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Against the backdrop of the ever-improving Natural Language Inference (NLI) models, recent
efforts have focused on the suitability of the current NLI datasets and on the feasibility of the
NLI task as it is currently approached. Many of the recent studies have exposed the inherent
human disagreements of the inference task and have proposed a shift from categorical labels to
human subjective probability assessments, capturing human uncertainty. In this work, we show
how neither the current task formulation nor the proposed uncertainty gradient are entirely
suitable for solving the NLI challenges. Instead, we propose an ordered sense space annotation,
which distinguishes between logical and common-sense inference. One end of the space captures
non-sensical inferences, while the other end represents strictly logical scenarios. In the middle
of the space, we find a continuum of common-sense, namely, the subjective and graded opinion
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of a “person on the street.” To arrive at the proposed annotation scheme, we perform a careful
investigation of the SICK corpus and we create a taxonomy of annotation issues and guidelines.
We re-annotate the corpus with the proposed annotation scheme, utilizing four symbolic infer-
ence systems, and then perform a thorough evaluation of the scheme by fine-tuning and testing
commonly used pre-trained language models on the re-annotated SICK within various settings.
We also pioneer a crowd annotation of a small portion of the MultiNLI corpus, showcasing that it
is possible to adapt our scheme for annotation by non-experts on another NLI corpus. Our work
shows the efficiency and benefits of the proposed mechanism and opens the way for a careful NLI
task refinement.

1. Introduction

In recent years, Natural Language Inference (NLI) has emerged as one of the most
prominent tasks for evaluating a system’s or a model’s ability to perform Natural
Language Understanding and reasoning. Typically, the NLI task consists of finding
whether a sentence (the premise P) entails, contradicts, or is neutral with respect to
another sentence (the hypothesis H) (MacCartney 2009). A surge of interest has resulted
in the creation of huge datasets and the training of massive deep models. The trained
models have been shown to achieve state-of-the-art results, sometimes even outper-
forming what is considered human performance (Liu et al. 2019a; Pilault, Elhattami,
and Pal 2020). However, it has also been repeatedly shown that such models learn to
capitalize on superficial cues and fail to generalize to more complex reasoning patterns.
On the one hand, this can be attributed to the current NLI datasets themselves: They
contain biases and artifacts that are mostly responsible for the high performance of
the models, and their absence from other datasets naturally leads to worse models
(Poliak et al. 2018; Gururangan et al. 2018; Geva, Goldberg, and Berant 2019). On the
other hand, the generalization difficulties of such models also stem from the simplicity
of the current datasets, which does not allow the models to learn to efficiently solve
inferences requiring true (semantic) understanding of language (Dasgupta et al. 2018;
Nie, Wang, and Bansal 2018; Naik et al. 2018; Glockner, Shwartz, and Goldberg 2018;
McCoy, Pavlick, and Linzen 2019; Richardson et al. 2020; Yanaka et al. 2020). Against
this backdrop, recent efforts have focused on the reliability and suitability of current
datasets and on the feasibility of the NLI task as it is currently approached. One strand
of research has discovered opposing annotations in datasets and has attempted to either
correct these errors to make the corpora more reliable for training and testing models
(e.g., Kalouli, Real, and de Paiva 2017a,b, 2018; Hu, Chen, and Moss 2019), or convert
the 3-label task to a 2-label task to avoid some of the controversies (entailment vs. non-
entailment; e.g., McCoy, Pavlick, and Linzen 2019). Another strand of research (Pavlick
and Kwiatkowski 2019; Nie, Zhou, and Bansal 2020; Chen et al. 2020) has argued that
the current NLI task formulation is unsuitable to capture the inherent disagreements
and uncertainty involved in human reasoning. This series of work has proposed a
refinement of the NLI task to be able to capture more subtle distinctions in meaning,
by shifting away from categorical labels to human subjective probability assessments of
a specific scenario, based on an ordinal or graded scale of “certainty.”

These observations around inference are not novel, though. Already Glickman,
Dagan, and Koppel (2005), Versley (2008), Poesio and Artstein (2005), and Pavlick
and Callison-Burch (2016) have argued that humans’ inferences are uncertain, context-
dependent, and have a probabilistic nature, while in previous work from some in our
group (Kalouli et al. 2019) we have proposed to “start devising corpora based on the
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notion of human inference which includes some inherent variability.” Thus, in this work
we set out to shed light on the aspects of NLI that make it so error-prone and uncertain
by conducting an extensive study of the SICK corpus (Marelli et al. 2014b). We find
that it is not necessarily uncertainty that triggers different, sometimes even opposing,
annotations, but rather a confrontation: common-sense vs. logical inference. This distinction
is not novel: It dates back at least to Zaenen, Karttunen, and Crouch (2005), Manning
(2006), and Crouch, Karttunen, and Zaenen (2006), but it has never been explored to
its full potential. We show that inference cannot be entirely and efficiently modeled
either as a single-label task or as a graded, probability distribution task. The NLI label
space should best be seen as an ordered sense space. The one end of the ordered space
features non-sensical inferences, namely, invalid inferences that could not hold for a
given pair (e.g., P: The man is shouting. H: The man is quiet could never be an entailment,
assuming the same man at the same moment), while the other end represents strictly
logical inferences that a judge (or a logician, for that matter) would take into account
(e.g., P: The woman is cutting a tomato. H: The woman is slicing a tomato is a neutral pair
and not an entailment, because strictly speaking the woman does not need to be slicing
the tomato; maybe she is cutting squares.) The two ends are solid points in the space
and can thus be characterized by a single, distinct label, much as it is done within the
traditional NLI task. In the middle of the space, we find common-sense, that is, the
opinion of a “person on the street,” which is, however, subjective, graded and is thus
represented by a continuum (e.g., for the common-sense of most people, the previous
example of cutting/slicing is probably an entailment, but some might still think that
this is neutral, even based on their common-sense). Thus, in contrast to the ends of
the ordered space, the in-between common-sense continuum captures a distribution of
potentially different labels. Each inference label can be placed on a different area of the
ordered sense space. We show how this inference scheme can capture the challenges
posed by NLI data more efficiently than the traditional single-label approach and the
more recent certainty gradient, and we open the way for the creation of high-quality,
reliable NLI datasets.

To achieve an extensive study of the SICK corpus and to be able to propose the
ordered sense space annotation, it is necessary to pursue a series of steps. First, we
take up and reconsider our previous efforts to correct the corpus (Kalouli, Real, and
de Paiva 2017a,b, 2018; Hu, Chen, and Moss 2019). These previous attempts were
mainly manual, concentrated on parts of the SICK corpus, and were done by “experts,”
that is, researchers conversant with the notion of inference as it appears in academic
areas like semantics and logic. This study is meant to investigate the entire corpus, and
thus we exploit the power and performance of several symbolic NLI systems that were
introduced at the same time as this work. Specifically, we are able to use symbolic
systems to automatically and reliably annotate large parts of the corpus. We attempt
to hand-annotate the remaining corpus based on detailed guidelines, using concepts
from semantics such as coreference, aspect, and vagueness, but keeping the original
single-label NLI task formulation. The failure of this attempt points to the necessity
for a new annotation approach, offered through the sense space. The efficiency of the
proposed method is proven by detailing how it affects performance of neural models
under various training and testing settings.

Thus, in this paper we make the following contributions: (1) we re-annotate the
entire SICK corpus and thus provide a high-quality dataset of NLI that can be used for
reliable training and testing, (2) we shed light on the issues that plague NLI datasets
like SICK, (3) we show that it is possible to develop clear guidelines for the NLI task,
but no degree of specificity of guidelines will completely address the inherent human
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disagreements, (4) to this end, we propose the ordered sense space annotation, which
distinguishes between what logicians would annotate in a precise and quantifiable
sense from what “people on the street” might say, and we show why this annota-
tion is more suitable than a single-label method or a certainty gradient, (5) we show
marked differences in the performance of neural models when tested on the dataset
annotated with the proposed sense annotation, and (6) we use a small crowd annotation
of 100 examples from the MultiNLI corpus (sampled from chaosNLI) to demonstrate
the feasibility of scaling up our proposed scheme for non-expert annotators on other
NLI corpora. The refined SICK corpus and the crowd annotations of the 100 exam-
ples from MultiNLI using our proposed scheme can be found at https://github.com
/huhailinguist/curing-SICK.

2. Related Work

2.1 Existing Annotation Schemes

In formal semantics, a common definition of entailment (Chierchia and McConnell-
Ginet 2001) determines that P entails H if H is true in every possible world in which
P is true. Similarly, contradiction is defined as the conjunction of a proposition and its
denial, that is, P and H are contradictory if there is no possible world in which P and H
are both true (Mates 1972). However, both these definitions are too strict for real-world
scenarios because they require that H is true in all worlds where P is true, and it is
usually not possible to know if something is true in all possible worlds to begin with.
Thus, Dagan, Glickman, and Magnini (2005) offer an informal, more practical definition
as part of the first RTE challenge:

“p entails h if, typically, a human reading p would infer that h is most likely true. . . [assuming]
common human understanding of language [and] common background knowledge”

The definition was supposed to be preliminary and invoke further discussions and
refinements based on the needs of the task. Indeed, the discussion was initiated by
Zaenen, Karttunen, and Crouch (2005), who argue for the need to make the task more
precise by circumscribing whether and what type of world-knowledge is required to
solve a specific inference, and to explicitly annotate for the different types of inference
required, for example, entailment, conventional and conversational implicatures, and so
forth. Manning (2006), on the other hand, argues for a more “natural” task, where un-
trained annotators can label pairs in real-life settings, without guidelines, definitions, or
further explicit annotation information. Since then, there has been no formal consensus
on whether a precise, but possibly distant from daily life, inference or a “real-life,” but
possibly inconsistent, annotation approach is more suitable. However, there has been an
informal preference for the latter approach, as is evident in the huge datasets promoting
natural inferences over rigorous annotation processes (Bowman et al. 2015; Williams,
Nangia, and Bowman 2018).

The first such large dataset was the SICK corpus (Marelli et al. 2014b), which uses a
3-way annotation scheme, moving away from the entailment vs. non-entailment task
into the more general inference task. The scheme utilizes entailment, contradiction,
and neutral relations. Annotators are asked to judge the pairs as naturally as possible.
The annotators are not experts but rather crowdsourcing workers. They are not given
information on the source of the sentences nor specific guidelines to adhere to, but
rather a short example for each inference relation. The annotation scheme pursued
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in the later, much larger datasets SNLI (Bowman et al. 2015) and MNLI (Williams,
Nangia, and Bowman 2018) is very similar. For these datasets annotators are asked to
judge whether a given sentence can be a definitely true or a definitely false description
of another sentence (entailment and contradiction relations, respectively) or whether
none of these two applies (neutral relation). Again, strong emphasis is given to the
naturalness of the annotation process and on the annotators being lay people. This
3-way annotation scheme had already been used for the smaller but also very complex
earlier datasets of the RTE challenge. Specifically, RTE-4 (Giampiccolo et al. 2008),
RTE-5 (Bentivogli et al. 2009), RTE-6 (Bentivogli et al. 2010), and RTE-7 (Bentivogli et al.
2011) were constructed to include all 3 inference labels. In contrast, in the first three RTE
challenges (RTE-1, Dagan, Glickman, and Magnini [2005]; RTE-2, Bar-Haim et al. [2006];
and RTE-3, Giampiccolo et al. [2007]), a 2-way scheme was used, with a label allotted
for entailment and a label allotted for non-entailment, following Dagan, Glickman, and
Magnini’s (2005) definition presented above.

The 2-label scheme, however, is not only an annotation practice used in earlier
datasets; recent research has also opted for this annotation scheme. For example, the
2-label annotation is used in the HELP dataset (Yanaka et al. 2019b), which is designed to
improve the performance of neural models specifically for monotonicity reasoning. The
HELP scheme provides one label for entailment and one label for neutral. This differs
from the 2-way classification schemes in the first three RTE challenge datasets merely
in terms of presentation, since non-entailment indicates as much as neutral; neither
distinguishes between a lack of entailment and a proper contradiction. To presumably
overcome this limitation, in a pilot task of the RTE-3 challenge, the third category of un-
known was added; yet the categories entailment, non-entailment, and unknown do not
map neatly onto a 3-way scheme of entailment, contradiction, and neutral. “Unknown”
signals, at best, an uncertainty regarding what sort of relationship holds between the
pair of sentences. Only with a category dedicated to contradictions do we get a full,
classical tripartite division of the space of possible relations between the pair. Despite
this drawback of the 2-way classification, further efforts opt for it as they consider it
an “easier“ and “clearer” task. For example, the Heuristic Analysis for NLI Systems
(HANS) dataset (McCoy, Pavlick, and Linzen 2019), an adversarial NLI corpus, uses a
2-way scheme of entailment and non-entailment and this is a conscious decision on the
authors’ part, as “the distinction between contradiction and neutral is often unclear”
for the cases they wish to consider. Similarly, the SciTail dataset (Khot, Sabharwal,
and Clark 2018) uses a 2-way scheme of entailment and neutral. The Monotonicity
Entailment Dataset (MED) dataset (Yanaka et al. 2019a) also follows the same pattern in
principle. It includes the third category of unnatural, but this is reserved for cases where
either the premise or the hypothesis is ungrammatical or does not make sense. Thus,
this category only screens out grammatical or other infelicities and remains at its core a
2-way annotation scheme. Although slightly different, the same 2-way classification
goal is achieved by Bhagavatula et al. (2020) in their αNLI dataset. This dataset is
developed to capture abductive reasoning. The two associated tasks, the Abductive Nat-
ural Language Inference (αNLI) task and the Abductive Natural Language Generation
(αNLG) task, are not designed to track entailment. Rather, the former task involves
taking a pair of observations and deciding between a pair of hypotheses which better
explains the observations, assigning a label of plausible and implausible (or less plausi-
ble) to each hypothesis. The latter task involves generating a valid hypothesis for a pair
of observations. Again, this 2-way classification scheme of plausible or implausible fails
to capture finer-grained distinctions within the realm of abductive inference, but, on the
other hand, it is easier for annotators to get right.
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The classic 2-way and 3-way annotation schemes raise worries concerning their
suitability. The 3-way scheme is more fine-grained and can efficiently capture human
reasoning, which includes the notion of contradiction. However, it also leads to more
error-prone and inconsistent annotations because often no clear line can be drawn
between neutrality and contradiction. The 2-way scheme avoids this controversy, but
cannot efficiently capture the whole realm of human inference, as it conflates consistent
sentences with contradictory ones. Additionally, it has been shown that neither scheme
is suitable for capturing the inherent human disagreements that occur in the inference
task (Pavlick and Kwiatkowski 2019). An interesting experiment is performed by Nie,
Zhou, and Bansal (2020) in their ChaosNLI dataset. The researchers create their dataset
by collecting annotations for over 4,000 sentence pairs from SNLI, MNLI, and αNLI and
aim to find the distribution of annotator agreement and disagreement in the population.
They show that a significant number of the original majority labels fail to capture
the new majority opinion among annotators, and that for a subset of sentence pairs
large-scale human disagreement persists. Thus, recently there have been significant
departures from the classical 2-way and 3-way schemes. For example, attempts have
been made to use ordinal or even real-valued scales to capture likelihood and inherent
human disagreement.

Zhang et al. (2017) develop their ordinal annotation scheme on the premise that
common-sense inference is “possibilistic,” in the sense that common-sense inferences do
not hold with the sort of necessity accompanying logical entailment. For the annotation,
they use the 5-point Likert scale of likelihood (very likely, likely, plausible, technically
possible, impossible), based on the (Horn 1989) conception of scales of epistemic modal-
ity. Annotators are provided with one context sentence and one hypothesis sentence and
then asked to rank the plausibility that the hypothesis is true “during or shortly after”
the context, since “without this constraint, most sentences are technically plausible in
some imaginary world.” An open question about this proposed scale is why it counte-
nances the impossible while limiting the opposite extremum to very likely. Though many
inferences may only carry high confidence, many others certainly provide genuine en-
tailments. In that case, one would expect a corresponding category of certainty, rather
than very likely. Pavlick and Kwiatkowski (2019) experiment with a scaled rather than
an ordinal annotation. They use a sliding scale from−50 to 50, with −50 indicating that
the hypothesis is “definitely not true” given the premise, 50 indicating that the hypothe-
sis is “definitely true” given the premise, and 0 indicating that the hypothesis is at least
consistent with the premise. Raters are presented with a sliding bar and cannot view
numbers on the slider. With their experimental results, the researchers show that NLI
labels cannot efficiently be captured by a single aggregate score and that models trained
to predict such a score do not learn human-like models of uncertainty. Instead, they
propose that models learn a distribution over the labels—this proposal has parallels to
our proposed annotation, as becomes clear in Section 5. Similar is the approach taken by
Chen et al. (2020). With their Uncertain Natural Language Inference (UNLI) corpus, the
researchers also make the move to subjective credence predictions with a refinement
of the NLI corpus classification scheme using a real-valued scale. One key difference
between the scheme utilized by Chen et al. (2020) and that of Pavlick and Kwiatkowski
(2019) is that the former does not reduce the scale to a categorical classification.

2.2 The SICK Corpus

The SICK (Sentences Involving Compositional Knowledge) corpus (Marelli et al.
2014b) is an English corpus of 9,927 pairs, initially created to provide a benchmark
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for compositional extensions of Distributional Semantic Models. The SICK corpus was
created from captions of pictures with text mentioning everyday events and activities
and non-abstract entities. The creation was a 3-step process. First, each caption was
normalized to (a) exclude hard linguistic phenomena, such as modals, named enti-
ties, and temporal phenomena; (b) limit the amount of encyclopedic world-knowledge
needed to interpret the sentences; and (c) make sure that complete sentences with finite
verbs were included. Then, each normalized sentence was used to generate three new
sentences based on a set of rules, such as adding passive or active voice and adding
negations. A native speaker checked the generated sentences for grammaticality and
removed ungrammatical ones. Each sentence was then paired with all three generated
sentences. Each pair of sentences was annotated by five crowdsourcing workers for its
inference relation (entailment, contradiction, neutrality) and its semantic similarity. We
do not deal with semantic similarity in this paper. The inference relation was annotated
in both directions, that is, annotators described the relation of sentence A with respect
to sentence B and the relation of sentence B with respect to sentence A. Then, each pair
was given a final label based on the judgment of the majority of the annotators.

At this point, the question of why we chose to perform our extensive NLI corpus
analysis on the SICK corpus may arise. After all, the corpus is relatively small in
comparison to other contemporary NLI datasets and it is simplified in many respects.
But exactly these characteristics make it suitable for our purposes. First, SICK’s size
is ideal for our manual inspection and improvement. Alhough superseded by much
larger datasets like SNLI (Bowman et al. 2015) and MNLI (Williams, Nangia, and
Bowman 2018), SICK is small enough to be feasible for manual investigation and re-
annotation. At the same time, it contains similar kinds of simplified data and language
as the large datasets, for example, it does not include modals or implicatives, and thus
it is representative enough of the kinds of inference included in larger state-of-the-
art datasets (while allowing their manual detection and correction). Additionally, it
might seem that SICK suffers from different issues than large datasets and that thus
our findings are not transferable. The large datasets were shown to include annotation
artifacts due to their collection process (i.e., people asked to create entailing, neutral,
and contradicting sentences and thus looking for cognitive shortcuts to perform the task
faster), which is different from the SICK process. However, Poliak et al. (2018) show that
such artifacts are found both in human-judged datasets like SICK, where humans only
label the inference relation, and in human-elicited datasets like SNLI and MultiNLI,
where humans produce the hypothesis for a given premise. This is also discussed in
Kalouli (2021). Thus, the findings of this study are transferable. Furthermore, SICK is
uniform enough to teach us lessons and highlight challenges of annotation and infer-
ence. Also, SICK is chosen because it has already been studied before (cf. Kalouli, Real,
and de Paiva [2017a,b, 2018]; Hu, Chen, and Moss [2019]) and has been shown to have
annotation inconsistencies. Overall, using SICK should serve as a proof of concept for
our approach and open the way for applying our proposed method to further corpora
such as SNLI and MNLI or newly created corpora.

2.3 Correction Efforts for SICK

With the aim of using SICK as a training and testing corpus for automatic NLI systems,
we set out to investigate its annotations. The investigation showed that the human
judgments used in the SICK corpus can be erroneous, in this way lessening its useful-
ness for training and testing purposes. Thus, in our previous work, we tried to address

205



Computational Linguistics Volume 49, Number 1

some of the issues, many of which had already been noted in the original paper of
Marelli et al. (2014b).

First, we found that single entailments (i.e., A entails B, but B is neutral to A),
were often confused with double entailments (i.e., bidirectional entailments: A entails B
and B entails A), but such a confusion was more or less expected.1 More surprising
was our finding that given the way the corpus was annotated, contradictions were
not symmetric. The work in Kalouli, Real, and de Paiva (2017a) re-annotated all single
entailments of the corpus, creating a taxonomy of the most common errors. Further
work in Kalouli, Real, and de Paiva (2017b) concentrated on manually investigating
(and correcting) the contradiction asymmetries of the SICK corpus. Most such asymme-
tries are caused by the presence of indefinite articles in the sentences and the lack of a
specific guideline about them.2 So, this investigation was a harder endeavor: Because
a contradiction requires that the two sentences refer to the same events and/or entities
(Zaenen, Karttunen, and Crouch 2005; de Marneffe, Rafferty, and Manning 2008), we
had to make sure that the referents can be made explicit and coreferring.3 Thus, we
had to make a semantic compromise and establish a guideline: assume that the pairs
are talking about the same event and entities, no matter what definite or indefinite
determiners are involved.4 This guideline was necessary to allow us to correct the
asymmetric contradictions, but, as shown in Kalouli et al. (2019), not sufficient to
mitigate all issues of the dataset. The small-scale but controlled experiments performed
in Kalouli et al. (2019, 2021) shed light on how human annotators often have opposing
perspectives when annotating for inference, but still follow their own internal coherent
perspective. Particularly, that work showed that the distinction between contradiction
and neutrality is surprisingly hard for annotators, which makes it one of the main
sources of inconsistent datasets. Thus, the work proposed to enhance the NLI task with
two kinds of annotations: explanations for the specific decision of an annotator and
a difficulty score of the annotation. With these additional annotations, one can more
easily check whether the corpus created adheres to the given guidelines and one can
also decide to treat differently inference instances that are either easier or more difficult.

Hu et al. (2020) reported another effort to partially correct SICK, which builds
directly on Kalouli, Real, and de Paiva (2017a,b). In this study, the authors manually
examined all the pairs where Kalouli, Real, and de Paiva (2017a,b) do not agree with the
original SICK—about 400 pairs—and found that there are issues with roughly 100 of
them. This suggests that disagreement in NLI annotation is probably far more common
than many have previously assumed. This is also echoed by Pavlick and Kwiatkowski
(2019), as well as Nie, Zhou, and Bansal (2020), who show that for SNLI, if one takes the
majority label from 100 annotators instead of 5, the majority label would be different in
30% of the examples.

2.4 Symbolic Inference Systems

A number of symbolic NLI systems have been introduced or extended recently, show-
ing high accuracy even for hard linguistic phenomena. We exploit their power and
high performance to automatically and reliably re-annotate parts of the corpus SICK.

1 The confusion being that single entailments were still annotated as being double entailments.
2 Marelli et al. (2014b) already point out this weakness of their guidelines.
3 This issue was already discussed for RTE; see de Marneffe, Rafferty, and Manning (2008).
4 There are certain restrictions, though; see Kalouli, Real, and de Paiva (2017b) for more details.
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Specifically, we use two different versions of the ccg2lambda system by Yanaka et al.
(2018), the LangPro system by Abzianidze (2017), MonaLog by Hu et al. (2020), and
GKR4NLI by Kalouli, Crouch, and de Paiva (2020) and Kalouli (2021).

ccg2lambda1 and ccg2lambda2. In the system presented by Yanaka et al. (2018), the in-
ference pair is mapped to logical formulas based on neo-Davidsonian event semantics.
More precisely, the work in Yanaka et al. (2018) uses ccg2lambda, a system that parses
sentences into CCG (Combinatory Categorial Grammar) representations and then con-
verts them into semantic representations. The researchers experiment with several CCG
parsers, which lead to slightly different results. Here, we use two of the best settings
reported, with the C&C parser (Clark and Curran 2007) (ccg2lambda1) and the Easy-
CCG (Lewis and Steedman 2014) parser (ccg2lambda2). The semantic representations
produced are represented as directed acyclic graphs. Then, variables from the premise
and the hypothesis are unified using a theorem proving mechanism and inference is
performed based on Natural Deduction rules. The researchers also propose a method to
perform phrase-to-phrase alignment to arrive at the inference relation between phrases.
The best setting of the ccg2lambda system achieves the state-of-the-art results on SICK
for logic-based models (84.3% in accuracy).

LangPro. The LangPro system (Abzianidze 2014, 2015, 2016, 2017) is also based on
CCG and λ terms, but it uses an analytic tableau method and rules of Natural Logic
(van Benthem 2008; Sánchez-Valencia 1991; MacCartney 2009) for proving. The CCG
parser first produces a CCG parse tree, which is then translated to λ logical forms by
the Lambda Logical Forms generator (LLFgen). An LLF-aligner is optionally used to
align identical chunks of LLFs in the premise and hypothesis, so that these chunks
can be considered as a whole without any internal structure. Finally, a theorem prover
based on a first-order logic prover (Fitting 1990) returns the inference prediction. The
rule inventory of the prover contains roughly 50 rules, which are manually coded (see
Abzianidze [2014] for details of the rules). LangPro achieves 82.1% accuracy on SICK
(Abzianidze 2016).

MonaLog. The MonaLog system is a symbolic system that makes use of monotonicity
facts of quantifiers and other words for inference (Hu, Chen, and Moss 2019; Hu et al.
2020). It involves three major steps: (1) Polarity/Arrow tagging; (2) Generation based
on knowledge base K; and (3) Search. Specifically, given a premise text, MonaLog first
tags all the tokens in the premise with polarity annotations (↑, ↓,=), using the polarity
annotation tool ccg2mono (Hu and Moss 2018). The surface-level annotations, in turn,
are associated with a set of inference rules based on Natural Logic. These rules provide
instructions for how to generate entailments and contradictions by span replacements
over these arrows (which relies on a library of span replacement rules). A generation

and search procedure is then applied to see if the hypothesis text can be generated
from the premise using these inference rules. A proof in this model is finally a particular
sequence of edits that derive the hypothesis text from the premise text rules and yields
an entailment or contradiction. MonaLog’s accuracy on SICK is 81.66%.

GKR4NLI. GKR4NLI (Kalouli, Crouch, and de Paiva 2020; Kalouli 2021) is inspired by
the Entailment Contradiction Detection (ECD) algorithm (Bobrow et al. 2007; Crouch
and King 2007) and uses the Natural Logic (van Benthem 2008; Sánchez-Valencia 1991;
MacCartney 2009) style of inference. The system first converts the sentences of an infer-
ence pair into their GKR representations (Kalouli and Crouch 2018), that is, to semantic
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graphs capturing conceptual, contextual, lexical, and morphosyntactic constraints of
the sentence, and then it aligns matching terms across the sentences. Based on the speci-
ficities and the instantiabilities of the matched terms, the inference relation is computed.
GKR4NLI achieves state-of-the-art results across datasets of different complexity (see
Kalouli, Crouch, and de Paiva [2020] for more details); on the SICK test set accuracy
reaches 78.5%.

3. First-round Re-annotation of SICK

Our previous efforts to manually correct parts of the SICK corpus were successful.
However, they were tedious and extremely time-consuming. Thus, in this new endeavor
to annotate the entire corpus, we try to get as many annotations as possible for “free”
from the automated systems. In other words, we experiment with available tools and
systems to automatically annotate parts of the corpus, without sacrificing precision and
reliability. To this end, the available symbolic inference systems are put into use.

3.1 Automatic Annotation

A common characteristic of the symbolic inference systems presented is that they have
high precision for entailing and contradictory pairs. Because they are logic-based sys-
tems, they always have to rely on some hard “evidence” or proof (e.g., some WordNet
sense) to predict entailment or contradiction. Thus, their precision for these labels is
very high. On the other hand, the neutral label is not as reliable: Most of these systems
fall back to the neutral relation whenever they cannot find evidence for an entailment
or a contradiction. This does not mean, however, that the pair is necessarily a neutral
pair; the evidence might not be codified. Given this behavior of the symbolic systems, it
is necessary to make a distinction on how we consider and how much we trust neutral
and non-neutral predictions. Therefore, after running the entire SICK corpus through
each of the five symbolic systems, the quality and reliability of the predicted labels is
judged separately for the non-neutral (entailment and contradiction) and neutral pairs.
For both categories we also use the original SICK label as an additional indication of the
correct label.

For the non-neutral predictions, only pairs for which the majority of the symbolic
systems (at least three) agree on the label are taken as reliably annotated. If three
symbolic systems have found some proof for an entailment or a contradiction, there is
a very strong chance that this is indeed true; the other two systems probably missed
this information.5 But as we aim for a rigorous evaluation, we do not consider this
criterion alone as adequate to accept the pair as reliably annotated. Instead, we also
consider the original SICK label of the pair. If this does indeed agree with the majority
predicted label of the symbolic systems, then we consider it correct. If not, then the
pair has to be manually annotated. Figure 1 shows the decision-tree-style process we
followed for the automatic annotation of the non-neutral pairs. Out of the 2,579 pairs
for which at least three symbolic systems predict the same label, we are able to accept
a total of 2,537, in which the predicted label also agrees with the SICK human label.
There was no significant difference between the number of accepted entailments (E)

5 Since symbolic systems are based on the detection of a specific “hard” proof for their decision, the lack of
such a proof will lead to a neutral and thus possibly a false label, disagreeing with the original one.
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Figure 1
Non-neutral predicted labels of the five symbolic systems and the decision-tree-style process we
follow for accepting them as reliable (or not). The figure shows a detailed break-down in each of
the inference labels.

and contradictions (C) (98.2% and 98.6% were accepted, respectively). The remaining
42 pairs are collected for the manual annotation process (cf. Section 3.2).

For the neutral pairs we cannot allow the same decision process because the pre-
dicted labels are not as trustworthy. Therefore, we only consider reliable the pairs for
which all 5 systems predict neutral N and the SICK original label is also N. All the rest of
the pairs are collected to be manually checked. With this, the decision-tree-style process
is formulated as shown in Figure 2. We see that 4,274 of the 5,344 pairs can be accepted
as reliably annotated. For the other 1,070 pairs the SICK original label is either E or C
and therefore a closer look is necessary.

After this automatic process, a total of 3,138 pairs (31.6% of the entire corpus) has
to be manually annotated. Note that this automatic annotation can also be used on
other corpora such as SNLI and MNLI; a main strength of symbolic systems is that
they are not fine-tuned for a specific dataset and can thus deal with all kinds of data.
Depending on the performance of the systems on other corpora the method of accepting
some annotated pairs as reliable or not might need to be adjusted.

5 systems agree: NEUTRAL = 5,344

351

SIC
K

= C

719

SIC
K

=
E
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Figure 2
Neutral predicted labels of the five symbolic systems and the corresponding original label of
SICK. Only the pairs for which the original SICK also delivers the N label are accepted as
reliable.
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3.2 Manual Annotation

Although the automatic annotation helped us speed up the process, the manual annota-
tion was the product of two years’ work. The manual annotation was performed by the
authors, two of whom are English native speakers, while the other three have native-
like English proficiency. Considering the error-prone nature of the task, which is also
one of the main points of investigation in this work, we deem it absolutely necessary
to adhere to common guidelines. For this we are able to capitalize on our experience
from previous annotation efforts (see Section 2.3) and we attempt to consolidate serious
disagreements. To this end, we first annotate a calibration set of 345 pairs. Each pair for
which at least one annotator gives a different label is extensively discussed by the team
and, if necessary, an appropriate new guideline is created.

3.2.1 Initial Guidelines. Based on our previous correction efforts and our calibration set
discussions, we are able to put together a list of 15 guideline issues, presented in the
following. These guidelines already foreshadow the challenges of the task and why an
ordered sense space annotation is necessary.

Ungrammatical Pairs. We find pairs in which there is at least one grammatical error.
In these cases, the pair is marked accordingly and is not annotated. Example: P: A
man in a car is pulling up beside a woman who is walking along a road. H: A man in a
car is not pulling up beside a woman who is walking along a road. We avoid annotation
because each annotator might be performing a different “mental fix” and thus, the
resulting annotation cannot be guaranteed to be consistent (cf. Kalouli, Real, and de
Paiva 2017a,b). We find 71 ungrammatical pairs (0.7% of the entire corpus).6

Semantically Absurd Pairs. Apart from the ungrammatical pairs, we also find pairs in
which one of the sentences is semantically absurd. As before, the pair is marked accord-
ingly, and it is not annotated. Example: P: A motorcycle rider is standing up on the seat
of a white motorcycle. H: A motorcycle is riding standing up on the seat of the vehicle. This
treatment is necessary for the same “mental fix” reason mentioned above. We only find
41 such pairs (0.4% of the entire corpus).

Aspect/Tense. There are pairs where the tense and aspect of the predicates might in-
fluence the annotation, if taken literally. Example: P: The adults and children are not
gathered near an outdoor seating arrangement. H: The adults and children are being gathered
near an outdoor seating arrangement. In such cases, we choose to ignore such verbal
properties and consider predicates as referring to the present and the non-progressive.
Ignoring verbal properties is a common practice in such annotation projects (Cooper,
Chatzikyriakidis, and Dobnik 2016; de Marneffe, Rafferty, and Manning 2008). In fact,
during the creation of SICK there was an effort to eliminate such effects, but apparently
not every instance could be detected.

Coreference. It is not trivial to decide when entities or events should be taken to refer
to the same entity or event. Especially in SICK, this is vexing because the original

6 Note that for the later evaluation, all pairs with no labels default to the neutral label.
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annotation was done as if the P and H were captions of a picture: the premise cannot
contain everything in the picture, and so the objects referred to in it might or might not
include everything of relevance. So, we first need to decide whether the subject entity
and the verb event can be taken to refer to the same entity/event. If so, we can consider
the sentences coreferent and annotate them accordingly; otherwise, elements cannot be
made coreferent and the label should be N. Note that only coreferring entities or events
can be taken to entail or contradict each other (Zaenen, Karttunen, and Crouch 2005;
de Marneffe, Rafferty, and Manning 2008). Example: P: A woman in red shirt is walking.
H: A woman is moving. Here, both the subject and the verb can be taken to refer to
the same entity and event. However, there are also corner cases. Consider the pairs
P: A woman is walking. H: A man is walking and P: A woman is walking. H: A woman
is dancing. In the first example, the subjects are antonyms but the verbs corefer; we
would not want to say that such a pair is neutral. So, we use the guideline that, if
the verb is the same and the subjects are alternative antonyms (e.g., man vs. woman),
then we can consider them coreferent and label such pairs as contradictory. In the
second example, the subjects corefer but it is not clear what the verbs do. So, again,
our agreed guideline says that if it is highly unlikely that the two events happen at
the same time, then we should annotate as C, otherwise as N. In this example, it is likely
that walking and dancing happen at the same time, since one might be walking during
the dance. But in an example like P: The man is fasting. H: The man is eating, it is highly
unlikely that the two events happen at the same time. Note that even the automatically
annotated pairs follow this guideline: The symbolic systems always assume things as
coreferent as possible.

Ambiguous Senses/Sentences. In this case, the controversy stems from lexical (polysemy)
or syntactic ambiguity and depending on how we disambiguate, the inference label
might be different. Example: P: A person is folding a sheet. H: A person is folding a piece of
paper: Depending on whether sheet is taken to mean the bedsheet or a piece of paper,
a different inference relation occurs. For such cases, we decide to disambiguate the
ambiguous word with the sense that would possibly make the sentence coreferent to
the other sentence (e.g., in this example, a piece of paper). Similarly, for an example
with syntactic attachment ambiguity like P: Two men are fighting in a cattle pen. H: Two
men are fighting in a pen for cattle, we assume the attachment that makes the two sentences
coreferent.

Idioms with Prepositions. Idioms with prepositions can be problematic because a preposi-
tion might alter the meaning of the sentence. Example: P: The couple is walking down the
aisle. H: The couple is walking up the aisle. This pair could be C if we take walking up/down
the aisle to be antonyms. However, there is no clear definition of what is the up/down
direction of an aisle and for some people the expressions are even synonymous and
thus, the pair could also be an entailment. To this category also belong idioms such as
go up/down the path, burn up/down the house, and so forth. For other similar idioms, for
example, go up/down the stairs/mountain, it is clear that there is an upper and a lower
side. So, we decide to label as contradictory pairs where there is a clear-cut distinction
of the meaning and otherwise as neutral, assuming that the prepositions do not make a
difference.

The categories presented so far already highlight some of the hard issues of the NLI
task, but the challenges are solvable. In other words, it is clear that without an organized
annotation effort the annotations will end up inconsistent, but if people agree on a
specific treatment for each case, most problems are solved. However, clear guidelines
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can only take us so far: The challenges posed by the following phenomena cannot be
easily solved by specific guidelines in a purely single-labeled or certainty gradient task.

Phrasal Verbs. If a phrasal verb is used in the pair, the inference label could be different
depending on what we take it to mean. Example: P: A woman is picking a can. H: A
woman is taking a can. Picking prototypically means “selecting” and in this case, it does
not necessarily entail physically taking the can. However, we could also more freely
interpret picking as picking up, in which case there would be a clear entailment. No matter
which approach is taken here, a single inference label cannot be representative enough
of human inference.

Looseness. This concerns pairs for which it is not clear how strict or loose we should be
with the meaning of specific words. Example: P: A surfer is surfing a big wave. H: A surfer
is surfing a huge wave. Big is generally not the same as huge but in the context of a wave,
they could probably be synonymous. Obviously, an NLI task with a single inference
label or a certainty gradient is not optimal here because it forces us to choose between
strict, logical inference and “people on the street” inference. Clearly there is no right or
wrong here, nor certain vs. uncertain; there is merely a difference in the proportion of
logic and common-sense the annotator chooses to use.

Gender/Age. A controversy arises about whether words like man and woman should be
taken to refer to the gender or to the age of a person. Example: P: A girl is eating a
cupcake. H: A woman is not eating a cupcake. A girl is a woman as far as the strict gender is
concerned (at least in a binary gender approach), but not concerning her age. Again, this
category makes clear how static the single inference label approach is: We need to decide
between the strict “dictionary” definition, which would rather point to the gender, and
the more common-sense approach, which would need to evaluate the context each time.
Such a controversy does not concern human certainty/uncertainty, but rather a graded
notion of logic and common-sense. As far as the gender is concerned, note that we also
replace all occurrences of lady with the word woman as we find the term lady out-dated
and almost sexist.7

Privative Adjectives. Such expressions occur when an adjective (or a noun) modifier
contradicts the noun it modifies (Partee 2010), for example, cartoon airplane, fake gun,
animated bear, and so on. Example: P: An animated airplane is landing. H: The plane is
landing. Depending on whether the adjective is taken with its literal meaning or not,
such inferences can be neutral or non-neutral. Once again, we are in a dilemma as far
as these annotations are concerned: should we be strict judges that say that a cartoon
airplane is not an airplane or go with the childish common-sense that allows cartoons
to be real?

World Knowledge. Pairs requiring world knowledge to be solved also cause confusion
and controversy. As with other categories, these pairs may have multiple right labels,
depending on what we take the world to be like. Example: P: A team is playing football. H:
A team is playing soccer. Logically speaking, football does not entail soccer because the US-
based football is a completely different sport. But in Europe, the one does entail the other.
A similar phenomenon occurs with a pair like P: A man is cooking a breaded pork chop. H:
A man is frying a breaded pork chop. One doesn’t need to be frying a pork chop, maybe

7 Since there is no corresponding man and gentleman.
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they are just boiling it, but since we are talking about a breaded pork chop, chances are
that there is frying taking place. This once again clearly shows how common-sense and
logic are at play and how different annotations do not have to be opposing, but rather
expressing different ends of the same spectrum.

3.2.2 Challenges. The issues listed in our guidelines already show the challenges of the
current NLI task formulation. Very often, there is no single correct inference label. The
label depends on what assumptions we make, particularly on whether we decide to
judge things by their strict “dictionary” meaning or whether we allow for more every-
day uses of words and meanings. This shows that the main reason the task is so error-
prone is not the annotators not paying enough attention or being indecisive in their
annotations, but rather annotators being forced to a decision expressing only one of
their cognitive states: their logic or their common-sense. Thus, different people decide
for different notions of logic/common-sense. This leads to noisy, inconsistent, and ill-
formed datasets. Downstream, we find “confused” models that can neither generalize
specific logic rules nor learn consistent common-sense patterns since the data they are
training on contains both kinds of annotations. Evidence for this confusion is also given
in Section 5.

Interestingly, this forced logic vs. common-sense decision of the annotators is inde-
pendent of whether we decide to treat inference labels as discrete or gradable. Even if we
treat the labels as gradable, this is a gradient of certainty: How probable it is that a pair
is an entailment rather than a contradiction. But this probability is not independent of
whether the pair is considered strictly logically or based on common-sense. Depending
on this notion, the pair might in fact be an entailment and a contradiction at the same
time. This can be seen in the following example: P: The man is painting. H: The man is
drawing. If we are asked to judge how likely H would be, given P, we would probably
say that there is 50% chance that this is an entailment, namely, that the man painting
also entails drawing. But how do we arrive at this 50%? And why isn’t it 40% or 60%?
And why should the chance be 50% entailment and not 50% contradiction? And what
is the remaining 50%? There is no satisfactory answer to these questions. However, if
we are told to judge this pair according to our strict logic and our common-sense, we
would be able to assign both inference labels, without contradicting ourselves: Logically
speaking, the pair is a contradiction because at the very same moment, the man cannot
be drawing and painting the same picture; according to our common sense, though, this
could also be an entailment because (a) many people use the two terms interchangeably
and (b) drawing usually precedes or complements painting. In fact, this could explain
why the SICK corpus contains so many “asymmetrical” contradictions (Kalouli, Real,
and de Paiva 2017a), that is, pairs that are not contradictory in both their directions A
to B and B to A, as contradictions in logic should be: People annotating with different
notions of logic and common-sense in mind. Thus, our proposed ordered sense space
annotation is able to tackle these challenges and provide a solution that allows both
cognitive states of logic and common-sense to be simultaneously expressed without
falling into a contradiction.

4. The Ordered Sense Space Annotation

This section describes the proposed ordered sense space and details how the 15 anno-
tation issues discussed can be treated based on this space. The section also provides a
detailed presentation of the final re-annotated corpus.
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4.1 Description of the Space

To solve the controversial inference issues presented above we propose an ordered
sense space annotation. The space represents the different stances with which an an-
notator could label a given pair. On the one end of the ordered space, we find non-
sensical inferences, namely, entailments, contradictions, or neutral relations that could
never hold for a given pair; invalid inferences. This novel notion can be made clear
with an example such as P: The woman is walking. H: The woman is sitting. Here, an
entailing inference could never be valid and make sense because we could never infer
that a woman is sitting, if we know that the woman is actually walking (assuming
we mean the same woman and the same moment of time). On the other end of the
ordered space, we have the notion of logical inference. This notion is to be understood
as the strict, “textbook” kind of inference that a judge, a mathematician, or a logician
would use to solve a legal/mathematical/logical problem. Thus, the two ends of this
ordered space are rigid, concretely labeled points for which there should be complete
human agreement. Between these two solid points, we find the notion of common-
sense inference. This is the kind of inference that humans would be inclined to make
in their everyday lives, without adhering to specific guidelines or restrictions, merely
based on their knowledge about the world. This is a subjective and gradable notion,
for which no human agreement can be pursued, and this is faithfully captured in the
middle of the ordered space as a continuum; a continuum of common-sense, capturing
potentially different common-sense labels of different people, inclining either toward
the non-sensical or the logical end. The space is ordered because there are inferences
that could be justified with common-sense, but then they would be almost non-sensical
(thus positioned at the far left side of the common-sense continuum), and there are
others that almost overlap in their common-sense and logical interpretation (thus po-
sitioned at the far right of the common-sense continuum); based on this judgment,
the annotator can decide where exactly to put the label within the common-sense
continuum.

With this, our proposed approach combines the traditional single-label method
(captured at the ends of the ordered space) with the recently proposed graded approach
(captured with the continuum in-between the ends of the space), and factors in the
notion of human sense rather than uncertainty. The annotation process is as follows: Each
pair is first represented by an unlabeled ordered sense space. Then, an annotator picks
a stance, a point on the ordered space where they want to be. This stance might well
depend on the pair that is to be annotated. For example, if the pair reads like a legalistic
text, they might prefer to be on the logic end. If the pair is in colloquial language or talks
about everyday items in a loose fashion, they might prefer to use common-sense. There
is no privileged position. Alternatively, annotation guidelines could suggest a stance.
Based on this stance, the annotator has to determine the label that fits best. They might
try out each of labels E, C, and N to see which feels the best. The label they decide on
should then be placed on the area of the space that represents the stance with which they
made this decision. With this, each inference pair is represented by a labeled ordered
sense space.

Note that an annotator might wish to assume both the common-sense and logic
stances and think about things from both angles. This is indeed absolutely necessary
for cases where no single inference label can be determined, as in the examples we
discussed in Section 3.2.1 and that can now be solved with this annotation scheme.
This feature is also our main contribution to the matter of annotation as we permitted
annotators (ourselves) to use labels that explicitly express a certain cognitive stance.
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Figure 3
The proposed ordered sense space annotation. Each pair is represented by the ordered space, on
which each of the inference relations (entailment, contradiction, neutrality) may be placed. The
annotator has to decide on the stance they wish to take and decide for the label (E, C, N) that fits
best to it. The ordered space above shows the annotation for the pair P: A group of people is on a
beach. H: A group of people is near the sea.

On the other hand, annotators would not want to assume the non-sensical stance
during their annotation, at least as far as we can tell—maybe only in tasks where it
is required to explicitly state that a specific inference is outside the realm of logic and
common-sense.

Figure 3 illustrates the proposed approach for the pair P: A group of people is on
a beach. H: A group of people is near the sea. The traditional single-label approach will
struggle with this pair because the pair will end up annotated as neutral by some
annotators and as entailment by others. According to Pavlick and Kwiatkowski (2019),
this ambiguity effect is not annotation noise and does not disappear even if we ask many
more annotators, because it stems from the inherent human disagreement on whether
beaches are “prototypically” meant to be by the sea (and not a lake, a river, etc.). On the
other hand, a graded or ordinal approach, as the ones proposed by Chen et al. (2020) and
Zhang et al. (2017), respectively, would not solve the uncertainty either: The probability
of entailment or neutral would be somehow distributed, without further information
on what drives this distribution and what it expresses. Our proposed approach is able
to combine these two methods and make the best of them. First, we decide whether to
be strictly logical reasoners or whether to estimate what the common-sense individual
would say. In the logical sense, a beach does not always indicate the sea: Lakes and
rivers occasionally have beaches. From this stance, the label would be N. From the
common-sense side, it seems to be an entailment E. However, there is no strict standard
for the common-sense label the way there is for a logical one. An annotator would either
give their own “gut feeling” or try to estimate what the gut feeling of others would be.
At this time, we have not explored whether there would be a difference in results based
on these two options. For completeness and better clarity, in Figure 3 we also show
how the contradiction label would be at the non-sensical end, should one want to take
this stance: Being at the beach can never contradict being near the sea. The non-sensical
stance will not be assumed for further illustrations or annotations, unless otherwise
described.

Note that in the proposed approach the same inference relation can be found in
more than one area of the ordered space, for example, when the logical interpretation
coincides with the common-sense one. Consider the pair P: Three boys are jumping in the
leaves. H: Three kids are jumping in the leaves, represented by the ordered sense space
illustrated in Figure 4. Here, the entailment relation is valid both based on a strict,
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Figure 4
The proposed annotation of the pair P: Three boys are jumping in the leaves. H: Three kids are
jumping in the leaves. Here, the entailment relation is located both on the logical end and within
the common-sense area.

Figure 5
The proposed annotation of the pair P: A person is kicking a ball for a soccer game between somebody’s
feet. H: A person is kicking a soccer ball between their feet. Here, entailment and contradiction are
both located within the common-sense continuum, accounting for the different common-sense
notions of different people.

logical interpretation and on common-sense reasoning. Thus, the space features the E
label twice.

Interestingly, our proposed approach allows for even more complex annotation
cases. Consider the pair P: A person is kicking a ball for a soccer game between somebody’s
feet. H: A person is kicking a soccer ball between their feet. Assuming a logical stance, we
would assign the neutral label because somebody is ambiguous in that we do not know
whether their own feet or somebody else’s feet is meant. But from a common-sense
point-of-view, the decision is not as easy: Depending on the different disambiguations
of somebody, both the entailment and the contradiction label may apply (entailment
if somebody and a person corefer, and contradiction if they do not). The annotation is
shown in Figure 5. But this setting can be efficiently served by the continuum of our
ordered sense space, which captures the distribution of human interpretations based on
common-sense and thus allows for different and even opposing annotations within the
common-sense continuum.

Another category of complex cases that is treated by our approach contains exam-
ples whose common-sense label is very close to the non-sensical end of the space. An
example is the pair P: A monkey is riding a bike. H: A bike is being ridden over a monkey,
illustrated in Figure 6. Clearly, if thinking strictly logically, this pair should have a
neutral relation because from P we cannot say anything about H. Most people would
probably also say that entailment and contradiction are here entirely non-sensical. But
apparently not everybody: Some of our annotators thought that, taking a common-
sense stance, contradiction might be the right label, because if we are talking about
the same monkey, it can be either on the bike or under the bike but not both at the
same time (thus, contradiction). Still, these annotators agreed that this is a rather far-
fetched case of contradiction (because how probable is it that anybody is riding in
the air over a monkey?) and thus placed the contradiction label at the left end of the
common-sense continuum, just before the non-sensical end. Thus, such examples show
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Figure 6
The proposed annotation of the pair P: A monkey is riding a bike. H: A bike is being ridden over a
monkey. From a strictly logical point of view, this pair is neutral. However, for some annotators
the contradiction label might still be within the realm of common-sense, though almost
non-sensical.

how the proposed sense space, being ordered, can even deal with such corner cases.
Additionally, such pairs justify the need for the novel notion of non-sensical inferences.

By being novel in its formulation, the proposed annotation scheme might at first
sight seem too complex for crowdsourced annotations. However, the proposed anno-
tation is in fact much simpler than detailed annotation guidelines of other works, and
more reliable than efforts without any guidelines. Essentially, the annotators are only
asked to judge the pairs based on their intuitive logic or common-sense. They do not
need to follow long annotation guidelines nor to perform a non-natural task. At the
same time, the nature of the proposed scheme integrating the specific stance of the
annotator avoids well-known problems of annotation efforts, which do not provide
any specific guidelines, for example, SNLI (cf. Marelli et al. 2014b; Kalouli, Real, and
de Paiva 2017b; Kalouli et al. 2019, 2021). Thus, the proposed annotation scheme can
easily scale-up to crowdsourcing annotators. Despite the nature of the proposed space,
which allows for the human inherent inference variability, concerns about the difficulty
of detecting low-quality workers and measuring the inter-annotator agreement (IAA)
are not justified. Low-quality workers can still be detected and IAA can be measured by
looking at the ends of the space, which represent solid points with the same labels for
almost all annotators, as detailed above (see also Section 4.3, where we report on IAA).
We conduct a crowdsourcing experiment in Section 6.

4.2 How the Proposed Annotation Cures the Maladies of NLI Datasets

Based on the proposed ordered sense space, the 15 annotation issues discussed can be
revised to solve the open challenges and to also offer better solutions to some of the
compromises we needed to make before (see Section 3.2.1). These updated guidelines
can also be found in Appendix A. Note that our manual annotation based on the
proposed sense space is not supposed to reflect the actual distribution of crowdsourced
annotations for the SICK corpus (like in Pavlick and Kwiatkowski 2019); rather, it aims
at a more reliable annotation of the corpus, allowing for and dealing with the inherent
human variability. Particularly, our manual annotation based on the proposed space
should serve as a proof for the usefulness and efficiency of the proposal, which solves
the aforementioned issues. In fact, we are confident that the flexibility and modularity of
the proposed scheme is such that further issues that do not fall into the aforementioned
categories can be efficiently addressed too.

For the categories of ungrammatical and semantically absurd pairs and for the
aspect/tense phenomenon, no new treatment is initiated because these issues do not
concern the annotation per se.
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For the coreference category, our proposed approach allows for more flexibility.
Recall that in our initial guidelines we were forced to give one single label to pairs for
which the coreference was not clear, for example, assuming that, if the two events are
highly unlikely to happen at the same time, then they should be contradictory; now, we
can allow for two distinct labels based on the stance we choose to take. In the example
P: A man is dancing. H: A man is speaking, we can assume that, if we judge the inference
according to the strict guidelines we defined before, a contradictory relation is justified.
At the same time, the natural label we would be assigning with our common-sense is
the neutral label (many people talk while dancing—e.g., to their dance partner).

For ambiguous senses and sentences we are also not forced to make a compromise.
For the example P: A person is folding a sheet. H: A person is folding a piece of paper, we can
assign up to three labels: the pair is neutral if we stick to logical inference (we just do not
know if we are talking about a piece of paper or bed linen), but for the common-sense
it could be an entailment, if we decide to take sheet to be a piece of paper, or even a
contradiction if we take sheet to mean bed linen and thus, form a contradictory relation.

Idioms with prepositions can now also get a better treatment. To a pair such as P:
A couple who have just got married are walking down the aisle. H: The bride and the groom
are leaving after the wedding, we can assign two labels: Strictly speaking, this inference
is neutral because we cannot say whether walking down actually means walking toward
the door of the ceremony location and thus leaving; it could also be the case that the
couple walks down the front part of the ceremony location to pick up some of the
papers. However, in common-sense terms, this inference is probably an entailment
because we know that the couple is already married and thus, chances are that they
are actually leaving the place. Such examples confirm the flexibility and consistency
that the proposed sense annotation allows for. In fact, for the remaining categories the
sense annotation does not only offer higher flexibility, but actual solutions.

For the phrasal verbs, we do not have to pick one single label and thus we can
be sure that our annotation is representative of human inference. For a pair like P:
A man is cutting a tree with an axe. H: A person is chopping down a tree with an axe, we
are at the liberty of assigning two labels to express the whole spectrum of possible
human inferences: strictly speaking cutting does not entail chopping down, even when
speaking of an axe and a tree, so this should be neutral. Nevertheless, for most people’s
commonsense, the phrasal verb can be used interchangeably with the other verb and
thus, an entailment relation can be established.

For the challenging category of looseness, the proposed annotation is a promising
way out. Consider the example P: A man is pushing the buttons of a microwave. H: One
man is powering the microwave. Strictly speaking, this is a neutral relation: One might
be pushing buttons without actually turning on the appliance; maybe they are just
setting the time. However, most people would be happy to accept this relation as an
entailment because in most scenarios the pushing of buttons has the goal of powering
the appliance. The same logic applies for the pair P: A woman is squeezing a lemon. H: The
woman is squeezing juice out of a lemon. Now, squeezing a lemon does not necessarily
mean that one is actually squeezing the juice out of it; maybe somebody really just
presses the lemon to see how ripe it is. Thus, the neutral label is located at the logic
end of the space. However, in most daily scenarios, one refers to squeezing a lemon
to mean getting the juice out of it, and thus the entailment label should be placed in
the common-sense range of the continuum (more to the right, according to our own
intuition, which is, however, subjective and refinable at all times).

Moving on to the gender/age challenge, we can examine the example P: A cupcake
is being eaten by a girl. H: A woman is eating a cupcake. If we decide to use the dictionary
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definitions of things, the entailment relation must be placed at the logic end of the space.
Taking genders into account, a girl is a woman. But most people would not be happy
with this annotation. This is because the context of a girl eating a cupcake probably
brings up the picture of a child and less of an adult. Thus, our common-sense would be
inclined to judge this relation as neutral.

Privative constructions can also be better handled with the proposed ordered sense
space because it allows for the context-sensitivity required. Consider the example we
saw before: P: The cartoon airplane is landing. H: The plane is landing. If a cartoon airplane
is landing, there is certainly no real airplane landing. Thus, strictly speaking the relation
among the pairs is a neutral one. But what if we situate the pair in a more casual context,
maybe involving children, where we are discussing that cartoon airplanes can land, take
off, and so on? Then, the pair should clearly be entailing. The sense space offers this
duality.

Last, we discussed the challenges posed by pairs requiring world-knowledge. This
is one of the most significant categories as state-of-the-art models are claimed to be able
to capture it well. Thus, it becomes important to have reliable annotations, representa-
tive of the phenomenon. This can be seen in the example mentioned before: P: A man
is cooking a breaded pork chop. H: A man is frying a breaded pork chop. The neutral label
can be placed at the logic end of the space: One does not necessarily need to be frying,
if they are cooking. However, most people will say that if something is breaded, it is
most probably fried. Thus, they would be happy to place the entailment label within
the common-sense continuum, probably even toward the right, logical end of the space.

4.3 Resulting Corpus

Based on the proposed sense annotation scheme we are able to manually annotate all
3,138 pairs that could not be reliably annotated by the automatic systems. Specifically,
each of the 3,138 pairs is annotated by 3 from our group independently, and each
annotator is free to choose one or both stances for each pair. For the logical end of the
ordered space, we take the majority vote of the annotations because we want to end
up with one common, uniform label—recall that this notion is supposed to be a rigid,
single-labeled point in space. For the logical category it is also useful to compute the
IAA, which lies at 0.635 Fleiss kappa for the manually annotated pairs and at 0.835
for all pairs (substantial and almost perfect agreement, respectively). In contrast, for the
common-sense continuum we do not require such uniformity because of the very nature
of the continuum. It is also meaningless to try to calculate the IAA since we explicitly
allow and expect disagreement.

Out of the 3,138 pairs, 307 have different labels for each of the two stances, that is,
around 10% have different labels in the logical end and the common-sense continuum.
This percentage might give the initial impression that the majority of pairs can be fully
captured by a single label and that, thus, the more complex annotation scheme is not
necessary. However, as detailed in Section 5, this relatively low percentage makes a
significant difference for the model training and testing. Table 1 presents the distribution
of the labels of the manually annotated pairs, also in comparison to the original SICK
labels. Note that the table presents the common-sense labels as distinct labels (rather
than different labels on a continuum) and this might seem to go against our own argu-
mentation. The reason for this is that from the 3,138 pairs that were manually annotated,
only 15 of them had different common-sense labels; all others might have had a distinct
logic and common-sense label, but the common-sense label itself was consistent among
the annotators. Thus, we refrained from using this small percentage of pairs for further
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Table 1
Distribution of the manually annotated pairs based on the proposed ordered sense space
annotation as per original inference label. AB stands for the semantically absurd pairs and UG
for the ungrammatical ones.

Logic Stance Common-sense Stance

E C N AB UG E C N AB UG

SICK original
E 1,009 36 241 14 29 1,128 37 121 14 29
C 5 426 34 1 12 6 433 26 1 12

N 49 699 527 26 30 84 713 478 26 30

Total per new label 1,063 1,161 802 41 71 1,218 1,183 625 41 71

Total 3,138 3,138 3,138

experimentation as it would not be able to offer any conclusive evidence. However,
this should not suggest that the representation of common-sense as a continuum is not
necessary: if more pairs are annotated and especially if the task is performed by people
of very different backgrounds, for example, crowdsourcing workers, the common-sense
continuum can exactly capture the expected variation.

We make several observations from this table. First, the entailments and the contra-
dictions of the original corpus agree more with the label of the common-sense stance
than of the logical stance. From the entailments of the original corpus, there are 1,128
pairs, which we also annotate as E based on common-sense, vs. 1,009 which we annotate
as E based on logic. Similarly, from the contradictions of the original corpus, there are
433 pairs which we also annotate as C based on common-sense vs. 426 based on logic.
This is not surprising as most SICK annotators used common-sense to judge the pairs
and did not think of more complex, logical rules. However, the original neutrals show
the opposite picture: They agree more with the logic (527) than with the common-sense
(478) annotation. This is consistent with the logic of our sense annotation. Based on strict
logic, many pairs get a neutral relation, but, judged more leniently, based on common-
sense, several of these pairs get an entailment or a contradiction label. Thus, the pairs
judged as neutral based on common-sense are a proper subset of the pairs judged as
neutral based on logic. Additionally, the table shows that for entailments and contradic-
tions the new annotation mostly agrees with the original annotation, both for the logical
and the common-sense viewpoint. In contrast, for neutrals there is more disagreement:
Based on the logic stance, 699 pairs are annotated as C, instead of N, and based on
common-sense, 713. This shows that 12.4% and 12.7%, respectively, of the original
neutral pairs are annotated in a different way. Another interesting observation is that in
the logical annotation there are more neutrals than in the common-sense annotation (802
vs. 625), but fewer entailments and contradictions (1,063 vs. 1,218 and 1,161 vs. 1,183,
respectively). This reflects the notion of our proposed annotation: When strict logic is
required, more pairs get to be neutral than when common-sense is used. Conversely,
when common-sense is used, more pairs get to be entailments and contradictions than
when logic is used. More generally, out of the 3,138 pairs we annotated manually, 1,176
(37.4%) have a different label than the original label within the logic stance and 1,099
(35%) within the common-sense stance.8

8 Assuming that the common-sense labels are merged based on the majority vote; see explanation above.

220



Kalouli et al. Curing the SICK and Other NLI Maladies

Table 2
Distribution of the entire corpus based on the proposed ordered sense space annotation as per
original inference label. AB stands for the semantically absurd pairs and UG for the
ungrammatical ones.

Logic Stance Common-sense Stance

E C N AB UG E C N AB UG

SICK original
E 2,537 36 241 14 29 2,656 37 121 14 29

C 5 1,413 34 1 12 6 1,420 26 1 12

N 49 699 4,801 26 30 84 713 4,752 26 30

Total per new label 2,591 2,148 5,076 41 71 2,753 2,173 4,900 41 71

Total 9,927 9,927 9,927

These percentages are different if they are calculated for the entire corpus. Because
two-thirds of the corpus’ pairs are annotated automatically with the help of the symbolic
systems, most of them only have a single-label annotation. However, this single-label
annotation can easily be transformed to our proposed ordered space annotation. Recall
that the automatic process only considers reliable the labels on which the symbolic
systems and the original SICK annotation agree. Thus, these labels reflect well both the
logic and the common-sense interpretation: The logic interpretation is captured by the
symbolic systems and the common-sense by the SICK original annotators. So, the pairs
that are automatically annotated and only have a single label can be taken to have this
label both from the logic and the common-sense stance. With this, the distribution of
labels over the entire corpus develops as shown in Table 2. For this table we can observe
the same tendencies as above. Overall, around 9% of the entire corpus has different
annotations in the original corpus and our re-annotated version (both with respect to the
logic stance and the common-sense one). This percentage is lower than the one for the
manually annotated pairs because this distribution contains more of the automatically
annotated pairs which by definition agree with the original label.

At this point, it is also interesting to see whether and how the new annotation labels
correlate with specific phenomena of our taxonomy categories. To this end, we provide
the taxonomic category and the annotation labels for the 345 pairs that we annotated
for calibration purposes.9 Table 3 summarizes the results. The column marked with
# represents the number of pairs found for each category, while the column distinct
expresses what percentage of these pairs was annotated with two distinct labels for
logic and common-sense. The rest of the columns give the percentage of pairs that
was annotated with a specific (distinct) label combination for logic and common-sense,
respectively. For example, the column N/E tells us that all pairs (100%) that were marked
with aspect/tense issues and were given two labels got the annotation N for the logic
stance and the annotation E for the common-sense stance. Column N/C,E gives the
percentage of the pairs that were given two distinct labels for logic and common-
sense and for the common-sense stance there was more than one label (i.e., C and E).
The table shows us that the taxonomic issues correlate heavily with the pairs being
given distinct labels for the logic and the common-sense stances. All categories of our
taxonomy with at least one occurrence within the calibration set were per majority
annotated with two distinct labels for logic and common-sense, for example, almost

9 The taxonomic category is only available for these pairs and not for the whole corpus.
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Table 3
Calibration pairs (345): Correlation of the taxonomic category with two distinct labels for logic
and common-sense and with a specific label combination. All columns except for # represent
percentages, e.g., the distinct column gives the percentage of pairs that have two distinct labels
for logic and common-sense, while a column such as N/C represents the percentage of pairs that
have N as their logic label and E as their common-sense label. Column # represents the absolute
number of pairs found in each category. Columns with two labels after the / (e.g., N/C,E)
represent cases where more than one label was given for common-sense (according to the
proposed continuum).
Category # distinct N/C N/E N/C,E C/E E/C C/N E/N C/E,N
ungrammatical 3 0 − − − − − − − −
non-sensical 1 0 − − − − − − − −
aspect/tense 5 60 − 100 − − − − − −
coreference 4 75 − 66.6 − − − 33.3 − −
ambiguous 31 96.7 3.3 73.3 10 13.3 3.3 − − −
idioms 0 0 − − − − − − − −
phrasal verbs 4 50 50 50 − − − − − −
looseness 20 90 − 61.1 16.6 22.2 − − − −
gender/age 12 91.6 − 9 − 9 45.4 − 18.1 18.1
privative 0 0 − − − − − − − −
world knowledge 11 90 − 80 − 20 − − − −
“normal” (all others) 254 0 − − − − − − − −

97% of the ambiguous cases and 92% of the gender/age pairs were given two distinct
labels. On the contrary, “normal” pairs, that is, pairs for which no special taxonomic
category could be established, were never given two distinct labels. This suggests that
for the majority of the pairs, the logic and the common-sense stance coincide and that,
thus, existing annotation schemes can efficiently capture them, giving the impression of
being accurate. However, we see that all other “harder” cases can hardly be captured
with a single label or a graded scale annotation. In particular, we observe that such pairs
mostly get an N/E annotation, that is, they are dimmed neutral according to logic and
entailment according to common-sense. This nicely captures the intuition behind the
proposed scheme: If strictly judged with logic, many pairs have to be neutral; however,
if the more lax common-sense is allowed, most people will be happy to assume that
these pairs are entailments.

5. Experiments

Although the proposed ordered sense space annotation is theoretically able to handle
well the challenges of the NLI task, as explained above, it is also important to investigate
how state-of-the-art neural models behave practically with respect to the ordered sense
space annotation. In particular, we want to address the following research questions:

• How do models perform on the newly annotated corpus when the logic
and the common-sense annotation are used as the gold-standard and also
in comparison to their performance on the original corpus?

• Does fine-tuning on the new labels of the logic and common-sense stance
alter the performance of the models on the original and the re-annotated
corpus?
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• How do models perform when tested only on the pairs where the label
based on logic and on common-sense differ from the original SICK label,
respectively? Is there a significant performance difference that can tell us
more about the nature of these pairs? And how well can symbolic
systems deal with such pairs?

• What is the performance of the models when tested only on the pairs that
have different labels for the logic and common-sense stance? Are such
pairs with inherent variability more difficult for models?

• Do the probabilities predicted by the models reflect the different sense
stances for pairs that have different labels for the logic and
common-sense stance? In other words, are models able to predict the
annotation space as proposed within this work?

• How do models trained on the original and the new version of SICK
behave when confronted with entirely different test data, for example,
from corpora such as SNLI and MNLI?

• The ordered sense space was proposed for humans. Do the findings here
give us reason to think that it is a useful way to think about models and
what they are doing?

To answer these questions we perform several experiments in different settings,
namely, with different training and test sets. All experiments are performed with the
BERT (base) (Devlin et al. 2019) and the RoBERTa (Liu et al. 2019b) pretrained models in
the HuggingFace implementation (Wolf et al. 2020). BERT is chosen as a representative
model of the transformer architecture and because it has shown a considerable perfor-
mance jump compared with previous neural models in many different NLI datasets.
RoBERTa is chosen because it has proven a very strong model for NLI, outperforming
BERT. For all experiments we fine-tune the parameters of learning rate and epochs
based on the setting that delivers the best performance. The best performance is cal-
culated based on the average validation loss across 5 runs with different seeds.

5.1 Experimental Set-ups

The experiments include three training (fine-tuning) settings and 12 testing sets. The ne-
cessity for these different experimental settings becomes clear in Section 5.2 during the
discussion of the results. The SICK corpus is split into its standard train/validation/test
splits, as these were defined during the SemEval 2014 challenge (Marelli et al. 2014a).
The train set contains 4,500 pairs, the validation set 500 pairs, and the test set 4,927 pairs.
For training, the pretrained models are fine-tuned on the training set (a) annotated with
the original labels, (b) annotated with the labels of the logic stance, and (c) annotated
with the labels of the common-sense stance. For testing the different models, the follow-
ing test sets are considered. First, we test on the SICK test set annotated with the original
labels. Next, we test on the test set annotated with the labels of the logic stance and on
the test set annotated with the labels of the common-sense stance.10 Additionally, we
test on that subset of the test set for which the original label agrees with our new label.

10 See note in Section 4.3 on which labels are exactly used for the common-sense stance.
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Two settings are considered. In the first one, the subset contains pairs whose original
annotation agrees with the label of logic (4,352 pairs), while in the second setting the
subset contains pairs whose original annotation agrees with the label of common-
sense (4,388 pairs). Furthermore, we test on the complements of these subsets. More
precisely, we test on the subset of the test set that contains pairs whose original anno-
tation does not agree with the label of logic (575 pairs) and on the subset with pairs
whose original annotation does not agree with the label of common-sense (539 pairs).
A further experimental setting considers the subset of the test set that contains pairs
that have distinct labels based on the logic and common-sense stances. This subset
contains 149 pairs and again two settings are distinguished: in the first one the pairs
are annotated with the label of logic, while in the second one they are annotated with
the label of common-sense. In this setting, we also test whether the models are able to
predict the whole spectrum of the proposed annotation space, by predicting the logic
and the common-sense labels of these pairs. Finally, we also test on the SNLI (Bowman
et al. 2015) test and MNLI (Williams, Nangia, and Bowman 2018) development set.

5.2 Results

Testing on SICK Test Set. The experiments and the results of testing on the SICK test set
are shown in Table 4. The table shows the accuracy of the BERT and RoBERTa models
when fine-tuned and tested on the different settings.

First, the table confirms previous literature findings on these two models. We see
that BERT and RoBERTa are able to achieve an accuracy of 85.3% and 90.5%, respec-
tively, when trained on the original SICK training set and tested on the original SICK test
set. This performance is comparable to the performance reported by Devlin et al. (2019)
and Liu et al. (2019b) for SNLI and MNLI and shows that the smaller size of SICK does
not have a negative impact on performance. This also confirms that our findings are
transferable to larger NLI corpora. However, when the models are tested on the SICK
test set annotated with the logical or the common-sense stance, performance drops to
around 80%–83%, respectively. This is not surprising since the original SICK training set
is not suitable for capturing the logic and common-sense nuances.

When training on a dataset with a specific stance, BERT and RoBERTa show differ-
ent behaviors. RoBERTa performs best when trained and tested on datasets of the same
stance, as expected. For example, when trained on the SICK train set annotated with
the common-sense stance, RoBERTa achieves 87.4% on the test set annotated with the
same stance, while only 86.9% and 85.4% for the logic stance and the original dataset,

Table 4
Accuracy of the pretrained models when fine-tuned and tested on different train and test sets.
The notation .logic/.common-sense/.original states which stance the annotator assumed when
providing the label.

Testset Trainset

original SICK.train SICK.train.logic SICK.train.common-sense
BERT RoBERTA BERT RoBERTA BERT RoBERTA

original SICK.test 85.3 90.5 82.9 85.6 82 85.4

SICK.test.logic 80.6 83.9 81.4 87.9 80.3 86.9

SICK.test.common-sense 80.8 84.2 81.2 87.6 80.7 87.4
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respectively. This clearly suggests that RoBERTa is able to capture much of the notion
of logic/common-sense that is encoded in these differently annotated datasets. On the
contrary, BERT shows a surprising behavior at first sight. Even when trained on the
SICK training set annotated with the logic or the common-sense stances, BERT still
performs better on the original SICK test set than on the newly annotated SICK test sets,
respectively. This would mean that BERT does not learn to efficiently distinguish the
specific notions of logical and common-sense inference only based on SICK. Particularly,
this could suggest that the specific BERT architecture does not allow the model to
improve only based on a minority of instances. Recall that after annotating the whole
corpus, we found that 9% of it was differently annotated by us and by the original
annotators. Thus, because most of the new annotations coincide with the original ones,
there are only a few different ones and these do not seem to get any special treatment
by BERT so that their effect is “absorbed” by the rest of the pairs, that is, they stand in
the minority and thus cannot contribute to a high learning attention. Thus, BERT still
performs best on the original SICK test set.

Testing on the “Agreeing/Disagreeing” Subsets of the SICK Test Set. To confirm these findings
and to also investigate further the “absorbing” effect of the different annotations, we
perform experiments on subsets of the SICK test set. Specifically, we split the SICK test
set to pairs that have the same original label as our label and pairs that have a different
original label from our label. In each of these splits, we consider two settings. The first
considers pairs whose original label is the same/different from our label based on logic,
while the second setting includes pairs whose original label is the same/different from
our label based on common-sense. An example of each category is given in (1)–(4).

(1) Original label (C) is the same as the label based on logic (C):
P: Two dogs are wrestling and hugging.
H: There is no dog wrestling and hugging.

(2) Original label (N) is different from the label based on logic (C):
P: A man, a woman and two girls are walking on the beach.
H: A man, a woman and two girls are sitting on the beach.

(3) Original label (E) is the same as the label based on common-sense (E):
P: An onion is being cut by a man.
H: A man is slicing an onion.

(4) Original label (C) is different from the label based on common-sense (N):
P: A man is laughing.
H: A man is crying.

Example (1) is judged as a contradiction by the original annotators. In terms of a strict,
logical inference, this pair is indeed a C and is thus annotated by us the same way. (2) is
an opposite example: Here, the annotators considered the pair neutral, probably think-
ing that the group of people could be taking some breaks while walking on the beach.
However, according to our definition of strict, logical inference, this pair is C because at
the very same moment, the very same people cannot be walking and sitting. Moving on
to the common-sense labels, the original annotators and us agree on example (3). The
pair is labeled an E because within common-sense, cutting is (almost) synonymous to
slicing and especially for vegetables, cutting pretty much entails slicing of some kind.
For example (4), our label does not agree with the original label. Strictly speaking, the
pair is neutral because a person who is laughing might indeed be having tears at the
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Table 5
Accuracy of the the pretrained models when fine-tuned and tested on the
“agreeing/disagreeing” subsets of the SICK test set. The notation .logic/.common-sense/.original
states which stance the annotator assumed when providing the label.

Testset Trainset
original SICK.train SICK.train.logic SICK.train.common-sense

BERT RoBERTA BERT RoBERTA BERT RoBERTA

pairs where SICK.test.logic ==
SICK.test.original

88.7 92.4 88.3 92 87.5 91.5

pairs where SICK.test.common-sense
== SICK.test.original

88.6 92.3 88.1 91.5 87.5 91.4

pairs where SICK.test.logic !=
SICK.test.original

20.1 19.5 29.4 57.2 26.1 52.7

pairs where SICK.test.common-sense
!= SICK.test.original

18.8 18.7 26.5 55.4 25.8 54.5

same time, either because the joke was so good or because they are so touched. This
is probably also what the original annotators thought. However, in a more everyday
scenario, somebody who is laughing is most often not crying and thus, the pair could
be a contradiction within common-sense.

The results of these experiments are shown in Table 5. The first major observation is
that the performance of the models on the pairs where the original label is different
from the new label is much lower than on the pairs with the same label. For the
former, the performance is at most at high 20s for BERT and 50s for RoBERTA, while
for the latter the performance is at high 80s and 90s, respectively. This tremendous
performance difference allows for a couple of conclusions. First, it confirms the finding
that the common practice of using standard (train/dev/test) splits is not necessarily
representative of the models’ performance because testing with different splits—as the
ones we choose here—does not allow for the reproducibility of the (high) performance
(see Gorman and Bedrick 2019; van der Goot 2021). In particular, it shows that low
performance might be so well “hidden” by the high performance of the standard test
split that it goes unnoticed. Second, this large performance gap indicates that the pairs
that have been annotated differently by the original annotators and by us are inherently
difficult and ambiguous to annotate, and thus trained models cannot deal with them as
effectively. Interestingly, this difficulty effect does not disappear even if we consider as
the gold label the label of the common-sense stance, which is supposed to capture this
inherent variability. This finding confirms previous literature (Pavlick and Kwiatkowski
2019; Chen et al. 2020) and highlights the necessity of the proposed ordered sense space
because the traditional single-label task cannot even capture this inherent variability.

The difficulty of these pairs can also be seen when running them on the symbolic
systems. As shown in Table 6, the symbolic systems have an accuracy of 78% to 83%
for the pairs on which the original label is the same as our label based on logic, but
can reach at most 40% when evaluated on the pairs where the labels are different. This
confirms that some pairs are not only hard for neural models like BERT and RoBERTa,
but even for logic-based systems. Here, a further interesting observation is that the
symbolic systems achieve a higher performance than BERT and RoBERTa for the pairs
whose original label is different from the label based on logic (last row of Table 6 and
the second to last row of Table 5). First, this is in line with our intuition about the nature
of the symbolic systems being reliable on logical inferences. Additionally, it highlights

226



Kalouli et al. Curing the SICK and Other NLI Maladies

Table 6
Accuracy of the symbolic systems when tested on different test sets.

Testset Symbolic Systems
ccg2lambda1 ccg2lambda2 LangPro MonaLog GKR4NLI

original SICK.test 80.5 81.1 80.5 75.3 77

SICK.test.logic 75.6 76.3 75.5 74.3 78.4

SICK.test.common-sense 74 74.4 74 72.5 77.5

pairs where SICK.test.logic ==
SICK.test.original

82.5 82.9 82.4 78.6 83.2

pairs where SICK.test.logic !=
SICK.test.original

23.3 25.9 23.4 41.7 42

the need for training data capturing the fine nuances of logical and common-sense
inference, if we are aiming at human-like models.11

Going back to Table 5, we can see that the low performance of the models on the
pairs with different original and new labels is not significantly affected by the training
set. Training on the new re-annotated sets only slightly improves accuracy: Training on
the SICK training set annotated with the logic stance does deliver a higher accuracy on
the pairs whose original label is different from the label based on logic, when compared
to training on the original SICK or the SICK train set annotated with the common-sense
stance—for both models. Conversely, training on the SICK train set annotated with
common-sense does not deliver better performance on the pairs whose original label
is different from the label based on common-sense, than on the pairs whose original
label is different from the label based on logic. This might seem counter-intuitive at
first sight, but can be explained by the nature of the pairs. The pairs that have different
original and common-sense labels are a subset of the pairs that have different original
and logical labels because in many cases the two labels coincide, as discussed above.12

Thus, training on the SICK train set annotated with common-sense shows comparable
performance on the pairs whose original label is different from the label based on
common-sense and on the pairs whose original label is different from the label based
on logic. Overall, we also make the same observation as before: RoBERTa is better than
BERT in dealing with pairs where the original and our label are different; RoBERTa
can handle harder pairs more efficiently. This confirms the literature finding (Liu et al.
2019b) that RoBERTA outperforms BERT on tasks of inference.

Testing on the Subset of the SICK Test Set with “Distinct” Labels. The subset splitting we
perform sheds light on pairs with inherent inference difficulty and on the correspond-
ing model performance and suggests the need for the proposed ordered sense space
annotation. To further investigate the effect of the sense space, we consider another
group of “problematic” pairs: pairs that have two distinct labels, that is, based on logic
they have a different annotation than based on common-sense. Examples of such pairs
can be found in Section 4.2. Here, we create a subset of the test set containing only those

11 The precision and recall of the symbolic systems are given in Table 10 in Appendix B.
12 In other words, all pairs have a label based on logic, but not all pairs have a distinct label based on

common-sense, because in many cases the two are the same.
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Table 7
Accuracy of the pretrained models when fine-tuned and tested on the subset of the SICK test set
with “distinct” labels . .logic/.common-sense/.original states which stance the annotator assumed
when providing the label.

Testset Trainset

original SICK.train SICK.train.logic SICK.train.common-sense

BERT RoBERTA BERT RoBERTA BERT RoBERTA
pairs with distinct labels
(logic annotation)

38.5 36.2 46.4 49.8 35.7 35.5

pairs with distinct labels
(common-sense annotation)

46 48.4 37.5 38.1 48 49.5

pairs that have distinct labels for the logic and common-sense stance and, again, we
experiment with two settings: In one setting the label based on logic is taken as the gold
label and in the other, the label based on common-sense is considered gold.

Table 7 shows the results. When testing these pairs on their logic annotation, we
see that training on the label based on logic of the SICK training set gives the best
results, as expected. Training on the original SICK labels gives the next best results for
both models. This is also expected because the original labels are somewhere between
the logical and the common-sense stance: In some cases, annotators tried to be very
precise and “logical” and in some others, common-sense prevailed. Overall, there seems
to be a continuum of performance: performance on common-sense < performance on
SICK original< performance on logic. We get a similar but inverse picture when testing
on the label based on common-sense of these pairs. The best performance is achieved
when training on the common-sense annotation of the SICK training set, as expected.
There is a slightly worse performance when training on the original BERT, and the worst
performance is when training on the label based on logic. Again, this is according to our
intuition: Training on the original SICK gives us better performance than training on
the label based on logic, because the original label captures more of common-sense than
the label based on logic does. Here, the continuum described previously is inverted:
performance on logic < performance on SICK original < performance on common-
sense. Overall and across train and test sets, we can observe the same picture as for
the subsets containing pairs with different original and new labels: The performance on
the pairs with distinct labels is much lower than the performance on the entire test sets.
This confirms the finding of the inherent difficulty of certain pairs.

Predicting All Elements of the Annotation Scheme for the SICK Test Set with “Distinct”
Labels. Up until now, we have only evaluated settings in which the model prediction
is compared either with the logic or the common-sense label. However, because our
goal is the creation of a dataset with more realistic labels and the use of the proposed
annotation scheme in NLI tasks, it is important to investigate whether the models
can predict the whole spectrum of the annotation space. In other words, we need to
investigate whether the models are able to learn the two different stances and reflect
them in the predicted probabilities. For this purpose, in this evaluation setting we do
not consider the predicted label of the model with the highest probability, but we look
at the whole probability distribution. With this, we want to see whether this distribution
reflects the different stances captured in the proposed annotation space, that is, whether
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Figure 7
Correlation graph between BERT’s predictions and the three annotation stances proposed in this
work. On the x-axis we find the three probabilities predicted by the model (because we have 3
inference labels) and on the y-axis we find the percentage of pairs whose logic/common-sense/
non-sense label correlates with the model’s highest, second highest, and third highest prediction.
Each stance is depicted by a different color and the five dots per color represent the running of
the model on 5 different seeds.

there is a correlation between the predicted probabilities and the logic and common-
sense labels.

To this end, we run the two models on the SICK test set with “distinct” labels and on
five different seeds and we compute the correlation graphs shown in Figure 7 for BERT
and Figure 8 for RoBERTa. We only test on the subset of pairs that have distinct labels
for logic and common-sense because it only makes sense to test on them: If we want to
see how the models’ predicted probabilities correlate with the different stances of our
proposed space, then we need pairs that have different labels for the different stances;
otherwise, the picture is not representative. We run the models on five seeds to capture
any fluctuation phenomena. The graphs in figures 7 and 8 show the three numbers—
the three probabilities (e.g., 70% E, 20% N, 10% C) that the models will predict (since we
have three target labels) in the x-axis. These numbers add up to 100 (probability of 1).
Particularly, we see that the x-axis shows the label with the highest probability (notation
1), the label with the second highest probability (notation 2), and the one with the third
highest probability (notation 3). The y-axis shows the percentage of the pairs where the
nth probability of the model is the same with the logic/common-sense/non-sense label
of our proposed annotation scheme (green, red, and blue notations, respectively). The
five dots of each color represent the five seeds we used. The two panels, left and right,

229



Computational Linguistics Volume 49, Number 1

Figure 8
Correlation graph between RoBERTa’s predictions and the three annotation stances proposed in
this work. On the x-axis we find the three probabilities predicted by the model (because we have
3 inference labels) and on the y-axis we find the percentage of pairs whose logic/common-
sense/non-sense label correlates with the model’s highest, second highest, and third highest
prediction. Each stance is depicted by a different color and the five dots per color represent the
running of the model on 5 different seeds.

show the training set we used, that is, whether the logically annotated train set (left) or
the common-sense annotated train set (right) was used.

The graphs allow us a number of observations. First, we confirm the results
reported in Table 4: RoBERTa is much better than BERT in capturing the different
stances introduced in this work. For RoBERTa in Figure 8 we can see clear clusters
of the logic/common-sense/non-sense correlations (colors nicely separated), whereas
for BERT the data is not separated clearly. This means that BERT struggles to learn
these different stances, whether it trained on the logic or the common-sense label. Still,
even the performance of RoBERTa is not as high as we would want: The percentages of
the two highest probabilities lie at around 50% to 60%, showing that RoBERTa is also
not entirely able to differentiate between the different stances. Particularly, we observe
the following: When RoBERTa is trained on the logic label (Figure 8, left), the logic
percentage is higher than the common-sense percentage for both the highest and the
second highest probability. This is also what we would expect: Because it is trained on
logic labels, the two most probable predictions should correlate more with the logic
labels of the pairs. However, this picture is flipped when training on the common-sense
label (Figure 8, right): Here, the common-sense percentage is higher for the highest
model probability but for the second highest probability it is the logic percentage that is
higher. This means that even RoBERTa is not able to have a consistent performance by
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Table 8
Accuracy of pretrained models when fine-tuned on SICK and tested on SNLI and MNLI.
The notation .logic/.common-sense/.original states which stance the annotator assumed when
providing the label.

Testset Trainset

original SICK.train SICK.train.logic SICK.train.common-sense
BERT RoBERTA BERT RoBERTA BERT RoBERTA

SNLI.test 44.8 52.2 43.4 52.3 43.9 53

MNLI.dev.matched 43.9 51.4 42.7 53.7 43.2 57.3

MNLI.dev.mismatched 46 52.7 44.7 55.4 44.9 59.7

predicting the highest probabilities for the stance it has been trained on across the board.
This is not surprising considering that these models have not been optimized to capture
such different stances, but it also suggests that such models might be able to learn such
differences if trained and optimized on suitable data. A further finding for the more
efficient RoBERTa is that the non-sensical label correlates with the lowest percentage
in the highest and second highest probabilities and with the highest percentage in the
third highest probability, no matter the training set. This is indeed sensible because it
shows that the non-sensical labels, that is, labels that do not lead to valid inferences,
are less likely to be predicted by the model as the first or second probability but
rather as the third one. This also indicates more clearly the proposed status of the non-
sensical labels.

Testing on Other NLI Datasets. Table 8 shows the performance when training on the
original corpus and the newly annotated versions and tested on entirely different data
and particularly on SNLI and MNLI. It is clear that, no matter the training set, BERT
and RoBERTA struggle to deal with the SNLI and MNLI inferences. This is unexpected
for the original SICK training set and expected for the new training sets. For the original
train set we would expect a similar performance like the one for the original SICK test
set. In particular, this is expected for SNLI, which is supposed to contain the same
kind of simple, every-day, caption-based inferences that SICK does. One reason for
this strange behavior might be that SNLI and MNLI contain many sentences without
a finite verb, for example, pairs like P: A young boy in a field of flowers carrying a ball.
H: boy in field. Such structures are not found in SICK. It could thus be the case that the
model has not learned to deal with such verb-less sentences. For the new re-annotated
train sets, the results are expected. The train sets are created based on the ordered sense
space annotation proposed in this work and thus the trained model cannot efficiently
deal with test sets with “mixed” logical and common-sense annotations, as SNLI and
MNLI are.

5.3 Discussion

With these experiments we are able to address our research questions and, in particular
we are able to show (a) the inherent difficulty and variability of certain pairs, (b) how
current models struggle to efficiently model logic inferences and the common-sense
ones (but rather model a mix of them), (c) how the current task formulation does
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not allow for the distinct handling of different kinds of inferences and thus inevitably
leads models to non-representative performance, and (d) how the proposed ordered
sense space annotation can come to the rescue. The ordered sense space proposes to
distinguish between strict, logical inferences and common-sense, “people on the street”
inferences. In this way, hard and ambiguous pairs are allowed to also have ambiguous,
even conflicting, annotations. With such annotations in place, the whole NLI scenery can
be transformed. First, the ordered sense space annotation can be exploited during train-
ing: Pairs that have the same label for the logic and the common-sense stance are not
ambiguous, are thus more reliable for training and can have a stronger learning effect—
for example, have higher training weights, than “hard” pairs with distinct labels for
logic and common-sense. Such special weighting ought to improve model performance.
Second, this kind of annotation can be exploited during evaluation: We can measure
performance on pairs with the same and with distinct labels of logic/common-sense.
This will give us a better picture of what the models really learn and how they can be
improved. Third, the annotation can be used to train models to distinguish between
“hard” (ambiguous) and “easy” (unambiguous) pairs. If this is achieved, then models
tuned for logic or for common-sense can be combined. In fact, this opens the way for
a hybrid NLI direction, where symbolic systems live alongside neural models. If a pair
can be identified as “hard,” requiring a different label for logic and for common-sense,
the label of logic can be given by a symbolic system and the label of common-sense by a
neural model, as each of these methods has been shown to excel in strict reasoning and
“people in the street” inference, respectively. At the same time, such a “circumscribed”
dataset, as Zaenen, Karttunen, and Crouch (2005) call it, can contribute to the higher
explainability of current models. We can know whether a model fails at a logical or a
common-sense inference and thus, we can also understand more of the inner workings
of the black-box. Consequently, we can choose to optimize the parts that we know
are failing.

Connection to Previous Formulations of NLI. The proposed ordered sense space is not
entirely novel, in that it attempts to combine the two seemingly opposing stands ex-
pressed by Zaenen, Karttunen, and Crouch (2005) and Manning (2006) (see Section 2.1).
The former argues for a more “controlled” inference task, where the kind of inference
and world-knowledge is carefully circumscribed and considered. The latter defends
a less precise and more “natural” task, where inferences “in the wild” are captured.
The two viewpoints are mostly seen as contradictory, while in reality they are rather
complementary. Our proposed approach attempts to combine them into one: annotators
are allowed to decide based on their “gut feeling,” naturally, but they are also asked to
judge whether a more strict view of the world would produce a different inference.
Thus, a dataset will naturally end up annotated with some of the types of meta-
information that Zaenen, Karttunen, and Crouch (2005) ask for, without at the same
time sacrificing the spontaneous, natural, “human on the street” inference mechanism
that Manning (2006) and so many others consider important. Except for these works,
our proposed approach is also partly parallel to the proposals by Pavlick and Callison-
Burch (2016): The researchers show that a distribution over the inference labels would
be a better learning target for NLI models because it captures more faithfully the inher-
ent disagreement of human inferences. In our approach we also capture this inherent
disagreement and distribution of labels by implementing a continuum in the middle
of the ordered sense space. But we do more than that: We practically meta-annotate this
label distribution as common-sense reasoning and explicitly distinguish it from logical
and non-sensical reasoning, which should be rigid and uniform. Overall, our approach
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can be situated between older and more recent proposals, bridging the gap between
their different desiderata and goals.

But Is the Sense Space Real? We have presented our ordered sense space in terms of hu-
mans and the stances they assume when doing Natural Language Inference in ordinary
life. If we are right, then this space already shows up in the labels attached by human
annotators, the labels that determine the “gold standards” of datasets. But can we find
anything like this in the performance of our models? It turns out that we can. Our re-
annotation provides data along with the sense stance that was used in determining the label
of each pair. We thus can train and test on differing subsets. We have shown that there is
a difference. Table 5 shows that pairs with distinct labels obtained by either the logic or
the common-sense stance are difficult for models. The correlations offered in Figures 7
and 8 also show to what extent the distribution space currently predicted by the models
can reflect the different sense stances.

Cost for Our Annotation. We estimate that using our ordered sense space annotation
will take 1.5 times the amount of time as the single-label annotation, but we believe
this is worthwhile considering the more precise and representative of human inference
annotation we obtain. Despite this longer time, the annotation is definitely feasible as a
crowdsourcing task as it is supposed to be self-explanatory. Also, making the distinction
between strict, logical inference and the more casual, common-sense reasoning forces
the annotator to think harder about the justifications for their annotation. Furthermore,
it should be noted that the required “space thinking” can easily be picked up while
annotating, so that later annotations are faster than the first ones. Last but not least, we
think our method is in line with NLI datasets asking annotators to provide explanations
for their annotations (Camburu et al. 2018; Nie et al. 2020), a step toward providing
more information behind the annotators’ decision and building models that capture the
nuance of human annotated data (Prabhakaran, Davani, and Dı́az 2021).

6. A Small-Scale Crowd Annotation with MNLI

In order to see whether our method could be applied to a crowd annotation setting,
we conducted a small annotation experiment on the Amazon MTurk platform,13 with
100 examples from MNLI (Williams, Nangia, and Bowman 2018). These examples are
randomly sampled from the chaosNLI (Nie, Zhou, and Bansal 2020) dataset because
they are the ones where the 5 annotators did not reach a unanimous decision in the
original SNLI/MNLI annotation.

Specifically, we adapted our scheme slightly and asked the crowd annotators to
give two inference labels for a given pair, based on two stances: one as a judge in court
(corresponding to the strict logical annotation), and another as a person on the street
(roughly equivalent to the common-sense annotation). We restricted our annotators to
those based in the US. Each pair was annotated by 10 Turkers, and one HIT contained
22 pairs, with 20 pairs from the MNLI portion of chaosNLI and another two as a catch
trial. If the annotator answered the catch trial wrong, then their data would be excluded
in the final analysis. They were compensated $4 USD for annotating one HIT.14 The
average completion time for one HIT was about 18 minutes.

13 https://www.mturk.com/.
14 Full instructions can be found here: https://huhailinguist.github.io/stuff/Instructions.pdf.
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Table 9
Distribution of pairs with different labels from the crowd annotation experiment. Note: ‘EN’
means that there is a tie between “E” and “N”.

as a judge: majority label as a person on the street: majority label number of pairs
N E 38
N N 21
C C 14
E E 10
EN E 6
NC C 3
N EN 3
N C 2
N EC 1
N NC 1
ENC E 1

In the total of five HITs (20 pairs per HIT) we distributed, eight annotators (out of
50) were excluded because their answers to the catch trials were wrong.

For each stance, we took the majority vote of the labels. Note that there might be a tie
between two or even three labels. The results are summarized in Table 9.15 From the first
row, we clearly see that annotators are able to distinguish between these two stances:
38 pairs are judged to be “neutral” if they take a strict stance as if they were a judge in
the court but “entailment” if they took a loose criterion as a person on the street. The
next three rows in the table are pairs that have the same labels for both stances, which
constitute 45 pairs in total. Then we have a couple of pairs that are labeled “neutral” as
a judge, but “contradiction” to a person on the street.

Using data from chaosNLI allows us to compare the two-stance annotations we
obtained with the 100 annotations the chaosNLI authors obtained under the single-label
scheme. For instance, consider the following pair:

premise: Most of Slate will not be published next week, the third and
last of our traditional summer weeks off.

hypothesis: Slate won’t be published much this summer.

This received 62 “entailment” labels, 31 “neutral” labels, and 7 “contradiction”
labels in chaosNLI. In our annotation, it was labeled as “neutral” from the stance as
a judge, and “entailment” from the person on the street stance. This indicates that our
two annotation schemes converge on this pair, and what is more interesting is that our
two-label scheme offers more information: Those who annotate it as “entailment” are
being loose in their judgments, while those giving it “neutral” are being more strict.
This result makes sense as how “much” should be considered as “published much” is
a rather subjective decision, which may vary from annotator to annotator, giving rise to
the “neutral” label if one were to be strict on what counts as an “entailment.”

15 All annotations can be found at https://github.com/huhailinguist/curing-SICK.
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Overall, we take our small crowd annotation experiment to indicate that non-
logicians or non-linguists are capable of making the distinction between the two stances,
and it is possible to apply our annotation scheme in the future for the construction of
other NLI datasets.

7. Conclusion and Future Work

In this paper we have conducted an extensive study of the SICK corpus and have shed
light on the aspects of NLI that make it so error-prone and uncertain. To tackle these
challenges, this work proposes a new annotation method, which distances itself from
the single label approach and the graded certainty distribution task. Instead, we have
proposed an ordered sense space annotation that is able to combine the typical human
inference mechanism, which is natural, spontaneous, and loose, with a more guided,
precise, and logical mechanism that is required in some tasks. The proposed ordered
sense space annotation allows for each inference problem to be solved separately based
on strict logic and common-sense, not only accepting conflicting annotations but also
being able to give explanations for them. The efficiency of the proposed annotation has
been shown through specific corpus examples, which are split into formal categories,
and also through thorough experiments with transformer-based neural models. We
are able to show marked differences in the performance of pretrained models when
tested on pairs with inherent ambiguity and variability, exposing the models’ ability
to distinguish between logical and common-sense inference. With this, we are also
able to propose ways in which current models and the whole NLI landscape could
benefit from the ordered sense space annotation. By achieving these goals, we have also
provided a new version of the SICK corpus, re-annotated and reliable, to be used for
training and testing. We have offered a taxonomy of annotation issues and guidelines.
We have also shown that out method can be scaled up to crowd-sourcing annotation,
on a different NLI dataset, MNLI. Overall, this work contributes to the current NLI
field by (a) providing a reliable corpus, (b) providing a taxonomy of challenging NLI
annotations, (c) proposing a new annotation scheme that tackles these challenges, (d)
showing the practical benefits of the annotation scheme when evaluated on state-of-
the-art transformer models, and (e) providing initial results of crowdsourcing using
the proposed scheme. The final corpus with the ordered sense space annotations, the
labels of the symbolic systems, as well as the crowd-annotated examples from MNLI
are available at https://github.com/huhailinguist/curing-SICK.

Going forward, we would like to extend this work. First, we would like to explore
ways to make better use of the common-sense annotation. Currently and due to the
small number of relevant occurrences (see Section 4.3), the common-sense annotation is
interpreted as a distinct label for the statistics and the model experiments. However, it
would be interesting to investigate how the gradient scale available within the common-
sense continuum can be exploited for the training and testing of the models, possibly
along the lines of the proposals by Pavlick and Kwiatkowski (2019). For example, we
could explore whether the models can capture the tendency of the common-sense label,
that is, whether it is rather toward the logical end or the non-sensical one. In this way,
this future direction could promote the dialog between researchers who are skeptical
of the current NLI task formulation. Finally, future work should attempt to devise a
new corpus based on the proposed ordered sense space annotation and train suitable
models. This effort will certainly highlight open issues of the approach, but will also
open the way for the use of such corpora in the training and testing of neural models,
contributing to improved, well-formed NLI.
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Appendix A. Annotation Guidelines

In this section, we lay out our annotation guidelines, as those were re-formed based on
the proposed sense annotation. Most importantly, we categorize the difficult cases we
encountered in our pilot annotation. We also highlight the cases where more than one
distinctive label may be needed.

Semantically Absurd Pairs

Description: One of the sentences is semantically absurd.
Prototypical Example: P: A motorcycle rider is standing up on the seat of a white motorcycle.
H: A motorcycle is riding standing up on the seat of the vehicle.
Solution: Mark it as semantically absurd (AB).

Ungrammatical

Description: There is at least one grammatical error in one of the sentences.
Prototypical Example: P: A man in a car is pulling up beside a woman that is who along a
road. H: A man in a car is not pulling up beside a woman who is walking along a road.
Solution: Mark them as ungrammatical (UG).

Aspect/Tense

Description: Different tenses and aspects are involved. The inference label may be
different depending on whether we take the tenses and aspects literally or ignore them.
Prototypical Example: P: The adults and children are not gathered near an outdoor seating ar-
rangement. H: The adults and children are being gathered near an outdoor seating arrangement.
Solution: Assume the present and progressive. Thus, the above example should be a
contradiction.

Phrasal Verbs - Prepositions

Description: There is a phrasal verb involved or part of it and depending on what we
take it to mean, the inference label could change. Or there is some preposition that seems
to be altering the meaning of the sentence.
Prototypical Example: P: A woman is picking a can. H: A woman is taking a can.
Solution: Assign two labels, based on logic and common-sense, as see fit.

Idiomatic Phrases

Description: An idiomatic phrase is involved. Depending on how the phrase is inter-
preted, the label may be different.
Prototypical Example: The couple is walking down the aisle. The couple is walking up
the aisle.
Solution: Assign two labels, based on logic and common-sense, as see fit.

Looseness

Description: It is not clear how strict we should be with the meaning of the word. We
can decide to be more loose to match the context.
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Prototypical Example: P: A surfer is surfing a big wave. H: A surfer is surfing a huge wave.
Another example: P: A small guinea pig is gnawing and eating a piece of carrot on the floor. H:
A guinea pig is devouring a carrot. (Note: some may argue that guinea pigs always devour;
they cannot eat slowly, or in a non-devouring manner.)
Yet another example: P: A woman is cutting broccoli. H: A woman is slicing vegetables
Solution: Assign two labels, based on logic and common-sense, as see fit.

Complete Opposite Subjects, but Same Predicate

Description: The subjects are dictionary antonyms, but the rest of the event is the same.
Prototypical Example: P: A few men are dancing. H: Some women are dancing.
Solution: If subjects are antonyms, then label the pair as C. If not, then check the two
words to see what relation they have (E or N).

Complete Opposite Predicates, but Same Subject

Description: The predicates are antonyms, but the agent is the same.
Prototypical Example: P: The man is fasting. H: The man is eating.
Solution: Assign two labels, based on logic and common-sense, as see fit.

Examples Involving Gender, Age, or Title

Description: It is not clear whether words like man and woman should be taken to refer
to the gender or to the age aspect: e.g., girl - woman, boy - man, woman - lady.
Prototypical Example: P: A girl is eating a cupcake. H: A woman is not eating a cupcake.
Solution: Assign two labels, based on logic and common-sense, as see fit.

Privative Adjectives

Description: Examples involving a privative adjective, e.g., fake, cartoon, animated, etc.
Prototypical Example: P: An animated airplane is landing. H: The plane is landing.
Solution: Assign two labels, based on logic and common-sense, as see fit.

Different Senses

Description: There are different senses available for some words and depending on
which one we choose to interpret the sentences, the label could be different.
Prototypical Example: P: A person is folding a sheet. H: A person is folding a piece of paper.
Another Example: P: Three men and a woman are standing still for a picture. H: A woman
and three men are posing for a photo.
Solution: Assign two labels, based on logic and common-sense, as see fit.

Ambiguous Sentences

Description: The premise or hypothesis is ambiguous.
Example: P: Two men are fighting in a cattle pen. H: Two men are fighting in a pen for cattle.
“Two men are fighting in a pen for cattle” has PP attachment ambiguity: it could be a
cattle pen, or fighting to win the cattle.
Solution: Label with the label that seems most natural to your common-sense.
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World Knowledge

Description: Words in the premise or hypothesis require world knowledge for inter-
pretation. For instance, different annotators may have different interpretations for the
inference relations of the following word/phrase pairs:

- football vs. soccer

- beach by the lake vs. beach by the sea

- frying vs. cooking breaded pork chop

- flying vs. travelling

Solution: Label with the label that seems most natural to your world-knowledge.

Coreference

Description/Discussion: We try to make the sentences coreferent based on the subject
or the verb (event).
Examples and solutions:

• P: A woman is walking. H: A man is walking: Verbs (events) can be made
coreferent, so C.

• P: A woman is walking. H: A woman is dancing: Subjects can be made
coreferent, so C.

• P: The dog is eating a bone. H: A cat is playing with a bone: The bone is not
enough to make it coreferent, so N.

• P: The man is walking. H: The dog is eating: Nothing can be made coreferent,
so N. Note that this is different from the guidelines of SNLI (Bowman
et al. 2015), where irrelevant pairs are annotated as C.

Appendix B: Precision, Recall, F1 Score for Symbolic Systems

We present the precision, recall, and F1-score for logic systems on SICK.test in Table 10.
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Table 10
Precision, recall, and F1-score for symbolic systems.

ccg2lambda1 ccg2lambda12 LangPro MonaLog GKR4NLI
original SICK.test
C (P/R) 99.2|65.2 98.9|64.0 97.3|65.5 81.2|64.5 74.6|80.3
E (P/R) 96.9|55.8 96.9|54.2 97.4|55.2 97.8|41.1 76.5|60.5
N (P/R) 76.1|99.1 75.4|99.0 76.0|99.0 71.2|95.7 78.3|85.0
weighted F1 80.6 79.9 80.4 73.4 76.9
SICK.test.logic
C (P/R) 99.8|44.9 99.8|44.2 98.5|45.2 98.9|53.5 89.4|65.2
E (P/R) 97.0|60.7 98.5|59.7 97.4|59.8 99.3|45.2 77.6|65.5
N (P/R) 69.9|99.4 69.4|99.6 69.8|99.3 67.7|99.6 77.6|92.6
weighted F1 75.8 75.4 75.6 73.3 78.9
SICK.test.common-sense
C (P/R) 99.6|44.0 99.6|43.2 98.1|44.2 99.1|52.6 90.0|64.4
E (P/R) 97.7|58.0 98.2|56.6 97.9|57.1 99.0|42.8 78.9|63.2
N (P/R) 67.6|99.5 67.0|99.5 67.4|99.5 65.4|99.6 75.4|93.2
weighted F1 74.1 73.4 73.8 71.3 77.9
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