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Abstract

Pretrained vision-language (VL) models have
shown impressive results on various multi-
modal downstream tasks recently. Many of the
benchmark models build on pretrained causal
language models (LMs), leveraging the origi-
nal few-shot learning and generalization capa-
bility of the LMs trained with large text cor-
pora. However, these models are often gigan-
tic and require large-scale image and text data
with high computational cost to train. This pa-
per introduces a moderate-size model called
MAP for efficient VL transfer learning through
adapter-based pretraining and prompting. We
aim to answer the question of how much we
can complete through VL pretraining within the
low-data regime while maximizing efficiency
in transferring knowledge of a moderate-size
frozen LM. Our experiments demonstrate that
MAP achieves substantially better zero-shot
and few-shot performance on downstream VL
tasks with only 10% the size of pretraining
data and a 30× lighter pretrained LM backbone
compared to Frozen. MAP also outperforms
fully trained models of comparable size at re-
taining its transfer learning ability when the
amount of training data reduces.

1 Introduction

Recent vision-language models commonly lever-
age pre-trained language models (LMs) on vari-
ous multimodal tasks. It is crucial for them to
retain the original generation capability of the LMs
while efficiently incorporating the knowledge from
new modalities. A line of work has shown impres-
sive generalization and transfer ability of vision-
language models that build on large causal decoder-
only LMs (Alayrac et al., 2022; Tsimpoukelli et al.,
2021; Eichenberg et al., 2022; Wang et al., 2021a).
While powerful, these GPT-style pretrained LMs
request high computing machines for deployment.

*Work done while employed at SenseTime
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Figure 1: Comparison between VL learning with mul-
titask pretraining, LM pretraining, image-conditional
prefix tuning and adapter-based LM pretraining.

Compared to decoder-only LMs, Wang et al.
(2021c) shows that encoder-decoder model intro-
duces an inductive bias that decouples multimodal
feature encoding from generation, yielding im-
proved performance on downstream tasks. Re-
cent research by Jin et al. (2021) also demonstrates
that VL models pretrained with a moderate-size
encoder-decoder LM backbone can be strong few-
shot learners. However, in these approaches, the
parameters of the language model were entirely
updated while learning vision inputs (Cho et al.,
2021; Jin et al., 2021; Wang et al., 2021c), or in-
volving more task-specific data during multitask
pretraining or fine-tuning (Sung et al., 2022; Cho
et al., 2021).

Naturally, taking account of both model struc-
ture and pretraining efficiency, we improve on pre-
vious models and introduce an encoder-decoder
parameter-efficient VL model, MAP. As shown
in Figure 1, we apply adapters for VL pretraining
with masked language modeling (Masked LM) and
prefix language modeling (PrefixLM) objectives.
We keep the backbone encoder-decoder language
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Figure 2: Illustration of the VL pretraining process and the model structure of MAP. We experiment with settings
on pretraining by only updating adapters or updating both adapters and the NFResNet image encoder. In the decoder,
we experiment with settings of adding adapters to self-attention and cross-attention.

model frozen. In downstream tasks, we provide
task-specific prompts to guide the pretrained model
for few-shot learning. Our moderate-size model
substantially outperforms Frozen on both zero-shot
and few-shot learning while using only 10% of mul-
timodal data and a frozen T5-base LM backbone
for pretraining.

2 Related Work

Recent work has shown impressive generaliza-
tion and transfer ability of vision-language mod-
els that build on huge pretrained auto-regressive
LMs (Alayrac et al., 2022; Tsimpoukelli et al.,
2021; Eichenberg et al., 2022; Baevski et al., 2022).
Frozen (Tsimpoukelli et al., 2021) updated an
NFResNet encoder to create visual prefixes for
the frozen LM, transferring the few-shot learn-
ing ability of the LM to a multimodal setting.
MAGMA (Eichenberg et al., 2022) improved on
the results of Frozen by incorporating adapter-
based pretraining and a 25M image-text dataset in-
cluding downstream data into pretraining. Luo et al.
(2022) used cross-modal attention for encoding vi-
sual and text inputs. The Flamingo model (Alayrac
et al., 2022) reached SOTA performance on few-
shot VL tasks with a frozen CLIP encoder (Goh
et al., 2021), while training a perceiver resampler
and cross-attention with multimodal data on a LM
objective. To reduce demands on supervised vision-
text data, Wang et al. (2021c) pretrained a VL
model from scratch using weak-labeled vision and
text data. Despite various of parameter-efficient
methods are applied during pretraining the models
(Li and Liang, 2021; Morrone et al., 2019; Wang
et al., 2021b; Kamath et al., 2020), these models
are often of over billions of parameters and require

high computing machines for deployment.
VL-T5 (Cho et al., 2021) is a moderate-size VL

model, where the T5 backbone is updated on mul-
titask objectives, with the encoder jointly learning
from Faster-RCNN (Fu et al., 2021) features and
input texts. FewVLM (Jin et al., 2021) improved
on VL-T5 with prompt-based learning and simpli-
fied LM pretraining objectives. Sung et al. (2022)
proposed adapter-based fine-tuning on downstream
tasks. We exploit the potential of these moderate-
size VL models and propose a more parameter-
efficient few-shot learner with adapter-based pre-
training.

3 Problem Statement

Despite that larger models are significantly more
powerful following the scaling laws (Kaplan et al.,
2020), we aim to answer the following key ques-
tions: i) how can we maximize the efficiency
in transferring knowledge of a moderate-size
frozen LM to a multimodal setting? ii) how much
can we achieve on few-shot learning if we limit
the size of data and trainable parameters in VL
pretraining?

4 Method

This section describes MAP in details. Our ap-
proach is to maximize the knowledge transfer of a
moderate-size LM to VL learning through adapter-
based pretraining and prompting.

4.1 Model Architecture
We adopt a transformer-based encoder-decoder
architecture (Parmar et al., 2017) to jointly en-
code vision and language inputs and generate tar-
get texts. As shown in Figure 2, the model is
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Task Input prompt Example
VQA [Q] input: What is this bird called? output: parrot

[Q] <text_1> input: What is this bird called? <text_1> output: parrot
question: [Q] answer: input: question: What is this bird called? answer: output: parrot
question: [Q] answer: <text_1> input: question: What is this bird called? answer: <text_1> output: parrot

Visual Entailment [Q] input: A hot air balloon is making a landing. output: entailment
[Q] <text_1> input: A hot air balloon is making a landing. <text_1> output: entailment
hypothesis: [Q] label: input: hypothesis: A hot air balloon is making a landing. label: output: entailment
hypothesis: [Q] label: <text_1> input: hypothesis: A hot air balloon is making a landing. label:<text_1> output: entailment

Table 1: Hand-crafted prompts. For VQA tasks, we prompt with "question :" for the input questions with
"answer :" before the model output. A specific token "<text_1>" is used to indicate the generated words we
expect (Jin et al., 2021). Similarly, we designed prompts of "hypothesis :" and "label :" for VE tasks.

mainly composed of three parts: a visual encoder, a
transformer-based encoder-decoder LM backbone,
and a series of adapter layers.

Visual Encoder Following Tsimpoukelli et al.
(2021), we use a NFResNet encoder (Brock et al.,
2021) to convert input images into visual embed-
dings. The visual embedding vectors then serve as
prefixes to be jointly taken with text embeddings
by the pretrained language model.

Encoder-decoder LM We adopt a moderate-
size pretrained encoder-decoder LM, T5-base (Raf-
fel et al., 2019), as the backbone of the model.
The encoder builds joint representation of the input
image-text pairs by taking the concatenated visual
and text embeddings. Then, the decoder generates
target texts in an auto-regressive manner.

Adapters Following Eichenberg et al. (2022),
we use the bottleneck adapter modules, which are
essential scaled residual bottleneck MLPs (Equa-
tion 1). The parameters of the adapters are updated
instead of the entire model during pretraining. We
add the adapters to the feed-forward and the atten-
tion blocks of the transformer following practical
analysis by Eichenberg et al. (2022). In the trans-
former decoder, we experiment with different set-
tings of adding the adapter layers to cross-attention
or self-attention blocks.

A(h) = h+ λW upϕ(W downh) (1)

4.2 Pretraining

Following Jin et al. (2021), we pretrain MAP on
MaskedLM (Chang et al., 2018) and PrefixLM
with paired image-caption data (Liu et al., 2019).
However, instead of updating the entire parameter
set of the LM, we only update the parameters of the
adapter layers. We experiment with both settings
of updating or freezing the visual encoder. Our
adapter-based end-to-end pretraining is illustrated
in Figure 2.

4.3 Few-shot Learning

In downstream tasks, we experiment with few-
shot learning with both prompting and in-context
learning. For prompting, we use hand-crafted
prompts (Jin et al., 2021) and train the model with
few-shot examples to minimize the negative-log-
likelihood (Table 1). For in-context learning, we
concatenate a series of image-text pairs in order
as a multimodal prompt and expect the model to
predict the target text given a visual query.

5 Experiments

5.1 Datasets

For pretraining, we combine image-caption pairs
from MS COCO caption (Zitnick et al., 2015) and
Visual Genome (VG) (Bernstein et al., 2017).* To
explore the influence of different pretrained data
size, we designed 3 versions of the pretraining
data, with the corresponding number of VG region-
caption pairs extracted from each image set to 2, 10
and 36. This leads to 0.3M, 0.8M and 4.2M image-
caption pairs. We do not include any downstream
dataset in pretraining.

We evaluate MAP’s transfer ability on five down-
stream tasks, including VQAv2, OKVQA, GQA,
and VizWiz for visual question answering, and
SNLI-VE for language-image understanding.

5.2 Training Details

Training Settings For pretraining, we set batch
size as 240 and pretrain with 30 epochs. We use
learning rate 1e-4 with 5% linear warmup. We
build the model with PyTorch and run on 8 A100
GPUs for around 5 days. For few-shot learning, we
use learning rate 5e-5 with 5% linear warmup and

*As the annotated captions in Visual Genome are region
descriptions, MAP directly takes the image drawn with the
corresponding bounding boxes.

†We report the accuracy with MAGMA model using the
NFResNet encoder.

‡592K(COCO)+36*108K(VG)
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Method ∥Data∥ VQAv2 OK-VQA GQA SNLI-VE VizWiz ∥LM∥
VL-T5novqa (Cho et al., 2021) 4.9M 31.8 12.7 19.6 - - 224M
VL-T5novqa (Cho et al., 2021) 0.3M 0.1 0.0 0.0 - - 224M
FEWVLMbase (Jin et al., 2021) 4.9M 48.2 15.0 32.2 - - 224M
FEWVLMbase (Jin et al., 2021) 0.3M 16.8 9.9 13.2 - - 224M
MAPbase 4.2M 40.4 17.1 27.2 33.1 25.6 224M*
MAPsmall 0.8M 40.5 16.8 22.9 32.5 25.2 224M*
MAPtiny 0.3M 38.0 15.7 22.1 41.9 27.9 224M*

Table 2: Few-shot (16-shot) evaluation results on VQAv2, OK-VQA, GQA, VizWiz and SNLI-VE. Compared to
baseline models, MAP can be trained with much fewer pre-training data and parameters with minor downstream
performance degradation. The * symbol indicates the parameters are frozen during pretraining.
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Figure 3: MAP outperforms Frozen on zero-shot
VQAv2, zero-shot OK-VQA, and four-shot OK-VQA
with a 30× lighter LM backbone (a 224M T5-base com-
pared to a 7B GPT-style LM). Gains are retained even
when using only 10% the size of pretraining data (0.3M
for MAPtiny compared to 3.0M for Frozen.)

train for 200 epochs with the size of 16 for Dtrain

and Ddev. We choose the best checkpoint for test
set evaluation.

Hand-crafted Prompts As shown in Table 1, we
use task-specific prompts designed for downstream
evaluations to make the most of the transfer ability
from the pre-trained model. We experiment of three
different templates with corresponding input and
result hints for VQA and VE tasks. Our prompts
for VQA follows the design by Jin et al. (2021).

6 Evaluation and Results

To answer the questions that we raised in Section 3,
we evaluate MAP on the aforementioned five down-
stream tasks in zero-shot and few-shot settings.

From our preliminary experiments, jointly up-
dating the NFResNet vision encoder and adapter
layers performs slightly better in pretraining than
updating adapters only. We therefore applied such
settings in all models pretrained using COCO
combined with three versions of VG region-
caption pairs, denoting as MAPtiny, MAPsmall and

MAPbase.

Transfer Efficiency To evaluate MAP’s effi-
ciency on transferring knowledge from a frozen
LM to a multimodal setting, we compare MAP
against Frozen on VQAv2 and OK-VQA. As shown
in Figure 3, overall, MAP achieves better zero-shot
and few-shot performance on both tasks. MAPtiny

is able to outperform Frozen on zero-shot VQAv2,
zero-shot and four-shot OK-VQA even with only
10% the size of pretraining data (0.3M v.s. 3.0M)
and a 30× lighter LM backbone (224M v.s. 7B).

Data and Parameter Efficiency We compare
MAP to fully trained VL models to evaluate how
much can be achieved with limited pretraining data
and number of trainable parameters. In Table 2, we
show that compared to VL-T5 (Cho et al., 2021),
on all the five downstream tasks, MAPtiny achieves
much better results with only 16% in size of the
pre-training dataset† and 48% in the number of
trainable parameters. Moreover, MAP is strong at
retaining its transfer learning ability while VL-T5
and FewVLM adapt the language modeling ability
to the 0.3M pretraining data.

7 Conclusion and Future Work

We present an end-to-end moderate-size VL model,
which surpasses Frozen and comparable-size fully
trained baselines on few-shot learning over mul-
tiple image understanding tasks, while requiring
much less training data and fewer parameters dur-
ing pretraining. We expect to investigate the core
transfer ability of pretrained VL models from a
perspective beyond scaling. We propose open ques-
tions of whether data can be overloaded in pre-
training and how can we use pretraining data more
efficiently and wisely.

†Here we consider only the data on the LM objective.
VL-T5 uses additional 3.3M multi-task data in pretraining.
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Limitations

We experiment with two concatenation methods to
build sequential VL inputs for in-context learning.
However, we do not see improvements in few-shot
performance with either settings, which may root in
its pretraining strategy of taking only single image-
caption pairs. Details are illustrated in Appendix A.

While our pretrained model obtains strong few-
shot learning ability through parameter-efficient
pretraining with a much smaller dataset, it is also
possible that the small number of trainable parame-
ters could limit its ability to learn from large-scale
dataset. It is still an open question of how to au-
tomatically select multimodal data samples and
maximizing data efficiency during the learning pro-
cess.
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A In-context Learning
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Figure 4: Concatenation Illustration

Our two approaches in concatenating inputs are
illustrated in Figure 4. One is to mix-up images
obtained by multiplying averaged weights within
one glance and adding them all together with nor-
malization, and the other way is to concatenate

them on the channel dimension and pass through
a convolution layer before feeding into the visual
encoder.

B Modality Fusion

To validate that our joint-encoder’s ability in learn-
ing multimodal representations, we apply linear
probing on the representation output by the encoder
and reach 66.4% in accuracy on the SNLI-VE task.


