “depth” – albeit
with a constant parameter count. Analogously to
structure-aware self-attention networks (Zhu et al.,
2019; Cai and Lam, 2020) and graph attentive net-
works (Veličković et al., 2018; Yun et al., 2019;
Ying et al., 2021; Brody et al., 2021), our decoder
employs standard query/key and fully-connected
attention mechanisms injected with structurally bi-
ased representations, either at the edge or at the
node level. Finally, akin to dynamic graph ap-
proaches (Liao et al., 2019; Pareja et al., 2020),
our decoder forms a closed loop system that autore-
gressively generates its own input, in the process
becoming exposed to subgraph structures that dras-
tically differ between time steps.

From the application angle, our proposal is a re-
finement of and a continuation to recent advances
in categorial grammar supertagging. Similar to
the transition from words to subword units (Sen-
nrich et al., 2016), constructive supertaggers seek
to bolster generalization by disassembling syntac-
tic categories into smaller indivisible units, thereby
incorporating structure at a finer granularity scale.
The original approach of Kogkalidis et al. (2019)
employed seq2seq models to directly translate an
input text to a flattened projection of a categorial
sequence, demonstrating that the correct prediction
of categories unseen during training is indeed feasi-
ble. Prange et al. (2021) improved upon the process
through the explicit accounting of the tree structure

embedded within categorial types, while Liu et al.
(2021) explored the orthogonal approach of em-
ploying a transition-based “parser” over individual
categories. Outside the constructive paradigm, Tian
et al. (2020) employed graph convolutions over sen-
tential edges built from static, lexicon-based prefer-
ences. Our approach is a bridge between prior
works; our modeling choice of structure-aware
graph convolutions boasts the merits of ex+plicit
sentential and tree-structured edges, a structurally
constrained, valid-by-construction output space, fa-
vorable memory and time complexities, partial au-
toregressive context flows, end-to-end differentia-
bility with no vocabulary requirements, and mini-
mal rule-based structure manipulation.

6 Conclusion

We have proposed a novel supertagging method-
ology, where both the linear order of the output
sequence and the tree-like structure of its elements
is made explicit. To represent the different informa-
tion sources (sentential word order, subword con-
textualized vectors, tree-sequence order and intra-
tree edges) and their disparate sizes and scales,
we turned to heterogeneous graph attention net-
works. To capture the autoregressive dependencies
between different trees, we formulated the task
as a dynamic graph completion process, aligning
each subsequent temporal step with a higher or-
der tree node neighborhood and predicting them in
parallel across the entire sequence. We tested our
methodology on four different datasets spanning
three languages and as many grammar formalisms,
establishing new state of the art scores in the pro-
cess. Through our ablation studies, we showed
the importance of incorporating both intra- and in-
ter-tree context flows, to which we attribute our
system’s performance.

Other than architectural adjustment and opti-
mizations, several interesting ideas present them-
selves as promising research avenues. First, it is
worthwhile to consider adaptations of our frame-
work to either allow an efficient integration of more
“exotic” context pathways, e.g. sibling node interac-
tions, or alter the graph’s decoding order altogether.
On a related note, for formalisms faithful to the
linear logic roots of categorial grammars, it seems
reasonable to anticipate that the goal graph can
be compactified by collapsing primitive nodes of
opposite polarity according to their interactions,
unifying the tasks of supertagging and parsing with
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a single end-to-end framework.
Practice aside, our results pose further evidence

that lexical sparsity, historically deemed the cate-
gorial grammar’s curse, might well just require a
change of perspective to tame and deploy as the
answer to the very problem it poses.

Limitations

Despite its objective success, our methodology is
not without limitations. Most importantly, our
model trades inference speed for an incompatibility
with local greedy algorithms like beam search. Put
plainly, obtaining more than the "best" category
assignment per word is not straightforward, which
can potentially negatively impact the downstream
parser’s coverage. A possible solution would in-
volve branching across multiple tree-slices (i.e. se-
quences of partial assignments) rather than sin-
gle predictions, but efficiently computing scores
and comparing between complex structures is un-
charted territory and not trivial to implement. Note,
however, that the issue is not unique to our system
but common to all decoders that perform multiple
assignments concurrently.

Parallel or not, all autoregressive decoders as-
sume an order on their output: the standard left-
to-right order (which makes sense for text) has
become the de facto choice for most applications.
The order we have chosen to employ here is struc-
turally faithful to our output, but is neither the only
one, nor necessarily the most natural one. In that
sense, the entanglement between structural bias (i.e.
from the graph operations and representations) and
decoding priority (i.e. the order in which trees be-
come revealed) is a practical decision rather than
a deep one – a better operationalization could for
instance employ an insertion-style operation on the
graph-structured output to yield an "easy-first" ge-
ometric tagger. We await further developments and
community insights on that front.

Finally, the system carries the standard risks of
any NLP architecture reliant on machine learning,
namely linguistic biases inherited from the unsu-
pervised pretraining of the incorporated language
models, and annotation biases derived from the
supervised training over human-labeled data.

References
Anne Abeillé, Lionel Clément, and François Toussenel.

2003. Building a treebank for French. In Treebanks,
pages 165–187. Springer.

Martin Arjovsky, Amar Shah, and Yoshua Bengio.
2016. Unitary evolution recurrent neural networks.
In International conference on machine learning,
pages 1120–1128. PMLR.

Philipp Bader, Sergio Blanes, and Fernando Casas.
2019. Computing the matrix exponential with an
optimized Taylor polynomial approximation. Math-
ematics, 7(12):1174.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. 2019.
Deep equilibrium models. Advances in Neural In-
formation Processing Systems, 32.

Srinivas Bangalore and Aravind K. Joshi. 1999. Su-
pertagging: An approach to almost parsing. Compu-
tational Linguistics, 25(2):237–265.

Jean-Philippe Bernardy and Shalom Lappin. 2022.
Assessing the unitary rnn as an end-to-end com-
positional model of syntax. arXiv preprint
arXiv:2208.05719.

Shaked Brody, Uri Alon, and Eran Yahav. 2021. How
attentive are graph attention networks? arXiv
preprint arXiv:2105.14491.

Deng Cai and Wai Lam. 2020. Graph transformer
for graph-to-sequence learning. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 7464–7471.

Kevin Clark, Minh-Thang Luong, Christopher D. Man-
ning, and Quoc Le. 2018. Semi-supervised se-
quence modeling with cross-view training. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1914–
1925, Brussels, Belgium. Association for Computa-
tional Linguistics.

Haskell Brooks Curry, Robert Feys, William Craig,
J Roger Hindley, and Jonathan P Seldin. 1958. Com-
binatory Logic, volume 1. North-Holland Amster-
dam.

Yann N Dauphin, Angela Fan, Michael Auli, and
David Grangier. 2017. Language modeling with
gated convolutional networks. In Proceedings
of the 34th International Conference on Machine
Learning-Volume 70, pages 933–941.

Wietse de Vries, Andreas van Cranenburgh, Arianna
Bisazza, Tommaso Caselli, Gertjan van Noord, and
Malvina Nissim. 2019. BERTje: A Dutch BERT
model. arXiv preprint arXiv:1912.09582.

Mostafa Dehghani, Stephan Gouws, Oriol Vinyals,
Jakob Uszkoreit, and Łukasz Kaiser. 2018. Univer-
sal transformers. In International Conference on
Learning Representations.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

115



Matthias Fey and Jan E. Lenssen. 2019. Fast graph
representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on
Graphs and Manifolds.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–
778.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: a corpus of CCG derivations and dependency
structures extracted from the Penn Treebank. Com-
putational Linguistics, 33(3):355–396.

Matthew Honnibal, James R Curran, and Johan Bos.
2010. Rebanking CCGbank for improved np inter-
pretation. In Proceedings of the 48th annual meet-
ing of the association for computational linguistics,
pages 207–215.

Konstantinos Kogkalidis, Michael Moortgat, and Te-
jaswini Deoskar. 2019. Constructive type-logical su-
pertagging with self-attention networks. In Proceed-
ings of the 4th Workshop on Representation Learn-
ing for NLP (RepL4NLP-2019), pages 113–123, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Konstantinos Kogkalidis, Michael Moortgat, and
Richard Moot. 2020a. ÆTHEL: Automatically ex-
tracted typelogical derivations for Dutch. In Pro-
ceedings of the 12th Language Resources and Eval-
uation Conference, pages 5257–5266, Marseille,
France. European Language Resources Association.

Konstantinos Kogkalidis, Michael Moortgat, and
Richard Moot. 2020b. Neural proof nets. In Pro-
ceedings of the 24th Conference on Computational
Natural Language Learning, pages 26–40, Online.
Association for Computational Linguistics.

Mike Lewis and Mark Steedman. 2014. Improved
CCG parsing with semi-supervised supertagging.
Transactions of the Association for Computational
Linguistics, 2:327–338.

Mario Lezcano Casado. 2019. Trivializations for
gradient-based optimization on manifolds. Ad-
vances in Neural Information Processing Systems,
32.

Yujia Li, Richard Zemel, Marc Brockschmidt, and
Daniel Tarlow. 2016. Gated graph sequence neural
networks. In Proceedings of ICLR’16.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang,
Will Hamilton, David K Duvenaud, Raquel Urtasun,
and Richard Zemel. 2019. Efficient graph genera-
tion with graph recurrent attention networks. Ad-
vances in Neural Information Processing Systems,
32.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretraining
approach. arXiv preprint arXiv:1907.11692.

Yufang Liu, Tao Ji, Yuanbin Wu, and Man Lan. 2021.
Generating CCG categories. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 35, pages 13443–13451.

Ilya Loshchilov and Frank Hutter. 2018. Fixing weight
decay regularization in adam.

Louis Martin, Benjamin Muller, Pedro Javier Or-
tiz Suárez, Yoann Dupont, Laurent Romary, Éric
de la Clergerie, Djamé Seddah, and Benoît Sagot.
2020. CamemBERT: a tasty French language model.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
7203–7219, Online. Association for Computational
Linguistics.

Michael Moortgat. 1996. Multimodal linguistic infer-
ence. JoLLI, 5(3/4):349–385.

Richard Moot. 2015. A type-logical treebank for
French. Journal of Language Modelling Vol,
3(1):229–264.

Richard Moot. 2019. Reconciling vectors with proofs
for natural language processing. Compositional-
ity in formal and distributional models of natu-
ral language semantics, 26th Workshop on Logic,
Language, Information and Computation (WoLLIC
2019). Retrieved from https://richardmoot.
github.io/Slides/WoLLIC2019.pdf.

Richard Moot and Mario Piazza. 2001. Linguis-
tic applications of first order intuitionistic linear
logic. Journal of Logic, Language and Information,
10(2):211–232.

Glyn Morrill, Oriol Valentín, and Mario Fadda. 2011.
The displacement calculus. Journal of Logic, Lan-
guage and Information, 20(1):1–48.

Rafael Müller, Simon Kornblith, and Geoffrey E Hin-
ton. 2019. When does label smoothing help? Ad-
vances in neural information processing systems, 32.

Gertjan van Noord, Gosse Bouma, Frank Van Eynde,
Daniël de Kok, Jelmer van der Linde, Ineke Schu-
urman, Erik Tjong Kim Sang, and Vincent Van-
deghinste. 2013. Large scale syntactic annotation
of written Dutch: Lassy. In Essential Speech and
Language Technology for Dutch, pages 147–164.
Springer.

Aldo Pareja, Giacomo Domeniconi, Jie Chen, Tengfei
Ma, Toyotaro Suzumura, Hiroki Kanezashi, Tim
Kaler, Tao Schardl, and Charles Leiserson. 2020.
EvolveGCN: Evolving graph convolutional net-
works for dynamic graphs. In Proceedings of
the AAAI Conference on Artificial Intelligence, vol-
ume 34, pages 5363–5370.

116



Jakob Prange, Nathan Schneider, and Vivek Srikumar.
2021. Supertagging the long tail with tree-structured
decoding of complex categories. Transactions of the
Association for Computational Linguistics, 9:243–
260.

Ofir Press and Lior Wolf. 2017. Using the output em-
bedding to improve language models. In Proceed-
ings of the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics:
Volume 2, Short Papers, pages 157–163, Valencia,
Spain. Association for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural machine translation of rare words
with subword units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 1715–
1725, Berlin, Germany. Association for Computa-
tional Linguistics.

Peter Shaw, Jakob Uszkoreit, and Ashish Vaswani.
2018. Self-attention with relative position represen-
tations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 2 (Short Papers), pages 464–468,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Noam Shazeer. 2020. GLU variants improve trans-
former. arXiv preprint arXiv:2002.05202.

Vighnesh Shiv and Chris Quirk. 2019. Novel posi-
tional encodings to enable tree-based transformers.
Advances in Neural Information Processing Systems,
32.

Mark Steedman and Jason Baldridge. 2011. Combi-
natory categorial grammar. In Robert Borsley and
Kersti Börjars, editors, Non-Transformational Syn-
tax: Formal and Explicit Models of Grammar, pages
181–224. Wiley-Blackwell.

Ann Taylor, Mitchell Marcus, and Beatrice Santorini.
2003. The Penn treebank: an overview. Treebanks,
pages 5–22.

Yuanhe Tian, Yan Song, and Fei Xia. 2020. Su-
pertagging Combinatory Categorial Grammar with
attentive graph convolutional networks. In Proceed-
ings of the 2020 Conference on Empirical Methods
in Natural Language Processing (EMNLP), pages
6037–6044, Online. Association for Computational
Linguistics.

Ashish Vaswani, Yonatan Bisk, Kenji Sagae, and Ryan
Musa. 2016. Supertagging with LSTMs. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
232–237, San Diego, California. Association for
Computational Linguistics.
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A Visualization of the decoding process
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Figure 1: A frame by frame view of the first decoding step, where the abstract canvas assumes words wa, wb, wc

. . . , rooting fully binary trees a, b, c . . . , with nodes enumerated in a breadth-first fashion. For an intuition on what
a concrete canvas might look like, refer to Figure 2.
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Figure 2: Artificial but concrete canvas examples for the three grammars experimented on.
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Abstract

We investigate and refine denoising methods
for NER task on data that potentially con-
tains extremely noisy labels from multi-sources.
In this paper, we first summarized all possi-
ble noise types and noise generation schemes,
based on which we built a thorough evaluation
system. We then pinpoint the bottleneck of cur-
rent state-of-art denoising methods using our
evaluation system. Correspondingly, we pro-
pose several refinements, including using a two-
stage framework to avoid error accumulation; a
novel confidence score utilizing minimal clean
supervision to increase predictive power; an
automatic cutoff fitting to save extensive hyper-
parameter tuning; a warm started weighted par-
tial CRF to better learn on the noisy tokens. Ad-
ditionally, we propose to use adaptive sampling
to further boost the performance in long-tailed
entity settings. Our method improves F1 score
by on average at least 5 ∼ 10% over current
state-of-art across extensive experiments.

1 Introduction

Named Entity Recognition (NER) aims to recog-
nize mentions of rigid designators from text belong-
ing to predefined semantic types such as a person,
location, organization, etc. NER not only acts as
a standalone tool for information extraction (IE),
but also plays an essential role in a variety of nat-
ural language processing (NLP) applications such
as text understanding, information retrieval, auto-
matic text summarization, question answering, ma-
chine translation, and knowledge base construction,
etc. Recent progress in deep learning has signifi-
cantly advanced NER performances (e.g. (Huang
et al., 2015; Lample et al., 2016; Li et al., 2020a)).
However, in the presence of noisy labels, training
DNNs is known to be vulnerable to noisy labels be-
cause the significant number of model parameters
allow DNNs easily overfit to even corrupted labels.
This problem first raised attention in computer vi-
sion (CV): (Zhang et al., 2021a) demonstrated that

DNNs can easily fit an entire training dataset with
any ratio of corrupted labels, which eventually re-
sulted in poor generalizability on a test dataset. Un-
fortunately, popular regularization techniques, such
as data augmentation, weight decay, dropout, and
batch normalization do not completely overcome
the overfitting issue caused by noisy labels.

Many endeavors have been put into handling
noisy labels. Note that this is a fundamentally
different problem than general feature-level noise
(Zhang and Zhou, 2023; Zheng et al., 2021; Chen
et al., 2023; Wang et al., 2021). Except for the spe-
cific techniques in certain science domains (Feng
et al., 2023), most of those methods are first de-
signed for computer vision or instance-level clas-
sification tasks in NLP like text classification. De-
noising methods in the NER domain are generally
under-explored and rendered harder: for NER, only
correct detection of both the entity boundary and
entity class are rendered as one correct prediction.
Therefore, the label noise in NER is more complex
than those in CV or text classification. For exam-
ple, human annotators could produce mis-specified
entity boundaries; other automatic labels genera-
tion like distant supervision (Liang et al., 2020)
from the dictionary or database often generate in-
complete annotations, meaning some entity words
are wrongly named as non-entity simply because
they are not recorded in the database; others like
transfer learning or domain adaptation (Lee et al.,
2017; Raghuram et al., 2022; Li and Metsis, 2022)
from one domain to another domain could cause
wrongly labeled classes for many entity words, as
same words could have different semantic types in
different domains.

Due to the lack of clean data resources, the ma-
jority of denoising literature is unwilling to use
any clean validation data or anchor points for de-
noising, regardless of the fact that most of them
often require massive computation cost or exten-
sive hyper-parameter tuning (Song et al., 2022).
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In fact, those supervision-free methods often suf-
fer from error propagation as the error incurred by
false correction/filtering will be accumulated due
to lack of supervision, especially when the number
of classes or the number of mislabeled examples is
large (Shu et al., 2019). To overcome those obsta-
cles, maintaining multiple DNNs or training a DNN
in multiple rounds is frequently used (e.g. (Wang
et al., 2019; Northcutt et al., 2021)), but these ap-
proaches significantly degrade the efficiency of the
learning pipeline (Song et al., 2022). In industry-
level applications, meta gold datasets (i.e. high-
quality/clean datasets) are commonly available, to
guarantee direct and reliable evaluation of methods
and therefore stable and supreme user experience;
also the amount of available data rapidly increases
in big companies. More attention should be paid
to how to best design and leverage the meta gold
dataset to do efficient, effective, and stable label
denoising.

Motivated by the above, in this paper, we study
the label denoising problem in NER, and we con-
tribute in the following three aspects:

• We build a thorough evaluation system via
summarizing all possible noise types and
noise generation schemes in NER domain,
which was before lacked in the domain.
Through this system we find out that the base-
line methods 1 are already agnostic to some
noise types; while for the other, the noise
rate influences the effectiveness of denoising
rather than noise type.

• We find out that the current state-of-art de-
noising method is only effective in very lim-
ited noise cases, and the time expensive self-
training is often unnecessary due to error prop-
agation. Through careful ablation study, we
pinpoint that the true bottleneck of its effec-
tiveness is reliable sample selection.

• We propose an effective and efficient method
that leverages minimal clean data to do sample
selection and apply weighted semi-supervised
learning with a warm start. Under our de-
signed fair comparison 2, our method sta-
bly outperforms other state-of-the-art methods

1We call methods designed for clean NER data set as base-
line methods, and particularly, we choose bert-CFR as our
main baseline model of consideration due to its SOTA perfor-
mance (Lample et al., 2016).

2We include the minimal clean data into the training set
for all the methods for a fair comparison.

across the broad types of simulated noises by
a large margin, as well as on realistic data aug-
mentation generated noise. We provide guide-
lines on further boosting the performance of
our method in different application scenarios.

In the following, we will introduce the related
work in more detail in Section 2 and provide a for-
mal problem and method description in Section 3.
We describe our experiment setting and correspond-
ing results in Section 4, where we also provide a
careful ablation study to narrow down the bottle-
neck of the current state-of-arts method. In the end,
we summarize our findings and contributions and
some possible future directions in Section 5.

2 Related work

Learning on noisy labels Most of the denois-
ing methods are designed for computer vision
(Song et al., 2022), that is, instance level classi-
fication. They can generally be categorized into
the following four categories: 1) noise model-
ing: adding a noise adaptation layer at the top
of an underlying DNN to learn the transition be-
tween clean and noisy labels, e.g.(Chen and Gupta,
2015; Sukhbaatar et al., 2015; Goldberger and Ben-
Reuven, 2017)); 2) regularization: enforcing a
DNN to overfit less to false-labeled examples ex-
plicitly or implicitly, e.g. (Pereyra et al., 2017;
Zhang et al., 2018; Menon et al., 2020; Xia et al.,
2021; Wei et al., 2021); 3) sample reweighting: ad-
justing the loss value according to the trust-level
of a given sample, e.g. (Wang et al., 2017; Chang
et al., 2017; Zhang et al., 2021b; Shu et al., 2019);
4) sample selection: identifying true-labeled exam-
ples from noisy training data via multi-network or
multi-round learning, e.g. (Han et al., 2018; Jiang
et al., 2018; Yu et al., 2019; Wang et al., 2018; Li
et al., 2020b; Zhou et al., 2020; Berthelot et al.,
2019). From prior work and our investigation, we
generally note that, noise modeling type of methods
often estimate the transition matrix with large error
when only noisy training data is used or when the
noise rate is high; regularization type of methods
often introduce sensitive model-dependent hyper-
parameters and therefore hard to stably work in
practice; sample reweighting is often more useful
for instance level classification, which is not the
case in NER problem domain where often a graph-
ical model is adopted for classification; sample se-
lection is well motivated and works well in general,
also its has more interpretability and light-weights.
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For industry-level application considerations: we
hope to seek solutions that are more lightweight,
stable, and easy to tune. Therefore we focus on the
line of methods using sample selection.

Semi-supervised learning for NER task An in-
herent limitation of sample selection is to discard
all the un-selected training examples, thus resulting
in a partial exploration of training data. To exploit
all the noisy examples, researchers have attempted
to combine sample selection with other orthogonal
ideas. The most prominent method in this direction
is combining a specific sample selection strategy
with a specific semi-supervised learning model (He
et al., 2023; Dong et al., 2021). For example, the
most promising method in this direction is com-
bining a specific sample selection strategy with a
specific semi-supervised learning model like Partial
CRF (Tsuboi et al., 2008).

3 Method: UseClean

Our method UseClean is built upon a well-known
NER modeling called Conditional Random Field
(CRF). Specifically, consider a sentence of words
u : [u1, . . . , us], and a corresponding sequence of
tags y : [y1, . . . , ys], where yi ∈ E := {1, . . . ,K},
CRF (Lample et al., 2016) models the conditional
probability of y given u as:

p(y|u) ∝
∑

1≤i≤s

(Tyi−1,yi +Ai,yi) ∈ R (1)

where A = Linear(h) ∈ Rs×K ; (2)

h = Encoder(u) ∈ Rs×m; (3)

T ∈ RK×K . (4)

Here h denotes the encoder hidden representation,
Linear(·) denotes a linear layer that converts h
into the network estimation for the possibility of
yi at word i given utterance u; and the transition
score Tij to model the transition from i-th label
to j-th for a pair of consecutive time steps, and it
is position independent. Dynamic programming
can be used efficiently to compute T and inference
optimal tag sequences (Sutton et al., 2012).

In the following, we will introduce our two-stage
method UseClean built upon this encoder-CRF
model. Figure 1 shows the whole working flow
of our UseClean method.

3.1 Clean anchor: a better confidence score
NLNCE (Liu et al., 2021) uses the so-called mem-
orization effect observed in computer vision (Arpit

et al., 2017; Zhang et al., 2021a). It observes that
neural networks usually take precedence over noisy
data to fit clean data, which indicates that noisy
data are more likely to have larger loss values in
the early training epochs. However, we observe
that this is not generally true (see the Figure 2 for
examples), which in turn leads to many wrong se-
lection and also error accumulation.

Therefore, we propose to use a two-stage frame-
work that uses a little clean supervision to re-
duce wrong selection and also error accumulation.
Specifically, given all the training data, we sample
a small portion (around 1-3%) and annotate it with
clean labels, then we train a BERT-CRF model on
this small gold data. We call this model the clean
anchor model.

Then we apply the clean anchor model on the
rest of the training data and compute two choices
of confidence scores for i-th token in utterance u.
The marginal probability based score called Map
from (Liu et al., 2021):

ri = panchor(yi|u) = αiβi/Z, (5)

which measures how likely the i-th token is la-
beled yi under the clean anchor model, where β is
the backward variable and can be computed with
the Backward algorithm; and the logit value differ-
ences based score Diff:

di = max
j∈[K]

{Ai,j} −Ai,yi , (6)

which measures the gap between the logit of the
observed label and the predicted label. We observe
no universal winner of those two scores in our ex-
tensive experiments, therefore we report the best
over them.

Adaptive Sampling. Under the existence of the
class imbalance 3, it is very likely that our random
sampled small clean dataset does not contain cer-
tain tail entity types, and therefore leading to bad
separation of clean and noisy tokens in them. To
mitigate this effect, we consider a constrained sam-
pling method that tries to sample more from the
tail entities: sampling only from utterance that con-
tains at least one tail entity (we define the entities
that constitute the tail 20% quantile as the tail enti-
ties). In this paper, if a dataset appears to have long

3Other popular methods for combating imbalance issue
includes the logit adjustment method (Menon et al., 2021), but
we did not find it was able to improve the downstream NER
performance in our setting.
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Figure 1: A demonstration of the working flow of UseClean model.

tail entity distribution4, we will adopt an adaptive
sampling scheme: consider both random sampling
and constrained sampling and report the best over
them.

3.2 FitMix: automatic sample selection

From Figure 2 we can see that, the confidence
score of clean and noisy seems to follow a Gamma-
Gaussian mixture distribution, where the noisy
component follows the Gaussian distribution and
the clean component follows the Gamma distribu-
tion. So we propose to model the confidence score
s as the following:

s ∼ wf + (1− w)g, where w ∈ [0, 1] (7)

f ∼ Γ(α, β), g ∼ N(µ, σ), , (8)

and fit all the parameters (w, µ, σ, α, β) using
Expectation-Maximization algorithm. Then with
the fitted parameters (ŵ, µ̂, σ̂, α̂, β̂), we can com-
pute the theoretical F1 given a cutoff C in closed
form:

F1(C) =
ŵ
(
1− Γα̂,β̂(C)

)
+ (1− ŵ)

(
2− Φµ̂,σ̂(C)

)

(1− ŵ)
(
1− Φµ̂,σ̂(C)

) .

We select C such that F1(C) is maximized and
treat all tokens that have s > C as non-trustworthy.

3.3 Warm weight: learning on noisy tokens

After we do the sample selection, we treat all non-
trustworthy tokens as unlabeled and use the idea of
semi-supervised learning. Liu et al. (2021) simply
sum over all the token sequences that are compat-
ible with the trusted annotations. Specifically, de-
noting the trusted annotation sequence as yp, from

4Long tail distribution means having many classes of small
sizes.

it we can derive a set of all possible complete label
sequences that are compatible with the incomplete
label sequence, and let us call this set C(yp), then
semi-supervised loss function can be written as

L(θ) = − log
∑

ỹ∈C(yp)

pθ(ỹ|u) (9)

Inspired by Jie et al. (2019) for better modeling of
NER with incomplete annotations, we instead use
a weighted version:

Lweight(θ) = − log
∑

ỹ∈C(yp)

qD(ỹ|u)pθ(ỹ|u),

(10)
where qD represents the true data distribution. We
estimate qD as qanchor, which is the distribution
computed using our trained clean anchor model.
As the clean anchor model is trained on clean data,
therefore we believe these weights represent some
level of prior information of the underlying true
label sequence distribution. By putting more prob-
ability mass on a path that is close to the true path,
we can guide the model to quickly learn the essen-
tial parameters that can correctly predict the true
path in the inference stage.

4 Experiments

4.1 Datasets
We consider three datasets for evaluation through-
out this paper: an Alexa dialog dataset called
Massive (FitzGerald et al., 2022), which contains
around 16K samples, and 55 entity types across 18
domains; a popular benchmark dataset CoNLL03
(Sang and De Meulder, 2003), which contains
around 20K samples, 4 entity types in News do-
main; and a Wikipedia dataset Wikigold (Bala-
suriya et al., 2009), which contains around 1.8K
samples over 4 entity types in Wikipedia domain.
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Figure 2: The distribution of confidence score for both simulated noise (“bias" type, detailed description in Section 4)
and realistic transfer learning generated noise (detailed description in Section 4), using NLNCE method and our
UseClean method. For NLNCE, we plot the distribution of confidence score at epoch 2, we can see that the clean
and noisy samples are highly overlapped, i.e. the “early learning" phenomena does not hold true. On the other hand,
our UseClean method has better separation of clean and noisy.

Synthetic noisy datesets Given a dataset with
labels of good quality, we can treat its original
labels as truth and manually perturb it to gener-
ate noise. In this paper, we consider randomly
selecting x% of utterance, and random select
max{1, 0.2#entities} entities (if there are any),
and perturb their labels by the different noise gener-
ation schemes showed in Table 1. We mainly focus
on the high noise rate regime: i.e. 70%, 100% ut-
terance level noise. We point out that even with the
same utterance level noise rate, the word level noise
rate can vary a lot for different noise types. For
example, shift and shrink noise types often have
much lower word level noise rates compared with
others, this is due to the fact that shift and shrink
can only happen on entities with multiple words,
while the others can happen on any entity. Due to
the size imbalance between entity and nonentity
words, we compute the word-level noise rate for
entity and nonentity separately. In the following,
we use the summation of the entity and nonentity
word-level noise rate as the total word-level noise
rate for simplicity.

Realistic noise We also consider more realistic
noisy label generation. In practice, many cheap
labels are generated either from distant supervision
or transfer learning.

• Distant supervision: We consider three
datasets including Massive (FitzGerald et al.,
2022), CoNLL03 (Sang and De Meulder,
2003), Wikigold (Balasuriya et al., 2009).
In this setting, the distantly supervised tags
for CoNLL03 and Wikigold are generated by
the dictionary following BOND (Liang et al.,
2020), while for massive, we provide distant
supervision simply using our own defined dic-

tionary.

• Transfer learning: We consider two datasets:
Massive (FitzGerald et al., 2022) and
CoNLL03 (Sang and De Meulder, 2003).
For CoNLL03, we consider transferring the
Wikigold dataset to it, as they share exactly
the same entity types. To do the transfer, we
directly learn a model on Wikigold and predict
it on CoNLL03. For Massive, we use data in
9 domains of massive data and transfer them
to the rest 9 domains. To make the most mean-
ingful transfer, we compute this domain by do-
main entity types overlapping matrix, where
each cell indicates how many entities types a
pair of two domains share. Then we intention-
ally split the domains into source and target
such that the domain pairs with high over-
laps are separated, and hence model learned
on source domains can have more knowledge
transferable to the target domains.

4.2 Methods for comparison

For Baseline, we follow the implementation of
the neural-CRF model proposed in (Lample et al.,
2016) without any denoising steps. Particularly, it
models the tag sequence as a linear-chain condi-
tional random field, where only subsequent tags
have an edge. Also, we consider the following
three NER denoising methods on top of the base-
line, which we believe are the most competitive
methods in the literature. CoReg (Zhou and Chen,
2021) propose a regularization based NER denois-
ing method called CoReg, where the regularization
term is based on model agreement. NLNCE (Liu
et al., 2021) utilize the early learning phenomena
and select the noisy tokens via gradually truncating
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noise type explanation
example:
"show me the meetings held last month"

truth - - [O, O, O, S-event_name, O, B-date, I-date]
miss label an entity word as nonentity [O, O, O, S-event_name, O, O, B-date]over/in-

complete over label a nonentity word as some random entity [O, S-person, O, S-event_name, O, B-date, I-date]

shift
for an entity contains multiple words,
shift its boundary to the left or right by one word.

[O, O, O, S-event_name, B-date, I-date, O]

extend
for an entity, extend its boundary to
the left or right by one word.

[O, O, O, B-event_name, I-even_name, B-date, I-date]
boundary
error

shrink
for an entity contains multiple words,
shrink its boundary from the left
or right by one word.

[O, O, O, S-event_name, O, S-date, O]

swap for an entity, change its class to some other random entity [O, O, O, S-event_name, O, B-person, I-person]
class error

bias
for an entity, change its class to some
particular entities according to a transition matrix

[O, O, O, S-event_name, O, B-time I-time]

Table 1: Summarized synthetic noise generation scheme.

the samples with a large loss, then it uses the uni-
form partial CRF to relearn the noisy tokens. As
for alternative automatic cutoff fitting methods, we
also consider replacing our FitMix with the method
from (Pleiss et al., 2020) (and call it CutFake),
which manually assigns several tokens with labels
of an additional “fake" class and uses the lower tail
of their confidence scores for sample selection.

Implementation details In this paper, we con-
sider using two types of encoders: one is the BiL-
STM encoder (Huang et al., 2015) and the other
one is the BERT encoder (Devlin et al., 2019). For
BiLSTM, we use hidden dimension 200, SGD op-
timizer with learning rate 0.01; for BERT, we use
the default hidden dimension 768, and the default
optimizer with learning rate 2e-5. We use batch
size 10 for both encoders and it works well. For
BiLSTM encoder, we train for 30 epochs, and for
BERT, we train for 20 epochs. We split the whole
dataset into train/dev/test subsets if such splitting
was not provided by the original dataset, and we
keep the sample size ratio of train/dev/test as 2:1:1.
We output the model with the best dev F1 score.

4.3 Main results

Noise Type v.s. Noise Rate Table 2 shows how
the sample selection based methods work in dif-
ferent synthetic problem settings. Specifically, we
show the results of different methods confronting
one specific type of noise respectively, to investi-
gate our initial questions about whether methods’
performances depend on noise type and noise rate.
For a more realistic mixed noise, we refer to Ta-
ble 3. To get a sense of upper bound performance,
we also consider an oracle method called only-
Clean, where we replace the sample selection step
in the original NLNCE method by directly telling

it which is truly clean and noisy. Here Table 2
summarizes F1 score of the baseline, and the dif-
ferences from it of denoising methods NLNCE,
UseClean and onlyClean. The significant positive
differences are marked as green, while the signifi-
cant negative ones are marked as red, and the rest
are marked as grey. We can see that, after doing
sample selection correctly, the current sample se-
lection based method can indeed improve a lot over
the baseline, even though it still has some gaps from
the fully clean supervised case in the high noise
rate regime. Overall, we can observe that sample
selection based methods perform differently under
different noise types and noise rates. Basically, for
over type of noise, the baseline’s performance is
not influenced much. We suspect that this is due
to the fact that the over type of noise is kind of
unnatural, as it randomly selects a nonentity word
and assigns a random entity to it. Such nonentity
words would often be meaningless words like ‘the’,
‘a’ etc, and the CRF model can autocorrect such
unnatural mistakes as it optimizes over a tag se-
quence as a whole. Another similar case is the
swap noise type: where we find out that baseline
can already perform relatively well compared to
other noise types of similar noise rates. For the
rest more natural noise types, we can observe that
the effectiveness of the sample selection based idea
depends more on the word-level noise rate, rather
than the noise type. Specifically, it is less effective
when the noise rate is low. From this reason, we
can see that for shift and shrink type of noises,
sample selection based methods generally do not
help as much as they do in the other noise types,
since shift and shrink tend to have lower word-
level noise rate comparing to other noise types. In
the rest of the paper, we will focus on the miss,
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utterance level
noise rate

0% 30% 100%

Noise Type / Methods Baseline NLNCE UseClean onlyClean
Word leve
noise rate

Baseline NLNCE UseClean onlyClean
Word leve
noise rate

Miss 76.62 +0.15 +1.03 +4.39 11% 35.26 +12.17 +21.47 +37.55 50%
Over 80.97 +0.60 -0.38 +0.43 17% 77.79 +0.45 +0.82 +3.41 41%
Shift 79.32 -0.01 +0.85 +0.93 6% 70.83 -0.40 +1.57 +8.78 20%

Extend 74.53 +0.13 +4.34 +6.84 18% 42.4 +5.56 +24.36 +35.35 52%
Shrink 77.38 -0.25 +0.66 +3.13 8% 60.49 -1.56 +2.29 +15.41 33%
Swap 78.74 +0.32 -0.51 +2.85 21% 56.33 +0.03 +0.95 +14.93 67%
Bias

80.85

75.15 -0.08 +2.05 +5.21 15% 38.75 +0.43 +20.1 +33.09 49%

Table 2: The performance of baseline, NLNCE, UseClean, onlyClean over different noise types and noise rates.
The significant positive differences are marked as green, meaning that the method improves over 1% over baseline,
while the significant negative ones are marked as red, meaning the method is even worse than baseline by over
1%; the rest are marked as grey. The extremely positive ones are marked in bold green. We use the BERT encoder
throughout all those experiments.

extend, bias type of noises under the high noise
rate regime (70%, 100% utterance level noise rate),
where we know sample selection kind of idea has
the potential to help much.

Broad synthetic and realistic noisy settings Ta-
ble 3 summarizes the results for a more complete
collection of denoising methods and more realistic
noisy datasets. For all the noisy datasets, we report
their summed word-level noise rate over nonenti-
ties and entities. We can see that, the word-level
noise rate on the realistic noisy dataset tends to
be pretty high, therefore suitable for applying our
sample selection based method. We can see that,
NLNCE and CoReg can improve over the baseline
a bit under very limited cases, while our method
UseClean can improve over the baseline by a large
margin over all those noisy datasets.

4.4 Ablation Study

miss extend bias
utterance level
noise rate

70% 100% 70% 100% 70% 100%

word level
noise rate

34% 50% 39% 52% 34% 49%

(oracle) 65.17 52.51 70.75 63.29 58.73 56.43
adapt (oracle) 65.17 54.44 72.15 66.40 63.03 56.43
warm (oracle) 67.58 54.21 71.63 64.92 61.14 58.35
weight (oracle) 67.31 55.08 69.52 65.15 59.12 58.28
UseClean (oracle) 67.56 56.73 73.02 66.77 65.05 58.85
UseClean (fitmix) 67.37 54.10 70.29 61.04 64.73 55.80

Table 4: Ablation Study for our method.

In Table 4 we show results for the ablation study, to
see how each component in our method contributes
to the final performance. Here the first line rep-
resents random sampling which is our base, and
adapt means only uses adaptive sampling; warm
means only uses warm start; weight means only
uses weighted semi-supervised learning. For fair

comparison without the confounding effect from
cutoff fitting, we simply use the oracle cutoff: we
fit a logistic regression of true clean/noisy labels
with the confidence score, and use the predicted
clean/noisy labels as sample selection decisions.
We can see that each of these three techniques im-
proves over the base in most cases, and a combi-
nation of them, which is adapt + warm + weight
improves over the base by about 2-4% over all
cases. Finally, our FitMix technique can achieve
performance close to the oracle cutoff.

4.5 Further analysis
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Figure 3: The performance with and without the de-
noising step in UseClean versus different size of clean
supervision.

Amount of clean supervision required We
would like to explore how much clean data should
we require such that it is reasonable to ask. To be
more specific, we would like the effectiveness of
our method also comes from the denoising part,
rather than just the clean data pertaining part. In
Figure 3 we compare the F1 score for the clean
anchor model and our UseClean model with dif-
ferent proportion of clean dataset. To take account
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simulated noise realistic noise
miss extend bias distant supervision transfer learning

utterance level
noise rate

70% 100% 70% 100% 70% 100% Massive CoNLL03 Wikigold Massive CoNLL2003

word level
noise rate

34% 50% 39% 52% 34% 49% 66% 22% 48% 50% 61%

baseline 58.8 35.26 56.38 42.4 55.04 38.75 42.02 72.76 49.76 50.7 35.88
NLNCE 64.34 47.42 62.94 47.96 58.91 39.18 40.93 72.44 54.27 51.24 42.73
NLNCE* 65.28 49.13 65.56 46.40 58.91 39.81 42.87 74.58 57.62 51.99 44.78
CoReg 48.80 38.91 47.76 41.95 45.30 37.88 41.52 70.64 49.33 52.18 34.34
CutFake 53.85 54.47 61.18 58.01 56.14 55.79 53.51 79.27 55.48 60.60 51.77
UseClean 67.37 54.18 70.29 61.04 64.73 55.80 57.78 77.31 68.08 61.25 76.11

Table 3: The performance of our method and all the competitors over simulated noise and realistic noise.

of the influence from dataset, model architecture
and pretraining, we consider one simple dataset
CoNLL03 and one complex data set Massive; and
we consider three different backbone models: bert
(pretrained BERT model); bert_rand (randomly
initialized BERT model); bilstm (randomly ini-
tialized BiLSTM model). Due to the limitation of
space, here we only demonstrate the results of one
noisy type under the high noise rate regime: the
bias type of noise with utterance noise level 100%.

By just looking at the solid lines (i.e. clean
anchor model performance), we can see that all
lines tend to first rise rapidly and then slows-down,
this phenomenon is more evident on this simpler
data set CoNLL03 and large pertained encoder.
This indicates that large pretrained model is less
data-hungry, especially in the easy problem set-
ting. Also, we can see that, augmentation only
outperforms non-augmentation when clean data is
limited. Therefore, we argue that the reasonable
size of clean supervision we require should be less
than hundreds of examples. In all our examples, we
use 100-200 examples depending on the problem
difficulty.

Training dynamics In Figure 4, we plot the
sliced F1 score on clean tokens and noisy tokens
and also the total F1 score during the whole train-
ing process for baseline, NLNCE and UseClean.
We can see that, both NLNCE and UseClean can
indeed learn on the noisy tokens, while UseClean
tends to learn much better on the noisy case with-
out sacrificing too much on the clean cases. For
the case where UseClean is much better than NL-
NCE (i.e. Figure 4(a)), its generalization gap is the
smallest among the three methods. For the case
where UseClean is a bit better than NLNCE (i.e.
Figure 4(b)), we find out that the generalization
gap of both NLNCE and UseClean is nearly none,

meaning that now NLNCE also does not overfit to
noise too much. Still, UseClean learns better on
noisy cases. Finally, we also find out that, the sam-
ple selection type of denoising method improves
over baseline mainly by learning better on the noisy
cases, which often at the cost of a certain amount
of performance drop on clean cases. This might
also explain our findings about why the sample se-
lection type of idea only works in a high noise rate
regime.
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Figure 4: The sliced F1 score on clean tokens and noisy
tokens during the whole training process.

5 Conclusion and Discussion

In conclusion, we propose an effective and efficient
method called UseClean, which includes a simple
two-stage framework to avoid error accumulation,
a novel confidence score utilizing minimal clean
supervision to increase predictive power in sample
selection, an automatic cutoff fitting to save exten-
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sive hyper-parameter tuning and finally weighted
semi-supervised learning with warm start to learn
better on the noisy tokens. Additionally, we pro-
pose to use adaptive sampling to construct better
clean supervision for a further performance boost.
Despite simple, our method improves F1 score by
on average at least 5 ∼ 10% over current state-
of-art without extensive hyper-parameter tuning or
heavy computation, and is effective across a broad
type of noise types and noise levels.

We admit that most of the performance gain
comes from the minimal clean supervision in small
gold data. Without it, the SOTA method NLNCE
suffers from error accumulation and heavy compu-
tation. Still, we argue that the clean supervision we
need is very minimal, like just about 100 samples,
while the stable improvement and efficiency it can
bring is fairly large. In fact, we suspect that it is
often necessary to guarantee success in real applica-
tions, and how to best construct and leverage clean
supervision is nontrivial and important.

Limitations

We admit that the methods for comparison in this
paper are not a complete list of the literature,
though we arguably claim that they are strong rep-
resentatives. We omit some methods for now due
to their complexity and computation time. It would
make our paper a more convincing story if we had
also considered the rest established methods like
BOND(Liang et al., 2020). Also, currently we do
the sample selection and semi-supervised learning
in a one-pass way, while alternatively an iterative-
pass way like active learning (Kong et al., 2021)
might be even more effective. Still, one need to
be careful about the error propagation during the
iterative process.

Even though we point out the importance and
potential of designing and leveraging the meta gold
dataset, we have not provided a thorough discus-
sion of past endeavors. Particularly, FilDist (Onoe
and Durrett, 2019) also utilize clean supervision
like us, though they also require corresponding
noisy labels to fit a binary classifier for sample se-
lection. It would be interesting to see how those
methods compare to ours.
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Abstract

How well do neural networks generalize? Even
for grammar induction tasks, where the target
generalization is fully known, previous works
have left the question open, testing very lim-
ited ranges beyond the training set and using
different success criteria. We provide a mea-
sure of neural network generalization based
on fully specified formal languages. Given a
model and a formal grammar, the method as-
signs a generalization score representing how
well a model generalizes to unseen samples in
inverse relation to the amount of data it was
trained on. The benchmark includes languages
such as anbn, anbncn, anbmcn+m, and Dyck-
1 and 2. We evaluate selected architectures
using the benchmark and find that networks
trained with a Minimum Description Length
objective (MDL) generalize better and using
less data than networks trained using standard
loss functions. The benchmark is available at
https://github.com/taucompling/bliss.

1 Introduction

The extent to which artificial neural networks
(ANNs) generalize beyond their training data is an
open research question. In this work we approach
this question from the perspective of grammar in-
duction, that is, the learning of a formal grammar
from a finite (often small) sample from the (typi-
cally infinite) language of that grammar. In order to
succeed in this task, a model must strike a balance
between fitting the training data and generalizing to
a potentially infinite set of unseen strings. Humans
tested on such tasks show systematic generaliza-
tion from small sets of examples (Fitch and Hauser,
2004, Malassis et al., 2020).

While a range of ANN architectures have been
shown to reach approximations for formal lan-
guages, the quality of this approximation remains
an open matter, as we show below. Here we build
on previous probes of ANN generalization for
grammar induction and introduce a unified and

general way to assess this capability, for a given
pair of a learning model and a corpus drawn from
a formal language. Our main contributions are:

1. A benchmark for formal language learn-
ing. The benchmark relies on a method for
quantifying ANN generalization for formal
languages, including probabilistic languages.
The method assigns an index score represent-
ing a model’s generalization performance in
inverse relation to the size of the training data.
We introduce the method and provide concrete
datasets for well-studied formal languages.

2. An evaluation of selected architectures. We
test recurrent neural networks (RNNs) of
the Long-Short Term Memory type (LSTM;
Hochreiter and Schmidhuber, 1997); Memory-
augmented RNNs (MARNN; Suzgun et al.,
2019b;) and an RNN variant which replaces
the traditional gradient-based training regime
with an objective that optimizes the model’s
Minimum Description Length (MDLRNN;
Lan et al., 2022).

We find that equipping ANNs with memory
devices such as differentiable stacks helps gen-
eralization, but generalization remains partial
and slow. At the same time, training with
MDL leads in some of the test cases that we
examined to potentially perfect generalization
with significantly less data. In other cases,
training with MDL did not result in successful
generalization, possibly because the optimiza-
tion procedure we used for the architecture
search failed to find the global optimum under
the MDL objective function.

2 Background

Learning formal languages has long been used to
probe various aspects of ANN performance. These
most often include inquiries about: (i) ANNs’ abil-
ity to generalize beyond their training data, and
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Language Paper Model Metric Training size Max train n Max test n

anbn

GS’01 LSTM Mcat′ 16,000 30 1,000
JM’15 Stack-RNN Mdet 20† 19 60
WGY’18 LSTM Bin 100† 100 256
LGCK’22 MDLRNN Mdet 500 22 ∞

anbncn

GS’01 LSTM Mcat′ 51,000 40 500
JM’15 Stack-RNN Mdet 20† 19 60
WGY’18 LSTM Bin 50† 50 100
LGCK’22 MDLRNN Mdet 500 22 ∞

Dyck-1

SGBS’19a LSTM Mcat′ 10,000 50 100
SGBS’19b MARNN Mcat′ 5,000 50 100
EMW’22 ReLU-RNN Mcat′ 10,000 50 1,000
LGCK’22 MDLRNN Mcat 500 16 ∞

Table 1: ANN performance in selected probes of formal language learning. Metrics (see Section 3.5): Mdet =
deterministic accuracy; Mcat = categorical accuracy; Mcat′ = a non-probabilistic version of Mcat; Bin = binary
classification from hidden state to accept/reject labels, based on positive and negative samples. Training size: † =
the paper did not explicitly specify the training set size, the value here is derived by assuming the training set was
an exhaustive list of all strings up to ‘max train n‘. ‘Max test n’: the largest n for which the criterion was reached.
For Dyck-1, n represents overall sequence length. ‘∞’ = the paper provides evidence that the network is correct for
any n. When a paper reports several experiments as in GS’01, we take the best result based on the smallest training
set. Papers: GS’01 = Gers and Schmidhuber (2001); JM’15 = Joulin and Mikolov (2015); WGY’18 = Weiss et al.
(2018); SGBS’19a = Suzgun et al. (2019a); SGBS’19b = Suzgun et al. (2019b); EMW’22 = El-Naggar et al. (2022);
LGCK’22 = Lan et al. (2022).

(ii) ANNs’ expressive power; i.e., whether they
can represent the relevant target grammars (often
probed with reference to the Chomsky hierarchy
of formal languages, as in Delétang et al., 2022).
Here we will focus on the generalization question.
We will show how it might be related to another
under-exploited line of inquiry regarding the train-
ing objective of ANNs.

A long line of theoretical work has probed the
computational power of ANNs. Siegelmann and
Sontag (1992) originally showed that RNNs with
a sigmoid activation can emulate multiple-stack
Turing machines under certain permissive condi-
tions (infinite activation precision and unbounded
running time). Since these conditions cannot be
met in practice, another line of work probed the
computational power of RNNs under practical con-
ditions (finite precision and input-bound running
time). Weiss et al. (2018) have shown that under
these conditions LSTMs are able to hold weight
configurations that perform unbounded counting,
and so they should be able to recognize counter lan-
guages (CL), a family of formal languages that can
be recognized using one or more counting devices
(following some formal restrictions, Merrill, 2021).
Recently, El-Naggar et al. (2023a) and El-Naggar
et al. (2023b) have shown that two simpler RNN ar-

chitectures, with linear- and ReLU-based cells, are
also able to hold counting weight configurations,
with similar consequences for recognizing CL.

Empirically, another line of work provided
promising results regarding the capability of ANNs
to learn formal languages. This was most of-
ten done by training networks on strings up to
a certain length and then showing good perfor-
mance on longer ones (Bodén and Wiles, 2000,
Gers and Schmidhuber, 2001; see Table 1). Gers
and Schmidhuber (2001) have shown that LSTMs
trained on languages such as anbn and anbncn with
n values in the low dozens perform well on n’s in
the high hundreds. Suzgun et al. (2019a) found
that LSTMs trained on Dyck-1 sequences (strings
of well-balanced pairs of brackets) up to length 50
performed well on lengths up to 100. Suzgun et al.
(2019b) proposed RNN variants that are equipped
with external differentiable memory devices and
showed that they yield improved performance on
non-regular languages.

However, other empirical results show that in
practice ANNs generalize only to very restricted
ranges. Weiss et al. (2018) found that while LSTMs
are theoretically able to hold counting solutions,
these are not found through training: LSTMs
trained on anbn and anbncn with max n 100 and
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50, respectively, start accepting illicit strings with n
values as low as 256 and 100. As mentioned above,
Suzgun et al. (2019a) tested LSTMs on Dyck-1 se-
quences but only up to length 100, and concluded
that this language was learned by LSTMs. El-
Naggar et al. (2022) extended this work to longer
sequences, and found that LSTMs fail to gener-
alize in practice, outputting incorrect predictions
at lengths under 1,000. This, despite Dyck-1 be-
ing a CL and so theoretically learnable by LSTMs
(Weiss et al., 2018).

Apart from LSTMs, recent probes by El-Naggar
et al. (2023a) and El-Naggar et al. (2023b) have
shown that linear and ReLU RNNs, theoretically
capable of counting, fail to find the counting weight
configurations in practice when trained using back-
propagation and standard loss functions; El-Naggar
et al. (2023b) went further with determining the
source of this discrepancy, showing that the count-
ing weight configuration is not an optimum of these
loss functions.

Moreover, even in works that report successful
generalization to some degree beyond the training
set, the fact that networks stop generalizing at an
arbitrary point is often left unexplained (Gers and
Schmidhuber, 2001, Suzgun et al., 2019a, 2019b,
Delétang et al., 2022, a.o.).1

The literature on the generalization abilities of
ANNs has made use of a range of measures of
success, making results difficult to compare. Dif-
ferent probes of the same model often use different
success criteria, and generate training and test sets
using different sampling methods and of different
orders of magnitude. Table 1 summarizes selected
probes of ANN generalization and highlights the
fragmented nature of this literature. In the fol-
lowing sections we propose a unified method to
consolidate these efforts and better understand the
generalization capabilities of ANNs.

3 The BLISS index

We present the Benchmark for Language Induction
from Small Sets (BLISS). We provide a formal
description of the method, followed by a concrete
application to specific tasks.

1Technical limitations such as finite activation precision
can be ruled out as explanations for generalization failures, at
least for counter languages and models where network states
serve as memory: as shown in works mentioned above, ANNs
often start outputting wrong predictions for n values in the low
hundreds. Even restricted representations such as 16-bit floats
can hold much larger values, and modern implementations
such as PyTorch use 32-bit floats by default.

The current release consists of three parts: (i) A
specification for the generalization index B, calcu-
lated for a given pair of formal language and ANN;
(ii) A dataset containing a set of formal languages
for benchmarking; (iii) An evaluation of different
ANN architectures using this dataset.

3.1 General setting: models and tasks
For a given model A, e.g., an LSTM, a task is
composed of the following components:

• G – a grammar, e.g., a probabilistic context-
free grammar (PCFG).

• S – a sampling method from L(G), the lan-
guage generated by G.

• C = S(G) – a training corpus, may contain
repetitions.

• T ⊆ L(G) \ C – a test corpus.

• M – a task-specific accuracy metric with ad-
justable error margin

ε ∈ [0, 1]. It uses predictions A(s) on
strings s ∈ T to calculate an accuracy score
M(A, T , ε) ∈ [0, 1].

• N – a task-specific constant for setting the
order of magnitude of dataset sizes. For ex-
ample, N = 3 sets the order of magnitude at
103. Training and test sizes are then derived as
described below. Selecting N is done empiri-
cally based on properties of the task, e.g., lan-
guages with large vocabularies require larger
amounts of training data, hence a larger N .

3.2 From task to generalization index
For a given task, the generalization index of order
N for a model A is then defined as:

BL
N (A) = max

{
b

∣∣∣∣
|T | = 10N × b,
|C| = 10N/ b,

M(A, T , ε) = 1.0

}
(1)

Intuitively, the index compares a model’s perfor-
mance on a test size |T | to the inverse of its training
data size |C|.

The index is expressed as the maximal b factor
which scales the training set and the corresponding
test set in opposite directions: The accuracy con-
dition at the bottom of (1) means that the model
should be ε-close to perfect generalization on the
test set. A model’s generalization index B thus
represents the performance that can be maximally
‘squeezed out’ of an inversely small amount of data.
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Figure 1: Example generalization index scores B3, i.e.,
for a baseline training size of 103. Each dashed line
represents the performance profile of some hypothetical
model, as a function of the size of the training set. The
intersection with the B3-frontier indicates its B3 index.

Figure 1 exemplifies selected B values calcu-
lated based on (1). For illustration, for anbn, using
the order of magnitude N = 3, a model that was
trained on |C| = 103/2 = 500 samples and was
100% accurate on a test set of size 103×2 = 2, 000
will have an index score Banbn

3 ≥ 2. A model for
the same language that was trained on 250 samples
only and generalized to a subsequent set of 4,000
samples will reach Banbn

3 ≥ 4.
For practical reasons, one cannot exhaust all val-

ues of b to find B. However, training and evaluating
a model using a few b values is enough to reveal its
generalization dynamics, as shown in experiments
in Section 5. The following sections describe the
specific choices made for the different benchmark
components in these experiments.

3.3 Learning setup

Previous work surveyed here differed in their learn-
ing setup. Gers and Schmidhuber (2001) and Suz-
gun et al. (2019a, 2019b) trained networks in a
non-probabilistic, supervised setup by exposing the
model to all possible next symbols and minimizing
the mean-squared error (MSE) – i.e., the model is
given explicit information about the distribution of
possible symbols. Joulin and Mikolov (2015) and
Lan et al. (2022) used a setup that we adopt below,
in which model outputs are probabilistic, and train-
ing is self-supervised language modeling (i.e., the
model is exposed to the next symbol only) with a
cross-entropy loss. Weiss et al. (2018) trained a
binary classifier with accept/reject labels based on
positive and negative examples.

Since our focus is grammar induction, here we

adopt the more demanding setup of learning from
positive examples alone. All tasks are thus de-
signed as self-supervised language modeling. At
each time step, a model assigns a probability distri-
bution to the next symbols in the string.

The benchmark is agnostic as to the internals of
the model and its training, as long as its outputs
represent a probability distribution over symbols.
In practice, then, the method can be applied to any
language model, not necessarily an ANN.

3.4 Sampling

To construct the training and test sets C and T we
use the following as method S:

• To construct C, we sample strings according
to the distribution defined by G, with repeti-
tions. For example, if G is a PCFG, it can be
sampled by applying derivation rules chosen
proportionally to their expansion probabilities.
Repetitions are allowed so that C follows a
similar surface distribution to L(G) and so
that the model can pick up on the underlying
probabilities in G.

• To construct T , we take the |T | subsequent
strings starting right after the longest string in
T , sorted by length.2 For example, for the lan-
guage anbn, if the longest string in the training
set C was a17b17, and the model needs to be
tested on a set of 2000 strings, T will be com-
posed of the strings a18b18, ..., a2017b2017.

The sampling method S can be either probabilis-
tic as described here, or exhaustive, training on
all strings in L up to a certain length. We opt for
probabilistic sampling because of the nature of the
task at hand: the models under discussion here are
trained to assign probabilities to the next symbol
in a string, most often minimizing a cross-entropy
loss. In practice, then, they always learn distri-
butions over strings. Thus if C follows a similar
surface distribution to L (given a large enough sam-
ple size), the model should eventually learn this
distribution in order to minimize its loss.

Probabilistic sampling thus makes it possible to
probe both a model’s knowledge about the surface
forms of L (by treating model outputs as categori-
cal classes), and about their distribution. The mod-
ularity of the index makes it possible to choose

2Test strings may need to be sorted further according to
specific properties of a language, see Section 4.1.
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either option by varying the accuracy metric M , as
we show in the next section.

3.5 Accuracy metrics

Ultimately we are interested in knowing whether a
model accepts all strings in L and rejects all others.
In classical formal language theory, where discrete
automata are used, acceptance is clear cut and taken
as going into an accepting state. ANNs on the
other hand use continuous representations with no
standard acceptance criterion.

Different acceptance criteria have been used in
previous works to measure success for ANNs: Gers
and Schmidhuber (2001) and Suzgun et al. (2019b)
defined acceptance of a string as a model assign-
ing output values above a certain threshold to valid
symbols only; Joulin and Mikolov (2015) measure
accuracy at parts of strings that are completely pre-
dictable; and Weiss et al. (2018) turn a network into
a recognizer by training a binary classifier from
network states to accept/reject labels. Below we
provide general versions of these accuracy metrics
(omitting Weiss et al., 2018 who rely on negative
examples).

Choosing which metric to use is based on
the properties of the language at hand. Well-
performing models might still deviate slightly from
perfect accuracy due to practical limitations, such
as a softmax function preventing a model from
expressing categorical decisions. Thus for each

Input: # ( ( ) ( ) )
↓ ↓ ↓ ↓ ↓ ↓ ↓

Target: #/( (/) (/) (/) (/) (/) #/(

Input: # a a a b b b
↓ ↓ ↓ ↓ ↓ ↓ ↓

Target: #/a a/b a/b a/b bbb bbb ###

︸ ︷︷ ︸
Deterministic

Figure 2: Inputs and valid next symbols at each step of
a Dyck-1 string (top) and anbn (bottom), including the
start/end-of-sequence symbol ‘#’. For anbn, accuracy
is measured at deterministic steps, after the first ‘b’. For
Dyck-1, accuracy is the fraction of time steps where a
model predicts only valid next symbols: ‘#’ should be
predicted only when brackets are well balanced.

accuracy metric we add an adjustable error margin
ε. Acceptance of a string is defined as reaching
100% accuracy (minus ε) on the string. Success on
the test set is then defined as accepting all strings
in the set (third condition in (1)).

1. Deterministic accuracy (Mdet). Some lan-
guages contain strings with deterministic
phases, where the next symbol is fully pre-
dictable. For example, strings in the language
anbn have two phases, the a phase and the b
phase. As long as only a’s are seen, the next
symbol remains unpredictable as the sequence
can continue with another a or switch to the b
phase. The string becomes deterministic once
the first b appears. Mdet is defined as the frac-
tion of deterministic time steps in which the
model assigns the majority probability to the
correct next symbol. This metric is used in
Joulin and Mikolov (2015).

A string is considered accepted if the model is
1−ε accurate over all deterministic time steps.
Note however that even a very small ε might
benefit models that do not recognize strings
well. For example, for the language anbn, the
deterministic steps in a string are the b’s and
the final end-of-sequence symbol. A degener-
ate model that predicts only b’s will get only
the end-of-sequence symbol wrong out of all
deterministic steps, and will reach a very high
accuracy score. For any large enough test set
these errors will be hidden within the ε margin
and the model will be deemed successful. ε
should therefore be chosen with care per task.

Mdet is used below for the following lan-
guages that have deterministic phases: anbn,
anbncn, anbncndn, and anbmcn+m.

2. Categorical accuracy (Mcat). Some language
strings do not have any predictable phases.
This is the case in the Dyck family of lan-
guages. At each time step in a Dyck string,
one may open a new bracket (see Figure 2).
Mcat is therefore defined as the fraction of
steps in which a network assigns probability
p > ε to each possible next symbol, and p ≤ ε
to irrelevant symbols. Non-probabilistic ver-
sions of Mcat are used in Gers and Schmidhu-
ber (2001) and Suzgun et al. (2019a, 2019b)
who do not treat network outputs as probabil-
ity distributions. Mcat is used below for Dyck
languages.
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As specified in Section 3.1, the index B is calcu-
lated based on the largest test set for which a model
reaches an ε-perfect accuracy score.

Beyond accuracy, one might be interested in in-
specting a model’s knowledge of the distribution
of strings in L induced by a probabilistic G. This
can be done by using the probabilistic sampling
method described in Section 3.4 and accompany-
ing it with a probabilistic accuracy measure – for
example, one based on an optimal cross-entropy
score, which is known from G’s expansion proba-
bilities (as done in Lan et al., 2022). Feeding loss
values into an accuracy metric will require normal-
izing them across tasks. We leave this extension
for future work.

3.6 String structure

Following Gers and Schmidhuber (2001), each se-
quence starts and ends with a start/end-of-sequence
symbol ‘#’. This turns the task into a strict ac-
ceptance/rejection task – predicting the end-of-
sequence symbol is taken as going into an accept
state. The start- and end-of-sequence symbols are
added to the task-specific vocabulary and are as-
signed probabilities by the model at each step. Fig-
ure 2 illustrates input and target sequences for anbn

and Dyck-1.

3.7 Limitations

One shortcoming of the proposed index score is
that it does not reflect perfect generalization, i.e., it
is an empirical index that cannot point out a model
that outputs correct predictions for any string in
L(G). For most models, this will not be a prob-
lem, and B will simply represent the model’s best
training vs. test size ratio. In the case of a model
that reaches perfect generalization on any input, the
index score will represent the critical training size
that brings the model to this performance.

Assigning a generalization score to infinitely cor-
rect models will remain a problem for any empiri-
cal metric that assigns scores to models based on
finite test values. An alternative to such empirical
probes would be to analytically show that a model
is correct (as done in Lan et al., 2022).

4 Datasets

We provide training and test datasets for a pre-
liminary set of formal languages for evaluation
using the B index. The dataset includes the
languages anbn, anbncn, anbncndn, anbmcn+m,

Dyck-1, and Dyck-2. The source code, datasets,
and specifications for the benchmark are available
at https://github.com/taucompling/bliss.

4.1 Training and test sets
Training sets for context-free languages are sam-
pled from PCFGs as described in Section 3.4. The
PCFGs are given in Appendix B. Training sets for
context-sensitive languages are generated by sam-
pling values for n from a geometric distribution.

Test sets are generated using the method de-
scribed in Section 3.4: All test sets consist of an
exhaustive list of strings ordered by length starting
right after the longest string seen during training.
Test sets for anbmcn+m consist of the list of strings
starting after the last seen pair of n,m, sorted by
n+m values to test all possible combinations.

5 Experiments

5.1 Models
We test the following models: LSTM RNNs
(Hochreiter and Schmidhuber, 1997); Memory-
augmented RNNs (MARNN; Suzgun et al., 2019a);
and Minimum Description Length RNNs (MDL-
RNN; Lan et al., 2022).

LSTM architectures were developed with the
task of keeping items in memory over long dis-
tances in mind. As mentioned above, Weiss et al.
(2018) have shown that LSTMs are theoretically
capable of recognizing CL.

MARNNs (Suzgun et al., 2019b) are RNNs
equipped with external memory devices, and were
shown to yield better performance when learning
languages that require stack-like devices and be-
yond. Here we use Stack-LSTM, an LSTM aug-
mented with a pushdown automaton; and Baby
Neural Turing Machines (Baby-NTM; itself a vari-
ant of NTMs, Graves et al., 2014), an RNN with a
more freely manipulable memory.3

MDLRNNs are RNNs trained to optimize the
Minimum Description Length objective (MDL;
Rissanen, 1978), a computable approximation of
Kolmogorov complexity, the algorithmic complex-
ity of a model. The intuition behind the objective
is equating compression with finding regularities
in the data: a model that compresses the data well
will generalize better and avoid overfitting. In prac-
tice, optimization is done by minimizing the sum of

3We modify Suzgun et al. (2019a)’s models to output
probability distributions, replacing the final sigmoids with
a softmax layer and the MSE loss with cross-entropy. See
Section 3.3.
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the architecture encoding length and the standard
cross-entropy loss, both measured in bits based on
a specific encoding scheme.

MDL is a stricter regularizer than standard reg-
ularization techniques such as L1/L2: the latter
penalize large weight values but cannot prevent
models from overfitting using a solution that uses
many small, but informative, weights. MDL pe-
nalizes the actual information content of the net-
work, forcing it to be general and avoid overfitting.
MDLRNNs were shown to learn some of the lan-
guages discussed here in full generality using small
architectures of only 1 or 2 hidden units and to
outperform L1/L2 (Lan et al., 2022).

MDL is a non-differentiable objective, which
requires that MDLRNN be optimized using a non-
gradient based search method, such as an evolu-
tionary algorithm that searches the network archi-
tecture space. Since this method is not based on
gradient descent, Lan et al. (2022) were able to use
non-standard, non-differentiable activations such
as step functions. Here we restrict the architecture
space to only standard activations: the linear func-
tion, ReLU, and tanh. This serves both to compare
MDLRNN with standard networks and to limit the
architecture search space. We publish the result-
ing nets as part of the MDLRNN-Torch release at
https://github.com/0xnurl/mdlrnn-torch.

Appendix A lists the hyper-params for all runs.

5.2 Training sets

We used training sizes |C| = 100, 250, 500, 1000.
We stopped at the smallest size 100 because in
our setup this size results in test strings of lengths
> 10,000, leading to very long running times.

5.3 Index parameters

We calculate the B index for all trained networks
using the following index parameters:

Magnitude parameter N = 3, i.e., training and
test sizes are derived from a baseline size 103. This
order of magnitude was selected based on the train-
ing set sizes used in previous works for the lan-
guages inspected here (Table 1).
Mdet ε = 0.005, i.e., a model needs to correctly

predict the next symbol for at least 99.5% of all
deterministic steps. Since even this high threshold
allows a degenerate model to reach good scores
as described in Section 3.5, we also calculate the
index score using ε = 0, i.e. a model must predict
all deterministic symbols correctly.

Language Model B-index
ε = 0.005 ε = 0

anbn
LSTM 10 <1
Stack-LSTM 10 <1
Baby-NTM 10 1
MDLRNN 10 10

anbncn
LSTM <1 <1
Stack-LSTM 2 <1
Baby-NTM 10 <1
MDLRNN <1 <1

anbncndn
LSTM <1 <1
Stack-LSTM 1 <1
Baby-NTM 4 <1
MDLRNN <1 <1

anbmcn+m
LSTM <1 <1
Stack-LSTM 10 <1
Baby-NTM 4 <1
MDLRNN 4 4

Dyck-1
LSTM <1 <1
Stack-LSTM <1 <1
Baby-NTM <1 <1
MDLRNN 2 2

Dyck-2
LSTM <1 <1
Stack-LSTM <1 <1
Baby-NTM <1 <1
MDLRNN <1 <1

Table 2: Generalization scores B. The index represents
how well a model generalizes in relation to its training
size. A score B = 4 indicates that a model trained
on 250 samples reached the accuracy criterion on the
consecutive 4,000 unseen test samples. B < 1 indicates
that the model did not reach the accuracy criterion when
the test size was greater than the training size, but might
reach it for larger training and smaller test sets.

Mcat ε = 0.005, i.e., for Dyck, a model needs
to assign p ≤ 0.005 to each irrelevant symbol and
p > 0.005 to possible ones. Here as well we report
results for ε = 0, i.e., a model must assign non-zero
probabilities to valid symbols only.

6 Results

6.1 Non-perfect accuracy

The generalization index obtained by each model
for each language is presented in Table 2.

We start by inspecting the indexes calculated
using the more lenient accuracy margin ε = 0.005.

For anbn, under this accuracy margin, all models
are assigned index B = 10, i.e., reaching the suc-
cess criterion for the next unseen 10,000 samples
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Figure 3: Generalization performance of the models
tested here. Models were trained on strings drawn from
anbn and tested on acceptance of strings up to n =
1,000. X’s mark the maximum n seen during training.

after being trained on 100 samples. For the specific
combination of random seed and sampling prior
in these experiments, this means that the models
were trained on strings up to a20b20 and general-
ized to all strings up to at least a10020b10020 with
deterministic accuracy Mdet ≥ 99.5%.

For anbncn, MARNNs reach B = 10 and 2,
while LSTM and MDLRNNs do not reach the suc-
cess criterion, resulting in B < 1. For anbncndn

only MARNNs reach a specified index, with a
Baby-NTM reaching B = 4, indicating that it gen-
eralized to strings as long as a4020b4020c4020d4020

with Mdet ≥ 99.5%.
For the addition language anbmcn+m, Stack-

LSTM and MDLRNN reached index scores B =
10 and 4 respectively. For the specific combination
of random seed and the sampling prior used here,
this means that the winning Stack-LSTM saw max-
imum values of n = 18,m = 20 during training,
and generalized to all strings up to a120b120c240

with Mdet ≥ 99.5%.

6.2 Perfect accuracy

We report the generalization scores using a strict
ε = 0 as well, i.e., when a model is required to
predict all deterministic steps correctly or assign
non-zero probability to valid symbols only. For
languages with deterministic steps such as anbn,
this means that the model needs to always predict
the end-of-sequence symbol correctly, thus mak-
ing a distinction between accepting a string and
approximating its surface structure.

Here, only MDLRNNs remain at the same
scores, indicating that they predicted all time steps
correctly. Baby-NTM reaches B = 1 for anbn, a

inputa

inputb

input#

ReLU 3

-1

1

1
TANH P(#)

0.5

-0.5

-3

TANH P(b)

RELU P(a)
3

Figure 4: RNN cell architecture of the best-performing
MDLRNN for anbn, which trained on 100 samples and
reached B3 = 10. The network uses only one hidden
unit and standard activation functions, and generalizes
up to at least a35000b35000. Dashed arrows are recurrent
connections across time steps. The loop from the hidden
ReLU unit to itself is a counter mechanism evolved by
the evolutionary algorithm to count and compare the
number of a’s and b’s.

drop from 10. The rest of the networks drop to
B < 1, revealing that their good scores in the pre-
vious comparison calculated with a non-zero ε was
due to them approximating the target languages,
even at low n values.

MDLRNN performance here is in line with re-
sults from Lan et al. (2022), who provided evi-
dence that MDLRNNs for these languages do not
only perform empirically well on large test val-
ues, but are also provably correct for any input.
However, here we limited activations to standard,
non-discrete functions (Section 5.1), potentially
limiting the network’s ability to generalize well
in the limit. While we do not provide correct-
ness proofs for the networks found here, the index
scores indicate that MDLRNNs generalize well to
large values using only standard activations. Fig-
ure 4 presents the MDLRNN found for anbn. We
checked whether this network also accepts n val-
ues beyond those needed to reach the score B = 10
(n = 10,020). The network reached 100% Mdet

for all values up to n = 35,000, at which point we
stopped the test due to long feeding times.

Beyond the benchmark scores, Figure 3 plots
the largest n value for anbn strings predicted by
the models tested here with 100% Mdet accuracy
(ε = 0), as a function of training set size. Both
MDLRNNs and Baby-NTMs reach perfect accu-
racy up to the tested maximum of n = 1,000.
MDLRNNs however require two orders of mag-
nitude less data to reach this performance (and
the benchmark scores in Table 2 show that in fact
MDLRNNs generalized up to at least n = 10,000,
while Baby-NTMs remained at 1,000). LSTMs
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and Stack-RNNs did not generalize well beyond
the training samples. This is in line with previous
works showing that these models may need sub-
stantially more training data in order to learn these
languages (Table 1).

7 Discussion

We provided a simple index for how well a model
generalizes: how much it can learn from how little
data. We illustrated the usefulness of this index in a
comparison of several current models over several
formal languages. Beyond showing which current
models generalize better than others, the bench-
mark also highlights which aspects of artificial neu-
ral networks work well for grammar induction, and
what is still missing.

Among languages that were learned with perfect
accuracy (anbn, anbmcn+m, Dyck-1), MDLRNNs
generalized best, but still failed on others (anbncn,
anbncndn, and Dyck-2). Previous work has shown
that this model’s search procedure, an evolutionary
algorithm, fails to find networks that are manually
shown to have better MDL scores (Lan et al., 2022).
We take this to show that the optimization proce-
dure limits the model and prevents it from taking
full advantage of the MDL objective. The benefit
of the MDL objective is nevertheless evident in the
generalization performance for several languages.

MARNNs clearly benefit from their memory de-
vices and reach good generalization scores, but
testing for perfect accuracy (ε = 0) reveals that
their learning outcome is mostly approximate, and
that they fail to maintain perfect accuracy for long
stretches beyond their training data. This could
be the result of an inadequate objective function
(cross-entropy), limitations of the search (backprop-
agation/gradient descent), or both. We do not cur-
rently have results that help decide this matter, but
recent results for other architectures (El-Naggar
et al., 2023b) hint that the problem lies at least in
part in the objective function.
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A Appendix: Hyper-parameters

A.1 Training corpora
All training sets were generated using the
same random seed 100 and prior probability
p = 0.3. The datasets are available at
https://github.com/taucompling/bliss. Following
Jacovi et al. (2023), the datasets are zipped and
password-protected to prevent test data contamina-
tion of large language models through crawling.

Each of the LSTM and MARNN hyper-param
configurations below was run 3 times using dif-
ferent random seeds (100, 101, 102). MDLRNNs
were run once per configuration because of their
longer running time.

A.2 LSTM
LSTMs were trained based on the following hyper-
params grid: hidden state size (2/32/128), regular-
ization technique (L1/L2/none), and the regulariza-
tion constant in case regularization was applied (λ
= 1.0/0.1/0.01). Networks were trained using the
Adam optimizer (Kingma and Ba, 2017) with learn-
ing rate 0.001, β1 = 0.9, and β2 = 0.999. The
networks were trained by feeding the full batch of
training data for 1,000 epochs.

A.3 MARNN
MARNNs were trained by varying the architec-
ture type (Softmax Stack-LSTM/Softmax Baby-
NTM) and stack/memory size (50/100 for Stack-
LSTM, 2050 for Baby-NTM). For Stack-LSTM,

stack sizes were selected so they were always
larger than the largest values seen during training:
n + m = 22 + 24 for anbmcn+m and n = 24
for all other languages. During testing the stack
size was enlarged to 2050, beyond the maximum
needed to reach scores B = 1 and 2. Baby-NTM
memory was set to 2050 already during training be-
cause this model’s memory size affects the weight
dimensions and cannot be changed after training.

The rest of the hyper-parameters were set to the
default values from Suzgun et al. (2019b). Stack-
LSTM: hidden size 8; 1 layer; memory dimension
5; epochs 3/50; learning rate 0.01; Baby-NTM: hid-
den size 8; 1 layer; memory dimension 5; epochs
3/50; learning rate 0.01.

The original MARNN setup was modified here
so that the network outputs represent probability
distributions and not multi-label outputs. This was
done by replacing the sigmoid outputs with a soft-
max layer and the MSE loss with cross-entropy.

A.4 MDLRNN
MDLRNNs were trained using the evolutionary al-
gorithm and the same hyper-params reported in Lan
et al. (2022): population size 500; islands size 250;
25,000 generations; tournament size 2; early stop
after 2 hours of no improvement; elite ratio 0.001;
migration interval 1,000 generations/30 minutes.

B Appendix: PCFGs

B.1 anbn

S →
{

aSb 1− p
ε p

B.2 anbmcn+m

S →
{

aSc 1− p
X p

X →
{

bXc 1− p
ε p

B.3 Dyck-1

S →
{

( S ) S p
ε 1− p

B.4 Dyck-2

S →
{ ( S ) S p/2

[ S ] S p/2
ε 1− p
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Abstract 

In this work, we test the working of Google 
Translate’s recently introduced Sanskrit-
English translation system using a 
relatively small set of probe test cases 
designed to focus on those areas that we 
expect, based on a knowledge of Sanskrit 
and English grammar, to pose a challenge 
for translation between Sanskrit and 
English. We summarize the findings that 
point to significant gaps in the current Zero-
Shot Neural Multilingual Translation 
(Zero-Shot NMT) approach to Sanskrit-
English translation. We then suggest an 
approach based on Sanskrit grammar to 
create a differential parallel corpus as a 
corrective training data to address such 
gaps. This approach should also generalize 
to other pairs of languages that have low 
availability of learning resources, but a 
good grammar theory. 

 

1 Introduction and motivation 

Translation between Sanskrit and English presents 
significant challenges, even for expert human 
translation, due to the unique features of Sanskrit 
and the large linguistic gap between Sanskrit and 
English.  Also, Sanskrit has a unique role, specially 
in the Indian subcontinent as it was formerly a 
common language of communication across all 
fields. It was displaced by colonization, but is 
seeing a resurgence of late, specially for accessing 
Indian Knowledge Systems in the original. This has 
important implications on the expectations from an 
automatic translation, and the implications of 
erroneous translations. 

 
1 Work carried out while the author was at Plaksha.   

 
 
In addition to the above factors, automatic 

machine translation between Sanskrit and English 
presents the additional challenge of Sanskrit having 
relatively low availability of high-quality training 
resources such as tagged corpora. 

In May 2022, it was announced (Google, 2022) 
that 24 new languages including Sanskrit were 
being added to Google Translate, using the new 
Zero-Shot Machine Translation adaptation 
(Johnson et al, 2017) of Google’s Neural 
Multilingual Translation (Wu et al, 2016).  

In essence, Zero-Shot NMT leverages deep 
learning in a single model trained on multiple 
language pairs, to translate even between directions 
and language pairs it has not been explicitly trained 
on. Google’s Zero-shot NMT is a variation of Zero-
Resource Machine Translation (Firat et al, 2016), 
which requires an additional fine-tuning step using 
“pseudo-parallel” data of the new language pair. 
The need for this step is avoided in the design of 
zero-shot NMT.  

It is interesting that Google has used the Zero-
Shot NMT approach for Sanskrit-English. This is a 
data-driven approach to MT and NLP that avoids 
the need for explicit encoding of knowledge. The 
other possible approach to MT and NLP is 
grammar-based or model-driven, which needs 
explicit encoding of knowledge. The linguistic 
theory and grammar behind Sanskrit is very stable 
and sound. Using this theory base, efforts have 
been made to create grammar-based Sanskrit NLP 
systems, for example (Kulkarni, 2021).  

The data-driven approach is normally attractive 
when training resource availability is good, and a 
good grammar model is absent or too complex. The 
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grammar-based approach is normally attractive 
when there is a good grammar model, and the 
training resource availability is poor. With Sanskrit, 
there is a relatively good grammar model and 
relatively poor training resource availability. And 
yet, Google has chosen the data-driven approach 
for Sanskrit-English translation through its choice 
of zero-shot NMT, in order to maintain a uniform 
approach across all languages. 

It is pertinent, therefore, to test the effectiveness 
of Google’s Sanskrit-English translation system in 
actual use. We now describe the considerations we 
used to design this test. 

2 Test Design Considerations for 
Sanskrit-English Google Translate 

We now describe the considerations that came up 
when designing a test for Sanskrit-English Google 
translate, and how we dealt with them: 
 

a. Directionality – Should we test Sanskrit to 
English, or English to Sanskrit or both?  
For the Sanskrit-English pair, we expect 
three main use cases: 
A. Sanskrit-English for Sanskrit access 

- People fluent in English and 
interested in Sanskrit literature trying 
to translate a traditional Vedic or 
classical Sanskrit mantra, shloka, 
poem or text from Sanskrit to English.  

B. English-Sanskrit for Sanskrit 
learning or communication - People 
fluent in English, interested in learning 
Sanskrit (either for conversation or to 
access the literature) and trying to 
translate English to Sanskrit. 

C. Sanskrit-English for 
communication or learning - People 
fluent in Sanskrit but not English, 
translating their original Sanskrit text 
into English for communicating with 
others or to learn English.   

On account of the nature of the language pair 
and their current status, of the above three, we 
expect case A to overwhelmingly dominate, case B 
to be next, and case C to be relatively insignificant. 
Thus, the Sanskrit-English direction is the highest 
priority, and also has higher demands on accuracy, 
since it is more likely to be dealing with classical 
texts whose incorrect interpretation could have 
undesirable cultural consequences. We therefore 
put more emphasis on testing Sanskrit-English than 

English-Sanskrit. Most of our discussion will also 
be about Sanskrit to English translation, unless 
otherwise mentioned or obvious from the context. 

b. Purpose - Our purpose is to check whether 
Google’s zero-shot NMT automatic 
translation is robust enough for the 
Sanskrit-English language pair, rather than 
an exhaustive performance analysis of the 
translation. Therefore, rather than a test 
suite aimed at complete coverage of the 
language pair, we will create a probe test 
suite of a few carefully hand-crafted cases, 
leveraging grammar and language theory, 
mainly focused on areas where we expect 
challenges for translation. 

c. Automation - Since the test set was small 
and for one-off use, and to be hand-crafted 
leveraging human expertise, it was simpler 
to do it iteratively and manually for now 
rather than invest effort in automating it. 

d. Sourcing - We did not find a readily 
available translation test suite for Sanskrit-
English focused on testing the robustness 
of zero-shot NMT, so we created our own. 

3 Test process and results  

Based on the considerations discussed above, a 
small “probe” test suite of approximately 120 test 
cases was hand-crafted and applied iteratively. 

 
The test cases are not all independent, many are 

part of a group of inputs iteratively designed to test 
different variants of a specific area being tested. For 
example, correct translation of single/dual/plural 
number involves inputs containing various 
combinations of these. It is difficult to enumerate 
the groups, since there are sometimes overlaps 
where a single test case is logically part of multiple 
groups. Hence, the above table lists the number of 
individual test cases and not groups. 

Each test case was manually translated by one of 
the authors, who is fluent in both Sanskrit and 
English, to create the expected reference output. 
The test case was then input to Google Translate 

 

Sanskrit to 
English 
translation 

English to 
Sanskrit 
translation 

98 test cases 31 test cases 

Table 1: Number of test cases 
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and the output recorded against it. The output was 
manually evaluated using a 3-way rating system 
defined by us as follows. 

 
All the test cases, the expected and actual outputs 
and ratings are available in the sheet attached as 
Appendix B – All Test Cases. The ratings are 
annotated with explanations in a Remarks column 
where needed.  

The results of the test are summarized below.

 
As seen from the above table, if we take the 

stricter criterion of only Ok-rated outputs as 
correct, the accuracy of Google Translate for our 
probe test is 37.76 per cent for Sanskrit to English, 

and 32.26 per cent for English to Sanskrit. If we 
take the more relaxed criterion of only *-rated 
outputs as incorrect, the accuracy is 72.45 per cent 
for Sanskrit to English, and 64.52 per cent for 
English to Sanskrit. Since this is only a probe test, 
and not an exhaustive coverage test, we cannot 
claim these as the actual accuracy figures, but the 
test probe does reveal that there are significant gaps 
in the performance of Google Translate for both the 
directions that need to be fixed before the 
translation can be considered robust. The detailed 
remarks about each output can be found in 
Appendix B – All Test Cases. In the following 
section, we summarize the key observations and 
their implications. 

It must be noted here that Google Translate by 
design is a learning product and is therefore being 
continuously updated. The test results are valid as 
of the time they were conducted, namely, in the 
third week of December 2022. 

4 Key observations and implications 

Looking at the test case outputs, we find that given 
the multiple inherent challenges of Sanskrit-
English translation, the system performs 
surprisingly well for a zero-shot NMT that has 
possibly not been trained on a single input specific 
to the Sanskrit-English pair. Of the specific 
challenge areas tested by the probe test, it does 
cover quite a wide spectrum of phenomena 
satisfactorily, in at least a few cases, including 
sandhi, samāsa, taddhita, dual number, three 
grammatical genders, and the phenomenon of sati-
saptamī (absolutive locative clause).  

Having said that, the output is often inconsistent 
across variations of a language feature, and dubious 
or incorrect in several cases.  

For instance: 
• It fails to disambiguate the word 

भवित[bhavati], based on the context, as 
the sambodhana (vocative) form of 
भवती[bhavatī - “lady”] rather than the 
third-person present tense form of the 
धातु[dhatu](verbal root) भ[ूbhū](to 
be/become). 

• It fails to disambiguate the word 
ने,े[netre], based on the context, as the 
accusative case dual number form of the 
neuter gender noun ने,[netra](eye) rather 
than its locative case singular number 
form.  

 

Rating Meaning 
Ok Correct - Output either 

matches reference output 
exactly, or is close enough 
and there is no change in 
meaning. 

? Dubious - Output is 
acceptable, but not ideal, 
and/or translation is not 
consistent across the group. 

* Incorrect - Output is totally 
unacceptable, as it conveys 
a totally unintended 
meaning.  
 

Table 2: Rating system 

 

 

Sanskrit to English 
translation 
Rating Count Percent 
Ok 37 37.76 
? 34 34.69 
* 27 27.55 
Total: 98  
   
English to Sanskrit 
translation 
Rating Count Percent 
Ok 10 32.26 
? 10 23.36 
* 11 35.48 
Total: 31  

Table 3: Test results summary 
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• It incorrectly uses Hindi/Urdu words 
such as कुस/, मेज़, and मौसम,   which are 
totally absent in Sanskrit, rather than the 
corresponding Sanskrit words, to 
translate English words such as “chair”, 
“table” and “weather” respectively.  

• It fails to split the sandhi correctly in अह ं

89ाि:म[ahaṃ brahmāsmi] based on the 
context, which causes it to interpret it as 
89ा[brahmā](Brahma the creator) rather 
than 89[brahma](Brahman, the 
Supreme Self), though it does recognize 
the distinction correctly in non-sandhi 
cases. 

The above examples have been described and 
discussed in Appendix A – Example Test Cases.  

Based on all the test cases listed in Appendix B, 
we summarize our analysis of the results of the 
probe test as follows: 

A. Google Translate’s zero-shot NMT for the 
Sanskrit-English language pair covers a fairly 
broad spectrum of translation phenomena. 
However, our probe test has revealed several 
significant gap areas that need to be addressed 
before the system can be considered robust and 
reliable for general use. 

B. The gaps we have identified are largely a 
consequence of two system factors falling out 
of the zero-shot NMT data-driven approach –  

a. Not leveraging linguistic knowledge 
explicitly, due to the design decision of 
NMT (Wu et al, 2016)   

b. Not training with language-pair 
specific data, due to zero-shot usage to 
deal with low availability of resources 
(Johnson et al, 2017)  

For example, the training data may have 
included only translation data for Sanskrit-
Hindi/Urdu and Hindi/Urdu-English. As a 
consequence of these, the system makes the 
following main types of errors: (a) 
Inconsistent translation across variants of 
the same phenomenon (b) The system 
sometimes erroneously translates into 
Hindi/Urdu words that do not exist in 
Sanskrit. (c) Unrecognized Sanskrit words 
are translated to the nearest similar 
sounding word seen in the training, which 
leads to errors. 

C. These systemic gaps can be addressed by 
leveraging grammar and language theory. In 
particular, Sanskrit has an extremely well-
developed grammar and language model that 
allows for precise and accurate representation 
of the meaning of a sentence.  

5 Characterizing the gaps 

The current gaps in Google Translate’s English-
Sanskrit translation, summarized in the previous 
section, can be classified into two categories: 

1. Learning gaps - These are gaps that can 
be addressed by better training of the zero-
shot NMT, by feeding more training data, 
or tuning the learning parameters. For 
example, if a specific English idiom is not 
currently learnt as an idiom, it could be 
learnt by feeding in examples of its usage 
in the English-Hindi/Urdu translation 
corpus. We can expect such gaps to 
gradually reduce over time as the system is 
fed with more training data, without any 
change to the basic zero-shot NMT 
approach. However, with the approach 
being suggested in this work, this gap 
reduction could be speeded up. 

2. Systemic gaps due to pure zero-shot NMT 
- These are gaps that arise due to not 
feeding translation data specific to the 
target language pair (in our case English-
Sanskrit) in training the system, but only 
leveraging translation data of other 
language pairs that between them cover 
the target language pair, for example, in 
our case, English-Hindi/Urdu and 
Sanskrit-Hindi/Urdu. Such gaps are 
inherent to the pure zero-shot NMT 
approach and will not reduce over time. 
Addressing such gaps needs a different 
approach that we shall touch upon shortly. 

 
Let us try to formally characterize these two 

types of gaps in order to understand them better. In 
order to do that, we must first characterize different 
types of machine translation systems and see where 
zero-shot NMT fits in. 

Essentially, a deep-learning based machine 
translation system is a transformer that takes a text 
s in the source language S and transforms it into a 
text t in the target language T. In order to do this, it 
uses a pre-trained language model.  
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Let D(L1, L2) represent training data consisting 
of parallel translations from the language L1 to the 
language L2.  

Google Translate’s Neural Multilingual 
Translation (NMT) approach (Wu et al, 2016) uses 
a single Large Language Model (LLM) that is 
trained on all the languages available. This allows 
learning to be leveraged across different data sets 
and languages. Thus, for example, the learning 
from D(L1, L2), D(L2, L3) and D(L4, L2) is 
merged into a single model. Then, in translating 
(L1, L2), the learning from not just D(L1, L2), but 
also D(L2, L3) and D(L4, L2) gets leveraged, 
leading to more robust output than from just D(L1, 
L2) alone. Moreover, this allows the system to 
translate even between language pairs even though 
that specific pair was not part of the learning data, 
say, due to low availability of training data for that 
pair. In this case, for example, the system could 
give a translation for (L1, L4), though this pair was 
not part of the training data. This would obviously 
not be as robust as having D(L1, L4) in the training 
mix, but may be better than giving no translation at 
all. This is what Google means by zero-shot NMT 
(Johnson et al, 2017), and that is what is reportedly 
used in English-Sanskrit translation. The 
implication is that the system is currently not 
trained on D(English, Sanskrit) data at all. It 
leverages, for example, D(English, Hindi/Urdu) 
and D(Sanskrit, Hindi/Urdu), and possibly data in 
other language pairs, to attempt (English, Sanskrit) 
translation. 

Let F(S,T) be the set of features that would have 
been learnt by the NMT if it had been trained with 
the ideal training data set D(S,T) to correctly 
perform an arbitrary (S,T) translation request. Now, 
in zero-shot NMT, there is no D(S,T). Instead, the 
NMT is fed an n-member set Dn of D(Li, Lj) where 
1 <= i <= n, 1 <= j <=n, and (Li, Lj) is not in Dn. 
The assumption here is that F(S,T) will be 
compositionally learnt by the NMT via some 
combination of D(Li, Lj) training inputs. 

We can now characterize the two categories of 
gaps we mentioned above in these terms.  

A learning gap is one where F(S,T) is not 
currently achieved, but can be learnt by either 
adding more data to Dn, or by optimizing the 
parameters of the NMT, or both. For example, let 
us say a specific form of a verb in Sanskrit is not 
being correctly translated into English. This could 
be addressed by adding data that contains that form 
in the D(Sanskrit, Hindi/Urdu) set.  

A systemic gap is one where no combination of 
D(Li, Lj) comprising Dn for any value of n can 
cause learning of F(S,T), because there exists a set 
of features Fo(S,T) that are not compositional, but 
can only be learnt by training on D(S,T).  

Let us look at an example each of both these 
gaps. 

First, an example of a learning gap. The word 
मां[māṃ] occurs both in Sanskrit and Hindi/Urdu. In 
Sanskrit, it is the sandhi form of माम[्mām] and 
means “me”. In Hindi/Urdu, it is the simplified 
form of माँ[mām̐] and means “mother”. Currently, 
Google Translate sometimes confuses these two 
cases, as seen from some of the test outputs. This 
distinction can be trained into the system by having 
more examples distinguishing the two cases in the 
D(Sanskrit, Hindi/Urdu) and D(Hindi/Urdu, 
English) training data. Hence, we can call this a 
learning gap.  

Now, an example of systemic gap. The 
unambiguous Sanskrit sentence  
“अ%े उपिवशन ् िपता प1ंु प3यित”[aśve upaviśan pitā putraṃ 
paśyati] is ideally translated into English as “The 
father seated on a horse sees his son”. Similarly the 
unambiguous Sanskrit sentence “िपता अ%े उपिवश7तं प1ंु 

प3यित”[pitā aśve upaviśantaṃ putraṃ paśyati] is 
ideally translated into English as “The father sees 
his son who is seated on a horse”. In Sanskrit, the 
distinction between the two is clear and marked by 
inflection on the appropriate noun. In English, the 
distinction is clear when marked with a relative 
clause marked by “who is”.   However, a possible 
Hindi translation of both these would be “िपता अपने बेटे 

को घोड़े पर बैठे हBए देखता ह”ै[pitā apane beṭe ko ghoḍe para 
baiṭhe hue dekhatā hai]. This literally translates to 
“The father sees his son seated on a horse”, which 
is ambiguous due to the prepositional phrase 
attachment ambiguity, and can convey both the 
meanings. The issue here is that the unambiguous 
case markings of Sanskrit on the phrase “seated on 
the horse” get mapped in both the Hindi 
translations to a single oblique case marking (बैठे 

हBए[baiṭhe hue]), which has the effect of saying 
“seated on a horse” without adding the relative 
clause marker “who is”. This feature mismatch 
(divergence pattern) between the languages 
(namely inflection in Sanskrit vs oblique case in 
Hindi vs relative clause in English) causes a non-
compositionality in translation.  Therefore there is 
an information loss in zero-shot NMT with transfer 
learning involving only D(Sanskrit, Hindi/Urdu) 
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and D(Hindi/Urdu, English). This gap cannot be 
addressed by adding any amount of D(Sanskrit, 
Hindi/Urdu) and D(Hindi/Urdu, English) data or 
tweaking the parameters of the zero-shot NMT. It 
can only be addressed by adding examples of both 
Sanskrit sentences translated correctly directly to 
English, that is, by adding some D(Sanskrit, 
English) data. Thus, we can call this a systemic gap. 
[Note: This example is slightly simplified for ease 
of understanding. The actual Sanskrit-Hindi and 
Sanskrit-English translations by Google Translate 
are marginally different, but close enough for the 
example and the argument to hold. The actual 
details are discussed in Appendix C – “The 
Systemic Gap Example”].     

Systemic gaps are an outcome of “language 
divergence” in translation, which was formally 
described in (Dorr, 1994). A partial set of language 
divergence patterns between English and Sanskrit 
was described in the context of a prototype rule-
based machine translation for English to Sanskrit in 
(Mishra and Mishra, 2009). 

The conclusion we can draw is that due to the 
presence of systemic gaps, the purely data-driven 
approach of zero-shot NMT, without encoding 
grammar knowledge, and without training on the 
specific language pair, does not work well enough 
for the Sanskrit-English language pair.  

The zero-resource approach of (Firat et al, 2016) 
using “pseudo-parallel” Sanskrit-English data will 
not work in the presence of systemic gaps.  
Google’s zero-shot NMT paper (Johnson et al, 
2017) discusses (in section 4.6, “Zero-Shot 
Translation” and section 4.7, “Effect of Direct 
Parallel Data”) possible approaches to go beyond 
zero-shot NMT by adding real parallel data in the 
missing language pair and direction (e.g. Sanskrit-
English in our case). If a lot of high-quality real-life 
parallel data is available, this is found to be ideal. 
However, we know that high-quality Sanskrit-
English real-life data is not readily available. For 
example, Samanantar, a parallel corpora collection 
between English and 11 Indic languages, does not 
include Sanskrit (Ramesh et al, 2022). A more 
recent effort, IndicTrans2, includes parallel corpora 
with English and all 22 scheduled Indian languages 
including Sanskrit (AI4Bharat et al, 2023). This is 
a good start, however, the size of the corpus is only 
of the order of 2.5k real-life sentences, which may 
be insufficient for good quality learning. Also, the 
direction is English-Sanskrit, and reversing it for 
Sanskrit-English training would not be ideal.  

To address this need for direct parallel Sanskrit-
English data to plug the gaps in zero-shot NMT, 
and the absence of such large high-quality corpora, 
we suggest the following approach –  construct a 
“differential corpus” as a corrective data suite of 
Sanskrit-English language-pair-specific training 
data, by leveraging such linguistic knowledge. 
After all, we leveraged linguistic knowledge to 
create an effective probe test without requiring an 
exhaustive test suite. In the same way, we propose 
that this linguistic knowledge could be leveraged to 
create the right training data to address these areas 
and plug the gaps to create a more robust zero-shot 
NMT system. 

To our knowledge, there is no readily available 
framework that can be directly leveraged to create 
such a differential corpus. The work on language 
divergence in general (Dorr, 1994) and English-
Sanskrit (Mishra and Mishra, 2009) in particular 
cited earlier is a good directional starting point, but 
we will need to focus it on the Sanskrit-English 
direction and cover a more comprehensive set of 
features specific to the systemic gap issue than 
addressed in those works. There has been work 
done in identifying the formal structure of Sanskrit 
text (Huet, 2009) that could provide a set of 
features for us to take into account, but they may 
need to be filtered to keep only the ones relevant 
from the viewpoint of divergence. There is also a 
translation of the exercises from Apte’s classical 
text on Sanskrit syntax (Apte, 1885) into Sanskrit 
(Gillon, 1996). This again may need to be filtered 
for divergence specific cases. A generic grammar 
framework like The Grammatical Framework (GF, 
1998) is potentially interesting for its ability to deal 
with multilingual grammars, but it currently has 
support only for English and Hindi, not Sanskrit. 
Sanskrit-specific tools and toolkits such as Inria’s 
Sanskrit Heritage Site (Huet, 1994), the University 
of Hyderabad Department of Sanskrit’s 
Samsaadhani (Kulkarni, 2002) and 
Ashtadhyayi.com (Bodas, 2015) are targeted at 
understanding Sanskrit rather than translating it to 
English, so they may be useful as reference tools 
for the human experts generating the differential 
corpus. 

Large language models (LLMs) like ChatGPT 
(Yiheng Liu et al, 2023) get their capabilities 
through pre-training, an expensive and long drawn-
out process. Reinforcement Learning from Human 
Feedback (RLHF) (Ziegler et al, 2019) 
can be used to affect their behaviour (or to "fine-
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tune" it, such as eliciting right responses or 
suppressing objectionable output),   
which is not as expensive, and hence can be 
undertaken multiple times. RLHF can potentially 
be used with the differential corpus suggested, but 
this needs further study. 

In-context learning (Sang et al, 2022) is seen 
as a  major shift in transfer learning in the 
context of  LLMs, with intimations of an 
“emergent” behaviour. In contrast to the classic 
pretraining-then-finetuning procedure for 
downstream prediction tasks in LLMs, there is 
only a need to provide a few "in-context" 
examples, without affecting existing model 
parameters. The differential corpus suggested 
might well function as in-context examples that 
can be taken up as future work. 

The proposed differential corpus would consist 
of D(Sanskrit, English) and D(English, Sanskrit) 
data that would be designed, based on knowledge 
of Sanskrit and English grammar theory, to focus 
on addressing the systemic gap, that is, exercising 
the language features Fo(Sanskrit, English) and 
Fo(English, Sanskrit) that are not compositionally 
learnable from D(S,T) data sets not containing the 
above two language pairs.  

In addition, since we are going to cover all 
combinations of a given feature, in the process, it 
may incidentally cover some learning gap data as 
well, because, intuitively, if a feature can be 
compositionally learnt from D(S, L1) and D(L2,T), 
then it can also be directly learnt from D(S,T). 
Thus, the suggested approach would also speed up 
reduction of the learning gap.  

6 Outline of grammar-based approach 
for identifying a “differential corpus” 
as corrective training data  

The key idea behind the proposed grammar-based 
approach is to leverage the rich linguistic model of 
Sanskrit from the traditional Indian śāstras  
including vyākaraṇa (the aṣṭādhyāyī of Pāṇini and 
its related works), the vākyapadīyam of Bhartṛhari, 
mīmāṃsā, nyāya and vaiśeṣika,    mapping 
approximately to linguistics, grammar, discourse 
analysis, logic and ontology respectively, to create 
a “differential corpus” of translation test cases that 
can be used as training data to fill the current gaps 
for Sanskrit-English zero-shot NMT.  

The proposed approach is summarized as 
follows: 

A. Identify the prominent divergence areas 
of the Sanskrit-English language pair, 
that is, the set of language features that 
are present in Sanskrit and either absent 
or rudimentary in English, Fo(Sanskrit, 
English)  or vice versa, Fo(English, 
Sanskrit). For reasons stated earlier, we 
focus here on the first case, Fo(Sanskrit, 
English). 

B. For each feature, iteratively create a 
group of test cases to test the translation 
of that feature. A group consists of a set 
of individual test cases. Collectively, the 
group should cover the range of 
variations of that feature. For example, if 
the divergence area is – presence of three 
grammatical numbers 
(singular/dual/plural) in Sanskrit, versus 
only two grammatical numbers 
(singular/plural) in English - the feature 
is “grammatical number”, and we have 
to create as test input a group of 
sentences containing all combinations of 
singular, dual and plural nouns. 

Of particular interest are cases of ambiguity, 
where two or more features map to the same form 
(e.g. a tiṅanta and subanta, or a kṛdanta and 
subanta, map to the same form as seen in the भवित 
example). The test inputs should check whether 
the translation deals with the ambiguity and 
provides the correct translation. 

Such a differential corrective parallel corpus 
can be fed to the existing zero-shot NMT in 
addition to the training data it has already seen, 
without the need for any significant modification 
to the architecture of the system. 

We now identify the key linguistic features of 
Sanskrit that are part of the proposed approach as 
outlined above, and highlight the potential 
challenge areas to be tested in each. 

A. Lexical features 

1. Sandhi - correct identification of all 
:वर[svara](vowel), 
>य@जन[vyañjana](consonant) and 
िवसगC[visarga](aspirant) sandhis. Particularly 
where sandhi leads to ambiguous forms. For 
example: 89ाि:म[brahmāsmi] can be 89 
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अि:म[brahma asmi] or 89ा अि:म[brahmā 
asmi]. 

2. Special signs - such as the अवGह-
िचI[avagraha-cihna]ऽ. 
For example: अनगुिृहतोऽिNम[anugṛhito'smi] / 
अनगुिृहतोिNम[anugṛhitosmi] / अनगुिृहतः 
अिNम[anugṛhitaḥ asmi] are equivalent. 
 

B. Morpho-syntactic features 

3. सबुEत[subanta](noun) forms - correct 
handling of ambiguous forms such as ते. 

4. Basic ितङEत[tiṅanta](verb) forms - correct 
handling of same धात[ुdhātu] in multiple 
गणs[gaṇas](groups)having same forms with 
different meanings, or having same form as 
subantas (e.g. भवित[bhavati]). 

5. Derived tiṅanta(verb) forms - correct 
handling of verbs derived from िणच[्ṇic], 
सन[्san] and similar IJययs[pratyayas] 
(suffixes).  

6. Compound sentences - correct handling of 
यद/्तद[्yad/tad]  and similar conjoint 
sentences. 

7. Complex sentences - correct handling of 
clauses involving कृदEत[kṛdanta] 
(participials). 

 

C. Semantic features  

8. Word order and topicality - word order does 
not change the gross meaning in Sanskrit, 
but may alter the focus and topicality. Also, 
in some cases the order does matter, for 
example, placement of अिप[api] at the 
beginning vs middle.  

9. तिMत[taddhita] (noun-noun morphology) - 
for example, अण[्aṇ] patronymic pratyaya 

10. समास[samāsa] (compound nouns) - correct 
translation of all the main samāsa types - 
तJपOुष[tatpuruṣa](including 
कमCधारय[karmadhāraya], िQग[ुdvigu], 

उपपद[upapada], and नञ[्nañ]), 
बहTUीिह[bahuvrīhi], अ>ययीभाव[avyayibhava] 
and QEQ[dvandva]. For example – the same 
samāsa (e.g. पीताVबर) can be interpreted as 
तJपOुष[tatpuruṣa] or बहTUीिह[bahuvrīhi] 
depending on the context.  

A parallel corpus based on the above feature set 
could be created by leveraging the related work 
discussed earlier, as well as taking example 
sentences given for different grammar features of 
Sanskrit from a good Sanskrit grammar book, for 
example, (Rao, 2022), extrapolating them for 
complete coverage of all variations, and providing 
English translations. In some cases, the sentences 
may have to be hand-crafted as we have done here. 
Since we are looking at only a differential corpus, 
we estimate the number of test groups to be of the 
order of approximately a thousand in number, 
which is feasible to do manually in a reasonable 
time frame.  

We believe a “differential” corrective translation 
data suite based on this model will allow most of 
the gaps in Google Translate’s zero-shot NMT for 
Sanskrit-English to be addressed, leading to a more 
robust and usable system. 

7 Contributions and scope for future 
work 

This work has made the following contributions: 
 
1. Through a small hand-crafted probe-test 

suite, we have shown that though Google 
Translate’s recently introduced Sanskrit-
English service based on zero-shot NMT 
covers a broad spectrum of cases adequately, 
there are still significant gaps in translation 
performance. 

2. We have identified that the gaps are either 
learning gaps due to inadequate training data 
or need for parameter tuning, or systemic 
gaps due to the nature of zero-shot NMT and 
the divergence between the languages, and 
both these can be addressed by leveraging 
Sanskrit linguistic knowledge available in 
traditional works such as Bhartrhari’s 
Vakyapadiyam (Sharma, 2016), and the 
vyākaraṇa, mīmāṃsā and nyāya-
vaiśeṣika  traditions that it references. 

3. We have proposed an approach for creating 
corrective translation data for Sanskrit-
English translation to address the systemic 

148



 
 

gaps identified. We believe this idea is 
generalizable to other language pairs where 
there is a divergence in the language pair and 
a rich linguistic knowledge base exists. 
 

Scope for future work includes: 
1. Extending the approach to include 

English to Sanskrit direction 
considerations. 

2. Creating an actual differential corrective 
translation test suite based on the 
approach. 

3. Applying the differential corrective suite 
to Google Translate and measuring its 
impact. 

Limitations 
This work is subject to the following known 
limitation: 

The solution proposed is currently indicative and 
directional, based on a theoretical understanding of 
how Google’s zero-shot NMT works, and how the 
demonstrated gaps may have arisen, based on 
published literature on the system, and the authors’ 
experience with translation and linguistics. The 
authors have not had access to the source code of 
the system, or any involvement with the actual 
training of the system. The proposed solution needs 
to be detailed out and practically implemented, 
ideally in collaboration with Google.   
 

Ethics Statement 
To the best of the authors’ knowledge and belief, 
this work is fully compliant with the ACL Ethics 
Policy. We have identified significant gaps in the 
current working of zero-shot NMT for the Sanskrit-
English pair, and have made suggestions for 
addressing these gaps. We believe these 
suggestions, if successfully implemented, will lead 
to a more robust and accurate system, thus 
improving the state of the art, which will benefit all 
stake-holders. 
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Appendix A – Example test cases 

Example 1 (Ok): 
 
Consider the following example of Sanskrit to English translation by the system. Though it was not a part 
of the probe test and therefore not in the appendix, it was the sentence that piqued our interest in carrying 
out this probe test. 

 

This sentence is potentially challenging to translate,because the dhaatu(verbal root) Vम ्[bhram] in Sanskrit 
occurs in two gaṇa-s (verb groups) (namely, 1 and 4), with different connotations, namely, “to wander” in 
group 1, and “to be confused” in group 4. Many of their forms are similar. Therefore, the sentence involves 
wordplay and ambiguity, which is traditionally a challenge for translation. However, Google Translate 
correctly translates these two senses. We could therefore say that the system has “learnt” the two senses of 
the verb root. However, with deep learning, such inputs are never explicitly encoded. Moreover, with zero-
shot NMT, it is likely that the system was never fed an instance of Sanskrit to English translation of either 
of these senses. And yet, the system exhibits learning behaviour for this translation pair. This illustrates the 
power of deep learning and zero-shot NMT that causes learning without structuring and encoding of 
knowledge. 

Along similar lines, the probe test analysis reveals that the zero-shot NMT has “learnt” a number of 
language phenomena that are potentially challenging for Sanskrit-English, in at least a few cases - sandhi, 
samāsa, taddhita, dual number, 3 grammatical genders, and the phenomenon of sati-saptamī (a kind of 
absolutive locative clause). 

On the other hand, the system gives dubious, incorrect or inconsistent output for a number of cases, as 
seen in the remaining examples. 
 

 

Test input Reference 
(expected) output 

Google Translate 
output 

Rating and remark 

)म(्१/४) धा1वोः 
िवषये 
)मः(४)  मा भतू ्
इित 
=या>यान?पAचे 
वयं )मCतः(१) 
Dमः।  

[bhram(1/4) 
dhātvoḥ 
viṣaye 
bhramaḥ(4) 
mā bhūt iti 
vyākhyānapr
apañce 
vayaṃ 
bhramantaḥ
(1) smaḥ]  
 

We are 
wandering(1) in 
the world of 
explanation so 
that there should 
be no 
confusion(4) 
about the verb 
bhram(1/4).  

We are 
wandering(1) in 
the world of 
explanation so 
that there should 
be no 
confusion(4) 
about the verb 
bhram(1/4).  

Ok – correctly 
disambiguates the two 
senses of bhram 
(wandering and confusion) 
based on the context. 

Table 4: Example 1 (Ok) 
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Example 2 (Error): 
The word form भवित[bhavati] in Sanskrit is [ambiguous between the vocative form of the noun 

भवती[bhavatī](lady), and the simple present tense of the verb भ[ूbhū](to be/become). The verbal form is 
much more common in use than the vocative noun form. A grammar-based analysis would be able to deal 
with this ambiguity using knowledge-based disambiguation rules; a data-driven system would pick the 
statistically more common meaning, unless specifically exposed to this instance, which is highly unlikely 
with zero-shot NMT. This test case is a famous sentence from the famous epic Ramayana. Sentences from 
the epics are likely to be commonly queried for Google Translate, and getting it wrong is a fairly serious 
gap. 
 

 

Test input Reference 
(expected) 
output 

Google 
Translate 
output 

Rating and 
remark 

भवित िभFां 
दिेह। 

[bhavati 
bhikṣāṃ 
dehi] 
 

Madam, 
give me 
alms. 

Give me 
the alms 
you have. 

* - Does not 
recognize 
भवित[bhavati] as 
the sambodhana 
(vocative) of 
भवती[bhavatī - 
“lady”] . 
 

Table 5: Example 2 (Error) 
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Example 3 (Dubious): 
 

Similarly, the word form ने,े [netre] is ambiguous between dual number nominative/accusative case, or 
singular locative case. Here again, in the context of the word पXयतः [paśyataḥ], the overall sentence is 
unambiguous in the light of Sanskrit grammar, however zero-shot NMT currently fails to get it right. This 
is not a classical sentence, but a simple Sanskrit sentence that is expected to be correctly translated.  

There is another point this example serves to illustrate. In translation from language A to language B, if 
language A has a feature F that is absent in language B, and we are translating a sentence from A to B that 
involves the use of this feature F, then by default the canonical translation into B will lead to loss of 
information of the feature F. In this case, for example, since Sanskrit has the dual number while English 
does not, the sentence with the dual number would be folded to the plural number in English, thus leading 
to loss of information. One way to deal with this is to explicitly insert this information in some way in the 
target language, as we have done by adding “two” in parentheses in the reference expected output for this 
sentence. Whether to do this or not is a matter of choice, but the choice should be exercised uniformly for 
consistency. Examining the probe test cases in detail, we find that since zero-shot NMT does not explicitly 
deal with encoding any language feature such as number, the output is inconsistent, and depends on the 
training data instances that it has been exposed to. 
 

 

Test input Reference 
(expected) 
output 

Google 
Translate 
output 

Rating and 
remark 

ने,े पXयतः। 
[netre 
paśyataḥ] 

(Two) eyes 
see.  

Looking 
into the 
eyes. 

? -  
Confuses 
dual-number 
neuter-
gender form 
with the 
saptamī-
vibhakti 
(locative 
case) form. 
 
 

Table 6: Example 3 (Dubious) 
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Example 4 (Inconsistent): 

अह ं89ाि:म [ahaṃ brahmāsmi] is an iconic sentence from the Upanishads and is considered a महावा[य 
[mahāvākya] (great statement) of the Vedic literature, Sanatana Dharma and Hinduism. 

It should translate to “I am Brahman” (the Ultimate Reality) and not “I am Brahma” (the four-headed 
Creator of the world, one of the Trinity of Brahma, Vishnu and Shiva). Google Translate is aware of this 
distinction, as seen from the first two examples, where the words are separated. However, it fails to 
recognize and translate it correctly when it is combined as a single word using sandhi. This is problematic 
and needs to be addressed. 

 

Test input Reference 
(expected) 
output 

Google 
Translate 
output 

Rating and 
remark 

अह ं XY अिNम। 

[ahaṃ 
brahma 
asmi] 

I am the 
Brahman. 
 

I am the 
Brahman. 
 

Ok -  
Understands 
distinction 
of XYन ्
(Brahman - 
neuter 
gender 
word) vs 
XYा 
(Brahma - 
masculine 
gender 
word). 
 

अह ंXYा अिNम। 

[ahaṃ 
brahmā 
asmi] 

I am 
Brahma. 
 

I am 
Brahma. 
 

Ok 

अह ं XYािNम। 

[ahaṃ 
brahmāsmi] 

I am the 
Brahman. 
 

I am 
Brahma. 
 

? -  
Does not 
handle the 
ambiguity 
due to 
dīrgha-
sandhi 
correctly, 
leading to 
incorrect 
output. 

Table 7: Example 4 (Inconsistent) 
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Example 5 (Error): 
 

The above three examples are from English to Sanskrit translation. In all three examples, English words 
have been translated using Hindi/Urdu words derived from Persian/Arabic and which are not Sanskrit 
words. This indicates that the zero-shot NMT was probably trained on Hindi/Urdu single-language data, 
and/or English-Hindi/Urdu sentence translation data, and this learning has percolated into English-Sanskrit 
translation. This is highly problematic for users who are trying to learn Sanskrit, as they will pick up words 
which are not in Sanskrit and assume them to be Sanskrit words. 

 

 

Test 
input 

Reference 
(expected) 
output 

Google 
Translate 
output 

Rating and 
remark 

The 
chair is 
made of 
wood. 

आस7द ंका]ेन 
िनिम̂तम।् 

कुस_ का]ेन 
िनिम̂ता 
भवित। 

* -   
Uses 
Hindi/Urdu 
word कुस_ 
for chair. 

The 
table is 
made of 
wood. 

उ`पीिठका 
का]ेन 
िनिम̂ता। 

मेजः का]ेन 
िनिम̂तः 
अिNत। 

* -  
Uses 
Hindi/Urdu 
word मेज़ 
for table. 

He did 
not 
come to 
work 
today as 
he is 
feeling 
a bit 
under 
the 
weather. 

सः अc कायd 
कतुd न आगतः 
यतः सः 
िकिeचत ्
अNवNथः 
अिNत। 

सः अc 
कायd कतुd न 
आगतः यतः 
सः िकिeचत ्
मौसमNय 
अधः 
अनभुवित। 

* -  
Uses 
Hindi/Urdu 
word मौसम 
for 
weather. 
Also, does 
not 
understand 
the  idiom 
"under the 
weather". 

Table 8: Example 5 (Error) 
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Appendix B – All test cases 

Part 1 of 2: Sanskrit to English 
 

Test Input 
Reference (expected) 
Output 

GoogleTranslate  
Output Rating Remark 

मम नाम अिमतः। My name is Amit. My name is Amit. Ok 

Understands 
basic sentence 
with implicit 
copula "is". 

अिमतः मम नाम। Amit is my name. Amit is my name. Ok 

Seems to handle 
simple word 
order variation. 

अह ंमVुबईतः। I am from Mumbai. I am from Mumbai. Ok 

Understands तः 
pratyaya used in 
place of fifth 
vibhakti. 

पादोनस^वादनम।् (It is) a quarter to seven. 
It was seven o'clock in 
the morning. * 

Ignored पादोन for 
quarter-to. 
Where does 
morning come 
from? 

पादोननववादनम।् (It is) a quarter to nine. Ninety-nine feet. * 

Confused पादोननव 
with ninety-nine, 
ignored वादनम ्
o'clock. 

इदान` पादोनस^वादनम।् 
It is now a quarter to 
seven. It is seven-foot-seven. * 

Ignored इदानीम ्
(for now), and 
confused पाद with 
feet. 

पवCतो विaमान ्धमूात।् 
The mountain is on fire 
because it has smoke. 

The mountain is on fire 
from the smoke. Ok 

Understands 
sandhi. 

मकंू करोित वाचालं पङ्गुं लङ्घयते िगdरम।् 
यJकृपा तमह ंवEद ेपरमानEदमाधवम॥् 

He whose grace makes 
the mute speak and the 
lame cross mountains, I 
salute that supreme bliss 
Madhava. 

He makes the 
speechless dumb and 
the lame cross the 
mountain 
I salute Him whose 
grace is the supreme 
bliss, Madhava. ? 

Does not handle 
complex यद/्तद ्
properly? 

या कुEदEेदतुषुारहारधवला या 
शgुवhावतृा। 
या वीणावरदiडमिiडतकरा या 
kेतपlासना॥ 
या 
89ाmयतुशङ्करIभिुतिभदnवै:सदाविEदता। 
सा मा पात ुसर:वती भगवती 
िनःशषेजाड्यापहा॥ 

She whose whiteness 
would defeat that of the 
kunda flower and the 
moon and of snow, who 
is adorned with white 
clothes, whose hands are 
adorned with the staff of a 
superior veena, who is 
seated on a white lotus, 
who is worshipped by 
gods beginning with 
Brahma, Achyuta and 
Sankara, may that 
goddess Saraswati, 
destroyer of all illusion, 
protect me. 

She is white with 
necklaces of kunda and 
moon and snow and 
covered with white 
clothes 
That woman with her 
hands adorned with the 
staff of a veena and her 
seat on a white lotus 
She is always worshiped 
by the gods like 
Brahma, Acyuta and 
Shankara. 
May that holy Saraswati 
who destroys all illusion 
protect me ? 

Largely ok, but 
does not handle 
complex yad/tad 
construct,  
does not get 
some complex 
samasas right,  
and does not 
understand that 
this is a single 
long sentence  
and needlessly 
splits it up. 

156



 
 

अह ं89 अि:म। I am Brahman. I am the Brahman. Ok 

Understands 
distinction of 
IJन ्(N - 
Brahman) vs IJा 
(M - Brahma). 

अह ं89ा अि:म। I am Brahma. I am Brahma. Ok  

अह ं89ाि:म। I am Brahman. I am Brahma. ? 

Does not handle 
the ambiguity 
due to deergha 
sandhi correctly, 
leading to input 
that is actually 
incorrect. 

रामकृpणौ आगmछतः। 
Rama and Krishna are 
coming. 

Ramakrishna and Rama 
are coming. * 

Does not handle 
KCKसमास correctly? 

मां तारय। Save me. Save me, mother. ? 

Confused मां (माम)् 
with Hindi word 
माँ (mother). 

मा तारय। Do not save. Don't save me. ? 

Where did the 
"me" come 
from? 

सा गजगािमनी। 
She has a gait like an 
elephant. She is an elephant. * 

Does not 
understand 
गजगािमनी as a 
samasa. 

रामः पीताVबरः। 
Rama is one whose dress 
is yellow. 

Rama is dressed in 
yellow. Ok 

Understands 
bahuvrihi vs 
tatpurusha use of 
पीताOबर. 

सः पीताVबरः। 
He is one whose dress is 
yellow. He's in yellow. ? 

Why the 
inconsistency 
"in yellow" vs 
"yellow-clad" 
across genders? 

सा पीताVबरा। 
She is one whose dress is 
yellow. She's yellow-clad. ? 

Why the 
inconsistency 
"in yellow" vs 
"yellow-clad" 
across genders? 

सः पीताVबरं धारयित। 
He is wearing a yellow 
dress. 

He is wearing a yellow 
robe. Ok 

Understands 
bahuvrihi vs 
tatpurusha use of 
पीताOबर. 

भवित िभsां दिेह। Madam, give me alms. 
Give me the alms you 
have. * 

Does not 
recognize भवित as 
sambodhana of 
भवती. 

ह ेदिेव, िभsां दिेह। Madam, give me alms. 
O Goddess, give me 
alms, Ok  

दिेव िभsां दिेह। Madam, give me alms. 
O Goddess, give me 
alms, Ok  

रामः सीतया आगmछित। 
Rama is coming with 
Sita. 

Rama is coming with 
Sita. Ok 

Understands all 
variations of 

157



 
 

upapada tritiya 
vibhakti with सह. 

रामः सीतया सह आगmछित। 
Rama is coming with 
Sita. 

Rama is coming with 
Sita. Ok  

रामः सहसीता आगmछित। 
Rama is coming with 
Sita. 

Rama is coming with 
Sita. Ok  

रामः ससीता आगmछित। 
Rama is coming with 
Sita. 

Rama is coming with 
Sita. Ok  

वागथाCिवव सVपuृौ वागथCIितपvये 
जगतः िपतरौ वEद ेपावCतीपरमkेरौ। 

For attaining speech and 
its meaning, I salute the 
parents of the world,  
Parvati and 
Parameshwara, who are 
connected as speech and 
meaning. 

I salute the two fathers 
of the world, the 
Supreme Lord of 
Parvati,  
who are as connected as 
the meaning of speech, 
for attaining the 
meaning of speech.  

Does not 
understand वागथS 
and पावTतीपरमेUरौ as 
dvandva 
samasas. 
Does not 
understand िपतरौ 
as an ekasesa 
samasa. 

अनािदिनधनं89 शwदतxवंयदsरम।्  
िववतCते अथCभावेन Iिyया जगतो यतः॥ 

The timeless eternal 
Brahman that is all-
pervading, 
and whose transforms 
into meaning is the 
process of the world,  
is the essence of 
language. 

The eternally immortal 
Brahman, the essence of 
sound, is the 
imperishable. 
Because the process of 
the world revolves 
around the sense of 
meaning ? 

Does not 
understand the 
alternate 
meaning of अFरम ्
as pervasive.  
Does not 
properly 
understand 
yad/tad complex 
construct. 

कमCiयेवािधकर:ते मा फलेष ुकदाचन। 
मा कमCफलहतेभुूCमाC ते सङ्गोऽ:JवकमCिण॥ 

Your authority is over 
action alone, not over the 
fruits thereof, be not 
motivated by fruits of 
action, nor be attached to 
inaction. 

You have only right to 
action, never to fruits. 
Let not the fruits of 
action be thy motive, 
nor let thy attachment 
be to inaction. Ok 

Understands this 
Bhagwadgita 
shloka. 

अkJथामो हतोहतः। नरो वा कु@जरो वा। 
Ashvatthama is killed, 
whether man or elephant. 

Ashvatthama was killed. 
Whether it is a man or 
an elephant. Ok 

Understands 
visarga sandhi. 

अkJथामो हतोहतः। नरोऽवा कु@जरोऽवा। 
Ashvatthama is killed, 
whether man or elephant. 

Ashvatthama was killed. 
A man or an elephant. Ok 

Understands 
avasarga, but 
why the change 
in translation? 

अkJथामो हतोहतः। नरोवा कु@जरोवा। 
Ashvatthama is killed, 
whether man or elephant. 

Ashvatthama was killed. 
Narova Kunjarova. * 

Does not split 
pada boundaries 
cleanly in 
absence of 
whitespace. 

अkJथामोहतोहतः। नरोवाकु@जरोवा। 
Ashvatthama is killed, 
whether man or elephant. 

Ashvatthamohatohata. 
Narovakunjarova. * 

Does not split 
pada boundaries 
cleanly in 
absence of 
whitespace. 

ते गिमpयिEत। They will go. They will go. Ok  

ताः गिमpयिEत। They will go. They will go away. ? 

Where did 
"away" come 
from? 
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सः कुयाCत ्सदा मङ्गलम।् May he always do good. May he always do good. Ok  

सः िyयात ्सदा मङ्गलम।् May he always do good. 
He is always auspicious 
from action. * 

Confuses आशीिलTङ् 
लकार form with 
(incorrect) 
panchami form. 

ममोपाv दdुरतsयQारा |ीपरमkेरIीJयथCम।् 

For the pleasure of Sri 
Parameshwara through 
the destruction of evils 
attained by me. 

For the pleasure of Sri 
Parameshwara through 
the destruction of evils 
attained by me. Ok 

Understands 
idiomatic usage 
like ?ी1यथTम.् 

यगुं वतCते। The age exists. The age is present. Ok  

यगुे वतnते। (Two) ages exist. exists in the age. ? 

Dual number not 
handled 
correctly and 
consistently. 

यगुािन वतCEते। Ages exist. There are ages. Ok  

यगुम ्अवतCत। The age occurred. The era turned around. ? 

Does not 
understand 
लङ्लकार (past 
tense) form अवतTत 
of आ1मनेपद अकमTक 
dhatu वतृ ्

यगुे अवतnताम।् (Two) ages existed. Let them turn in the age. *  
यगुािन अवतCEत। Ages existed. The ages passed. Ok  

ने,े पXयतः। (Two) eyes see. Looking into the eyes. ? 

Confuses dual 
number neutral 
gender form 
with saptami 
vibhakti form. 

ने,ा}यां पXयतः। 
(They two) see with (two) 
eyes. 

Looking at you with 
your eyes. * 

Where did "at 
you" and "your" 
come from? 

|ये~ Iेय~ मनpुयमते:तौ सVपरीJय 
िविवनिu धीरः। 
|येो िह धीरोऽिभ Iेयसो वणृीते Iेयो मEदो 
योगsेमाद ्वणृीते ॥ 

The good and the pleasant 
both approach man. The 
wise, on examining both, 
chooses the good. The 
wise prefers the good 
over the pleasant, the 
unwise, compelled by 
material considerations, 
prefers the pleasant. 

The steadfast man 
distinguishes between 
these two, the good and 
the dear. 
A sober person seeks 
the best of his dear 
ones,  
and a slow person seeks 
the safety of mystic 
yoga. * 

Does not 
understand 
meaning of 
योगFेम,  
does not analyze 
the shloka 
correctly. 

सः ने,ा}यां पXयित। 
He sees through (two) 
eyes. 

He looks through his 
eyes. ? 

Not clear if it 
recognizes dual 
number here. 
Where did "his" 
come from? 

अनगुहृीतोऽि:म। I am obliged. I am gracious. * 

Does not 
understand 
standard phrase 
for "thank you" 
i.e. "I am 
obliged". 
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राम ेवनं गते कृpणः नगरं गतवान।् 

When Rama went to the 
forest, Krishna went to 
the city. 

When Rama went to the 
forest, Krishna went to 
the city. Ok 

Understands sati 
saptami. 

राम ेवनं गते सित कृpणः नगरं गतवान।् 

When Rama went to the 
forest, Krishna went to 
the city. 

When Rama went to the 
forest, Krishna went to 
the city. Ok  

रामः भोजनं कृJवा शालां गmछित। 
Rama eats and goes to 
school. 

Rama eats and goes to 
the shed. ? 

Does not 
understand 
different 
meanings of शाला 
in context. 

रामः अिशJवा शालां गतः। 
Rama, having eaten, went 
to school. 

Rama went to the shed 
without eating. * 

Confuses अिश1वा 
(having eaten) 
kridanta form, 
reverses the 
meaning. 

रामः भोजनम ्अिशJवा शालां गतः। 
Rama, having eaten food, 
went to school. 

Rama ate the food and 
went to the shed. * 

Seems to get the 
right meaning of 
अिश1वा here, but 
seems to be 
order-dependent.  
Also, misses out 
the nuance of 
"having eaten" 
by using "and". 

रामः महामनाः। 
Rama is (one who has) a 
great mind. Rama is a great mind. ? 

Does not 
understand 
bahuvrihi 
consistently. 
Rama (is one 
who) has a great 
mind. 

रामः कVब�ुीवः। 

Rama is (one who has) a 
neck shaped like a conch 
shell. Rama is a conchshell. * 

Does not 
understand 
कOब_ुीव as 
bahuvrihi. 

यिुधि�रः अजातश,ःु। 
Yudhishthira (is one who) 
has no enemies (born). 

Yudhisthira is the 
unborn enemy. ? 

Does not 
understand नञ ्
बहabीिह samasa. 

दाशरिथः रामः िवजयते।  
Rama, the son of 
Dasharatha, is victorious. 

Rama, the charioteer of 
Dasaratha, is victorious. * 

Does not 
understand दाशरिथ 
as taddhita form, 
son of 
Dasharatha. 
Seems to 
confuse with 
सारथी (charioteer). 

सागरात ्आिहमालयं भारतदशेः। 
India (is) from the ocean 
upto the Himalayas. 

From the sea to the 
Himalayas, India. ? 

What about 
elided copula 
"is" which is 
mandatory in 
English? 

आिहमालयं भारतदशेः। 
India (is) upto the 
Himalayas. 

The Himalayas are 
India. * 

Inconsistent 
recognition of 
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avyayibhava 
samasa with आङ् 

िचEता मा:त।ु Don't worry. Don't worry. Ok  

िचEतामाऽ:त।ु Don't worry. Let's worry. * 

Does not handle 
savarna deergha 
with avasarga. 

राम:य मनः महत।् Rama's mind (is) great. Rama's mind is great. Ok  

राम:य महामनः। Rama's mind (is) great. Rama's great mind. ? 

Elided copula 
"is" not 
consistently 
inferred. 

च,ैवैशाखौ वसEतऋतःु। 
Chaitra and Vaishakha 
(are) the spring season. 

Spring in Chaitra and 
Vaishakha. ? 

Does not handle 
vidheya 
viseshana 
consistently 
well. 

च,ैवैशाखयोः वसEतऋतःु। 
The spring season (is) in 
Chaitra and Vaishakha. 

Spring is the season of 
Chaitra and Vaishakha. ? 

Confused 
shashti and 
saptami identical 
forms. 

त:य गतवैभवः पनुः न आया:यित। 
His lost glory will never 
return. 

His lost glory will never 
come back. Ok  

सः गतवैभवः। 
He is one whose glory is 
gone. He is a lost glory. * 

Does not 
understand 
bahuvrihi 
correctly. 

त:य Iा^िव�ा महती। 
His acquired knowledge 
is great. 

His acquired knowledge 
is great. Ok  

सः सVIा^िव�ः। 

He is one who has 
properly acquired 
knowledge. 

He is an acquired 
knowledge. * 

Does not 
understand 
bahuvrihi 
correctly. 

कौEतेय:य अजुCन:य सारिथः |ीकृpणः।  

Sri Krishna is the 
charioteer of Arjuna, the 
son of Kunti. 

Sri Krishna is the 
charioteer of Kaunteya 
and Arjuna. * 

Does not handle 
taddhita and 
viseshana 
correctly. 

गाङ्गेयः भीpमः कौरवाणां सेनापितः।  

Bhishma, the song of 
Ganga (is) the 
commander of the army 
of the Kauravas. 

Ganges, Bhishma, the 
commander of the army 
of the Kauravas. * 

Does not handle 
taddhita and 
viseshana 
correctly. 

न जात ुसः गहृ ंगmछित। He never goes home. He never goes home. Ok 

Understands use 
of idioms like 
जात.ु 

जात ुसः गहृ ंगmछित। Sometimes he goes home. Jata he goes home. * 

But 
understanding is 
not consistent 
across usages. 

Iाणवायवः प@चधा। 
The prana-vayus are 
fivefold. 

The prana-vayu is 
fivefold. ? 

Understands धा 
pratyaya 
following N to 
mean Nfold, but 
not plural of 
वायवः? 
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रसाः षोढा। The tastes are sixfold. The juices are sixteen. * 

Does not 
understand non-
standard form of 
धा pratyaya षोढा = 
sixfold and the 
sense of rasa as 
taste. 

पद ेिQधा सबुEतं ितङEतं चिेत। 

There are two types of 
padams (words) - subanta 
and tinganta. 

There are two types of 
verbs, the subjunctive 
and the triplet. * 

Does not 
understand 
vyakarana 
technical terms. 

वनं पलुिकतं सEुदरम।् 
The joyful forest is 
beautiful. 

The forest is bright and 
beautiful. ? 

Translation of 
पलुिकत is 
inconsistent. 

वनं पलुिकतम।् The forest is joyful. The forest is thrilled. ? 

Translation of 
पलुिकत is 
inconsistent. 

Jवं कु, अिस? Where are you? Where are you? Ok  

ययंू कु, :थ? Where are you (all)? Where are you guys? ? 
"Guys" seems 
too informal.  

यवुां कु, :थः? Where are you (two)? Where are you guys? ? 

Dual and plural 
information is not 
consistently 
differentiated. 

भवान ्कु, अि:त? Where are you? Where are you at? ? 
Where did "at" 
come from? 

भवEतौ कु, :तः? Where are you (two)? Where are you two? Ok  

भवEतः कु, सिEत? Where are you (all)? Where are you guys? ? 

Dual and plural 
information is not 
consistently 
differentiated. 

Jवं �ाम ेअिस। You are in the village. You are in the village. Ok  

यवुां �ाम े:थः। 
You (two) are in the 
village. You are in the village. ? 

Does not handle 
dual number and 
priority in case 
of mixed 
persons well. 

ययंू �ाम े:थ। 
You (all) are in the 
village. You are in the village. ?  

भवान ्�ाम ेअि:त। You are in the village. You are in the village. Ok  

भवEतौ �ाम े:तः।  
You (two) are in the 
village. 

You two are in the 
village. ?  

भवEतः �ाम ेसिEतः। 
You (all) are in the 
village. You are in the village. ?  

गौः पणn खादित। 
The cow eats (two) 
leaves. 

The cow eats on the 
leaf. ? 

Confuses neuter 
dual with 
saptami 
vibhakti. Cow 
eats on the leaf 
has no 
"yogyataa". 
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गौः Q ेपणn खादित। The cow eats two leaves. 
The cow eats two 
leaves. Ok 

Works ok if two 
is explicitly 
mentioned. 

वsृात ्पणn पततः। 
(Two) leaves fall from the 
tree. 

Leaves fall from the 
tree. ? 

Does not 
distinguish dual 
from plural 
consistently. 

वsृात ्Q ेपणn पततः। 
Two leaves fall from the 
tree. 

Two leaves fall from the 
tree. Ok 

Works ok if two 
is explicitly 
mentioned. 

यिद कयािचत ्किवतया Jवधदृयम ्
अदाdरतं। 
तिहC अहो बत! Jवया नैव का>यम ्
अनभुतूम॥् 

If your heart has not been 
torn apart by some poem, 
then oh my god! Poetry 
has not been experienced 
by you. 

If any poem has torn 
your heart. 
Then oh my god! You 
have not experienced 
poetry. * 

Does not 
understand नञ ्
त1पdुष समास - 
अदाeरतम ्= न दाeरतम.् 

यिद कयािचत ्किवतया Jवधदृयम ्न 
दाdरतं। 
तिहC अहो बत! Jवया नैव का>यम ्
अनभुतूम॥् 

If your heart has not been 
torn apart by some poem, 
then oh my god! Poetry 
has not been experienced 
by you. 

If some poem has not 
torn your heart. 
Then oh my god! You 
have not experienced 
poetry. Ok  
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Part 2 of 2: English to Sanskrit 
 

Test Input 
Reference 
(expected) Output 

GoogleTranslate 
Output Rating Remark 

The chair is made of 
wood. आसEद ंका�ेन िनिमCतम।् कुस/ का�ेन िनिमCता भवित। * 

Uses Hindi/Urdu word कुसf for 
chair. 

The table is made of 
wood. उJपीिठका का�ेन िनिमCता। मजेः का�ेन िनिमCतः अि:त। * 

Uses Hindi/Urdu word मेज़ for 
table. 

He did not come to 
work today as he is 
feeling a bit under 
the weather. 

सः अ� काय� कतु� न 
आगतः यतः सः िकि@चत ्
अ:व:थः अि:त। 

सः अ� काय� कतु� न आगतः 
यतः सः िकि@चत ्मौसम:य 
अधः अनभुवित। * 

Uses Hindi/Urdu word मौसम for 
weather. Does not understand 
the idiom "under the weather". 

Armchair journalists 
on the internet are a 
dime a dozen. 

आसEदप,काराः अEतजाCले 
बहवः। 

अEतजाCल:य 
आमCचयेरप,काराः एकदजCनं 
एक��यकािण भविEत। * 

Does not understand idioms 
such as "a dime a dozen". 

Never were truer 
words spoken. 

कदािप सJयतरं वचनं न 
उuम।् कदािप सJयतरं वचनं न उuम ्। Ok  

Truer words were 
never spoken. 

सJयतरं वचनं कदािप न 
उuम।् सJयतरं वचनं कदािप न उuम।् Ok  

You are the apple of 
my eye. Jवं मम ने,दीपः (महाघCः)। Jवं मम ने,:य सेबः अिस। * 

Uses Hindi/Urdu word सेब for 
apple. Does not understand 
idiom "apple of the eye". 

He has many 
servants at his beck 
and call. 

त:य सेवायै नैकाः सेवकाः 
सिEत। 

त:य मखु ेअनेके सेवकाः 
सिEत। ? 

Is मखेु the right translation of 
"beck and call"? 

In order to develop 
an idea to its fullest, 
we must explore all 
facets of it. 

क:यिचत ्िवचार:य 
पणूCिवकासाय अ:मािभः 
त:य सवाCः पsाः 
अEवे�>याः। 

िवचार:य पणूCतया िवकासाय 
अ:मािभः त:य सवाCन ्पsान ्
अEवे�>यम ्। ? 

Should be सवi पFाः अCवेj=याः. Does 
not handle verb agreement for 
kartari/karmani correctly. 

May the best team 
win. 

उvमः दलः िवजयं 
Iा�नयुात।् उvम ंदलं िवजयं Iा�नयुात।् ? 

दल in the sense of "team" is masc 
in Sanskrit 

Thank you. धEयवादः। धEयवाद। ? 
Should be धCयवादः - Hindi 
influence? 

Don't worry. िचEतामाऽ:त।ु िचतंा मा:त।ु Ok  

How are you? भवान ्कथम ्अि:त? भवान ्कथमिस। ? 
If भवान ्is used, it should be अिDत 
(?थमपdुष) 

I owe you. अह ंभवतः ऋणी अि:म। अह ंभवतः ऋणी अि:म। Ok 
Needs to assume male speaker, 
which is ok 

She said, "I owe 
you". 

"अह ंभवJयाः ऋिणनी 
अि:म" इित सा अवदत।् 

सा अवदत,् "अह ंभवतः ऋणी 
अि:म" इित। ? 

For female speaker being 
quoted, it should be ऋिणनी 

She said that he was 
going home. 

सः गहृ ंगmछित इित सा 
अवदत।् 

सा अवदत ्यत ्सः गहृ ं
गmछित। Ok  

She said he was 
going home. 

सः गहृ ंगmछित इित सा 
अवदत।् 

सा अवदत ्यत ्सः गहृ ं
गmछित। Ok  

She said that he was 
going home 
yesterday. 

सः �ः गहृ ंअगmछत ्इित 
सा अवदत।् 

सा अवदत ्यत ्सः kः गहृ ं
गmछित। * 

Uः is tomorrow, not yesterday! 
Seems to be Hindi influence, 
where the same word कल is used 
for both. 
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She said "I am going 
home". 

"अह ंगहृ ंगmछािम" इित 
सा अवदत।् 

सा अवदत ्"अह ंगहृ ं
गmछािम" इित। Ok  

She said that she was 
going home. 

अह ंगहृ ंगmछािम इित सा 
अवदत।् सा गहृ ंगmछािम इित अवदत।् Ok  

She said she was 
going home. 

अह ंगहृ ंगmछािम इित सा 
अवदत।् सा गहृ ंगmछित इित अवदत।् ? 

Why the inconsistency with and 
without "that"? 

Each time you open a 
book and read it  
a tree smiles 
knowing there is life 
after death. 

यदायदापठनाथ� 
उ�ाटयिसप:ुतकम।् 
तदातदावsृ::मयते 
मरणोvरजीिव�ः॥ 

IJयेकं प:ुतकं उ�ाट्य पठित 
तदा एकः वsृः  
मJृयोः अनEतरं जीवनम ्अि:त 
इित �ाJवा ि:मतं करोित। ? 

"Each time" should be 
"यदाकदािचत"्/"यदाकदािप" 
("whenever") 

Once the heart gets 
too heavy with pain, 
people don't cry.  
They just turn silent. 
They just turn silent 
completely. 

वेदनया अिभभतू�Jस ुसJस ु
नैव OदिEत जनाः।  
IJयतु िनःशwदा भविEत ते। 
केवलं पणूCतया िनःशwदाः। 

एकदा �दयं वेदनायाः अितभारं 
भवित तदा जनाः न रोदिEत।  
ते केवलं मौनम ्एव भविEत। ते 
केवलं सVपणूCतया मौनं कुवCिEत। ? 

Here "once" should be "यदा" 
(when) 

If a poem hasn't 
ripped apart your 
soul, you haven't 
experienced poetry. 

यिद कयािचत ्किवतया 
Jवधदृयम ्न दाdरतं। 
तिहC अहो बत! Jवया नैव 
का>यम ्अनभुतूम॥् 

यिद क~न का>यः भवतः 
आJमानं न िवदाdरतवान ् 
तिहC भवता का>य:य अनभुवः 
न कृतः। Ok  

Ganesh and I are 
studying. गणशेः च अह ंच पठावः। अह ंच गणशेः पठामः। * Should be पठावः 

I and Ganesh are 
studying. अह ंच गणशेः च पठावः। अह ंगणशेः च पठतः। * Should be पठावः 

Harish, Ganesh and I 
are studying. 

हरीशः च गणशेः च अह ंच 
पठामः। 

हरीशः, गणशेः, अह ंच 
अ�ययनं कुमCः। Ok  

Harish, you and I are 
studying. 

हरीशः च Jवं च अह ंच 
पठामः। 

हरीश, Jवं च अह ंच 
अधीतवEतौ। ? Should be पठामः 

You two and Ramesh 
are playing. यवुां च रमशेः च y�डथ। भवEतौ रमशेौ च y�डतः। * Should be noडथ 

Ramesh and you are 
playing. रमशेः च Jवं च y�डथः। रमशेः Jवं च y�डिस। * Should be noडथः 

Harish, Ramesh, you 
and I are playing. 

हरीशः च रमशेः च Jवं च 
अह ंच y�डामः। 

हरीश रमशे Jवं च अह ंच 
y�डतः। * 

Should be noडामः. Does not 
handle mixed-person dual/plural 
cases correctly or consistently. 
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Appendix C – The Systemic Gap example 
 

Sanskrit original Ideal Hindi translation Google Hindi translation 
1. अ%े उपिवशन ् िपता प1ंु प3यित 
[aśve upaviśan pitā putraṃ paśyati] 

1(HI). घोडे पर बैठा िपता अपने बेटे को देखता ह ै 1(HG). िपता अपने बेटे को घोड़े पर बैठते हBए दखेता ह ै

2. िपता अ%े उपिवश7तं प1ंु प3यित 
[pitā aśve upaviśantaṃ putraṃ paśyati] 

2(HI). िपता घोडे पर बैठे अपने बेटे को देखता ह ै 2(HG). िपता अपने बेटे को घोड़े पर बैठा दखेता ह ै

 
 

Sanskrit original Ideal English translation Google English translation 
1. अ%े उपिवशन ् िपता प1ंु प3यित 
[aśve upaviśan pitā putraṃ paśyati] 

1(EI). The father seated on the horse sees his 
son 

1(EG). The father looks at his son as he sits on 
the horse 

2. िपता अ%े उपिवश7तं प1ंु प3यित 
[pitā aśve upaviśantaṃ putraṃ paśyati] 

2(EI). The father sees his son who is seated 
on the horse 

2(EG). The father sees his son sitting on 
the horse 
 

 
The difference between Sanskrit sentences 1 and 2 is relationship of the phrase meaning “seated on a 
horse” with the father in sentence 1 and with the son in sentence 2. This is marked by inflection agreement 
with the appropriate nouns, so both sentences 1 and 2 in Sanskrit are clear and unambiguous irrespective 
of the word order.  

In Hindi too, ideally the phrase meaning “seated on a horse” should be in agreement with the appropriate 
nouns (as shown in the ideal translations 1HI and 2HI). However, Google’s Hindi translations (1HG and 
2HG) do not show this agreement. Instead, 1HG effectively means “The father sees his son sitting on a 
horse” and 2HG effectively means “The father sees his son seated on a horse”. Both these sentences use 
an oblique case marker to make the phrase “seated on a horse” a preposition phrase rather than an adjective 
phrase of the respective nouns. Such usage is increasingly common in everyday Hindi.   

As a consequence of the choice of syntax, both sentences suffer from the same prepositional attachment 
problem that exists in their English meaning, and both become ambiguous and can represent sentence 1 as 
well as 2. In the main paper, for ease of presentation, we have combined 1HG and 2HG into a single Hindi 
sentence that represents the way both sentences 1 and 2 would be typically translated in Hindi.  
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Abstract

The growing need for using small data distin-
guished by a set of distributional properties
becomes all the more apparent in the era of
large language models (LLM). In this paper,
we show that for the lemmatisation of the web
as corpora texts, heterogeneous social media
texts, and dialect texts, the morphological tag-
ging by a model trained on a small dataset with
specific properties generally works better than
the morphological tagging by a model trained
on a large dataset. The material we use is Rus-
sian non-standard texts and interviews with dia-
lect speakers. The sequence-to-sequence lem-
matisation with the help of taggers trained on
smaller linguistically aware datasets achieves
the average results of 85 to 90 per cent. These
results are consistently (but not always), by 1-2
per cent. higher than the results of lemmatisa-
tion with the help of the large-dataset-trained
taggers. We analyse these results and outline
the possible further research directions.

1 Introduction

Lemmatisation is a natural language processing
(NLP) task that is a part of the basic language re-
source toolkit (BLARK) (Krauwer, 1998, 2003;
Piotrowski, 2012). Lemmatisation may be defined
as a transformation of a given token into the diction-
ary form, the latter being called a lemma. There
may be different ways of lemmatisation, such as
classifying a token by its particular supposed lem-
matisation rule and the subsequent transformation
by this rule (for instance, such model may classify
shown into the group of tokens that are lemmatised
with «delete last n and then add to before the token»
rule, and then transformed by this rule into to show)
(Anastasyev, 2020). In this paper, we focus on the
sequence-to-sequence approach, which takes input
sequence and transforms it into output sequence
directly (Sutskever et al., 2014; Cho et al., 2014).

Sequence-to-sequence approach generally re-
quires additional information for the token, be-

cause it is difficult for the model to lemmatise
bare tokens (Kanerva et al., 2021). Many smaller
lects1 do not possess gold morphological tagging.
However, they are located nearby a closely-related
high-resource lect, for which there are a lot of gold
morphological datasets.

We hypothesise that there is a reliable way to find
a dataset with the specific distributional properties,
train a tagger on it, use this tagger on a new, rather
different dataset, and then lemmatise the tokens of
this dataset with a preliminary fine-tuned large lan-
guage model. We also presume that this approach
is preferable to gathering the biggest data amount
possible.

We believe that the thoroughness in morpho-
logical training data selection becomes gradually
more important with increasing variation within
the lemmatisation evaluation data. So, if overall
the better tactic is to get the largest and the most
heterogeneous dataset possible, for some types of
data one needs a more nuanced approach.

We are going to demonstrate this on the material
of the non-standard Russian lects. This includes
the web as corpora material, social media texts,
and dialect texts, presenting the continuum of lects
getting further away from the standard Russian in
terms of distributional properties. We hypothesise
the following:

H1: Morphological tagging efficiency directly
influences the lemmatisation accuracy.

H2: If the model trains on the larger dataset,
the morphological tagging it performs will present
stable satisfactory results.

H3: For the non-standard data, the distributional
properties of the training dataset are generally more
important than the sheer size.

We impose a set of restrictions. Both the model
we use for morphological tagging and the lemmat-

1In this paper, we use lect as a neutral term for any given
language variety, whether it is a standard, a dialect, or a soci-
olect.
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iser (at least in prediction mode) should be able to
run on an individual device with no more than 6GB
V-RAM (the specs of NVIDIA GeForce GTX1060,
currently the most widespread GPU). The training
data may vary in size, however, the datasets that
we select on distributional properties basis should
not exceed 500 000 tokens.

Section 2 contains previous research on the top-
ics of lemmatisation in general and Russian lem-
matisation in particular. In section 3, we describe
the data. Section 4 includes a description of the
method. Section 5 describes the experiments and
the analysis of their results. In section 6, we wrap
up the research, stating either confirmation or re-
futation for each of the hypotheses, as well as the
possible future directions of the research.

2 Related Work

Currently, there are two predominant approaches
to lemmatisation. The first is the classification ap-
proach: the model determines the rule of lemmat-
isation for a given token and then applies the rule
(Mills, 1998; Chrupała, 2006; Plisson et al., 2008;
Gesmundo and Samardžić, 2012; Radziszewski,
2013). This approach tends to be monolingual
(Anastasyev, 2020; Torre Alonso, 2022). The
second is the generally multilingual sequence-to-
sequence approach when the input (token and
its features) is transformed directly to the out-
put sequence, lemma (Straka and Straková, 2017;
Bergmanis and Goldwater, 2018; Kanerva et al.,
2021).

Russian lemmatisation currently dominates the
East Slavic lemmatisation landscape (Anastasyev,
2020), including historical varieties, with both rule-
based and automatic methods (Berdičevskis et al.,
2016; Pedrazzini and Eckhoff, 2021). However,
territorial lects have not yet gained the same kind
of attention, while the lemmatisers designed for
specific corpora are not open-source (Kryuchkova
and Goldin, 2011, 2015). Russian web as corpora
and social media texts are included in the evalu-
ation pipelines but generally are not the centre of
attention (Sorokin et al., 2017).

There are different ways to enhance the perform-
ance of a lemmatisation model, morphological tag-
ging being the most common (Anastasyev, 2020).
The ensemble models that enhance lemmatisation
efficiency with external resources (Milintsevich
and Sirts, 2021) are gaining popularity, especially
for historical low-resource territorial lects (de Graaf

et al., 2022). And given that social media texts are
similar to them (Piotrowski, 2012), the contempor-
ary vocabulary dictionaries are going to be of use
in further research.

3 Data

We employ two groups of datasets: the training
datasets and the evaluation datasets. Training data-
sets are generally well-established through Russian
NLP and mostly contain standard Russian texts.
The evaluation datasets group contains both the
well-established ones and the ones that are not yet
heavily adopted in the Russian NLP.

The largest training dataset is a collection of dif-
ferent Russian National Corpus2 texts that vary dia-
chronically (from the 1700s to 2010s), orthograph-
ically (containing texts in modern orthography, as
well as premodern, used mostly before 1917), and
genre-wise (including news, poetry, fiction, and
social media). We later refer to this dataset as
RNC-sampled. This dataset contains nearly 2 mil-
lion tokens. It is also the dataset the lemmatisation
model trained on. We also employ two subsets of
RNC-sampled. The first one is Taiga (Shavrina and
Shapovalova, 2017), which aims to represent texts
from social media that demonstrate a higher level
of variation and colloquiality. Taiga contains 197
000 tokens. The second is SynTagRus (Drogan-
ova et al., 2018), the biggest Universal Dependen-
cies Russian corpus, containing fiction, non-fiction
and news texts. The original SynTagRus contains
1.5 million tokens, we downsampled it to 195 000
tokens for effective comparison with Taiga.

We use three sets of data for evaluation. The
first is the tagged part of the Russian General In-
ternet Corpus (Belikov et al., 2018), designed for
MorphRuEval-2017 (Sorokin et al., 2017). It is
270264 tokens in size. Later we refer to this dataset
as GIKRYA. GIKRYA consists of different texts
from the Internet, which possess a high degree
of variation and lack orthographical normalisation.
The tagging of the GIKRYA part that we employ is
human-checked.

The second evaluation dataset is the scraped col-
lection of tweets from 2022 to 2023, selected based
on them containing words мокша ‘Moksha’, эр-
зя ‘Erzya’, and Саратов ‘Saratov’. The tweets
contain texts from the regional mass media, as
well as everyday communication, concerning cur-
rent politics, by speakers of different origins and

2ruscorpora.ru
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backgrounds. We slightly manually normalised the
texts, correcting the most obvious errors, such as
*проектрование > проектирование ‘design’.
The variation degree in this dataset, despite the
minor edits, remains high, mostly due to the non-
standard compounds, such as иворовал (<ива +
воровал ‘willow + steal.PAST.3.SG.M’), and non-
standard orthography, for instance, расейськая
‘Russian’. We provide human-checked lemmata
(without PoS/morphological tagging) for this data-
set. We later refer to this dataset as MES-Tweets.
MES-Tweets contains 6100 tokens.

The third group of evaluation datasets is the
transcribed recordings of interviews with speak-
ers of Russian continuum dialects (small territorial
lects) Belogornoje (Saratov Region, Russia, south-
ern type, the territory where Russian speakers ar-
rived after the Russian dialect system had formed),
and Megra (Vologda Region, Russia, northern type,
the territory where Russian speakers had arrived
before the split of the Old East Slavic dialect con-
tinuum). We take the material for both Belogornoje
and Megra (as we refer to them later) from Saratov
dialectological corpus (Kryuchkova and Goldin,
2011, 2015). These datasets are in themselves ho-
mogeneous, yet they differ from the training data-
sets, representing small territorial lects, rather than
variation within the standard. Belogornoje and
Megra together contain 4372 tokens, with Megra
being slightly larger (2856 versus 1516 tokens).
Both datasets possess gold lemmatisation and mor-
phological tagging, though annotation schema dif-
ferences make the use of the latter hardly applicable
to this study.

We present the short summary for each dataset
in Table 1.

4 Method

To determine the degree, to which the morpholo-
gical properties of a training dataset may influence
the lemmatisation efficiency of an evaluation data-
set, we present the following experiment pipeline.

Beforehand, we fine-tune the lemmatisation
model with the largest morphologically tagged
dataset available, RNC-sampled. The lemmatisa-
tion model is a sequence-to-sequence one, employ-
ing the BART architecture with the largest number
of parameters (430M) (Lewis et al., 2020). This
model, BART-large, is used for all the lemmatisa-
tion experiments.

For part-of-speech tagging, we use the Stanza

tagger (Qi et al., 2018, 2020), modified for the low-
resource lects (Scherrer, 2021). We train Stanza
on three different datasets, RNC-sampled, Taiga,
and SynTagRus-downsampled. RNC-sampled has
the largest variation degree and the largest size.
Taiga, being relatively smaller, consists of social
media texts that inherently possess a high degree of
variety. SynTagRus-downsampled is comparable
in size to Taiga, but it is much more homogeneous
genre-wise.

Training yields three taggers for each of the data-
sets (RNC-sampled, Taiga, and SynTagRus). We
then test these models. For this, we use GIKRYA
as a dataset both completely independent from the
Russian National Corpus and possessing a signific-
ant variation degree. This provides us with the pre-
liminary idea of whether the knowledge acquired
through RNC-sampled, Taiga, and SynTagRus-
downsampled data, may aid the model in tagging a
completely different dataset.

Then we perform the three stages of the lem-
matisation experiments. As a baseline for each
stage, we use two different tactics. The first is a
simple token-to-lemma method when each token
is taken as its own lemma. The second is using
BART-large on bare tokens (with input in the form
of [token] [part-of-speech information] [morpholo-
gical tagging information] and lemma as a desired
output). For each stage, we tag the datasets of
GIKRYA (stage 1), MES-Tweets (stage 2) and Be-
logornoje and Megra (stage 3) with each of the
morphological tagging models available, provid-
ing silver (non-human-checked, yet performed by a
model that generally produces satisfactory results)
morphological tagging. The stages represent the
growing degree of distance between standard Rus-
sian and the variations that form the datasets. After
that, we lemmatise each of the acquired datasets
with BART-large. We compare the results of the
lemmatisation against the baseline. As GIKRYA
provides the gold morphological tagging, for stage
1 we also lemmatise tokens with gold tagging to
set the highest possible bar.

For evaluation, we use accuracy score, combined
with different string similarity measures: Leven-
shtein distance (Levenshtein, 1966), Damerau-
Levenshtein distance (Damerau, 1964), and Jaro-
Winkler distance (Jaro, 1989; Winkler, 1990).
Levenshtein distance that scores additions, dele-
tions, and substitutions of characters gives a more
precise picture of sequence-to-sequence model per-
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Dataset name Dataset group Previous morphological tagging presence Token number
RNC-sampled Training Present 2000000

Taiga Training Present 197000
SynTagRus Training Present 1500000
GIKRYA Evaluation Present 270264

MES-Tweets Evaluation Non-present 6100
Belogornoje Evaluation Present (different annotation schema) 1516

Megra Evaluation Present (different annotation schema) 2856

Table 1: Datasets used in the study

formance in comparison to the accuracy score, re-
ducing the cost of small mistakes and putting the
models that generalise over the models that only
memorise. Damerau-Levenshtein distance adds
substitutions, providing an even more fine-grained
picture. Jaro-Winkler distance shows exactly how
well models capture the concept of lemmatisation
in Slavic languages, favouring the sequences that
match from the beginning. We also use normalised
versions of these metrics (Grubbs, 1969). Normal-
isation generally highlights the ability of a model
to generalise: if the normalised score is less than
its raw counterpart, the model possibly learned to
remember particular token-lemma pairs rather than
to lemmatise.

5 Experiments and Analysis

We split the experiments into the morphological
tagging section and the lemmatisation section. The
lemmatisation section consists of three stages. For
the first, we use GIKRYA, the web corpus that
contains texts of different genres and variations,
some further from the standard Russian than others.
The second includes the lemmatisation of the MES-
Tweets dataset, which possesses a higher variation
degree. For the third, we take dialect data, pushing
the ability of the models to generalise to the limit.

5.1 Morphological tagging

The morphological tagging results for GIKRYA are
in Table 2.

The model trained on RNC-sampled was overfit-
ting. It has the least out-of-vocabulary rate while
performing worse than the models trained on Taiga
and SynTagRus-downsampled. The model trained
on SynTagRus-downsampled performed the best,
especially in the exact match category (UFeats).
Probably, the homogeneity and the small size of
SynTagRus-downsampled allow the model to con-
centrate on the morphological tagging concept

rather than attempting to grasp variation within
it. However, all the models achieved relatively high
scores, which may make their tagging relevant for
the lemmatisation.

5.2 Lemmatisation (GIKRYA)

The results of measuring the efficiency of GIKRYA,
morphologically tagged with these models’ lem-
matisation (later referred to by the name of the
dataset we trained them on), are in Table 3.

The results show that gold tagging predictably is
the most desired option for the lemmatiser. Models,
however, are still able to easily outperform both
baselines. The synTagRus-downsampled-trained
model demonstrates the highest accuracy score,
while the RNC-sampled-trained one shows the
highest Jaro-Winkler distance score. Levenshtein
and Damerau-Levenshtein distances, including the
normalised ones, are the same. Each model helps
the lemmatiser to achieve a consistently high score
and to understand that Russian lemmata gener-
ally start with the same characters as tokens. Im-
portantly, mistakes that the lemmatiser makes are
often caused by differences in the lemmatisation
policy and not incorrect morphological tagging, cf.
регулировать ‘control’ instead of регулирую-
щий ‘the controlling one’: in RNC-sampled, Taiga
and SynTagRus-downsampled the participles are
treated as verbs and lemmatised to an infinitive,
while in GIKRYA the participle is a full-fledged
part-of-speech category, and the participles are
lemmatised to their nominative singular masculine
form.

However, the results do not correlate directly
with the morphological tagging results, as the RNC-
sampled-trained model performs the worst in mor-
phological tagging, yet here it helps the lemmat-
iser the most to grasp the concept of lemmatisa-
tion, and overall to score pretty well. SynTagRus-
downsampled-trained model, the best for morpho-
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Training dataset PoS PoS+Feats UFeats OOV
RNC-sampled 83.17 77.65 54.90 15.59

Taiga 85.57 80.89 54.75 35.03
SynTagRus-downsampled 85.57 82.51 60.69 34.55

Table 2: The efficiency of GIKRYA dataset morphological tagging with Stanza (Qi et al., 2018, 2020; Scherrer,
2021), evaluated by Micro-F1 score, %.The best results here and after are highlighted in bold.

Model A L L(N) D-L D-L(N) J-W J-W(N)
Token-to-lemma 51.79 0.86 0.84 0.86 0.84 93.99 97.21

Bare token 49.07 0.87 0.85 0.87 0.85 86.34 96.5
RNC-sampled 90.41 0.19 0.19 0.19 0.19 98.94 98.94

Taiga 89.93 0.19 0.19 0.19 0.19 98.92 98.92
SynTagRus-downsampled 90.51 0.19 0.19 0.19 0.19 98.93 98.93

Gold 94.79 0.07 0.07 0.07 0.07 99.54 99.54

Table 3: The results of GIKRYA lemmatisation evaluation by accuracy score (A, %), raw (L) and normalised(L(N))
Levenshtein, raw (D-L) and normalised (D-L(N)) Damerau-Levenshtein, raw (J-W) and normalised (J-W(N), %)
Jaro-Winkler distances.

logical tagging, enables the lemmatiser to do the
best in terms of accuracy, but also the latter gets
worse Jaro-Winkler results. Only the Taiga-trained
model still lags behind.

Morphological tagging mistakes may play some
role in the downfalls of the models, for instance, in
cases such as аг instead of ага ‘yeah’, which the
tagger treats as a noun in the genitive singular form,
misleading lemmatiser that afterwards applies the
wrong tactic.

5.3 Lemmatisation (MES-Tweets)

GIKRYA is still a human-checked, heavily norm-
alised dataset. To get the picture of the model’s
performance in what is functionally terra incognita,
we attempt to lemmatise MES-Tweets. The results
are in Table 4.

The results differ from the previous experiments.
The tagging by the Taiga-trained model aids lem-
matiser the most, even if by a slight margin in
each given metric. It seems that here the Taiga
lemmatisation approach coincides with the target
dataset, as it correctly predicts размышляющий
‘the thinking one’ as the participle lemma in con-
trast to the infinitive размышлять ‘to think’, that,
for example, SynTagRus lemmatisation rules pro-
pose. It also detects some complex nouns, such
as финно-угр ‘Finno-Ugric’, which, for instance,
SynTagRus-downsampled-trained model perceives
as an adjective, yielding lemma финно-угрый.
Morphological tagging yet again heavily defines
the dives in the performance of the lemmatiser, but

now the Taiga-trained model is seemingly the best
with the given dataset. It may be explained by the
closeness of the dataset domains: both Taiga and
MES-Tweets are social media texts.

To check this, we turn to the dialect datasets,
which are close to social media in terms of vari-
ation within themselves and when compared to the
standard Russian. Results are presented in tables 5
and 6.

5.4 Lemmatisation (Dialect datasets)

Dialect datasets yet again show different results. In
Megra, none of the models beat the token-to-lemma
baseline by the normalised Jaro-Winkler distance
metric, which signals the morphological tagging
issues. Incorrect morphological tag detection leads
to incorrect sequence-to-sequence transformation,
as the confused model applies different rules. For
instance, it may predict брести ‘to wander’ instead
of бремя ‘burden’. Despite that, Taiga achieves
the best score by every other metric.

In Belogornoje, the lemmatiser benefits the most
from RNC-sampled-trained model tagging, with
Taiga getting close. There may be different factors
at play here: the Belogornoje dataset is only a thou-
sand tokens and is closer to the standard Russian,
probably, 20th-century fiction, than Megra.

Morphological tagging still seems unable to
solve some critical issues. The question of how to
treat compound lemmata in the dataset remains, cf.
дак и ‘so’ that is lemmatised only as и ‘and’ by the
model. <ё> is necessary for dialects, though, in the
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Model A L L(N) D-L D-L(N) J-W J-W(N)
Token-to-lemma 58.42 0.71 0.53 0.71 0.53 96.19 98.12

Bare token 53.48 0.77 0.6 0.77 0.6 88.55 97.52
RNC-sampled 86 0.25 0.25 0.25 0.25 98.49 98.49

Taiga 86.38 0.24 0.24 0.24 0.24 98.59 98.59
SynTagRus-downsampled 86.1 0.25 0.25 0.25 0.25 98.47 98.47

Table 4: The results of MES-Tweets lemmatisation evaluation.

Model A L L(N) D-L D-L(N) J-W J-W(N)
Token-to-lemma 60.54 0.86 0.8 0.86 0.8 90.76 96.8

Bare token 58.65 0.9 0.84 0.9 0.83 90.3 95.67
RNC-sampled 82.67 0.37 0.37 0.37 0.37 95.65 95.65

Taiga 83.89 0.35 0.35 0.35 0.35 95.66 95.66
SynTagRus-downsampled 81.97 0.4 0.4 0.4 0.4 95.4 95.4

Table 5: The results of Megra dialect lemmatisation evaluation.

standard Russian dataset, it is normalised to <е>.
Rare word changing models for verbs like поми-
рать ‘to be dying’, the forms of which lemmatiser
treats as the forms of помереть ‘to die’ under the
influence of more productive models, present the
problem as well.

Significant dialect features, for instance, jakanje,
if shown in lemma, also lead to errors (cf. выдояти
‘to milk’ that is lemmatised as standard Russian
выдоить). Non-standard forms, such as мни ‘I-
DAT’ (cf. standard мне) confuse both the tagger
and the lemmatiser, leading to incorrect tagging and
subsequent assignment of the token as its lemma,
instead of я. But the most significant issue is still
the lemmatisation policy, the differences between
understanding what should be a lemma for a token
in a dataset.

6 Conclusion

The experiments prove that the silver morpholo-
gical tagging allows a lemmatiser to perform much
more efficiently than without any information on
morphological tagging (over 40% improvement).
We show that silver morphological tagging aids
almost as efficiently as gold morphological tag-
ging, lagging only by 4% for web as corpora data-
sets, such as GIKRYA. This is achieved with the
BART-large model, fine-tuned for the standard lan-
guage. Both the prediction run of BART-large
and any training run of modified Stanza (Scher-
rer, 2021) did not take more than 4 GB GPU on
RTX 3060 (mobile). Thus, even if fine-tuning
large lemmatiser models themselves on personal

computer hardware is still going to remain a fo-
cus of further study, morphological tagging and
lemmatisation itself may be performed on the re-
latively small data. The lemmatiser enhanced
with data provided by both the Taiga-trained and
the SynTagRus-downsampled-trained taggers often
performs better than the lemmatiser enhanced with
data provided by the RNC-sampled-trained tagger.
Even when the situation is opposite, the distance
between the results rarely exceeds five per cent.

The hypotheses that we stated at the beginning
of the research were the following:

H1: Morphological tagging efficiency directly
influences the lemmatisation accuracy.

H2: If the model trains on the larger dataset,
the morphological tagging it performs will present
stable satisfactory results.

H3: For non-standard data lemmatisation, the
distributional properties of the training dataset are
generally more important than the sheer size.

The first hypothesis, as GIKRYA experi-
ments show, holds only partially. SynTagRus-
downsampled-trained tagger performs the best in
terms of morphological tagging, but RNC-sampled-
trained tagger performs the best as an aide for the
lemmatiser.

The second hypothesis holds: there are no sud-
den falls in lemmatisation accuracy when the RNC-
sampled-trained tagger provides additional data,
even if the results achieved are not the best.

The third hypothesis generally holds. The less
the dataset resembles the standard Russian, the
more efficient becomes the enhancement with data
acquired from the Taiga-trained tagger, and the less
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Model A L L(N) D-L D-L(N) J-W J-W(N)
Token-to-lemma 59.37 0.83 0.78 0.83 0.78 92.34 97.1

Bare token 58.05 0.85 0.8 0.85 0.79 92.22 97.16
RNC-sampled 84.89 0.29 0.29 0.29 0.29 97.85 97.85

Taiga 83.71 0.31 0.31 0.31 0.31 97.73 97.73
SynTagRus-downsampled 83.25 0.33 0.33 0.33 0.33 97.61 97.61

Table 6: The results of Belogornoje dialect lemmatisation evaluation.

efficient becomes the enhancement with data ac-
quired from the SynTagRus-downsampled-trained
tagger. This is because Taiga, social media texts,
is much more heterogeneous than SynTagRus-
downsampled. Additional morphological inform-
ation from RNC-sampled-trained tagger run beats
the one that Taiga provides, but only for Belo-
gornoje. It is important to remember that parts
of Taiga are included in RNC-sampled, and inter-
action between these parts and other parts of the
RNC-sampled enabled the lemmatiser to process
Belogornoje especially well. However, this case is
an outlier.

The future direction of the research becomes
clear: further search for a dataset that provides the
best silver morphological tagging for dialect data
as well as attempts at efficiently using small trans-
formers (such as TinyBART (Shleifer and Rush,
2020)) that one can fine-tune with personal com-
puter hardware.
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Abstract

Bidirectional masked Transformers have be-
come the core theme in the current NLP land-
scape. Despite their impressive benchmarks,
a recurring theme in recent research has been
to question such models’ capacity for syntactic
generalization. In this work, we seek to address
this question by adding a supervised, token-
level supertagging objective to standard unsu-
pervised pretraining, enabling the explicit incor-
poration of syntactic biases into the network’s
training dynamics. Our approach is straightfor-
ward to implement, induces a marginal com-
putational overhead and is general enough to
adapt to a variety of settings. We apply our
methodology on Lassy Large, an automatically
annotated corpus of written Dutch. Our exper-
iments suggest that our syntax-aware model
performs on par with established baselines, de-
spite Lassy Large being one order of magnitude
smaller than commonly used corpora.

1 Introduction

In recent years, the advent of Transform-
ers (Vaswani et al., 2017) has paved the way for
high-performing neural language models, with
BERT (Devlin et al., 2019) and its many variants
being the main exemplar (Liu et al., 2019; Sanh
et al., 2019; Lan et al., 2020). BERT-like models
achieve state-of-the-art scores in most major NLP
benchmarks via a two-step process. First, they are
trained on massive-scale, minimally processed raw
text corpora by employing the so-called masked
language modeling (MLM) objective. Task-specific
refinements are then obtained by fine-tuning the
pretrained model on labeled corpora, usually or-
ders of magnitude smaller in size.

This pipeline, despite its attested performance,
suffers from two key limitations. On the one hand,
training a BERT-like model from scratch requires
an often prohibitive amount of data and computa-
tional resources, barring entry to research projects
that lack access to either. On the other hand, a

naturally emerging question is whether such mod-
els develop an internal notion of syntax. Discov-
ery of structural biases is hindered by their dis-
tributed, opaque representations, requiring manu-
ally designed probing tasks to extract evidence of
syntactic awareness (Hewitt and Manning, 2019;
Tenney et al., 2019; Kim et al., 2020; Clark et al.,
2019a; Goldberg, 2019; Hu et al., 2020). Alter-
natively, when syntactic evaluation becomes the
focal point, it is usually deferred to downstream
tasks (Kitaev et al., 2019; Zhang et al., 2020a), ow-
ing both to the lack of sufficiently large labeled
corpora as well as the computational bottleneck
imposed by hard-to-parallelize operations.

In this work, we seek to alleviate both points
by considering them in tandem. Contrary to prior
work, we consider the case of introducing explicit
syntactic supervision during the pretraining pro-
cess and investigate whether it can allow for a
reduction in the data needs of a BERT-like lan-
guage model. To facilitate this, we couple the stan-
dard unsupervised MLM task with a supervised
task, mapping each distinct word to a supertag, an
abstract syntactic descriptor of its functional role
within the context of its surrounding phrase. In
essence, this amounts to simple token-level classifi-
cation, akin to traditional supertagging (Bangalore
and Joshi, 1999), except for parts of the input now
being masked. In employing both objectives, we
ensure that our model is syntax-aware by construc-
tion, while incurring only a negligible computa-
tional overhead. We evaluate the trained model’s
performance in a variety of downstream tasks and
find that it performs on par with established mod-
els, despite being trained on a significantly smaller
corpus. Our preliminary experiments suggest an
improvement to pretraining robustness and offer a
promising direction for cheaper and faster training
of structure-enhanced language models. Reflecting
on the added objective, we call our model tagBERT.
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2 Background

Embedding structural biases in neural language
models has been a key theme in recent research.
Most syntax-oriented models rely on computation-
ally intensive, hard-to-parallelize operations that
constrain their integrability with the state of the
art in unsupervised language modeling (Tai et al.,
2015; Dyer et al., 2016; Kim et al., 2019). This
can be ameliorated by either asynchronous pretrain-
ing, relying on accurate but slow oracles (Kuncoro
et al., 2019), or multi-task training, where the sys-
tem is exposed to a syntactic task for only part
of its training routine (Clark et al., 2018, 2019b).
In the BERT setting, there have been attempts at
modifying the architecture by either overlaying syn-
tactic structure directly on the attention layers of
the network (Wang et al., 2019b) or imposing shal-
low syntactic cues and/or semantic information in
a multi-task setting (Zhang et al., 2020b; Zhou
et al., 2020). While such a setup allows for efficient
parallel pretraining, the rudimentary nature of the
utilized annotations typically forfeits fine aspects
of sentential structure, such as function-argument
relations.

In this paper, we adopt lexicalism in the catego-
rial grammar tradition (Ajdukiewicz, 1935; Lam-
bek, 1958; Buszkowski et al., 1988; Steedman,
1993; Moortgat, 1997), according to which (most
of) the grammatical structure of a language is en-
coded in its lexicon via an algebra of types that
governs the process of phrasal composition. Under
such a regime, the parse tree underlying a sentence
can be partially (or even fully, in the case of an ad-
equately “strict” grammar) recovered from its con-
stituent words and their respective types alone. In
applied terms, the lexical nature of categorial gram-
mars provides us with the opportunity of capturing
syntax in a fully-parallel fashion that is straight-
forward to incorporate with the masked language
modeling objective of BERT-like architectures, a
fact so far generally overlooked by machine learn-
ing practitioners. This perspective is in line with
recent insights arguing for the necessity of explicit
supervision for syntactic acquisition (Bailly and
Gábor, 2020).

The only prerequisite for our methodology is
an adequately sized, categorially annotated cor-
pus. Even though gold standard corpora exist for
a variety of languages and grammars (Chen and
Shanker, 2004; Hockenmaier, 2006; Hockenmaier
and Steedman, 2007; Tse and Curran, 2010; Am-

bati et al., 2018; Kogkalidis et al., 2020b), their size
is generally insufficient for training a parameter-
rich neural language model. This limiting factor
can be counteracted by either lexicalizing existing
silver-standard corpora of a larger size, or by using
an off-the-shelf, high-performance supertagger to
annotate the source data prior to pretraining. In
both cases the trained system is likely to inherit
common errors of the data-generating teacher; the
question is whether the added structural biases fa-
cilitate faster training of more general language
models, despite potential tagging inaccuracies.

3 Methodology

3.1 Data

To facilitate both the data needs of the neural lan-
guage model and the added supertagging objective
we employ Lassy Large (van Noord et al., 2013),
a corpus of written Dutch, automatically parsed
using the Alpino parser (Bouma et al., 2001). The
dataset is comprised of a selection of smaller cor-
pora from varying sources, ranging from excerpts
from conventional and modern media to spoken
transcripts, enumerating a total of almost 800 mil-
lion words. Lassy’s syntactic analyses take the
form of directed acyclic graphs, with nodes cor-
responding to words or phrases marked with their
part-of-speech as well as syntactic category labels
and edges denoting dependency relations. To make
the analyses applicable for our setup, we lexicalize
them using the type extraction algorithm of Kogka-
lidis et al. (2020b). The algorithm traverses a parse
graph and encodes its structure in a linear logic
proof, under the general paradigm of categorial
type logics (Moortgat, 1997), simultaneously cap-
turing function-argument and dependency structure.
Words, i.e. fringe nodes in the graph, are assigned
types, abstract syntactic signs that encode a consid-
erable portion of the full structure.

Applying the extraction algorithm, we obtain a
collection of around 66 million sentences, repre-
sented as sequences of word-type pairs. We drop
about 20 million of these in a sanitation step, due
to either being duplicates or overlapping with any
of the evaluation tasks. We tokenize words using
a preconstructed WordPiece (Schuster and Naka-
jima, 2012) vocabulary of 30 000 tokens based on
a larger collection of written Dutch corpora (Vries
et al., 2019). Further, we keep the 2 883 most fre-
quent types, which suffice to cover 95% of the type
occurrences in the dataset, and replace the filtered
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out types with an UNK token. We finally discard
sentences lying in the 5%-tail of the length distribu-
tion, and train with 45 million sentences spanning
less than 100 sub-word tokens.

3.2 Model
Our model is a faithful replica of BERTBASE, ex-
cept for having a hidden size of 1 536 instead of
3 072 for the intermediate fully-connected layers,
reducing our total parameters from 110 to 79 mil-
lion. We further employ a linear projection from
the model’s dimensionality to the number of types
in our vocabulary, which we attach to the output of
a prespecified encoder block. The projection can
be separably applied on the encoder’s intermediate
representations, allowing us to optionally query the
model for a class weighting over types for each
input token.

This addition accounts to a mere 2.5% of the
model’s total parameter count and only incurs a
negligible computational overhead if explicitly en-
abled, as it does not interfere with the forward
pass when the system is run solely as a contextu-
alization model. If the type classification layer is
enabled during pretraining, it introduces a clear
error signal that updates all network weights up
to the connected encoder block, bolstering the cor-
rect acquisition of syntax in the bottom part of the
encoding pipeline.

3.3 Pretraining
To train our model, we feed it partially masked
sentences following the methodology of Liu et al.
(2019); we dynamically mask continuous spans of
tokens belonging to the same word and drop the
next sentence prediction task, training on single
sentences instead. Attaching the type classification
layer at the fourth encoder block, we end up with
two output streams.1 One is a prediction over the
subword vocabulary for each masked token, as in
vanilla BERT, whereas the other comes from the
type classifier, yielding a prediction over the type
vocabulary for every token, masked or otherwise.2

We obtain a loss function by summing the cross-
entropy between predictions and truths for each
output stream.

1The choice of depth for the type classifier is due to pre-
liminary experiments where we let a trainable layer weighter
freely select from the range of encoder blocks. In the vast
majority of runs, most of the importance was interestingly
assigned to the fourth layer.

2Masking entire words for the supertagging task can be
seen as a severe form of regularization, à la channel dropout.

To deal with the misalignment between subword
units and types, we associate every type with the
first token of its corresponding word, and mask
out predictions spanning subsequent tokens when
performing the loss computation. Similarly, we do
not penalize predictions over types discarded by
the occurrence count filtering (UNK types). For reg-
ularization purposes, we randomly replace output
types 1% of the time (Wu et al., 2019).

Following standard practices, we optimize us-
ing AdamW (Loshchilov and Hutter, 2019) with a
batch size of 256, shuffling and iterating the dataset
8 times. The learning rate is gradually increased
to 10−4 over 10 000 steps and then decayed to zero
using a linear warm-up and decay schedule.

4 Evaluation

To evaluate the trained model, we measure its per-
formance on the below selection of downstream
tasks, after fine-tuning. We keep our fine-tuning set-
up as barebones as possible, using Adam (Kingma
and Ba, 2014) with a batch size of 32 and a learning
rate of 3× 10−5. We apply model selection based
on the validation-set performance and report test-
set results (averaged over three runs) against the
available baselines of each task in Table 1. In order
to provide fair comparisons, we replicate the evalu-
ation of other models using the same experimental
setup.

Lassy Small is a gold-standard syntactically an-
notated corpus for written Dutch (van Noord et al.,
2013). We fine-tune a POS tagger on the subset
of the corpus that has been converted to Universal
Dependency format (Bouma and van Noord, 2017).

SoNaR-1 is a curated subset of Lassy Small that
includes several layers of manually added annota-
tions (Delaere et al., 2009). We employ the named
entity recognition (NER), part-of-speech (POS), se-
mantic role labeling (SRL) and spatio-temporal re-
lation tags (STR) that come packed with the corpus
and treat their classification as downstream tasks.
NER contains approximately 60 000 samples and 6
class labels encoded in the IOB scheme. POS tag-
ging contains about 16 000 samples and comes in
two varieties: coarse (12 classes) and fine-grained
(241 classes, out of which only 223 appear in the
training data, many just once). SRL comes also
in two varieties: a) predicate-argument structures,
encoded with IOB scheme, and b) modifiers, en-
hanced with modified phrase labels, for a total of
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SoNaR-1 Lassy UD CoNLL Æthel
POS-coarse POS-fine NER POS NER Supertags Parse

BERTje (Vries et al., 2019) 98.8 97.5 87.4 96.4 90.6 85.5 56.9

RobBERT (Delobelle et al., 2020) 98.5 97.2 84.8 96.2 85.9 86.3 56.8

tagBERT (ours) 98.8 97.4 87.0 96.7 89.9 86.6 58.3

Table 1: Comparative performance for a selection of downstream tasks. We report test set accuracy (%) on all tasks
except NER, where we report F1 scores (%) as produced by the CoNLL evaluation script (Tjong Kim Sang, 2002).
For a fair comparison, we replicate the fine-tuning process on all pretrained baselines, including truncation of the
maximum token length to 100.

SoNaR-1 Europarl DBRD
SRL-pred SRL-mod STR die/dat sentiment

BERTje (Vries et al., 2019) 85.3 67.2 57.3 95.0 93.0

RobBERT (Delobelle et al., 2020) − − − 98.7 95.1

tagBERT (ours) 86.5 67.8 68.0 99.1 93.8

Table 2: Comparative performance on higher-level downstreak tasks. Scores are F1 (%) for SRL/STR, and test set
accuracy (%) for die/dat disambiguation and sentiment analysis. −: no results available.

30 000 samples. STR contains a total of 58 000
spatio-temporal tags, including geolocations and
use of past verbe tense.

CoNLL-2002 is a named entity recognition
dataset from the corresponding shared task (Tjong
Kim Sang, 2002). The dataset contains 4 class la-
bels, also encoded in the IOB scheme, with a total
size of approximately 24 000 samples.

Æthel is a typelogical derivation dataset, gener-
ated by applying the type extraction algorithm to
Lassy Small (Kogkalidis et al., 2020b). We repli-
cate the experiments of Kogkalidis et al. (2020a) to
train a typelogical grammar parser, but instantiate
the encoder part with the baselines of Table 1, and
report token-level supertagging accuracy as well
as full sentential parsing accuracy in the greedy
setting. We note that even though our model is
exposed to types during pretraining, their repre-
sentation format is vastly different during the fine-
tuning process; rather than being classification out-
puts for each word, they are broken down to their
primitive symbols and transduced from the input
sequence with auto-regressive seq2seq decoding.
In that sense, this task helps us assess the generality
of the learned representations.

Dutch Europarl is a sanitized subset of
transcripts of the European Parliament in
Dutch (Koehn, 2005), used for zero-shot evalua-

tion of the task of relative pronoun disambiguation.
The task revolves around picking the most likely
between the Dutch relative pronouns die and dat.
While the two agree in their syntactic function
(and grammatical category), the former selects
exclusively for gendered nouns, whereas the latter
selects for neuter ones. As such, the task measures
our model’s capacity to resolve morphosyntactic
constraints in the presence of grammatical category
invariants. This corpus enumerates a total of
1.56M sentences, 90.7% of which contain at least
one relative pronoun.

110k Dutch Book Reviews Dataset. The Dutch
Book Reviews Dataset (DBRD) is a sentiment
analysis bechnmark which comprises around 110k
Dutch book reviews taken from hebban.nl, out of
which 22 252 are manually labeled as either posi-
tive or negative (Van der Burgh and Verberne, 2019)
and segmented into 90% training and 10% testing
splits. Unlike previous tasks, sentiment analysis
is done on the sentential, rather than token level,
serving as a measure of the model’s semantic un-
derstanding.

5 Discussion

Our model performs on par across all tasks consid-
ered, indicating pretraining robustness comparable
to the heavy weight baselines of BERT- (Devlin
et al., 2019) and RoBERTa-based (Liu et al., 2019)
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models.3 Considering the non-ideal nature of the
silver-standard tags, the significantly smaller size
of our corpus compared to competing models, and
the ca. 30% reduced parameter count (79M against
119M for BERTje and 117M for RobBERT), our
results can be seen as strong evidence in favor of
explicitly encoding structural biases in the pretrain-
ing process of neural language models. Opting
for a lexicalized representation of structure allows
for a seamless and cost-efficient integration with
BERT’s core architecture, essentially removing the
computational bottleneck of alternating between
tensor optimization and structure manipulation.

6 Conclusion

We introduced tagBERT, a variation of BERT that
is biased towards syntax through coupling the stan-
dard MLM loss with a supertagging objective.
We trained tagBERT on a modestly sized, silver-
standard corpus of written Dutch – after first lexi-
calizing its annotations – and evaluated the trained
model on a number of downstream NLP tasks af-
ter fine-tuning. Despite a reduced parameter count
and the corpus’ modest size, our method is achiev-
ing performance comparable to established state-
of-the art models. This result is contrary to the
ongoing trend of utilizing increasingly more data
and augmenting model capacity, instead suggesting
potential benefits from incorporating richer anno-
tations in convenient representation formats. Our
work aims towards a syntactically-transparent, cost-
efficient language model that combines both the
rigor of formal linguistic theories and the represen-
tational power of large-scale unsupervised learning.

Retroactive Placement The current work is sit-
uated in the historical landscape where probing
for syntactic awareness and the possibility of in-
jecting syntactic structures in the network were
still novel enterprises. Alongside and following
our original endeavour, many more studies have
investigated the role of syntax and ways to incor-
porate it within large language models, with the
end-goal of either jointly acquiring the two, or of
using explicit syntactic guidelines to constrain lan-
guage generation (Zanzotto et al., 2020; Sartran
et al., 2022; Li et al., 2021; Bai et al., 2021; Song
et al., 2022; Xie et al., 2021; Li et al., 2023). Other
than technical differences on the neural front, our

3Implementation code is available at https://github.
com/gtziafas/type-enhanced-language-modeling.

work diverges in opting for a linearized representa-
tion of syntax through categorial grammars. This
choice stands out for its elegance and formal co-
herence, setting it apart from more widely used
alternatives like constituency trees and dependency
arcs. Indeed, categorial grammars (regardless of
the particular flavor adopted) offer the means for an
expressive, yet fully lexicalized, modeling of syn-
tax and compositional meaning. Their integration
into the modern NLP toolkit is facilitated by this in-
herent flexibility, offering the potential for intricate
interplay between structure and form – a potential
that still remains, for the most part, untapped.

Future work Given the embedding of this paper
within the landscape concerning syntactic aware-
ness and large language models, future work would
be based on recent developments in neurosymbolic
approaches to lexicalized grammar formalisms. For
instance, recent developments in neural supertag-
ging could be exploited, for instance by updating
the supertagging from the discriminative setting to
a constructive one (Prange et al., 2021; Kogkalidis
et al., 2023).

Besides developments relevant to model archi-
tecture, several novel evaluation tasks for Dutch
have been developed that may shed light on the dis-
tinction between vanilla Transformer-based models
and syntactically informed ones. For example, the
two-sentence classification task of Natural Lan-
guage Inference (NLI) is a typical task that tests for
lexical, syntactic, and sentence-level understand-
ing, for which two Dutch benchmarks exist (Wi-
jnholds and Moortgat, 2021; Wijnholds, 2023). A
comparison between a vanilla model, the syntac-
tically informed tagBERT, and the neurosymbolic
approach of Abzianidze and Kogkalidis (2021) is
in place to put the relationship of syntax and NLI
in perspective. Further on the Dutch front, we
would be keen to test the model’s ability to under-
stand discontinuous verb-subject dependencies as
in Kogkalidis and Wijnholds (2022), or to disam-
biguate relative clauses as in Wijnholds and Moort-
gat (2023).

Finally, we invite and look forward to different
research directions, such as experimentation with
different languages and grammar formalisms, in-
tegration with existing pre-trained models in an
intermediate-training fashion (Wang et al., 2019a)
and exploring architectural adjustments that would
allow a two-way dependence or a stronger interfac-
ing between the lexical and syntactic modalities.
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Abstract

Pretrained vision-language (VL) models have
shown impressive results on various multi-
modal downstream tasks recently. Many of the
benchmark models build on pretrained causal
language models (LMs), leveraging the origi-
nal few-shot learning and generalization capa-
bility of the LMs trained with large text cor-
pora. However, these models are often gigan-
tic and require large-scale image and text data
with high computational cost to train. This pa-
per introduces a moderate-size model called
MAP for efficient VL transfer learning through
adapter-based pretraining and prompting. We
aim to answer the question of how much we
can complete through VL pretraining within the
low-data regime while maximizing efficiency
in transferring knowledge of a moderate-size
frozen LM. Our experiments demonstrate that
MAP achieves substantially better zero-shot
and few-shot performance on downstream VL
tasks with only 10% the size of pretraining
data and a 30× lighter pretrained LM backbone
compared to Frozen. MAP also outperforms
fully trained models of comparable size at re-
taining its transfer learning ability when the
amount of training data reduces.

1 Introduction

Recent vision-language models commonly lever-
age pre-trained language models (LMs) on vari-
ous multimodal tasks. It is crucial for them to
retain the original generation capability of the LMs
while efficiently incorporating the knowledge from
new modalities. A line of work has shown impres-
sive generalization and transfer ability of vision-
language models that build on large causal decoder-
only LMs (Alayrac et al., 2022; Tsimpoukelli et al.,
2021; Eichenberg et al., 2022; Wang et al., 2021a).
While powerful, these GPT-style pretrained LMs
request high computing machines for deployment.

*Work done while employed at SenseTime

LM

VL-T5

Faster-RCNN
MLM
VQA

Img-text matching
Visual grounding

Grounded 
Captioning

Multi-task pretraining

LM

Faster-RCNN
MLM

PrefixLM

LM pretraining

FewVLM

NFResNet
MLM

PrefixLM

LM adapter-based pretraining

MAP

LM
adapter

adapter

Casual LM

GPT-style LM

Image-conditional prefix tuning

Frozen

NFResNet

Figure 1: Comparison between VL learning with mul-
titask pretraining, LM pretraining, image-conditional
prefix tuning and adapter-based LM pretraining.

Compared to decoder-only LMs, Wang et al.
(2021c) shows that encoder-decoder model intro-
duces an inductive bias that decouples multimodal
feature encoding from generation, yielding im-
proved performance on downstream tasks. Re-
cent research by Jin et al. (2021) also demonstrates
that VL models pretrained with a moderate-size
encoder-decoder LM backbone can be strong few-
shot learners. However, in these approaches, the
parameters of the language model were entirely
updated while learning vision inputs (Cho et al.,
2021; Jin et al., 2021; Wang et al., 2021c), or in-
volving more task-specific data during multitask
pretraining or fine-tuning (Sung et al., 2022; Cho
et al., 2021).

Naturally, taking account of both model struc-
ture and pretraining efficiency, we improve on pre-
vious models and introduce an encoder-decoder
parameter-efficient VL model, MAP. As shown
in Figure 1, we apply adapters for VL pretraining
with masked language modeling (Masked LM) and
prefix language modeling (PrefixLM) objectives.
We keep the backbone encoder-decoder language
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Figure 2: Illustration of the VL pretraining process and the model structure of MAP. We experiment with settings
on pretraining by only updating adapters or updating both adapters and the NFResNet image encoder. In the decoder,
we experiment with settings of adding adapters to self-attention and cross-attention.

model frozen. In downstream tasks, we provide
task-specific prompts to guide the pretrained model
for few-shot learning. Our moderate-size model
substantially outperforms Frozen on both zero-shot
and few-shot learning while using only 10% of mul-
timodal data and a frozen T5-base LM backbone
for pretraining.

2 Related Work

Recent work has shown impressive generaliza-
tion and transfer ability of vision-language mod-
els that build on huge pretrained auto-regressive
LMs (Alayrac et al., 2022; Tsimpoukelli et al.,
2021; Eichenberg et al., 2022; Baevski et al., 2022).
Frozen (Tsimpoukelli et al., 2021) updated an
NFResNet encoder to create visual prefixes for
the frozen LM, transferring the few-shot learn-
ing ability of the LM to a multimodal setting.
MAGMA (Eichenberg et al., 2022) improved on
the results of Frozen by incorporating adapter-
based pretraining and a 25M image-text dataset in-
cluding downstream data into pretraining. Luo et al.
(2022) used cross-modal attention for encoding vi-
sual and text inputs. The Flamingo model (Alayrac
et al., 2022) reached SOTA performance on few-
shot VL tasks with a frozen CLIP encoder (Goh
et al., 2021), while training a perceiver resampler
and cross-attention with multimodal data on a LM
objective. To reduce demands on supervised vision-
text data, Wang et al. (2021c) pretrained a VL
model from scratch using weak-labeled vision and
text data. Despite various of parameter-efficient
methods are applied during pretraining the models
(Li and Liang, 2021; Morrone et al., 2019; Wang
et al., 2021b; Kamath et al., 2020), these models
are often of over billions of parameters and require

high computing machines for deployment.
VL-T5 (Cho et al., 2021) is a moderate-size VL

model, where the T5 backbone is updated on mul-
titask objectives, with the encoder jointly learning
from Faster-RCNN (Fu et al., 2021) features and
input texts. FewVLM (Jin et al., 2021) improved
on VL-T5 with prompt-based learning and simpli-
fied LM pretraining objectives. Sung et al. (2022)
proposed adapter-based fine-tuning on downstream
tasks. We exploit the potential of these moderate-
size VL models and propose a more parameter-
efficient few-shot learner with adapter-based pre-
training.

3 Problem Statement

Despite that larger models are significantly more
powerful following the scaling laws (Kaplan et al.,
2020), we aim to answer the following key ques-
tions: i) how can we maximize the efficiency
in transferring knowledge of a moderate-size
frozen LM to a multimodal setting? ii) how much
can we achieve on few-shot learning if we limit
the size of data and trainable parameters in VL
pretraining?

4 Method

This section describes MAP in details. Our ap-
proach is to maximize the knowledge transfer of a
moderate-size LM to VL learning through adapter-
based pretraining and prompting.

4.1 Model Architecture
We adopt a transformer-based encoder-decoder
architecture (Parmar et al., 2017) to jointly en-
code vision and language inputs and generate tar-
get texts. As shown in Figure 2, the model is
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Task Input prompt Example
VQA [Q] input: What is this bird called? output: parrot

[Q] <text_1> input: What is this bird called? <text_1> output: parrot
question: [Q] answer: input: question: What is this bird called? answer: output: parrot
question: [Q] answer: <text_1> input: question: What is this bird called? answer: <text_1> output: parrot

Visual Entailment [Q] input: A hot air balloon is making a landing. output: entailment
[Q] <text_1> input: A hot air balloon is making a landing. <text_1> output: entailment
hypothesis: [Q] label: input: hypothesis: A hot air balloon is making a landing. label: output: entailment
hypothesis: [Q] label: <text_1> input: hypothesis: A hot air balloon is making a landing. label:<text_1> output: entailment

Table 1: Hand-crafted prompts. For VQA tasks, we prompt with "question :" for the input questions with
"answer :" before the model output. A specific token "<text_1>" is used to indicate the generated words we
expect (Jin et al., 2021). Similarly, we designed prompts of "hypothesis :" and "label :" for VE tasks.

mainly composed of three parts: a visual encoder, a
transformer-based encoder-decoder LM backbone,
and a series of adapter layers.

Visual Encoder Following Tsimpoukelli et al.
(2021), we use a NFResNet encoder (Brock et al.,
2021) to convert input images into visual embed-
dings. The visual embedding vectors then serve as
prefixes to be jointly taken with text embeddings
by the pretrained language model.

Encoder-decoder LM We adopt a moderate-
size pretrained encoder-decoder LM, T5-base (Raf-
fel et al., 2019), as the backbone of the model.
The encoder builds joint representation of the input
image-text pairs by taking the concatenated visual
and text embeddings. Then, the decoder generates
target texts in an auto-regressive manner.

Adapters Following Eichenberg et al. (2022),
we use the bottleneck adapter modules, which are
essential scaled residual bottleneck MLPs (Equa-
tion 1). The parameters of the adapters are updated
instead of the entire model during pretraining. We
add the adapters to the feed-forward and the atten-
tion blocks of the transformer following practical
analysis by Eichenberg et al. (2022). In the trans-
former decoder, we experiment with different set-
tings of adding the adapter layers to cross-attention
or self-attention blocks.

A(h) = h+ λW upϕ(W downh) (1)

4.2 Pretraining

Following Jin et al. (2021), we pretrain MAP on
MaskedLM (Chang et al., 2018) and PrefixLM
with paired image-caption data (Liu et al., 2019).
However, instead of updating the entire parameter
set of the LM, we only update the parameters of the
adapter layers. We experiment with both settings
of updating or freezing the visual encoder. Our
adapter-based end-to-end pretraining is illustrated
in Figure 2.

4.3 Few-shot Learning

In downstream tasks, we experiment with few-
shot learning with both prompting and in-context
learning. For prompting, we use hand-crafted
prompts (Jin et al., 2021) and train the model with
few-shot examples to minimize the negative-log-
likelihood (Table 1). For in-context learning, we
concatenate a series of image-text pairs in order
as a multimodal prompt and expect the model to
predict the target text given a visual query.

5 Experiments

5.1 Datasets

For pretraining, we combine image-caption pairs
from MS COCO caption (Zitnick et al., 2015) and
Visual Genome (VG) (Bernstein et al., 2017).* To
explore the influence of different pretrained data
size, we designed 3 versions of the pretraining
data, with the corresponding number of VG region-
caption pairs extracted from each image set to 2, 10
and 36. This leads to 0.3M, 0.8M and 4.2M image-
caption pairs. We do not include any downstream
dataset in pretraining.

We evaluate MAP’s transfer ability on five down-
stream tasks, including VQAv2, OKVQA, GQA,
and VizWiz for visual question answering, and
SNLI-VE for language-image understanding.

5.2 Training Details

Training Settings For pretraining, we set batch
size as 240 and pretrain with 30 epochs. We use
learning rate 1e-4 with 5% linear warmup. We
build the model with PyTorch and run on 8 A100
GPUs for around 5 days. For few-shot learning, we
use learning rate 5e-5 with 5% linear warmup and

*As the annotated captions in Visual Genome are region
descriptions, MAP directly takes the image drawn with the
corresponding bounding boxes.

†We report the accuracy with MAGMA model using the
NFResNet encoder.

‡592K(COCO)+36*108K(VG)
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Method ∥Data∥ VQAv2 OK-VQA GQA SNLI-VE VizWiz ∥LM∥
VL-T5novqa (Cho et al., 2021) 4.9M 31.8 12.7 19.6 - - 224M
VL-T5novqa (Cho et al., 2021) 0.3M 0.1 0.0 0.0 - - 224M
FEWVLMbase (Jin et al., 2021) 4.9M 48.2 15.0 32.2 - - 224M
FEWVLMbase (Jin et al., 2021) 0.3M 16.8 9.9 13.2 - - 224M
MAPbase 4.2M 40.4 17.1 27.2 33.1 25.6 224M*
MAPsmall 0.8M 40.5 16.8 22.9 32.5 25.2 224M*
MAPtiny 0.3M 38.0 15.7 22.1 41.9 27.9 224M*

Table 2: Few-shot (16-shot) evaluation results on VQAv2, OK-VQA, GQA, VizWiz and SNLI-VE. Compared to
baseline models, MAP can be trained with much fewer pre-training data and parameters with minor downstream
performance degradation. The * symbol indicates the parameters are frozen during pretraining.

VQAv2 (4-shot) VQAv2 (0-shot) OKVQA (4-shot) OKVQA (0-shot)
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Figure 3: MAP outperforms Frozen on zero-shot
VQAv2, zero-shot OK-VQA, and four-shot OK-VQA
with a 30× lighter LM backbone (a 224M T5-base com-
pared to a 7B GPT-style LM). Gains are retained even
when using only 10% the size of pretraining data (0.3M
for MAPtiny compared to 3.0M for Frozen.)

train for 200 epochs with the size of 16 for Dtrain

and Ddev. We choose the best checkpoint for test
set evaluation.

Hand-crafted Prompts As shown in Table 1, we
use task-specific prompts designed for downstream
evaluations to make the most of the transfer ability
from the pre-trained model. We experiment of three
different templates with corresponding input and
result hints for VQA and VE tasks. Our prompts
for VQA follows the design by Jin et al. (2021).

6 Evaluation and Results

To answer the questions that we raised in Section 3,
we evaluate MAP on the aforementioned five down-
stream tasks in zero-shot and few-shot settings.

From our preliminary experiments, jointly up-
dating the NFResNet vision encoder and adapter
layers performs slightly better in pretraining than
updating adapters only. We therefore applied such
settings in all models pretrained using COCO
combined with three versions of VG region-
caption pairs, denoting as MAPtiny, MAPsmall and

MAPbase.

Transfer Efficiency To evaluate MAP’s effi-
ciency on transferring knowledge from a frozen
LM to a multimodal setting, we compare MAP
against Frozen on VQAv2 and OK-VQA. As shown
in Figure 3, overall, MAP achieves better zero-shot
and few-shot performance on both tasks. MAPtiny

is able to outperform Frozen on zero-shot VQAv2,
zero-shot and four-shot OK-VQA even with only
10% the size of pretraining data (0.3M v.s. 3.0M)
and a 30× lighter LM backbone (224M v.s. 7B).

Data and Parameter Efficiency We compare
MAP to fully trained VL models to evaluate how
much can be achieved with limited pretraining data
and number of trainable parameters. In Table 2, we
show that compared to VL-T5 (Cho et al., 2021),
on all the five downstream tasks, MAPtiny achieves
much better results with only 16% in size of the
pre-training dataset† and 48% in the number of
trainable parameters. Moreover, MAP is strong at
retaining its transfer learning ability while VL-T5
and FewVLM adapt the language modeling ability
to the 0.3M pretraining data.

7 Conclusion and Future Work

We present an end-to-end moderate-size VL model,
which surpasses Frozen and comparable-size fully
trained baselines on few-shot learning over mul-
tiple image understanding tasks, while requiring
much less training data and fewer parameters dur-
ing pretraining. We expect to investigate the core
transfer ability of pretrained VL models from a
perspective beyond scaling. We propose open ques-
tions of whether data can be overloaded in pre-
training and how can we use pretraining data more
efficiently and wisely.

†Here we consider only the data on the LM objective.
VL-T5 uses additional 3.3M multi-task data in pretraining.
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Limitations

We experiment with two concatenation methods to
build sequential VL inputs for in-context learning.
However, we do not see improvements in few-shot
performance with either settings, which may root in
its pretraining strategy of taking only single image-
caption pairs. Details are illustrated in Appendix A.

While our pretrained model obtains strong few-
shot learning ability through parameter-efficient
pretraining with a much smaller dataset, it is also
possible that the small number of trainable parame-
ters could limit its ability to learn from large-scale
dataset. It is still an open question of how to au-
tomatically select multimodal data samples and
maximizing data efficiency during the learning pro-
cess.
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A In-context Learning

What is the bird called?

What color is the helmet in the middle 
of the image？

Is it an indoors or outdoors scene?

Are there napkins under the utensil to 
the left of the rice?

Text Inputs

Image Inputs

'What is this bird called?’<s>'What color is the helmet in the 
middle of the image?’<s>
'Is it an indoors or outdoors scene?’<s>'Are there napkins under 
the utensil to the left of the rice?'

+ + +

Conv

MAP

Parrot, lightblue indoors, 
yes

Text Inputs

Are there napkins under the utensil to the 
left of the rice?

What color is the helmet in the middle of 
the image?

What is the bird called?

Is it an indoors or outdoors scene?

Figure 4: Concatenation Illustration

Our two approaches in concatenating inputs are
illustrated in Figure 4. One is to mix-up images
obtained by multiplying averaged weights within
one glance and adding them all together with nor-
malization, and the other way is to concatenate

them on the channel dimension and pass through
a convolution layer before feeding into the visual
encoder.

B Modality Fusion

To validate that our joint-encoder’s ability in learn-
ing multimodal representations, we apply linear
probing on the representation output by the encoder
and reach 66.4% in accuracy on the SNLI-VE task.
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Abstract

We evaluate the role of expert-based domain
knowledge and resources in relation to train-
ing large language models by referring to our
work on training and evaluating neural mod-
els, also in under-resourced scenarios which
we believe also informs training models for
“well-resourced” languages and domains. We
argue that our community needs both large-
scale datasets and small but high-quality data
based on expert knowledge and that both activ-
ities should work hand-in-hand.

1 Introduction

In the recent years large language models based
on transformers that are trained end to end and au-
tomatically capture the structure of language have
achieved remarkable performance (Devlin et al.,
2018; Brown et al., 2020). Indeed there is an on-
going debate as to whether level of semantics that
these systems obtain. On the one hand, some re-
searchers argue that systems trained on linguistic
form alone are limited to being “statistical parrots”
(Bender and Koller, 2020) and others argue the cor-
respondence between language use and situations
in the world enables these systems to access mean-
ing (Sahlgren and Carlsson, 2021).1. Alongside
the debate in relation to the semantics these sys-
tems encode, several questions have been raised in
relation to their training and usage.

Large language models require a lot of data to
train and to do that an approach in natural language
processing has been to utilise (sometime indiscrim-
inately) all the data that is available. However,
access to the data is heavily biased to the data that
can be found online, e.g. Wikipedia, or data that
can be collected with crowd-sourcing platforms.
Such selection of data on which the models are
trained does not represent all possible contexts
of language use or groups of society producing

1See (Kelleher and Dobnik, 2022) for more on this debate.

language which results in undesired and exagger-
ated thematic (Agrawal et al., 2017) and social bias
(Bender et al., 2021) in the models. Moreover, al-
though the performance improvements of LLMs
across a range of tasks has come in tandem with a
massive growth in the dataset and model sizes and
the compute used to train these systems (see, e.g.
(Kaplan et al., 2020)), it is recognised that qual-
ity data is core to these improvements and there
are some projections based on the current rate of
growth in data requirements that we may run out of
quality training data in the near future (Villalobos
et al., 2022). Indeed, a response to this challenge
can be seen in the significant amount of current
research focused on how to automatically curate
quality data from huge web crawl datasets (Penedo
et al., 2023).

In addition to access to large datasets of text
(and images), training such models is also costly
in terms of time and available computational re-
sources, both factors which are only available
to a few world languages where English is over-
represented.

On the other hand, curating of datasets in terms
of collecting high-quality data and their annotation
with linguistically-motivated annotation schemes
has a long tradition in natural language process-
ing. Transformer models learn linguistic struc-
ture end-to-end and systems using automatically
learned contextualised embedding surpass mod-
els with expert-engineered features which raises
a question whether all the years of hard expert
work is superfluous. But can we be really sure that
the models really have learned useful linguistic
structure (Conneau et al., 2018)? Is that structure
the same what we expect (Dobnik et al., 2018)?
Since annotation of resources is directly connected
with linguistics, which focuses on understanding
of differences between languages and therefore ex-
plores a variety of world languages, the annotation
work provides a good cross-linguistic coverage but
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frequently datasets have a limited coverage of ex-
amples and may not be large enough for training
machine learning models. Another benefit of a
close relation of this approach to linguistics is that
the annotation categories are motivated by our (ex-
pert) understanding of how these languages work
so the resulting representations are well-motivated
and interpretable.

In this presentation we evaluate the previous
questions about the role of data and resources for
modern natural language processing in the light of
our experience with building resources for under-
resourced language from ground up. We high-
light the idea that in such scenarios both kinds
of resources are useful and in fact shows that they
have complementary weaknesses and strengths. It
follows that modern and future natural language
processing must be informed by expert domain
knowledge about language and linguistics as with-
out these we are not able to evaluate the data that
these models are utilising nor interpret what se-
mantics or bias the models might have captured
nor we can improve the models in a motivated way
either indirectly (by neural architecture choice) or
directly (by injection of labels).

2 The need for (deeper) semantics

One of the primary objective functions used for
training large foundational language models is to
predict the next word or a missing word from the
surrounding context. This objective function indi-
rectly priorities several linguistic perspectives. The
of semantics that is learned in this way can be char-
acterised as being primarily distributional (in the
sense of (Firth, 1957)), thematic (rather than tax-
onomic, see (Kacmajor and Kelleher, 2020)), and
topical (in the sense of topic as word co-occurrence
(Manning and Schutze, 1999)).

Given that the semantics of these models is pri-
marily based on co-occurrence an interesting ques-
tion to ask is whether (or at least how far) can
co-occurrence bring a model in terms of semantics.
A review of the literature probing on neural em-
beddings (Conneau et al., 2018) and on the BERT
architecture in particular (Rogers et al., 2020) in-
dicates that neural embeddings do encode a range
of linguistic information, in particular topic and
syntax. However, a relatively under-explored as-
pect of these systems is their ability to capture and
encode semantic phenomena, such as idiomatic-
ity (Nedumpozhimana et al., 2022). One reason

for this lack of research is the relative paucity of
large scale annotated benchmarks for semantic phe-
nomena. For example, many probing experiments
build on the benchmark datasets set out in (Con-
neau et al., 2018), however the tasks covered by
these datasets are primarily syntactic in nature (Klu-
bicka and Kelleher, 2022). There is some evidence
that BERT does encode semantic phenomena (Ne-
dumpozhimana and Kelleher, 2021). However,
in the current context of large language models
trained on massive datasets the question of whether
more is different is holds for linguistic semantics
arises?

Some researchers have argued that BERT redis-
covers the classical NLP pipeline, with the earlier
layers encoding syntactic information and later lay-
ers semantic (Tenney et al., 2019). However, a
number of recent studies have found that the perfor-
mance of BERT-based transformer models across a
range of standard NLP benchmark dataset is robust
to word-order perturbations (see e.g. (Pham et al.,
2021), (Gupta et al., 2021)). These results suggest
transformer based models such as BERT rely on
relatively shallow surface level information such
as topic rather than syntactic information. More-
over, this suggests current NLP benchmarks are
not challenging enough to comprehensively assess
linguistic semantic (Sinha et al., 2021). The dif-
ficulties in developing robust benchmark datasets
has been raised in the discussions around the re-
cent work by (Jiang et al., 2023) that reported a
set of experiments that demonstrate that a simple
gzip-based text classification method outperforms
BERT and a number of other deep neural network
NLP models on a range of text classification tasks
using standard datasets.

3 The need for data

Training of large language models requires a lot
of data that spans over different contexts of lan-
guage use and social groups in order to capture
(some kind of) knowledge of language for natu-
ral language generation and interpretation and to
avoid unwanted social and contextual bias. How-
ever, as discussed in the previous section even for
well-resourced language models such as English it
is still not clear whether this has been achieved as
data selection and coverage of thematic and social
contexts that are used in the training data has not
yet been (to our knowledge) systematically evalu-
ated. Equally, approaching the same problem from
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the engineering perspective it has been impossi-
ble to collect enough data or build a model large
enough to test whether such an endeavour is theo-
retically and practically possible at all (Villalobos
et al., 2022).

This need for data and its limitations becomes
much more evident when we examine the under-
resourced scenarios that we looked at. Arabic natu-
ral language processing is an interesting case. Mod-
ern Standard Arabic (MSA) is a standardised form
of Arabic used in printed media and news and is
supported well in terms of natural language models
and resources. However, there are also several local
varieties spoken over a large geographical span. In
addition, Arabic may be also spoken (and written
in social media) and code-switched with several
other varieties and even different languages. Some
of these have received more attention than others in
NLP. For example, there has been a good support
for the Egyptian variety but very little support for
Algerian and the individual varieties in the Lev-
antine area. Another interesting aspect of Arabic
linguistic landscape is that it differs between re-
gions/countries in what situation contexts different
varieties are used, what other varieties are present
in these contexts and how similar these varieties
are.

Speakers/writers in Algeria (Adouane and Dob-
nik, 2017) use social media where varieties that
were typically spoken in personal everyday com-
munication are now written with Arabic script on
a limited phone keyboard. There is no standard
spelling for these varieties and the practical limi-
tation of using different keyboards introduce high
level of variation in the way these varieties are writ-
ten by different users in different contexts on dif-
ferent social media. A further level of of variation
is added when these varieties are code-switched
with MSA and other languages, in case of Alge-
rian with Berber, French and English, all written
in the same script. Hence, one of the first tasks to
tackle the bootstrapping of resources for Algerian
was to build a code-switching detector based on a
limited expert-annotated corpus using probabilistic
(HMM) and bi-gram feature classification models.

On the other hand, Levantine dialects
(Abu Kwaik et al., 2018b) are various closely
related Arabic dialects that are spoken and written
in social media but such context makes them hard
to distinguish from each other as phonological
form which underlies a lot of discriminating power

is missing (Abu Kwaik et al., 2018a). Finally,
Wolaytta (Gebreselassie and Dobnik, 2022), is one
of several languages spoken in Ethiopia, belongs
to the Omotic family of African languages which
is different from Amharic, an official national
language which belongs to the Semitic family
of languages and for which most NLP resources
exits. Wolaytta is mostly used in spoken form
in personal communication and radio and has
been standardised in the written form in school
texts and religious textbooks. In terms of NLP
resources, there is no social media but they are
radio programmes , school textbooks, religious
literature and a Wolaytta-English dictionary.

Comparing these cases we can see that there
are large linguistic differences between these tar-
get varieties and the language used in the closest
set of contexts for which NLP resources exist and
also that we have limited records of of contexts in
which they are used either be cause data is missing
or because the variety is not used in those contexts.
Consequently, building NLP resources had to rely
on a large support from expert linguistic and social
knowledge because the training examples were lim-
ited we relied on simple machine learning methods
such as Bayesian classification which in conjunc-
tion with the expert knowledge gave satisfactory
results.

4 The need for the right method

Different (i) contexts of language use, (ii) relation
to the closest variety for which NLP resources ex-
its, (iii) availability of data, (iv) availability of ex-
pert annotation required very different tools and
approaches to build resources and NLP applica-
tions for these varieties. For example, using char-
acter and sub-word models and CNNs, weak su-
pervision (bootstrapping from an existing labeller,
self-training) (Adouane et al., 2018b; Abu Kwaik
et al., 2020), injecting background knowledge
from lexicon and pre-trained sub-word embeddings
(Adouane et al., 2018a), pre-training (Abu Kwaik
et al., 2022), text normalisation with alignment of
tokens (Adouane et al., 2019b), data augmenta-
tion (Adouane et al., 2019a). It is often the case
that a simple model works better than a more com-
plex model, most likely because it is able to gener-
alise better from a limited data (Abu Kwaik et al.,
2019a,b). In sum, understanding language and its
context is important even at the age of large lan-
guage models to make an informed choice what
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model should be used when.

5 Are “well-resourced” languages also
under-resourced?

We argued previously that there is still an open
question whether language model have in fact
reached understanding of language as they have
not been exposed to all contexts of language use.
Hence, we are facing with similar under-resourced
scenarios also in cases of “well-resourced” lan-
guages where existing large language models are
applied in contexts or tasks for which the model
has not been initially trained on. Language is con-
tinuously changing and speakers/writers are cre-
ative, especially in social media (Noble et al., 2021).
Hence, pre-trained language models may become
quickly outdated.

Our work on generating spatial descriptions of
images shows that since pre-training of visual fea-
tures such as ResNet (He et al., 2016), Faster-
RCNN (Ren et al., 2015) and CLIP (Radford et al.,
2021) that are trained to identify objects affects
what is model able to learn about predicting rela-
tions which are likely to be hallucinated from a
language model, simply because the model has not
been pre-trained in this way and until such features
are explicitly identified (Ghanimifard and Dobnik,
2019). A significant body of work on language and
vision has focused on generation of image descrip-
tions that focus on a single sentence. Extending
the task to multi-sentence generation requires ap-
plication of different models (Ilinykh and Dobnik,
2020).

Adaption of pre-trained models from the image
captioning domain on object classification (where
objects are in the attention focus of the scene) to the
domain of situated language (where a robot without
a specific model of visual and thematic attention)
is very different reveals that visual information in
such cases is used quite differently than in an image
captioning scenario (Ilinykh et al., 2022).

Finally, a comparison of generated noun phrases
in generated multi-sentence descriptions to human
descriptions (Ilinykh and Dobnik, 2022) reveals
a difference. Models are more general predictors
than humans across the board and opt for more
general descriptions of objects than humans. This
is because they are trained on a single task, but
also within this task they are biased to find a single
generalisation following a training objective cover-
ing all of the examples equally, whereas in reality

humans might use descriptions that are more gen-
eral or more specific on a case-to-case bases. Since
general descriptions are more frequent than the spe-
cific ones, they always win. Overall, it appears that
a very fine grained knowledge of language data is
required to capture all the contexts.

6 Conclusions

Training language and vision and language mod-
els is useful but so is production of high quality
domain specific resources as both tasks are com-
plementary. We might want to rethink how to train
such models – having one large model is practical,
but perhaps not the end of the NLP story and more
work is required to examine the limits of models to
capture a variety of possible contexts. Expert-based
knowledge is highly relevant for selecting content
data, creating datasets, and evaluating contexts in
which models are trained. Similarly, expert-based
resources are relevant to make informed choices
about the model architectures and to support train-
ing of end-to-end models by feature engineering
and selection. This also includes application of
pre-trained feature representations. Understanding
architectures, models and training regimes allows
us to define the limits of what linguistic knowledge
can be represented and learned and should inform
data preparation and annotation work. Although
significant work has been done on evaluating the
models for acquired linguistic knowledge, more
targeted fine-grained evaluation of models is nec-
essary to achieve the models fit to the previous
requirements, with targeted positive and negative
linguistic examples (beyond the level of granular-
ity of a Turing test as implemented in the GLUE
benchmarks (Wang et al., 2019)), which is one of
our current efforts.
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