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Abstract

Developed to alleviate prohibitive labeling
costs, active learning (AL) methods aim to re-
duce label complexity in supervised learning.
While recent work has demonstrated the bene-
fit of using AL in combination with large pre-
trained language models (PLMs), it has often
overlooked the practical challenges that hinder
the effectiveness of AL. We address these chal-
lenges by leveraging representation smoothness
analysis to ensure AL is feasible, that is, both
effective and practicable. Firstly, we propose an
early stopping technique that does not require a
validation set — often unavailable in realistic AL
conditions — and observe significant improve-
ments over random sampling across multiple
datasets and AL methods. Further, we find that
task adaptation improves AL, whereas standard
short fine-tuning in AL does not provide im-
provements over random sampling. Our work
demonstrates the usefulness of representation
smoothness analysis for AL and introduces an
AL stopping criterion that reduces label com-
plexity.!
1 Introduction
The notorious data hungriness of deep learning
models emphasizes the importance of efficient and
effective label acquisition. However, the labeling
process is often tedious and expensive, ultimately
slowing the development of labeled datasets and re-
sulting in subpar models. Evolved out of a practical
necessity, active learning (AL; Cohn et al., 1996;
Settles, 2009) is a special family of machine learn-
ing algorithms designed to reduce label complexity
— the number of labels that a learning algorithm re-
quires to achieve a given performance (Dasgupta,
2011) — and thus minimize labeling costs. An AL
method aims to select the most informative exam-
ples, which can be particularly useful when unla-

'Our code is available at https://github.com/
josipjukic/al-playground
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beled data are abundant, but the labeling is costly
or requires substantial expertise.

The striking success of deep learning has mo-
tivated the use of traditional AL techniques for
training deep neural networks (DNN5s) and the de-
velopment of novel AL methods suited specifically
to DNNs. In natural language processing (NLP),
AL has been shown to outperform a random se-
lection of examples in many NLP tasks (Zhang
et al., 2017; Siddhant and Lipton, 2018; Ikhwantri
et al., 2018). Before the widespread adoption of
large pre-trained language models (PLMs), a typi-
cal AL approach to training deep models was to use
task-specific neural models trained from scratch in
each AL step (Kasai et al., 2019; Prabhu et al.,
2019). Since PLMs fine-tuned to downstream tasks
outperform standard neural models, PLMs have
supplanted most of them, and researchers have be-
gun to investigate the feasibility of AL for PLMs
(Ein-Dor et al., 2020; Schroder et al., 2022). Re-
cent work in AL experimented with several train-
ing regimes, such as PLM adaptation and specific
fine-tuning techniques (Yuan et al., 2020; Mar-
gatina et al., 2022). In particular, task-adaptive pre-
training (TAPT) has emerged as a cost-effective
method for performance improvement complemen-
tary to AL (Howard and Ruder, 2018). TAPT
uses additional pre-training on the unlabeled train-
ing set via masked language modeling and self-
supervision. In theory, combining AL with adapted
PLMs should produce greater reductions in label
complexity than either of the methods in isolation.
However, since research on combining AL with
PLMs is still in its infancy, whether it can work
consistently better than random selection in realis-
tic conditions remains an open question.

One of the challenges in combining AL and
PLMs is that, although AL is conceptually sim-
ple and promises efficiency gains, there are a host
of practical challenges in deploying it in realistic
conditions (Attenberg and Provost, 2011; Lowell
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et al., 2019). The situation is further aggravated by
the fact that most AL research overlooks these chal-
lenges and resorts to unrealistic evaluation setups
and resources. One of the most pervasive problems
stems from using a hold-out set during training
(e.g., a validation set for regularization by early
stopping). In real applications, hold-out sets are
unlikely to be available, as building them would
require additional labeling effort the AL is meant to
reduce in the first place. Another major problem is
the flawed evaluation of AL methods: typically, an
AL method is compared against random selection
as the baseline, but the two training regimes are
not kept identical, which confounds the measured
effect of AL. In addition to the above-mentioned
problems, there is the important practical question
of when to stop the acquisition of labels, i.e., how
to define the AL stopping criterion.

AL methods rely highly on the acquisition model
(the underlying model used for selecting examples).
Therefore, it is important to maintain good general-
ization properties of the acquisition model, which
can be analyzed using representation smoothness.
Recently, functional space theory has emerged as
a valuable tool for analyzing generalization prop-
erties and expressivity of DNNs (Yarotsky, 2017;
Suzuki, 2019). In particular, the Besov space, a
general function space that can capture spatial in-
homogeneity, appears convenient for such analyses
(Suzuki and Nitanda, 2021).

In this work, we address the practical challenges
of AL. First, we systematically evaluate the fea-
sibility, where we consider an AL method to be
feasible if it is both practicable (achievable in re-
alistic conditions) and effective (consistently out-
performs random selection). Concretely, we ex-
plore different learning regimes in AL on various
NLP classification tasks without a validation set
that is unavailable in most real-world labeling cam-
paigns. Motivated by the effectiveness of TAPT for
PLMs (Gururangan et al., 2020), we explore how
TAPT combines with AL in the low-resource setup.
Secondly, we leverage the representation smooth-
ness of PLM layers in the Besov space to improve
AL effectiveness. In particular, we develop Besov
early stopping, an early stopping regularization
technique that does not require a validation set, and
we show that it consistently improves the model
performance and reduces the variance of results
for all AL methods we consider. Moreover, Besov
early stopping shows promise as a surrogate for a
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validation set in zero- and few-shot setups for regu-
lar training without AL. We also utilize represen-
tation smoothness to develop a stopping criterion
based on the smoothness of AL samples to mini-
mize label complexity. Our experiments show a
reduction in label complexity for PLMs across five
NLP datasets and five AL methods. In addition,
building on the idea that representation smoothness
is relevant for AL, we complement our experiments
with a novel AL method based on the norm of rep-
resentation gradients. Both the proposed method
and the existing AL methods consistently outper-
form random selection on PLMs with TAPT, which
supports the recent findings that the training regime
is more important than the choice of the AL method
(Margatina et al., 2022).

Our contributions can be summarized as fol-
lows: (1) we conduct a systematic evaluation of
AL methods for large PLMs and show that AL is
feasible, i.e., it consistently outperforms random
selection under realistic conditions, (2) we ana-
lyze the smoothness of the representation space of
PLMs in AL and propose an early stopping tech-
nique that improves AL performance and stabilizes
the results, (3) we discover patterns in the repre-
sentation smoothness of AL samples, which we
use for an effective AL stopping criterion, and (4)
we introduce a representation-based AL method,
competitive with other state-of-the-art AL strate-
gies. Our results demonstrate that AL with PLMs
is feasible. Even more importantly, the results in-
dicate that representation smoothness analysis can
be leveraged to improve model training in general
and the effectiveness of AL in particular, opening
new avenues for further research.

2 Related Work

Our work builds on several strands of research,
including practical challenges in AL, combining
AL with PLMs, and different training setups for
AL acquisition models.

Practical challenges in AL. Despite the success
of AL for many NLP tasks, studies have identi-
fied a number of practical challenges hindering the
broader deployment of AL (Attenberg and Provost,
2011; Lowell et al., 2019). The most obvious prob-
lem is the unavailability of a labeled validation set,
an essential resource in model training typically
used for hyperparameter optimization and regular-
ization via early stopping. Moreover, in realistic
AL conditions, a labeled test set is also unavailable,



making a held-out evaluation of the underlying
model’s quality impossible. Previous work mostly
used model confidence or training error stability to
evaluate the acquisition model and derive an AL
stopping criterion based on that estimation (Vla-
chos, 2008; Bloodgood and Vijay-Shanker, 2009;
Zhu et al., 2010; Ishibashi and Hino, 2021). How-
ever, these criteria have not been widely adopted
as they often require tuning for specific datasets
and tasks. We mitigate this by developing a task-
agnostic AL stopping criterion that detects the
points of the largest reduction in label complex-
ity compared to random selection.

AL with PLMs. Only recently have large PLMs
been coupled with AL. Early work concentrated
mainly on the Transformer architecture (Vaswani
et al., 2017) utilizing a simple training setup. More
concretely, the predominant approach was to use
a standard fine-tuning technique with a fixed num-
ber of training epochs, fine-tuning the model from
scratch in each AL step (Ein-Dor et al., 2020; Mar-
gatina et al., 2021; Shelmanov et al., 2021; Karam-
cheti et al., 2021; Schroder et al., 2022). How-
ever, Mosbach et al. (2021) and Zhang et al. (2021)
showed that fine-tuning in low-resource setups (sce-
narios with little training data) tends to be very
unstable, especially when training for only a few
epochs. This instability poses a serious issue, as
AL often implies a low-resource setting. Moreover,
fine-tuning is often sensitive to weight initializa-
tion and data ordering (Dodge et al., 2020). This
instability of PLM fine-tuning also makes the AL
results unstable. We address the instability issue
by proposing an early stopping technique without a
validation set, and we show that combining PLMs
with AL is feasible.

AL training regimes. AL research took a turn
from standard fine-tuning of pre-trained models
to explore different training regimes and how to
use them in combination with AL methods. For
example, GrieBBhaber et al. (2020) explored how
to efficiently fine-tune Transformers with AL by
freezing the network’s layers. Similarly, Yuan et al.
(2020) explored self-supervised language modeling
to estimate example informativeness for cold-start
active learning. Motivated by the general success
of TAPT (Gururangan et al., 2020), Margatina et al.
(2022) showed that AL outperformed random sam-
pling for PLMs with TAPT, albeit using a validation
set. Similarly, Yu et al. (2022) developed a self-
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training approach for active learning with the addi-
tion of weighted clustering. While some training
regimes seem promising for AL, the outstanding
question is which regimes can consistently outper-
form random selection. Furthermore, considering
what resources are realistically available during
training, the primary concern is whether we can ap-
ply these training regimes in realistic conditions.

3 Representation in Besov Space

Due to their remarkable flexibility and adaptivity,
deep learning models have gained significant trac-
tion. To explain these phenomena, researchers have
leveraged function space theory to develop approx-
imation and estimation error analysis (Yarotsky,
2017; Suzuki, 2019). Our work relies on a partic-
ular type of analysis based on the theory of Besov
spaces.

3.1 Besov space

It has been shown that the expressive power of
DNNs can be analyzed by specifying the target
function’s property such as smoothness (Petersen
and Voigtldnder, 2018; Imaizumi and Fukumizu,
2019), i.e., the number of orders of continuous
derivatives it has over some domain. Besov space
has proven to be especially convenient for such
analyses, as it allows spatially inhomogeneous
smoothness with spikes and jumps, which we of-
ten encounter in high-dimensional deep learning.
In Besov spaces, the approximation error (expres-
sivity)? and estimation error (generalizability)? de-
pend on the properties of the representation space
(Suzuki and Nitanda, 2021). Given these theoreti-
cal connections, representation space analysis can
steer toward better generalization properties.

3.2 Besov smoothness index

We briefly describe the mathematical apparatus of
the Besov space analysis, adopted with slight mod-
ifications from (Suzuki, 2019; Suzuki and Nitanda,
2021). Let Q € R? be a domain of functions. For
a function f : @ — R with a defined p-norm in
L, (space of measurable functions with finite p-
norm) and seminorm | f| defined by = — |f(z)

1
we define ||fll, == [[fllrr@) = (JolflPdz)>

The approximation error refers to the distance between
the target function and the closest neural network function of
a given architecture.

3Estimation error refers to the distance between the ideal
network function and an estimated network function.
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for 0 < p < oo. For p oo, we define
[fllso == Il () = suPseq | f(2)].
Definition 1 (Smoothness modulus). For a func-
tion f € LP(Q), p € (0,00], t € (0,00), h € RY,
and r € N, the r-th modulus of smoothness of f is
defined by

wr,p(fvt) ‘= sup HAZ(JC)”I??
IRll2<t

where A} (f) is the forward difference opera-
tor of the r-th order defined as Aj(f)(x)
Silo () (=1)""f(x + ih) for [z,x + rh] € Q,
and 0 otherwise.

Definition 2 (Besov space (By),)). For 0 < p,q <
0o, a > 0, r := |« + 1, let the seminorm of the
Besov space By, be

g, = ( / (0w (1)

for g < occ. Let | f|pg, = sup;sot™"wyp(f,t) for
q = oco. Besov smoothness index of f is deter-
mined as the maximum index o for which the Besov
seminorm is finite.

Q=

dt

t) )

Intuitively, the Besov smoothness index (Besov
smoothness for short) quantifies the properties of
DNN’s representation space. More specifically, a
higher index indicates higher smoothness. Because
the calculation of Besov smoothness (more pre-
cisely, the integral in (1)) is intractable, we have to
rely on approximations. Elisha and Dekel (2016,
2017) proposed wavelet decomposition of a ran-
dom forest (RF) for approximating Besov smooth-
ness. Wavelet decomposition of the RF establishes
an order of importance of the RF nodes, while RF
uses the embedded representations of an arbitrary
DNN as features. For classification problems, we
can normalize the inputs to [0, 1] and transform the
class labels into vectors in the RY~! space by as-
signing each label to a vertex of a standard simplex,
where L is the number of classes. This gives us
the k-th layer of a neural network as a function
fe : [0,1]% — RE~L. For a random forest con-
sisting of J estimators, Elisha and Dekel (2017)
proceeded by approximating the errors of each es-
timator 7; with M most important wavelets. The
error function (with r = 1, p = 2) is estimated
as oy ~ cpM ™. Numerically, we can use an
approximation log(o,,) ~ log(cx) — alog(m),
m =1,...,M, and find c; and oy, through least
squares, where «y, is the estimate for the Besov
smoothness of f, i.e., the k-th layer of a DNN.
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3.3 Representation smoothness

Analyzing the Besov smoothness of DNNs can un-
veil their representation geometry. DNNs should
benefit from smoother representations, as they
help the model avoid overfitting. Intuitively,
“well-learned” representations will exhibit high
Besov smoothness. When we decompose a PLM
into wavelets sorted by relevance and use the
Besov smoothness approximation described in Sec-
tion 3.2, smoother representations achieve lower
generalization errors with fewer wavelets.

Another relevant phenomenon for representation
smoothness analysis is that the individual layers
of DNNs specialize in different features. In par-
ticular, earlier layers tend to learn generalization
features, while the deeper layers are more prone
to memorization (Stephenson et al., 2021; Baldock
et al., 2021). Following these insights, we propose
using Besov smoothness to inspect the general-
ization properties of PLMs through the prism of
layer-wise representation geometry. We hypoth-
esize PLMs should benefit more from smoother
representations in earlier layers, and we propose
methods to enforce learning such representations
during training.

4 Preliminaries

In this section, we describe our experimental setup,
detailing the datasets, models, AL methods, and
evaluation metrics.

4.1 Datasets

We select three different single-text classification
tasks commonly used in the AL literature. The
datasets vary in size, number of classes, and com-
plexity, allowing for a nuanced study of AL meth-
ods. To extend our analysis to similar datasets
with different levels of complexity, we also add bi-
nary versions of the multi-class tasks. In total, we
work with five datasets (cf. Appendix, Table 3): (1)
the question type classification dataset (TREC-6;
Li and Roth, 2002); (2) the corresponding binary
version TREC-2 with only the two most frequent
classes (Entity and Human); (3) the subjectivity
dataset SUBJ of Pang and Lee (2004), which clas-
sifies the movie snippets as subjective or objec-
tive and is often used in AL benchmarks; (4) the
AG’s News classification dataset AGN-4 of Zhang
et al. (2015); and (5) its binary version, AGN-2,
often used in the AL literature, with two categories
(World and Sports) out of four.



4.2 Models

We focus on large PLMs and include two repre-
sentatives of the Transformer family, each using a
different pre-training paradigm. Specifically, we
experiment with BERT (Devlin et al., 2018), which
uses a generative pre-training approach via masked
language modeling, and ELECTRA (Clark et al.,
2020), which relies on discriminative training to
detect corrupted tokens induced by a small gener-
ator network. For both models, we leverage their
widely used base variants from the Hugging Face
library (Wolf et al., 2020), which consist of 12 lay-
ers.

4.3 Active learning methods

We consider six sampling strategies, including ran-
dom selection, which serves as a baseline. The
other five strategies are AL methods from different
families.

Random selection (RND) selects instances uni-
formly from the unlabeled pool.

Maximum entropy (ENT; Lewis and Gale, 1994)
comes from the family of uncertainty strate-
gies. The method queries instances where the
model is least certain, according to the crite-
rion of maximum entropy of the prediction
output.

Monte Carlo dropout (MC; Gal and Ghahramani,
2016) is similar to ENTROPY, but relies on the
stochasticity of forward passes with dropout
layers (Srivastava et al., 2014) to estimate the
entropy for a given instance.

Core-set (CS; Sener and Savarese, 2018) promotes
instance diversity by leveraging the learned
representations of the acquisition model. The
method aims to minimize the distance be-
tween an example in the unlabeled set and its
most similar counterpart in the labeled subset.

Discriminative active learning (DAL; Gissin and
Shalev-Shwartz, 2019) frames active learning
as a classification of whether a particular in-
stance is labeled or not to make the labeled
and unlabeled sets indistinguishable. Specif-
ically, DAL queries instances that are most
likely to be in the unlabeled subset according
to a trained classifier.

Representation gradients (RG) is a novel AL
strategy we propose in this work. Similar
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to methods from (Huang et al., 2016; Ash
et al., 2019), RG selects instances based on
gradient information from the representation
space. However, unlike other gradient-based
methods, RG is much less computationally de-
manding and, therefore, suitable for resource-
limited studies and realistic conditions. The
method computes the mean representation gra-
dient with respect to the embedded inputs
and selects the instances with the largest gra-
dient norm. Formally, with h as the mean
representation, the RG’s selection criterion is
argmax, o/ ||Oxh||,, where i denotes the un-
labeled set. The intuition behind RG is that the
locally sharp instances in the representation
space of the underlying model, i.e., the ones
with large gradient norms, surprise the model
the most and thus will contribute the most to
a reduction in label complexity.

In our experiments, we select 50 new examples
in each step of each AL experiment, using 100
examples for the warm start (randomly sampled
labeled data to kick-start the model). We set the la-
beling budget to 1, 000 instances for easier datasets
(TREC-2, AGN-2, and SUBJ) and 2, 000 instances
for harder datasets (TREC-6 and AGN-4).

4.4 Evaluation

To evaluate the entire AL process, we use the area
under the performance curve (AUC). Each step cor-
responds to the classification performance in terms
of the F} score of a model trained with a certain
number of labeled examples. We advocate using
AUC complementary to the AL curves, as we be-
lieve it is a good approximation of AL feasibility as
a summary numeric score. Since we use different
training regimes in our experiments, we compare
each AL strategy to random selection within the
same training regime to isolate the effects of AL.
Additionally, we introduce a metric to measure
the direct practical gains of AL by estimating the
reduction in label complexity of AL compared to
random selection. For a given AL step, we compute
the number of additional labels required to achieve
the same performance with random selection, thus
estimating the number of labels one saves when us-
ing AL. We refer to this metric as label complexity
reduction (LCR).



S Improving Active Learning

In this section, we first look into the representa-
tion geometry of PLMs by means of representation
smoothness analysis. Then, we link our findings
to devise a smoothness-based early stopping tech-
nique that does not require a validation set. We
explore the effects of our method in different train-
ing regimes and provide a systematic evaluation of
AL for PLMs in the low-resource setup.

5.1 Representation smoothness analysis

We empirically test the characteristics of Besov
smoothness of PLMs. In particular, we compare
the representation smoothness of PLMs in three
different training regimes: (1) short training (ST),
where models were trained for 5 epochs, (2) ex-
tended training (ET), where models were trained
for 15 epochs, and (3) model adaptation with TAPT
(cf. Appendix A.5 for details) followed by an ex-
tended training for 15 epochs (ETA). We computed
the smoothness of PLM layers during training, av-
eraged across AL steps. In each AL step, we fine-
tuned the model anew.

Performance-wise, ETA yields better results than
ET and ST (Table 1). Moreover, AL in the ST
regime does not yield improvement over random
sampling. Figure 1 shows the layer-wise smooth-
ness for the three mentioned regimes with the ad-
dition of the overfitting regime, where we purpose-
fully overfitted the acquisition model in each AL
step by training the model for 100 epochs. In the
ST regime, we observe a monotonic increase in
smoothness as we progress through layers, while
the smoothness in ET peaks before the last few lay-
ers. The shift of the smoothness peak is even more
pronounced for TAPT with extended training. In
overfitted models, we observe a flat distribution of
smoothness across layers. We observe that better
performance and effective AL come with a shift in
smoothness distribution towards earlier layers, as
displayed in ET and ETA regimes. We hypothesize
that, in the low-resource setup, the deeper layers
exhibit higher smoothness in the ST regime because
they are prone to heuristic memorization — DNN
relies on spurious artifacts (shortcuts) that are cor-
related with a target label (Bansal et al., 2022) —
which may cause the model to perform poorly.

5.2 Besov early stopping

In the AL loop, the effect of selecting an acqui-
sition model with poor generalization properties

16

ST Overfitted

@

21.004 u
S

3 0.751 0
o

& 0.501 e
3 1
20.251
Q

@ 0,00 5

ET

%]

%]

< 1.00- AT . L
s

£ 0.751 .
(=}

& 0.50- , - o
a e .

S 0.25-
[

2 0.00

layer layer

Figure 1: Besov smoothness of PLM layers for different
training regimes. The scores are normalized (between 0
and 1 per layer) and averaged across datasets, models,
and AL methods. The black error bars represent the stan-
dard deviation. We note that the deviation is small, indi-
cating similar behavior across different datasets, models,
and AL methods.

propagates through the AL steps. To ensure the
effectiveness of AL, regularization by early stop-
ping is often used to pre-empt overfitting in order
to retain good generalization properties. However,
since a validation set is often unavailable in realis-
tic conditions, using it for early stopping renders
AL impracticable. However, feasible AL needs to
be both effective and practicable.

The above empirical findings on smoothness dis-
tribution across the PLM layers for the different
training regimes motivate an early stopping heuris-
tic based on representation smoothness without a
validation set. We propose BEAST (Besov early
stopping), where we proceed with the training as
long as the Besov smoothness distribution skews
toward earlier layers. We define the stopping point
as the epoch where the distribution skewness* fails
to increase, i.e., when the peak of the representa-
tion smoothness ([CLS] token) fails to shift towards
earlier layers for two consecutive epochs. We re-
vert the model to the last epoch where this effect is
preserved. In this way, we stop the training before
the smoothness distribution flattens out, which we
observe in overfitted models. We experiment with
two more training regimes: ET? and ETAB, which
are just ET and ETA with BEAST.

We compare BEAST to the approaches without
early stopping, where we chose the models from
the last epoch. Our experiments show the differ-
ence in AL performance across different training

*We compute the layer-wise smoothness skewness as the
Fisher-Pearson coefficient of skewness.
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regimes. Figure 2 shows the trend of AL curves
through the steps, and Table 1 provides more com-
prehensive comparisons with AUC as the aggre-
gated measure of AL effectiveness. We can observe
that AL coupled with ST performs poorly, and AL
fails to outperform random sampling (sometimes
even worse than random sampling). The ET regime
generally improves performance, with AL some-
times outperforming random selection. ETA and
ETAB further improve performance over random
sampling for every AL method on every dataset we
used. For BERT, the difference between AL and
random sampling is statistically significant in 22
out of 25 cases with ETA and in all 25 cases with
ETA®. More importantly, ET® and ETA® outper-
form their counterparts without BEAST and reduce
the variance of the results (cf. Appendix, Table 6).
We support the hypothesis that the choice of the AL
method is not as important as the training regime,
as we achieve similar results for every method
when AL outperforms random selection. TAPT
works across the board, improving AL performance
on all five datasets. With the addition BEAST, we
achieve feasible AL, making it both practicable and
effective. On top of that, even with random sam-
pling, BEAST consistently yields higher scores than
the model from the last epoch, showing benefits
even for regular fine-tuning without AL.
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Table 1: AUC scores for random sampling and different
AL methods across datasets and training regimes for
BERT (cf. Appendix, Table 5). The results are averaged
over b runs with different seeds. Bold numbers indicate
the best AUC for each dataset. The “}” indicates when
the mean AUC of an AL method is significantly different
from random sampling (two-sided Man-Whitney U test
with p < .05, adjusted for family-wise error rate with
the Holm-Bonferroni method).

6 Active Sample Smoothness

In Section 5, we analyzed the Besov smoothness
of layer representations of PLMs. In this section,
we take a step further and examine the smoothness
at the instance level. Instead of using the repre-
sentations on the training set, we computed the
Besov smoothness as the average across layers on
the unseen (selected but not yet trained on) active
sample, acquired by the AL method. In contrast
to the seen training examples, we argue that the
Besov smoothness on unseen examples can be in-
terpreted as the amount of information the model
could obtain from that sample. More precisely,
the lower the smoothness of an active sample, the
more informative it is for the model. In contrast,
smooth samples are already well-represented and
thus not as resource-effective as their less smooth
counterparts.
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Figure 3: The relationship between an active sample
and random sample smoothness. Figure 3a shows how
the smoothness of samples retrieved by AL (red) relates
to the smoothness of random samples (violet) with fitted
regression lines. The smoothness values are calculated
as the average across layers. Figure 3b shows the corre-
sponding AL performance curve. The gray dotted line
indicates the intersection of active and random sample
smoothness, which signals the beginning of diminish-
ing returns of AL. We show the results for BERT in the
ETAB regime on the TREC-6 dataset as an illustration.
We observe very similar patterns in other datasets. Since
all of the AL methods display similar behavior in ETA®
regime, we show only MC to avoid clutter (cf. Figure 5
in Appendix for other datasets). Best viewed on a com-
puter screen.

We compare the Besov smoothness of actively
acquired samples against random samples. We
consistently observe two patterns, showcased by
Figure 3. First, the smoothness of random samples
is uniform throughout the AL steps. The second
pattern occurs in the trend of AL sample smooth-
ness. In the early AL steps, AL sample smoothness
is low, indicating sharp representations that require
smoothing (by learning). As the AL procedure pro-
gresses, the acquisition model improves, and the
active samples’ smoothness increases. We interpret
this as the model slowly consuming the informa-
tion from the data pool, eventually reaching a state
of “information depletion”, i.e., a state in which the
remaining unlabeled data provides no additional
value to the model.

Stopping criterion. Our preliminary analysis of
the relationship between the active and random
sample smoothness motivates a simple stopping cri-
terion, which we refer to as ALSBI (active learning
stopping by Besov index). ALSBI aims to detect
when AL methods reach information depletion. We
terminate the AL process when sample smooth-
ness surpasses the average smoothness of a random
sample in two consecutive steps. We disregard the
first AL step, as it often takes several steps for the
acquisition models to stabilize. Since we cannot
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ENT MC CS DAL RG

e avg 316 .312 351 275 .319
ALSBI  .447 .401 511 .282 .521

s avg .385 .385 .394 .354 .382
ETA™ ALsBI 586 .532 .488 447 .645

Table 2: Average LCR across datasets and models. The
scores indicate the proportion of the dataset that needs
to be labeled for random sampling to match the per-
formance of the corresponding AL method. ALSBI is
compared to an average LCR throughout the AL steps
(avg). The results are averaged over 5 runs. Numbers
in bold indicate the largest LCR for a certain training
regime.

compute the smoothness of a random sample (as
we query only AL samples) in realistic conditions,
we estimate the random sample smoothness on the
warm start examples via bootstrapping. This ap-
proximation proved stable for 100 examples as the
smoothness of a random sample remains stable
throughout AL steps. We take the average smooth-
ness of 1, 000 bootstrapped samples of size 50. Ta-
ble 2 shows that ALSBI yields larger LCR than what
one would get on average across AL steps, which
supports our preliminary analysis. RG achieves the
highest LCR among the tested AL methods, which
we believe is due to its compatibleness to ALSBI as
both the AL method and the stopping criterion are
based on representation smoothness.

7 Conclusion

In our paper, we leverage representation smooth-
ness analysis to improve the effectiveness of active
learning (AL). In realistic conditions, we show that
AL with pre-trained language models (PLMs) is ef-
fective when combined with task adaptation, while
standard short fine-tuning often fails. We address
the problem of unavailable resources (labeled hold-
out sets) by developing the Besov early stopping
technique (BEAST) that does not require a valida-
tion set. For AL to be feasible, it must be both
effective and practicable. BEAST meets both feasi-
bility requirements: it improves AL performance
over random sampling and reduces the variance of
the performance scores across AL steps (effective-
ness) while not requiring additional labeled data
(practicability). Moreover, BEAST improves the
performance of PLMs even in standard fine-tuning
without AL, which makes it potentially useful in
zero-shot and few-shot setups where a validation
set could also be unavailable. We further show the



usefulness of representation smoothness analysis
for AL by devising a simple and effective AL stop-
ping criterion. We corroborate the hypothesis from
previous research in that the effectiveness of AL
is influenced more by the training regime rather
than the AL method itself. We believe that the rela-
tionship between PLMs’ generalization properties,
label complexity, and representation smoothness is
an exciting avenue for AL, and we hope our results
will motivate further research in that direction.

Limitations

To fully comprehend the significance of our find-
ings, it is necessary to consider the limitations
of this study. Firstly, we evaluate only two
Transformer-based models on a small number of
text classification tasks. Although we used the mod-
els with different pre-training paradigms, it is pos-
sible that the findings do not generalize across mod-
els within the same family. In addition, we used the
base variants of BERT and ELECTRA, which both
feature 12 layers. Since our early stopping crite-
rion is influenced by the number of layers whose
smoothness we approximate, there is a possibil-
ity that smoothness would distribute differently for
models with more or fewer layers. Another limi-
tation is that we did not investigate these models’
performance on tasks other than text classification,
and the results may not be generalizable to different
types of NLP tasks.

Since there are many different ways to measure
the quality of an AL stopping criterion and we only
wanted to illustrate the usefulness of smoothness
patterns, we only compared the proposed ALSBI
method against an average baseline. However, a
more comprehensive comparison with other ap-
proaches from the literature would provide a better
understanding of the merit of our method.

Lastly, we only scratched the surface of differ-
ent training regimes for PLMs in the context of
AL. Many new training regimes are emerging in
the field, especially the ones focused on efficiency
and modularity. We leave the exploration of these
methods for future work.
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TRAIN VAL  TEST  TOTAL
TREC-2 1,987 159 486 2,632
SUBJ 7,000 1,000 2,000 10,000
AGN-2 20,000 2,600 5,000 27,600
TREC-6 4,881 452 500 5,833
AGN-4 20,000 7,600 7,600 35,200

Table 3: Dataset sizes by splits. Although we do not
use a validation set (VAL) in our experiments, we report
its size for completeness. We uniformly subsampled
the AGN-2 and AGN-4 datasets for shorter computation
time.

A Reproducibility

A.1 Dataset statistics

We report the sizes of the datasets per split in Ta-
ble 3. The datasets contain mainly texts in English.

A.2 Models

We used base and uncased variants of the Trans-
former models. Specifically, we used “bert-
base-uncased” for BERT and “google/electra-base-
discriminator” for ELECTRA. Both models have
109, 514, 298 trainable parameters each.

A.3 AL methods

MC We use ten inference cycles to approximate the
entropy of the output via Monte-Carlo dropout
sampling.

CS We use the [CLS] token representation from the
Transformer’s penultimate layer. We opt for
the greedy method described in the original
paper (Sener and Savarese, 2018).

A.4 Preprocessing

We use the same preprocessing pipeline on all
datasets for both BERT and ELECTRA. We lower-
case the tokens, remove non-alphanumeric tokens
and truncate the sequence to 200 tokens.

A.5 Hyperparameters

We used a fixed learning rate of 2 x 10~° for both
models. Additionally, we set the gradient clipping
to 1 during training. In the ST regime, we trained
the model for 5 epochs and 15 in ET, and ETA. For
TAPT, we used masked language modeling with
15% of randomly masked tokens and trained the
model via self-supervision for 50 epochs with the
learning rate set to 1075,
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BERT ELECTRA
TREC-2 324 31.1
SUBJ 40.8 39.2
AGN-2 71.4 70.3
TREC-6 68.4 67.1
AGN-4 82.3 75.7

Table 4: Experiment duration in minutes for both mod-
els across datasets. We report the average runtime over
five different runs and six different sampling methods
(five AL methods and random sampling).

A.6 Computing infrastructure

We conducted our experiments on 4 X AMD Ryzen
Threadripper 3970X 32-Core Processors and 4 x
NVIDIA GeForce RTX 3090 GPUs with 24GB of
RAM. We used PyTorch version 1.9.0 and CUDA
11.4.

A.7 Average runtime

We report the average runtime of experiments in
Table 4. We ran six sampling methods on five
datasets for two models and for five different train-
ing regimes. Additionally, we repeated each exper-
iment five times with different seeds ([1, 2, 3, 4, 5)).
In each experiment, we re-train the model 20 times
on TREC-2, SUBJ, and AGN-2 up to 1,000 in-
stances (20 batches of 50 instances), and 40 times
on TREC-6 and AGN-4 up to 2, 000 instances (40
batches of size 50). In total, we ran 300 AL experi-
ments.

B Experiments

We report the experiments that were omitted from
the main part of the paper due to space constraints.
Figure 4 shows the active learning performance
curves across the used datasets and for both models
(BERT and ELECTRA). For the ETA and ETA? train-
ing regimes, we observe a consistent improvement
in performance compared to random sampling. We
report the results for ELECTRA in Table 5, where
we observed similar patterns as with BERT (cf. Ta-
ble 1 in the main part of the paper). On top of that,
our early stopping method reduces the variance of
the results compared to other training regimes, as
shown in Table 6.

Figure 5 shows the relationship between the
Besov smoothness of random and active samples.
We report the smoothness of samples for each
dataset. We observe a similar pattern, with a rising
smoothness of actively acquired samples.
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Figure 4: AL performance curves for different training regimes across datasets and models. Random sampling
(purple thombs) serves as a baseline. Best viewed on a cpgnputer screen.
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