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Specialized transformers-based models (such as BioBERT and BioMegatron) are adapted for the
biomedical domain based on publicly available biomedical corpora. As such, they have the poten-
tial to encode large-scale biological knowledge. We investigate the encoding and representation
of biological knowledge in these models, and its potential utility to support inference in cancer
precision medicine—namely, the interpretation of the clinical significance of genomic alterations.
We compare the performance of different transformer baselines; we use probing to determine the
consistency of encodings for distinct entities; and we use clustering methods to compare and
contrast the internal properties of the embeddings for genes, variants, drugs, and diseases. We
show that these models do indeed encode biological knowledge, although some of this is lost in
fine-tuning for specific tasks. Finally, we analyze how the models behave with regard to biases
and imbalances in the dataset.

1. Introduction

Transformers are deep learning models that are able to capture linguistic patterns at
scale. By using unsupervised learning tasks that can be defined over large-scale textual
corpora, these models are able to capture both linguistic and domain knowledge, which
can be later specialized for specific inference tasks. The representation produced by
the model is a high-dimensional linguistic space that represents words, terms, and
sentences as vector projections. In Natural Language Processing, transformers are used
to support natural language inference and classification tasks. The assumption is that
the models can encode syntactic, semantic, commonsense, and domain-specific knowl-
edge and use their internal representation for complex textual interpretation. While
these models provided measurable improvements in many different tasks, the limited
interpretability of their internal representation challenges their application in areas such
as biomedicine.

In this work we elucidate a set of the internal properties of transformers in the
context of a well-defined cancer precision medicine inference task, in which the domain
knowledge is expressed within the biomedical literature. We focus on systematically
determining the ability of these models to capture fundamental entities (gene, gene
variant, drug, and disease), their relations and supporting facts, which are fundamental
for supporting inference in the context of molecular cancer medicine. For example, we
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aim to answer the question whether these models capture biological knowledge such as
the following:

• “T790M is a gene variant”

• “T790M is a variant of the EGFR gene”

• “The T790M variant of the EGFR gene in lung cancer is associated with
resistance to Erlotinib” - well supported statement (Level A - Validated
association, Confidence rating: 5 stars)

• “The T790M variant of the EGFR gene in pancreatic cancer is associated with
resistance to Osimertinib” - less supported statement (Level C - Case study,
Confidence rating: 2 stars)

In the example above, the first two facts capture basic definitional knowledge
(mapped respectively to an unary and binary predicate-argument relation), while the
third and fourth facts capture a full scientific statement that can be mapped to a complex
n-ary relation, and are supported by different levels of evidence in the literature. The
establishment of the truth condition of facts of these types in the context of a biomedical
natural language inference task is a desirable property for these models. With this mo-
tivation in mind, this work provides a critical exploration of the internal representation
properties of these models, using probing and clustering methods. In summary, we aim
to answer the following research questions (RQs):

RQ1 Do transformer-based models encode fundamental biomedical domain knowl-
edge at an entity level (e.g., gene, gene variant, disease, drug) and at a relational
level?

RQ2 Do these models encode complex biomedical facts/n-ary relations?

RQ3 Are there significant differences in how different model configurations encode
domain knowledge?

RQ4 How these models cope with evidence biases in the literature (e.g., are facts more
frequently expressed in the literature, elicited in the models)?

In this analysis, we used state-of-the-art transformers specialized for the biomedical
domain: BioBERT (Lee et al. 2020) and BioMegatron (Shin et al. 2020). Both models
are pre-trained over large biomedical text corpora (PubMed1). These models have
been shown, in an extrinsic setting, to address complex domain-specific tasks (Wang
et al. 2021), such as answering biomedical questions (Shin et al. 2020). Yet, the internal
representation properties of these models are not fully characterized, a requirement for
their safe and controlled application in a biomedical setting.

This article focuses on the following contributions:

• A systematic evaluation of the ability of biomedical fine-tuned
transformers (BioBERT and BioMegatron) to capture entities, complex
relations, and level of evidence support for biomedical facts within a

1 www.ncbi.nlm.nih.gov/pubmed.
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specific domain of inference (cancer clinical trials). Instead of focusing
only on extrinsic performance (in the context of a classification task), we
elicit some of the internal properties of these models with the support of
clustering and probing methods.

• To the best of our knowledge, this is the first work that systematically
links the evidence from a high-quality, expert-curated knowledge base
with the representation of biomedical knowledge in transformers,
namely, n-ary relations and entity types.

• We used probing methods to inspect the consistency of entities and
associated types (i.e., genes, variants, drugs, diseases) contrasting
pre-trained and fine-tuned models. This allowed for the evaluation of
whether the model captures the fundamental biomedical/semantic
categories to support interpretation. We quantified how much semantic
structure is lost in fine-tuning.

• To the best of our knowledge, this is the first work that quantifies the
relation of classification error to entities distribution in the dataset and
evidence items in literature, emphasizing the risk of and demonstrating
examples of significant errors in the cancer precision medicine inference
task. We show that, despite the soundness and strength of the evidence in
the biomedical literature, some well-known clinical relations can be
misclassified.

• Lastly, we provided a qualitative analysis of the significant clustering
patterns of the embeddings, using dimensionality reduction and
unsupervised clustering methods to identify qualitative patterns
expressed in the representations. This approach allowed for identification
of biologically meaningful representations, for example, groups with
genes from the same pathways. Additionally, by measuring homogeneity
of clusters, we quantified the associations between the representations
and the entity type and target labels.

The workflow of the analysis is summarized in Figure 1.

2. Methods

2.1 Motivational Scenario: Natural Language Inference in Cancer Clinical Research

Cancer precision medicine, which is the selection of a treatment for a patient based
on molecular characterization of their tumor, has the potential to improve patient
outcomes. For example, activating mutations in the epidermal growth factor receptor
gene (EGFR) predict response to gefitinib, and amplification or overexpression of ERBB2
predicts response to anti-ERBB2 therapies such as lapatinib. Tests for these markers that
guide therapy decisions are now part of the standard of care in non-small-cell lung
cancer (NSCLC) and breast cancer (Good et al. 2014).

Routine molecular characterization of patients’ tumors has become feasible because
of improved turnaround times and reduced costs of molecular diagnostics (Rieke et al.
2018). In England, the NHS England genomic medicine service aims to offer whole
genome sequencing as part of routine care. The aim is to match people to the most
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Figure 1
The workflow of the performed analysis.

effective interventions, in order to increase survival and reduce the likelihood of adverse
drug reactions.2

Even considering only licensed treatments, the number of alternative treatments
available may be very large. For example, in the United States, there are over 70 drugs
approved by the US Food and Drug Administration for the treatment of NSCLC.3 If
experimental treatments are included in the decision-making process, the number of
alternative treatments available is substantially increased.

Furthermore, as the breadth of molecular testing increases, so too does the vol-
ume of information available for each patient and thus the complexity of the treat-
ment decision. Interpretation of the clinical and functional significance of the resulting
data presents a substantial and growing challenge to the implementation of precision
medicine in the clinical setting.

This creates a need for tools to support clinicians in the evaluation of the clinical
significance of genomic alterations in order to be able to implement precision medicine.
However, much of the information available to support clinicians in making treatment
decisions is in the form of unstructured text, such as published literature, conference
proceedings, and drug prescribing information. Natural language processing methods
have the potential to scale-up the interpretation of this evidence space, which could be
integrated into decision support tools. The utility of a decision support tool is expressed
in providing support for individual recommendations. Despite acknowledging the in-
herent imperfectness of the model’s overall performance, the trustworthiness and safety
of such a tool would require the correct interpretation of biological facts and emerging

2 https://www.england.nhs.uk/genomics/nhs-genomic-med-service/.
3 https://www.cancer.gov/about-cancer/treatment/drugs/lung.
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evidence. This work validates an approach of applying fine-tuned transformers to two
simple NLI tasks, investigating encoded knowledge within the models together with
aforementioned individual well-established clinical relations. This work contributes for
the first time with two concrete cancer precision medicine inference tasks based on
a high quality, manually curated dataset. For general evaluation of transformers in
biomedical applications, please refer to Wang et al. (2021), Alghanmi, Espinosa Anke,
and Schockaert (2021), and Jin et al. (2019), where the models are tested in multiple
downstream tasks.

2.2 Reference Clinical Knowledge Base (KB)

CIViC4 (Clinical Interpretation of Variants in Cancer) is a community-edited knowledge
base (KB) of associations between genetic variations (or other alterations), drugs, and
outcomes in cancer (Griffith et al. 2017). The goal of CIViC is to support the implemen-
tation of personalized medicine in cancer. Data is freely available and licensed under
a Creative Commons Public Domain Dedication (CC0 1.0 Universal). The knowledge
base includes a detailed curation of evidence obtained from peer-reviewed publications
and meeting abstracts. The CIViC database supports the development of computational
tools for the functional prediction and interpretation of the clinical significance of cancer
variants. Together with OncoKB (Chakravarty et al. 2017) and My Cancer Genome,5 it
is one of the most commonly used KBs for this purpose (Borchert et al. 2021).

An evidence statement is a brief description of the clinical relevance of a variant
that has been determined by an experiment, trial, or study from a published literature
source. It captures a variant’s impact on clinical action, which can be predictive of
therapy, correlated with prognostic outcome, inform disease diagnosis (i.e., cancer type
or subtype), predict predisposition to cancer in the first place, or relate to the functional
impact of the variant. For each item of evidence, additional attributes are captured,
including:

• Type - the type of clinical (or biological) association described (Predictive,
Prognostic, Functional, etc.).

• Direction - whether the evidence supports or refutes the clinical
significance of an event.

• Level - a measure of the robustness of the associated study, where A -
Validated association is the strongest evidence, and E - Inferential association
is the weakest evidence.

• Rating - a score (1-5 stars) reflecting the database curator’s confidence in
the quality of the summarized evidence.

• Clinical Significance - describes how the variant is related to a specific,
clinically relevant property (e.g., drug sensitivity or resistance).

CIViC is programmatically accessible via API and as a full dataset and is integrated
into various recent annotation tools and follows an ontology driven conceptual model.

4 https://civicdb.org/home.
5 https://www.mycancergenome.org/.
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It allows users to transparently generate current and accurate variant interpretations
because it receives monthly updates. As of October 2022, the database holds 9,302
interpretations of clinical relevance for 3,337 variants among 470 genes associated with
341 diseases and 494 drugs. Its accessibility and tabular format of the data allows
for easy integration into Machine Learning pipelines, both as input data and domain
knowledge incorporated in the model.

2.3 Data Preprocessing and Set-up

The process of pre-processing the CIViC data for the purpose of this study is detailed in
the Appendix.

As we were interested in identifying gene variants that predict response to one or
more drugs, we retained only those evidence items where Evidence Direction contains
the value Supports and Evidence type has the value Predictive.

2.3.1 Task 1 - Generation of True/False Entity Pairs. The first classification task (Figure 2)
was to determine whether a transformer model, pre-trained on the existing biomedical
corpus and fine-tuned for the task, could correctly classify associations between pairs
of entities entity1-entity2 as true or false based on knowledge embedded from the
biomedical corpus. For example, the correct classification of T790M as a variant of the
EGFR gene but not of the KRAS gene.

Three types of binary relations were considered:

• drug - gene

• drug - variant

• variant - gene

Pairs of entities with genuine associations (“true pairs”) were generated from the
CIViC knowledge base; pairs of entities with no such association (“false pairs”) were

Figure 2
An overview of classification task 1 and 2. Each transformer block represents a separate model
that was fine-tuned separately for each classification. Two transformers were used: BioBERT and
BioMegatron.
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generated by randomly selecting entities from CIViC, and excluding those that already
exist (i.e., negative sampling). The dataset includes an equal number of false and true
pairs. Of note, a pair can occur in multiple evidence items, that is, be duplicated in the
database, but our datasets of pairs consisted of unique pairs.

2.3.2 Task 2 - Generation of Variant-Gene-Disease-Drug Quadruples. The second classifi-
cation task (Figure 2) was to infer the clinical significance (CS) of a gene variant for
drug treatment in a given cancer type. For example, considering examples of resistance
mutations from the CIViC dataset, can the model correctly classify that the T790M
variant of the EGFR gene in lung cancer confers resistance to gefitinib?

Sentences describing genuine relationships were generated using quadruples of
entities extracted from CIViC, following the pattern:

“[variant entity] of [gene entity] identified in [disease entity] is associ-
ated with [drug entity]”

An evidence item in the KB contains variant, gene, disease, drug, and CS, so a
quadruple can be extracted directly from the KB, and there are no false quadruples.
Only unique quadruples were used to create the dataset. In the case of a combination
or substitution of multiple drugs in the evidence item, we replaced [drug entity]

with multiple entities joined with the conjunction and (e.g., [drug entity1] and [drug

entity2] and [drug entity3]).
After the filtering in the pre-processing stage, 4 values for CS remained: Resistant,

Sensitivity/Response, Reduced Sensitivity, and Adverse Response. Due to a negligible num-
ber of quadruples we excluded the Adverse Response class. The class Reduced Sensitivity
was joined with Sensitivity/Response.

Multiple evidence items in CIViC can represent one quadruple. For the purpose of
Task 2, only the quadruples with uniform clinical significance were selected (98% of
total); that is, all evidence items for a unique quadruple describe the same relation.

2.3.3 Balancing the Test Set. In order to reduce the bias that some pairs/quadruples
containing specific entities are almost always true|false or sensitive|resistant, we applied
a balancing procedure (Appendix). We excluded the imbalanced pairs/quadruples from
the test set in creating a balanced test set. Reducing the bias allows us to compare the test
results more fairly.

2.4 Model Building

2.4.1 Baseline Model. In this article, we used a naive classification model (Nearest Neigh-
bors Classification model [Fix and Hodges 1989]) as a baseline. The intent behind this
baseline was to contrast a transformer-based model with a simple, non-pre-trained
model (K-Nearest Neighbor (KNN)). This is to control for the role of the pre-training
(i.e., transformer models would show better performance as a result of knowledge
embedded in the model, and not due to the relations expressed in the training set).
The KNN baseline is used as a control to assess the performance achieved solely due
to the distribution of entities in the dataset, as KNN does not embed any distributional
knowledge.

Briefly, each entity was represented as a sparse, one-hot encoded vector such that,
for example, for genes, the length of the vector was equal to the total number of genes,
and the element corresponding to the given gene was set to 1, while all other elements
were set to 0. The model was trained and validated for each task based on subsets of the
CIViC data as described below.
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For Task 1, each pair of vectors (representing each pair of entities) was concatenated
as an input; for Task 2, sets of 4 vectors, representing variant, gene, disease, and drug
entities, were concatenated. Note that vectors for drug entities may contain multiple
1-values because some sentences may mention more than one drug.

2.4.2 Transformers. In this work, we transfer pairs and evidence sentences into text
sequences as input data of both BioBERT and BioMegatron; aggregate the outputs of
transformers into one vector representation for each input sequence; and stack clas-
sification layers on top of this vector representation for our defined pairs/sentences
classification tasks.

Specifically, in Task 1 when predicting the relation between a gene entity and a drug
entity, we can input the following sequence into the model:
seqdrug gene=“[CLS] [drug entity] is associated with [gene entity] [SEP]”
Similarly, for the relationship between a variant entity and a drug entity:
seqdrug variant=“[CLS] [drug entity] is associated with [variant entity] [SEP]”
And for a pair of gene and variant entities:
seqvariant gene=“[CLS] [variant entity] is associated with [gene entity] [SEP]”
In Task 2, for a sentence representing a clinical significance, we define the input se-
quence as:
seqsentence=“[CLS] [variant entity] of [gene entity] identified in [disease entity]

is associated with [drug entities][SEP]”
Pre-trained BioBERT and BioMegatron were fine-tuned: for pairs (gene-variant,

gene-drug, variant-drug true/false) classification, 5 epochs 3e-5 learning rate; for
quadruple classification, 5 epochs, 1e-4 learning rate. For more details please refer to
the Appendix.

2.5 Probing

This section describes the semantic probing methodology implemented in order to shed
light on the obtained representations from Task 1 and Task 2. All probing experiments
have been performed using the Probe-Ably6 framework, with default configurations.

Probing is the training of an external classifier model (also called a “probe”) to
determine the extent to which a set of auxiliary target feature labels can be predicted
from the internal model representations (Ferreira et al. 2021; Hewitt and Manning 2019;
Pimentel et al. 2020). Probing is often performed as a post hoc analysis, taking a pre-
trained or fine-tuned model and analyzing the obtained embeddings. For example,
previous probing studies (Rives et al. 2021) have found that training language models
across amino acid sequences can create embeddings that encode biological structure at
multiple levels, including proteins and evolutionary homology. Knowledge of intrinsic
biological properties emerges without supervision, that is, with no explicit training to
capture such property.

As previously highlighted, Task 1 has three different subtasks: classifying the ex-
istence of three different pairs of entities in the dataset (drug-gene, drug-variant, and
variant-gene). For each task, we obtain a fine-tuned version of BioBERT and BioMega-
tron. For Task 2, only one fine-tuned version is produced for each model. One crucial
question is: Do such models retain the meaning of those entities when fine-tuning the models?

6 https://github.com/ai-systems/Probe-Ably/.
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One way of examining such properties is by testing if such representations can still
correctly map the entities to their type (e.g., taking the representation of the word
tamoxifen and correctly classifying it as a drug).

Intending to answer this question, we implement the following probing steps:
1. Generate the representations (embeddings) obtained by the fine-tuned (for Task

1 and Task 2) and non-fine-tuned models (BioBERT and BioMegatron) for each entity
(drug, variant, gene, and disease) for each sentence in the test set. We also include
BERT-base to the analysis in order to assess the performance of a more general model.
Even though most of the entities are composed of a single word, these models depend
on the WordPiece tokenizer, often breaking a word into separate pieces. For example,
the word tamoxifen is tokenized as four pieces: [Tam, ##ox, ##ife, ##n] using the
BioBERT tokenizer. To obtain a single vector for each entity, we compute the average
of all the token representations composing that word. For instance, the word tamoxifen
is represented as a vector containing the average of the vectors representing each of its
four pieces.

2. The goal of probing is merely to find what information is already stored in
the new model, not to train a new task. Thus, following standard probing guidelines
(Ferreira et al. 2021), we split the representations into training, validation, and test set,
using a 20/40/40 scheme. By such a split, we want to limit the number of instances
seen during training and avoid overfitting over a large part of the dataset, since part of
the dataset was already observed during the first task training, and the information is
partly stored in the generated vectors. The model overfitting is also prevented with the
use of a linear model. Each model is trained for 5 epochs, with the validation set being
used to select the best performing model (in terms of accuracy).

3. After obtaining all representations for each model and respective entity types,
we train a total of 50 linear probes to classify each representation into the correct
entity label. The number 50 is a default configuration and recommended value from
the Probe-Ably framework. These different 50 models are contrasted using a measure
of complexity. When using models containing a large number of parameters, there is a
possibility that the probing training will reshape the representation to fit the new task,
leading to inconclusive results; therefore, we opt for a simpler linear model to avoid this
phenomena. We follow previous research in probing (Pimentel et al. 2020), measuring
the complexity of a linear model ŷ = Wx + b by using the nuclear norm of the weight
matrix W, computed as:

||W||∗ =
min(|T |,d)∑

i=1

σi(W)

where σi(W) is the i-th singular value of W, |T | is the number of targets (e.g., number
of possible entities), and d is the number of dimensions in the representation (e.g., 768
dimensions for BERT-base).

The nuclear norm is then included in the loss (weighted by a parameter λ)

−
n∑

i=1

log p(t(i) | h(i)) + λ · ||W||

and is thus regulated in the training loop, where t is a single value of T . In order
to obtain 50 different models, we randomly initialize the dropout and λ parameter.
As suggested in Pimentel et al. (2020), we show the results across all the different
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initializations in Figure 5. Having models with different complexity allows us to see
if the results are consistent across different complexities, with the best performance
usually being obtained by the more complex models.

4. For each trained probe, we also train an equivalent control probe. The control
probe is a model trained for the same task as the original probe, however, the training
is performed using random labels, instead of the correct ones. Having a control task
can been seen as an analogy to having a study with placebo medication. When the
performance on the probing task is better than the control task, it is known that the
probe model is capturing more than random noise.

5. The performance of the probes is measured in terms of Accuracy and Selectivity
for the test set. The selectivity score, namely, the difference in accuracy between the
representational probe and a control probing task with randomized labels, indicates that
the probe architectures used are not expressive enough to “memorize” unstructured
labels. Ensuring that there is no drop-off in selectivity increases the confidence that we
are not falsely attributing strong accuracy scores to the representational structure where
over-parameterized probes (i.e., probes that contain several learnable parameters) could
have explained them.

2.6 Clustering

In addition to the evaluation of models’ performance in a probing setting, we investi-
gated with the support of clustering methods whether the output vectors can identify
potential relationships between entity pairs and/or quadruples.

For clustering the output in Tasks 1 and 2 we used hierarchical agglomerative clus-
tering (HAC) with Ward variance minimization algorithm (ward linkage) and Euclidean
distance as distance metric on both the rows (output dimensions) and the columns (vec-
tor representations of true pairs). Then we identified clusters using a distance threshold
defined pragmatically after visual investigation of the clustermap and dendrogram.
For clustering the output used in Probing, we used HDBSCAN (McInnes, Healy, and
Astels 2017; McInnes and Healy 2017), with parameter min cluster size = 120, while the
remaining parameters kept their default values.

We applied Uniform Manifold Approximation and Projection for Dimension Re-
duction (UMAP) (McInnes et al. 2018) to compare patterns observable after dimension-
ality reduction into 2 dimensions with clusters obtained via HAC. UMAP parameters:
default (n components = 2, n neighbors = 15)

The UMAP representation constitutes multiple distinct groups that contain various
entity types or target labels. To quantify that, the HDBSCAN algorithm was used,
which identifies clusters of densely distributed points. We used homogeneity metric
as a measure of proportion of various labels in one cluster. It can be defined as the ratio
of the count of the most common label in the cluster and the total count in the cluster,
for example, if a cluster contains 40 drugs and 10 genes, homogeneity equals 0.8. Ideally,
all clusters would score 1.

3. Results

3.1 Can Transformers Recognize Existing Relations/Associations? - Task 1

3.1.1 Distribution of Entities in Pairs. A total of 8,032 entity pairs were included in this
analysis: 5,320 (66%) in the training set, 2,412 in the imbalanced test set, and 1,090 in the
balanced test set (Table 1).
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Table 1
Statistics about the datasets used in Task 1: Number of unique pairs and entities.

Pairs (both True and False) (n) Unique (n) Unique in balanced test set (n)

Total Train set Test set Balanced test set
(% of test set)

Genes Variants Drugs Genes Variants Drugs

drug – variant 3,676 2,272 1,104 418 (38%) – 897 242 – 321 134
drug - gene 2,480 1,736 744 396 (53%) 302 – 432 235 – 193
variant – gene 1,876 1,312 564 276 (49%) 125 910 – 72 235 –

Entities in the dataset were distributed non-uniformly, resembling a Pareto distri-
bution. For drug-gene pairs, the majority of pairs involving the most common genes
and drugs were true (Figure A.1a). A similar pattern was observed for drug-variant
pairs (Figure A.1b). In contrast, for variant-gene pairs, the majority of pairs involving
the most common variant entities were false (Figure A.1c).

3.1.2 Performance. We evaluated the classification performance both on the test set and
balanced test set using area under the Receiver Operator Characteristic curve (AUC,
Table 2).

In all cases, performance was superior for the imbalanced dataset compared with
the balanced dataset. As the usage of the balanced test set is to adjust the analysis for fre-
quent pairs with consistent labels (almost all true or all false), the drop in performance
suggests that the fine-tuned models are sensitive to the distribution bias in the training
set and learn statistical regularities. They favor more frequent pairs and disfavor less
frequent ones, which aligns with previous research (Nadeem, Bethke, and Reddy 2021;
Gehman et al. 2020; McCoy, Pavlick, and Linzen 2019; Zhong, Friedman, and Chen 2021;
Gururangan et al. 2018; Min et al. 2020).

Performance of the transformers was superior to the baseline model in all cases,
except for drug-gene classification against the imbalanced dataset. For the drug-gene
scenario, the AUC is close to 0.5, which means that classification resembles random

Table 2
AUC in classification task 1.

Pairs + Model
Imbalanced Balanced

Test set 10fold CV (sd) Test set 10fold CV (sd)
Drug-Variant
KNN (baseline) 0.771 .821 (.023) 0.486 .444 (.044)
BioBERT 0.834 .856 (.027) 0.590 .569 (.033)
BioMegatron 0.847 .850 (.022) 0.642 .580 (.070)
Drug-Gene
KNN (baseline) 0.705 .770 (.025) 0.492 .425 (.037)
BioBERT 0.743 .762 (.024) 0.544 .506 (.048)
BioMegatron 0.722 .755 (.045) 0.572 .512 (.055)
Variant-Gene
KNN (baseline) 0.683 .778 (0.022) 0.434 .413 (.056)
BioBERT 0.826 .855 (.033) 0.677 .669 (0.62)
BioMegatron 0.828 .813 (.078) 0.671 .627 (.104)
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Table 3
Number of evidence items related to the type of pair in the dataset.

Pair
Number of evidence items

111 >1>1>1 >2>2>2 ≥10≥10≥10 ≥20≥20≥20
gene-drug (n = 1,240) 795 (64.1%) 445 (35.9%) 267 (21.5%) 73 (5.9%) 41 (3.3%)
variant-gene (n = 938) 596 (63.5%) 342 (36.5%) 215 (22.9%) 41 (4.4%) 17 (1.8%)
variant-drug (n = 1,838) 1,347 (73.3%) 491 (26.7%) 230 (12.5%) 20 (1.1%) 1 (3.02%)

guessing and is very limited, if any biological knowledge is utilized (RQ1). Considering
only the performance in Task 1, there is no significant difference between BioBERT and
BioMegatron, establishing an equivalence of both representations in the context of this
task (RQ3).

3.1.3 The Impact of Imbalance on the Model’s Error. As we observed significant differences
between performance on the imbalanced and balanced test sets, we investigated further
the specifics of this phenomenon, namely, classification error for individual pairs. One
or more evidence items can represent each pair (i.e., each pair can be found in one
or more scientific papers). Similar to entities distribution, there is an imbalance in the
number of evidence items related to pairs. For example, 73.3% of variant-drug pairs are
supported only by one, 12.5% by > 2, and 1.1% by ≥10 evidence items. Details for all 3
types of pairs are shown in the Table 3.

Classification error on the balanced test set varied according to the frequency of true
pairs in the dataset—for drugs that occurred frequently in the training set (Figure 3a)
or in the knowledge base (Figure 3b), true drug-variant pairs were typically classified
correctly, whereas false drug-variant pairs were typically misclassified.

The analysis of error quantifies the impact of the imbalance in the dataset on the
performance (RQ4). It shows that if an entity occurs in many true pairs in the training
set, an unseen pair containing the entity from the test set is likely to be classified as
true, regardless of biological meaning. Fine-tuned transformers are highly influenced
by learned statistical regularities. For instance, pairs with drugs that occur in 15 true
pairs in the training set obtain error <0.1 for true pairs and error >0.7 for false pairs
(Figure 3a) as to all of them the model assigns a high probability of being true. This
applies to the drug (significant Spearman correlation, p < 0.001), gene (p < 0.001), and
variant entities (p < 0.05). All correlations are summarized in Supplementary Table A.1.

Similar correlation is observed regarding the error and the number of evidence
items in the KB. The more evidence items related to an entity, the higher chance of a
pair (containing this entity) being classified as true. For instance, if a pair contains a
drug that is supported by only one evidence item, the pair is more likely to be labeled
as false (Figure 3b).

This can be a major concern in applications in cancer precision medicine. There is
little value of being accurate for well-known relations and facts. The true potential is for
the less-obvious queries, which the experts are less familiar with. However, as shown
above, biomedical transformers suffer from reduced performance for underrepresented
cases in the dataset (RQ4).
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(a) Classification error in relation to number of true pairs in the training set con-
taining the entity.
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(b) Classification error in relation to number of evidence items (i.e., scientific pa-
pers) describing the entity.

Figure 3
Evaluation of the impact of the dataset imbalance on model’s performance: The more true pairs
in the training set containing a DRUG entity (a), or the more evidence items related to a DRUG
entity in the knowledge base (b), the higher change for a pair (containing the DRUG entity) of
being classified as true.

3.2 Can Transformers Recognize Clinical Significance of a Relation? - Task 2

3.2.1 Distribution of Entities in Quadruples. A total of 2,989 quadruples were included in
this analysis, 897 in the test set. As a result of balancing the test set, 207 quadruples are
left for further investigation of the output vectors. It comprised 147 unique variants,
67 genes, 43 diseases, and 89 drugs (see Table 4).

Similar to the observed distribution of entity pairs, the distribution of entities
among the quadruples was also non-uniform, with a Pareto distribution: The most
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Table 4
Statistics about the datasets used in Task 2: Number of unique quadruples and entities.

Dataset
Unique (n)

Quadruples Variant Gene Disease Drug

Total 2,989 1,015 302 215 733
Training set 2,092 803 258 186 579
Test set 897 432 165 135 339
Balanced test set 207 147 67 43 89

common variant entity was MUTATION, the most common gene entity was EGFR, the
most common disease was Lung Non-small Cell Carcinoma, and the most common drug
was Erlotinib (see Supplementary Figure A.2).

In most cases (64%), the clinical significance of quadruples in the dataset was
Sensitivity/Response. The imbalance between Sensitivity/Response and Resistance was most
evident for the most common variants (MUTATION, OVEREXPRESSION, AMPLIFI-
CATION, EXPRESSION, V600E, LOSS, FUSION, LOSS-OF-FUNCTION and UNDEREX-
PRESSION), where approximately 80% of quadruples related to drug sensitivity.

3.2.2 Performance. We evaluated the performance of the models in predicting the clinical
significance of quadruples using AUC. In all cases, performance of the transformer
models was superior to that of the KNN (non-pre-trained) baseline. Similar to the results
for classification of entity pairs, performance was superior for the imbalanced dataset
compared with the balanced dataset. Nevertheless, both BioBERT and BioMegatron
achieved high accuracy (AUC >0.8) on the balanced dataset (Table 5). No significant
difference between BioBERT and BioMegatron was observed (RQ3). Compared to the
performance in Task 1, we observe a smaller drop in AUCs between the imbalanced
and balanced test set, while the difference between transformers and KNN is signifi-
cantly higher. This suggests that in the more complex Task 2, fine-tuned BioBERT and
BioMegatron exploit some of the biological knowledge encoded within the architecture
(RQ1). This accentuated difference between pre-trained and transformer-based base-
lines (when contrasted to the previous task) demonstrates that the benefit of the pre-
training component of transformers can be better observed in the context of complex
n-ary relations (RQ2).

Table 5
AUC in classification task 2 for imbalanced and balanced test set. CV = Cross Validation; sd =
standard deviation.

AUC

Binary classification of quadruples

Imbalanced Balanced

Test set 10fold CV (sd) Test set 10fold CV (sd)

KNN (baseline) 0.878 .864 (.023) 0.753 .655 (.065)
BioBERT 0.898 .904 (.024) 0.806 .835 (.060)
BioMegatron 0.905 .910 (.022) 0.826 .833 (.037)
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Figure 4
Number of evidence items in the datasets stratified by evidence level and evidence rating.

3.2.3 Model’s Error vs. Strength of Biomedical Evidence. High confidence associations
(Evidence rating = 5) were rare—most quadruples in the balanced test set were ei-
ther unrated or evidence level 3 (Evidence is convincing, but not supported by a breadth
of experiments).

The most common type of evidence (denoted by the Evidence level attribute) de-
scribed by quadruples in the dataset was D - Preclinical evidence; validated associations
(Evidence level = A) were rare—only a single example remained in the test set after
balancing. No inferential associations (Evidence level = E) remained in the balanced test
set (Figure 4).

In the balanced test set, considering all levels of evidence, there was no correlation
between level of evidence and model performance (p >0.05, Spearman correlation).
Thus, we do observe that transformers are not better at classifying relations that are sup-
ported by strong evidence in the KB. Quite the opposite, AUCs for evidence level B were
lower (.683 and .703) than for C and D (BioBert: .900 and .812; BioMegatron: .939 and
.816, see Supplementary Table A.3). Considering pre-clinical evidence only (Evidence
level D), the KNN model had significantly higher error compared with BioBERT (Mann-
Whitney U test: p = 0.014) and BioMegatron (p = 0.007). This finding was supported by
AUC and Brier scores (Supplementary Table A.3).

3.2.4 Misclassified Well-known Relations. A total of 16 well-known relations, defined as
Evidence level A (Validated association) or B (Clinical evidence) and Evidence rating 5
(Strong, well supported evidence from a lab or journal with respected academic standing) or
4 (Strong, well supported evidence) were identified in the balanced test set (Table 6).

Despite the higher confidence assigned to these quadruples, the models did not
perform better against these relations compared with the overall balanced test set—
AUC for these quadruples was 0.75, 0.78, and 0.75 for BioBERT, BioMegatron, and
KNN, respectively. For example, high classification error rates (≥ .6) were observed for
transformer models for the following quadruples:

• EXPRESSION - HSPA5 - Colorectal Cancer - Fluorouracil

• EXPRESSION - PDCD4 - Lung Cancer - Paclitaxel

• V600E - BRAF - Colorectal Cancer - Cetuximab and Encorafenib and
Binimetinib (BioMegatron only)
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Table 6
List of 16 well-known relations and corresponding classification error. R stands for Resistance
and S/R is for Sensitivity/Response.

Variant Gene Diseases Drugs Clinical BioBERT BioMegatron KNN Evidence Rating
significance error error error level

EXON 2 MUTATION KRAS Pancreatic Cancer Erlotinib and R 0.895 0.270 0.2 B 4
Gemcitabine

EXPRESSION EGFR Colorectal Cancer Cetuximab S/R 0.280 0.296 0.4 B 4
EXPRESSION FOXP3 Breast Cancer Epirubicin S/R 0.153 0.776 0.6 B 4
EXPRESSION HSPA5 Colorectal Cancer Fluorouracil S/R 0.845 0.608 0.4 B 4
EXPRESSION PDCD4 Lung Cancer Paclitaxel S/R 0.954 0.939 0.4 B 4
EXPRESSION AREG Colorectal Cancer Panitumumab S/R 0.434 0.120 0.4 B 4
EXPRESSION EREG Colorectal Cancer Panitumumab S/R 0.345 0.202 0.6 B 4
ITD FLT3 Acute Myeloid Sorafenib S/R 0.418 0.355 0.6 B 4

Leukemia
K751Q ERCC2 Osteosarcoma Cisplatin R 0.285 0.827 0.2 B 4
LOSS-OF-FUNCTION VHL Renal Cell Anti-VEGF R 0.074 0.360 0.8 B 4

Carcinoma Monoclonal
Antibody

MUTATION KRAS Colorectal Cancer Cetuximab and R 0.067 0.021 0 B 4
Chemotherapy

MUTATION SMO Basal Cell Vismodegib R 0.062 0.039 0 B 4
Carcinoma

OVEREXPRESSION IGF2 Pancreatic Gemcitabine and S/R 0.068 0.100 0.6 B 4
Adenocarcinoma Ganitumab

OVEREXPRESSION ERBB3 Breast Cancer Patritumab S/R 0.006 0.028 0.2 B 4
Deruxtecan

PML-RARA A216V PML Acute Arsenic Trioxide R 0.161 0.015 0.4 B 4
Promyelocytic
Leukemia

V600E BRAF Colorectal Cancer Cetuximab and S/R 0.264 0.761 0.4 A 5
Encorafenib and
Binimetinib

From a cancer precision medicine perspective, these significant misclassifications
elicit the safety limitations of these models when considering clinical applications. In
previous paragraphs we show that high error is expected for underrepresented rela-
tions, while here we demonstrate that transformers can fail even for well-known, strong
evidence relations (RQ1).

3.3 Does the Fine-tuning Corrupt the Representation of Pre-trained Models?

3.3.1 Recognizing Entity Types from Representations of Pairs. Figure 5 presents the probing
results for Task 1, with the left column containing the Accuracy results and the right col-
umn containing the Selectivity results. Selectivity was greater than zero for a control task
containing random labels. For BioBERT, both accuracy and selectivity were higher for
the non-fine-tuned models compared with the fine-tuned model. In fact, performance of
the BERT (base) model was greater than that of the fine-tuned model for this task. This
suggests that BioBERT loses some of the accuracy of background knowledge as a result
of fine-tuning. This finding aligns with other works (Durrani, Sajjad, and Dalvi 2021;
Merchant et al. 2020; Rajaee and Pilehvar 2021). For BioMegatron, performance of the
fine-tuned model was slightly worse than the non-fine-tuned one, suggesting a similar
behavior for BioMegatron, but in lower magnitude (RQ3).

3.3.2 Recognizing Entity Types from Representations of Quadruples. Figure 6 presents the
probing results for Task 2, following the same task design as Task 1. Similar to Task 1,
selectivity was greater than zero for a control task containing random labels, and BERT-
base and BioBERT both had higher accuracy compared with fine-tuned BioBERT. For
this task, we can observe minimal differences between the performance of the fine-tuned
and non-fine-tuned versions of BioMegatron, which outperform BERT and BioBERT
models. For probes with a lower value for their nuclear norm (i.e., less complex probes),
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Figure 5
Probing results for models fine-tuned (F) on Task 1, together with the original (non fine-tuned)
models (NF).

the performance of the original model is slightly better. However, the difference is non-
existent for more complex probes.

Probing results suggest that when fine-tuned for encoding complex n-ary relations
(in Task 2), BioMegatron preserves more semantic information about entity type in the
top layer than BioBERT (RQ3), as the difference in selectivity between fine-tuned (F)
and non-fine-tuned (NF) versions is smaller (Figure 6). Both BioBERT and BioMegatron
achieve acceptable selectivity (both F and NF), suggesting that they do encode semantic
domain knowledge at entity level (RQ1).

3.4 How Much Biological Knowledge do Transformers Embed?

3.4.1 Biologically Relevant Clusters in Representations of Pairs. Based on clustering of
BioBERT representations of variant-gene pairs in the balanced test set, and visual in-
spection of the clustermap and dendrogram, a cut point was applied that resulted in 5
clusters (Figure 7).

The dendrogram shows that cluster 5 (brown) contained 11 gene-variant pairs and
remained separated from the other pairs until late in the merging process. The gene-
variant pairs in this cluster involved only the PIK3CA and ERBB3 genes, and these
genes did not occur in any other clusters. BioBERT classified all these pairs as true,
with probability >0.60, although 4 of 11 pairs were false (Supplementary Table A.4).
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Figure 6
Probing results for models fine-tuned on Task 2, following the same experiment design as Task 1,
with fine-tuned (F) and non-fine-tuned (NF) models.

Interestingly, these genes participate in the same signaling pathways, including PI3K/
AKT/mTOR.

Cluster 2 (green) contained 19 gene-variant pairs; 14 of 19 variants in this cluster
represented gene fusions, denoted by the notation gene name - gene name. All pairs were
assigned as true, with probability >0.96, although 3 of 19 pairs were false (Supplemen-
tary Table A.5).

Following the clustering of BioMegatron representations on variant-gene pairs in
the balanced test set, a cut point was applied that resulted in 6 clusters (Figure 8).

BioMegatron cluster 1 contained 16 of the 19 gene-variant pairs found in BioBERT
cluster 2 (Supplementary Table A.5) as observed for BioBERT, BioMegatron determined
all these pairs to be true with high confidence (probability >0.96).

Clustering analysis reveals an evident dataset artefact, that is, gene fusions as gene
name - gene name, which is reflected in the representation. Both models encoded these
fusions in a significantly different way compared with other pairs.

3.4.2 Biologically Relevant Clusters in Representations of Clinical Relations. Following clus-
tering of BioMegatron representations of quadruples, a cut-off point was applied that
resulted in 6 clusters (Figure 9).
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(a) UMAP 2-dimensional.

(b) Clustermap based on Hierarchical Agglomerative Clustering.

Figure 7
Representations of BioBERT output for variant-gene pairs in the balanced test set.
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(a) UMAP 2-dimensional.

(b) Clustermap based on Hierarchical Agglomerative Clustering.

Figure 8
Representations of BioMegatron output for variant-gene pairs in the balanced test set.
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(a) UMAP 2-dimensional.

(b) Clustermap based on Hierarchical Agglomerative Clustering.

Figure 9
Representations of BioMegatron output for quadruples in the balanced test set.
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• Cluster 1 included 21 quadruples, all of which related to colorectal cancer.
Most quadruples involved either BRAF, EGFR, or KRAS genes.

• Cluster 3 included 11 quadruples, all of which related to the drug
vemurafenib. Most (9/11) related to melanoma, and 10 of 11 were
associated with resistance.

• Cluster 4 included 30 quadruples, all of which related to the KIT gene,
gastrointestinal stromal tumor, and either sunatinib or imatinib drugs;
KIT was not associated with any other clusters.

• Cluster 6 included 22 quadruples, all of which related to the ABL gene
and fusions with the BCR gene (denoted by Variant BRCA-ABL)

Similarly, 6 clusters were defined based on the BioBERT representations (Figure 10).
Quadruples in BioBERT clusters were less homogeneous compared with those for
the BioMegatron clusters. The two small clusters 5 and 6 are described in Supplemen-
tary Table A.6. Cluster 5 included 10 quadruples, involving 7 different genes, 7 diseases,
and 6 drugs; cluster 6 included 11 quadruples, with 4 genes, 5 diseases, and 11 drugs;
no clear pattern was evident in either cluster.

Clustering analysis reveals that representations encoded by fine-tuned BioMega-
tron form biologically meaningful clusters, in terms of gene-variant-disease-drug (RQ2).
For BioBERT, the patterns are less apparent and may require deeper, more granular
investigation (RQ3).

3.4.3 Entity Types Clusters in Fine-tuned Models. In this section, we investigated the
clustering of the latent vectors. These vectors were also used for the probing task. Each
vector represents one entity contextualized inside sentences from the test set (from both
Task 1 and Task 2; more in Supplementary Methods).

Results from HDBSCAN evaluation of UMAP representations are summarized in
Table 7.

For Task 1, the non-fine-tuned transformer models clustered entities according to
their type (Figure 11)—the average homogeneity of clusters was 0.940 for BioBERT,
0.911 for BioMegatron, and 0.883 for BERT. In contrast, clusters generated by the fine-
tuned transformer models were less homogeneous (0.758 and 0.726 for BioMegatron
and BioBERT, respectively)—this was observed across all types of entity-pairs.

For Task 2, clusters generated by the non-fine-tuned models were almost perfectly
homogeneous (homogeneity >98.8%), except for cluster 5, consisting of both gene and
variant entities (black dashed box in Figure 12).

However, for fine-tuned models, the majority of entities get projected closely un-
der a 2D UMAP projection, similar to the findings in Rajaee and Pilehvar (2021) and
Durrani, Sajjad, and Dalvi (2021). In fine-tuned BioBERT, drugs are projected to variants
and some genes. As a result, a large cluster (5) with mixed entity types emerges. A
similar type of clustering behavior is observed in the fine-tuned BioMegatron, showing
one large cluster (2) containing portions of all types of entities.

In all the 5 models, the representations do not group according to target labels
in Task 1 nor Task 2. Homogeneity of clusters regarding true/false labels equals on
average .570, and regarding “Sensitivity/Response”/“Resistance” .680. They are close
to a random distribution of labels over clusters, because the labels proportions are 0.50
and 0.65, respectively.
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(a) UMAP 2-dimensional.

(b) Clustermap based on Hierarchical Agglomerative Clustering.

Figure 10
Representations of BioBERT output for quadruples in the balanced test set.
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(a) BERT

(b) BioBERT

(c) BioMegatron

(d) fine-tuned BioBERT

(e) fine-tuned BioMegatron

Figure 11
UMAP representation of entities from Task 1 used as input to Probing. In BERT, BioBERT, and
BioMegatron, the clusters are homogeneous regarding the entity type (left plots). Fine-tuned
models lose this property.
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Table 7
Mean homogeneity in clusters.

Task Model Entity type Target label pair type Pair type
(gene, variant, drug) (True or False) (d-g, g-v,d-v)

Task 1 BERT 0.883 0.553 0.471
BioBERT 0.940 0.572 0.478
BioMegatron 0.911 0.548 0.708
FT BioBERT 0.726 0.638 0.488
FT BioMegatron 0.758 0.538 0.474

gene, variant, drug, disease Sensitivity/Response or Resistance

Task 2 BERT .996; .599 in #5 (genes and variants) 0.695
BioBERT .998; .793 in #5 (genes and variants) 0.679
BioMegatron 1.0; .773 in #5 (genes and variants) 0.656
FT BioBERT .990; .514 in #5 (drugs, variants, genes) 0.680
FT BioMegatron .380 in large cluster #2 0.691

Clustering analysis and homogeneity evaluation confirm that both BioBERT and
BioMegatron encode fundamental semantic knowledge at the entity level, in this case
genes, variants, drugs, and diseases. However, a significant part of the latent semantics
is changed during fine-tuning, which is particularly apparent for a more complex
Task 2 (RQ1).

4. Discussion

4.1 Summary of Main Findings

In this study we performed a detailed analysis of the embeddings of biological knowl-
edge in transformer-based neuro-language models using a cancer genomics knowledge
base.

First, we compared the performance between biomedical fine-tuned transformers
(BioBERT and BioMegatron) and a naive simple classifier (KNN) for two specific clas-
sification tasks. Specifically, these tasks aimed to determine whether each transformer
model captures biological knowledge about: pairwise associations between genes, vari-
ants, drugs, and diseases (Task 1), and the clinical significance of relationships between
gene variants, drugs, and diseases (Task 2).

The hypothesis under test was that transformers would show better performance
compared with a naive classifier, eliciting the role of the pre-trained component of the
model (RQ4). Results for both tasks support this hypothesis. For Task 1, both BioBERT
and BioMegatron outperformed the naive classifier for distinguishing true versus false
associations between pairs of biological entities. Similarly, for Task 2, both transformer
models outperformed the naive classifier for predicting the clinical significance of
quadruples of entities. For Task 2, the transformer models achieved an acceptable
performance (AUC > 0.8), although performance in Task 1 was lower (AUC approx.
0.6).

We highlighted the need for addressing the role of dataset imbalance within the
assessment of embeddings (RQ4). Specifically, in our analysis, we found significant
differences between AUCs for the imbalanced and balanced test sets. Furthermore,
we found significant correlations between the classification error and imbalance for
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(a) BERT

(b) BioBERT

(c) BioMegatron

(d) fine-tuned BioBERT

(e) fine-tuned BioMegatron

Figure 12
UMAP representation of entities from Task 2: (left) entity types; (center) clusters from
HDBSCAN; (right) target label in classification task. Dashed box corresponds to entities from
quadruples, in which variant entity contains the gene entity name. Representations from non
fine-tuned models form more distinctive clusters, more homogeneous in terms of entity type.
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individual entities. Similarly, the error is associated with a co-occurrence bias (within
the corpus based on the biomedical literature): That is, in Task 1: a true pair that occurs
in the literature multiple times is more likely to be classified as true, compared to pairs
that occur less frequently.

Second, we used probing methods to inspect the consistency of the representation
for each type of biological entity, and we compared pre-trained versus fine-tuned mod-
els (RQ1, RQ2). More specifically, we determined the performance of each model in clas-
sifying the type (gene, variant, drug, or disease) of entities based on their representation
in the model via accuracy and selectivity. We quantified how much semantic structure is
lost in fine-tuning, and how biologically meaningful is the remaining. For BioBERT, both
accuracy and selectivity were lower for the fine-tuned models compared with the base
models, including BERT-base, which is not specific for the medical/biological domain.
For BioMegatron, there was only a slight difference in performance between the fine-
tuned and non-fine-tuned models. Probing experiments demonstrated that fine-tuned
BioMegatron better preserves the pre-trained knowledge when compared with fine-
tuned BioBERT (RQ3).

Finally, we provide a qualitative and quantitative analysis of clustering patterns of
the embeddings, using UMAP, HDBCAN, and HAC. We show that entities of the same
type cluster together, and that this is more pronounced for the non-fine-tuned models
compared with the fine-tuned models (RQ1, RQ2). A cluster analysis revealed biological
meaning. For instance, we found a cluster with the vast majority of sentences related to
resistant response to vemurafenib in melanoma treatment. Another example: a cluster
specific to KIT gene, gastrointestinal stromal tumor (GIST), sunatinib, and imatinib.
According to domain-expert knowledge, imatinib, a KIT inhibitor, is a standard first-
line treatment for metastatic GIST, whereas sunatinib is the second option.

4.2 Strengths and Limitations

Strengths:

• We have used the CIViC database as the basis of our analysis. We
consider this to be a high-quality dataset, because: (i) it entails a set of
relationships curated by domain experts; (ii) most relationships include a
confidence score; (iii) it has been developed for a closely related use case,
namely, to support clinicians in the evaluation of the clinical significance
of variants.

• We use state-of-the-art, bidirectional transformer models trained on a
biomedical text corpus (PubMed abstracts) containing over 29M articles
and 4.5B words.

• Patterns in representations are investigated using 2 methods (UMAP and
HAC), instead of relying on a single method. Clusters are thoroughly
described and quantified using homogeneity metrics.

• We include input from domain experts in data preparation, evaluation,
and interpretation of results. It allows for: (i) the correct filtering of
evidence; (ii) assessment of the relevance of investigated biomedical
relations; and (iii) granular analysis of clusters in search for biological
meaning.
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Limitations:

• The distribution of entities among the dataset has the potential to lead to
overfitting. For example, if the EGFR gene is over-represented among
true gene-drug pairs compared with other genes, a model could classify
gene-drug pairs solely on whether the gene = EGFR and performs better
than expected. Indeed, the distributions of entities in our dataset were
highly right-skewed (Pareto distribution). This issue refers to the
well-known imbalance problem, which leads to an incorrect performance
evaluation. Although we applied a balancing procedure, it is infeasible to
create a perfectly balanced dataset.

• In CIViC, drug interaction types can be either combination, sequential, or
substitutes. In the generation of evidence sentences, we did not account
for that variation, which for sentences with multiple drugs may slightly
alter the representation of clinical significance in the model.

• In CIViC, there are evidence items that claim contradicting clinical
significance for the same relation. We excluded them from our dataset;
however, their future investigation would be of relevance.

4.3 Related Work

4.3.1 Supporting Somatic Variant Interpretation in Cancer. There is a critical need to eval-
uate the large amount of relevant variant data generated by tumor next generation
sequencing analyses, which predominantly have unknown significance and complicate
the interpretation of the variants (Good et al. 2014). One of the ways to streamline
and standardize cancer curation data in electronic medical records is to use the Web
resources from the CIViC curatorial platform (Danos et al. 2018)—an open source and
open access CIViC database, built on community input with peer-reviewed interpre-
tations, already proven to be useful for this purpose (Barnell et al. 2019). The authors
used the database to develop the Open-sourced CIViC Annotation Pipeline (OpenCAP),
providing methods for capturing variants and subsequently providing tools for variant
annotation. It supports scientists and clinicians who use precision oncology to guide
patient treatment. In addition, Danos et al. (2019) described improvements at CIViC that
include common data models and standard operating procedures for variant curation.
These are to support a consistent and accurate interpretation of cancer variants.

Clinical interpretation of genomic cancer variants requires highly efficient interop-
erability tools. Evidence and clinical significance of the CIViC database was used in
a novel genome variation annotation, analysis, and interpretation platform, the TGex
(the Translational Genomics expert) (Dahary et al. 2019). By providing access to a
comprehensive KB of genomic annotations, the TGex tool simplifies and speeds up
the interpretation of variants in clinical genetics processes. Furthermore, Wagner et al.
(2020) provided CIViCpy, an open-source software for extracting and inspection of
records from the CIViC database. The delivery of CIViCpy enables the creation of down-
stream applications and the integration of CIViC into clinical annotation pipelines.

4.3.2 Text-mining Approaches using CIViC. The development of guidelines (Li et al. 2017)
for the interpretation of somatic variants, which include complexity of multiple di-
mensions of clinical relevance, allow for a better standardization of the assessment
of cancer variants in the oncological community. In addition, they can enhance the
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rapidly growing use of genetic testing in cancer, the results of which are critical to
accurate prognosis and treatment guidance. Based on the guidelines, He et al. (2019)
demonstrated computational approaches to take pre-annotated files and to apply cri-
teria for the assessment of the clinical impact of somatic variants. In turn, Lever et al.
(2018) proposed a text-mining approach to extract the data on thousands of clinically
relevant biomarkers from the literature; and, using a supervised learning approach,
they constructed a publicly accessible KB called CIViCmine. They extracted key parts
of the evidence item, including: cancer type, gene, drug (where applicable), and the
specific evidence type. The CIViCmine contains over 87K biomarkers associated with
8k genes, 337 drugs, and 572 cancer types, representing more than 25k abstracts and
almost 40k full-text publications. This approach allowed counting the number of men-
tions of specific evidence items—cancer type, gene, drug (where applicable), and the
specific evidence type—in PubMed abstracts and PubMed Central Open Access full-
text articles and comparing them with the CIViC knowledge base. A similar approach
was previously proposed by Singhal, Simmons, and Lu (2016), who proposed a method
to automate the extraction of disease-gene-variant triples from all abstracts in PubMed
related to a set of ten important diseases.

Ševa, Wackerbauer, and Leser (2018) developed an NLP pipeline for identifying the
most informative key sentences in oncology abstracts by assessing the clinical relevance
of sentences implicitly based on their similarity to the clinical evidence summaries in the
CIViC database. They used two semi-supervised methods: transductive learning from
positive and unlabeled data and self-training by using abstracts summarized in relevant
sentences as unlabeled examples. Wang and Poon (2018) developed deep probabilistic
logic as a general framework for indirect supervision, by combining probabilistic logic
with deep learning. They used existing KBs with hand-curated drug-gene-mutation
facts: the Gene Drug Knowledge Database (GDKD) (Dienstmann et al. 2015) and CIViC,
which together contained 231 drug-gene-mutation triples, with 76 drugs, 35 genes,
and 123 mutations. Recently, Jia, Wong, and Poon (2019) proposed a novel multiscale
neural architecture for document-level n-ary relation extraction, which combines rep-
resentations learned over various text spans throughout the document and across the
subrelation hierarchy. For distant supervision, they used CIViC, GDKD (Dienstmann
et al. 2015), and OncoKB (Chakravarty et al. 2017) KBs.

This section summarized the usage of the CIViC database in the development
of NLP pipelines as well as approaches to using NLP with cancer-related litera-
ture. However, we did not find any study using cancer genomic databases (such
as CIViC) to investigate the semantic characterization of biomedically trained neural
language models.

4.4 Model Bias Caused by the Unbalanced Training Set

Our findings regarding the bias in the models caused by the unbalanced dataset align
with findings in the previous works. McCoy, Pavlick, and Linzen (2019) show that
NLI models rely on adopted heuristics from statistical regularities in training sets,
which are valid for frequent cases, but invalid for less-frequent ones. This results in
low performance in HANS (Heuristic Analysis for NLI Systems), which is attributed
to invalid heuristics rather than deeper understanding of language. Gehman et al.
(2020) recommend a careful examination of the dataset due to possible toxic, biased,
or otherwise degenerate behavior of language models. Similarly, in Nadeem, Bethke,
and Reddy (2021), a strong stereotypical bias was reported in pre-trained BERT, GPT2,
ROBERTA, and XLNET. Distribution in the dataset affects the performance (Zhong,
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Friedman, and Chen 2021), leading to overestimation of model’s inference and deeper
understanding of language (Gururangan et al. 2018; Min et al. 2020). In our study, we
confirmed the importance of integrating a balancing strategy for embedding studies.

4.5 Evaluation of Semantic Knowledge in Transformer-based Models

Fine-tuning distorts the original distribution within pre-trained models: Higher layers
are more adjusted to the specific task and lower layers retain their representation
(Durrani, Sajjad, and Dalvi 2021; Merchant et al. 2020). Although fine-tuning affects
top layers, it is interpreted to be a conservative process and there is no catastrophic
forgetting of information in the entire model (Merchant et al. 2020). However, it has
been reported that fine-tuned models can fail to leverage syntactic knowledge (McCoy,
Pavlick, and Linzen 2019; Min et al. 2020) and rely on pattern matching or annotation
artifacts (Gururangan et al. 2018; Jia and Liang 2017). It is expected that fine-tuned repre-
sentations will differ significantly from the pre-trained ones (Rajaee and Pilehvar 2021)
and architectures will deliver different representations of background and linguistic
knowledge (Durrani, Sajjad, and Dalvi 2021).

Probing proved to be an effective method to investigate what information is en-
coded in the model and how it influences the output (Adi et al. 2017; Belinkov 2021;
Hupkes, Veldhoen, and Zuidema 2018). In recent work, probing was used to verify the
model’s understanding of scale and magnitude (Zhang et al. 2020) or whether a model
can reflect an underlying foundational ontology (Jullien, Valentino, and Freitas 2022). In
Jin et al. (2019), probing was used to determine what additional information is carried
intrinsically by BioELMo and BioBERT.

Recent work on applying language models to biomedical tasks are: MarkerGenie -
identifies bioentity relations from texts and tables of publications in PubMed and
PubMed Central (Gu et al. 2022); ScispaCy model—relevant for drug discovery,
aims to cover disease-gene interactions significant from pharmacological perspective
(Qumsiyeh and Jayousi 2021); and DisKnE—aims to evaluate pre-trained language
models about the disease knowledge (Alghanmi, Espinosa Anke, and Schockaert 2021).
In Vig et al. (2021), transformers are used for better understanding working mecha-
nisms in proteins. Biomedical transformers has demonstrated to be highly effective in
biomedical NLI tasks (Jin et al. 2019), but safety and validation of their usage is still an
under-explored area. A promising direction of future research is to integrate structured
knowledge into the models (Colon-Hernandez et al. 2021; Yuan et al. 2021).

5. Conclusions

In this work we performed a detailed analysis of fundamental knowledge represen-
tation properties of transformers, demonstrating that they are biased toward more
frequent statements. We recommend accounting for this bias in biomedical applications.
In terms of the semantic structure of the model, BioMegatron shows more salient
biomedical knowledge embedding than BioBERT, as the representations cluster into
more interpretable groups and the model better retains the semantic structure after fine-
tuning.

We also investigated the representation of entities both in base and fine-tuned
models via probing (Ferreira et al. 2021). We found that the fine-tuned models lose the
general structure acquired at the pre-training phase and degrade the models with regard
to cross-task transferability.
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We found biologically relevant clusters, such as genes and variants that are present
in the same biological pathways. Considering the vectors used in probing, we found that
the distances are associated with entity type (gene, variant, drug, disease). However, the
fine-tuning renders the representations internally more inconsistent, which was quanti-
fied by the evaluation of clusters’ homogeneity. We investigated whether the models can
capture the quality of evidence and found that they did not perform significantly better
for well-known relations. Even for eminent clinical quadruples /statements, the mod-
els misclassified the clinical significance (whether sensitive or resistant to treatment),
highlighting the limitations of contemporary neural language models.

Appendix

Supplementary Methods
Downloading the Data. The data was downloaded via CIViC API using the following
queries:

- ‘https://civicdb.org/api/variants/XYZ where XYZ is a ‘variant id’
Variant id can be found in the list of all available variants:
- ‘https://civicdb.org/api/variants?count=2634’

Balancing the Test Set. We excluded the imbalanced pairs/quadruples from the test set in
order to create a balanced test set according to the following procedure.

First, we give two definitions of imbalanced entity, followed by the definitions of
imbalanced pair and imbalanced quadruple. We define 2 types of imbalanced entity,
true-imbalanced entity and false-imbalanced entity. An entity is considered as true-
imbalanced entity if it meets the following criteria:

Over 70% of training pairs/quadruples containing this entity are true.
In reverse, the criteria for false-imbalanced entity is:

Less than 30% of training pairs/quadruples containing this entity are true.
Based on the definition of true-imbalanced entity and false-imbalanced entity, we

can define imbalanced pair as:

Either one element of the pair is true-imbalanced entity and the other element is
not false-imbalanced entity, or one element of the pair is false-imbalanced entity and
the other element is not true-imbalanced entity.

Similar to the imbalanced pair definition, the imbalanced quadruple can be defined
as the following:

Either one element of the quadruple is true-imbalanced entity and no other ele-
ment is false-imbalanced entity, or one element of the quadruple is false-imbalanced
entity and no other element is true-imbalanced entity.

Note, for quadruples true| false should be replaced with sensitivity/response | resis-
tance.

The key intuition of the balancing is to remove the bias that some pairs/quadruples
containing specific entities are almost always true (or false). Removing the bias allows
us to compare the test results more fairly.

Note, we apply the balancing only to the pairs that are in the test set due to the
following reasons. First, the training set after balancing would be too small. This is
a common drawback when trying to balance the dataset without oversampling, and
remains an open challenge for real world datasets. Second, in a Machine Learning
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pipeline the test set should be isolated at the very beginning, before any exploratory
data analysis or feature engineering. As the balancing aims for better performance
evaluation, we must consider ratios in the test set, but this information should not leak
to any activity done on the training set. However, we do exclude pairs (from the test set)
also looking at the occurrence in the training set, as we want to mitigate the possible
impact of overfitting during training. Balancing the test set left us with 38% to 53% of
pairs in the balanced test set.

Transformers. Because both BioBERT and BioMegatron models allow 512 tokens in the
input sequences, which is far longer than the input sequences we defined, we do not
consider the sentence truncation in this work.

Transformers models have multiple layers, with BioBERT having 12 layers and
BioMegatron having 24 layers. One output is generated for each layer, but the output of
the last layer is generally used as the output of transformers models since we want to
fully use the neural network connection architecture through multiple layers. Multiple
vectors are contained in the transformers model’s last layer output, where each vector
represents one input token in input sequence, respectively. A total of 512 vectors are
contained in last layer outputs of both BioBERT and BioMegatron because they both
allow the same vector size in the input sequences. Because we do a sentence-level
classification task in this work and the first token of each input sequence is “[CLS]”,
we use the vector output of “[CLS]” token (first token) in the sequence as pooled output
vector of transformers models. Although there are two major output vector pooling
methods, either obtaining the first token vector or averaging the vector of all tokens,
we choose to use the former, since it is used in most sentence level transformers’ pre-
training tasks such as sentence classification and next sentence prediction. The BioBERT
model uses a 768-dimension output vector, while BioMegatron uses 1,024 dimensions.

Vr = f TRF
θ (seq)[0] (1)

As shown in Equation (1), f TRF
θ is last-layer output function of the transformers

model, seq is input sequence of the tranformers model. We use first token’s output
vector, f TRF

θ (seq)[0], as pooled output of the sequence, Vr.
For training purposes, we stack a classification layer on top of transformers models.

For the Task 1, we need to classify the true and false pairs. We stack a fully connected
N-to-1 linear layer and use sigmoid activation to constrain the output value from 0 to 1.
Binary cross entropy loss function is used for true/false classification.

For Task 2, we need to classify the multiple clinical significance categories for each
input sentence. There are 2 clinical significance categories, “Sensitivity/Response” and
“Resistance” while more categories could be added in a future dataset. We use N-to-2
linear layer and softmax activation to get one probability score for each category; then
cross entropy loss function is used for model parameter optimization.

Clustering the Probing Input. In total, 4,500 and 3,572 vectors were obtained from the
pairs and quadruples test set, respectively (see Task 1 and Task 2). Vectors for pairs were
aggregated from 3 fine-tuned models trained for each pair type. Each vector consists of
768 for BERT and BioBERT, and 1,024 dimensions for BioMegatron. We used UMAP for
dimensionality reduction and HDBSCAN clustering algorithm to identify patterns in
an unsupervised manner.
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Supplementary Tables

Table A.1
Spearman correlations between the classification error and the number of pairs in the training
set where an entity occurs. For example, for BioBERT, there is a significant negative correlation
between the number of drug-gene pairs in the training set where a drug entity occurs and the
classification error.

Pair type Model Entity True/false pair vs. error Spearman correlation p-val Significance

DRUG - VARIANT

BioBERT
DRUG True −0.75 0.0000 ***

False 0.73 0.0000 ***

VARIANT True 0.23 0.0010 *
False 0.06 0.3825 ns

BioMegatron
DRUG True −0.69 0.0000 ***

False 0.68 0.0000 ***

VARIANT True 0.15 0.0382 *
False 0.05 0.4591 ns

DRUG - GENE

BioBERT
DRUG True −0.42 0.0000 ***

False 0.27 0.0000 ***

GENE True −0.55 0.0000 ***
False 0.41 0.0000 ***

BioMegatron
DRUG True −0.51 0.0000 ***

False 0.31 0.0000 ***

GENE True −0.48 0.0000 ***
False 0.45 0.0000 ***

VARIANT - GENE

BioBERT
VARIANT True −0.30 0.0004 ***

False 0.05 0.5646 ns

GENE True −0.47 0.0000 ***
False 0.61 0.0000 ***

BioMegatron
VARIANT True −0.29 0.0007 ***

False 0.07 0.4023 ns

GENE True −0.47 0.0000 ***
False 0.63 0.0000 ***
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Table A.2
Examples of variant entities whose representations appear in the same cluster (5) as gene
representations for all 3 base models (BERT, BioBERT, and BioMegatron) according to UMAP
transformation. Variant representations stem from sentences where the variant entity contains a
gene name.

Variant entry Sentence constructed from quadruple

IGH-CRLF2 IGH-CRLF2 of CRLF2 identified in B-lymphoblastic leukemia/lymphoma,
BCR-ABL1–like is associated with ruxolitinib

ZNF198-FGFR1 ZNF198-FGFR1 of FGFR1 identified in myeloproliferative
neoplasm is associated with midostaurin

SQSTM1-NTRK1 SQSTM1-NTRK1 of NTRK1 identified in lung non-small cell
carcinoma is associated with entrectinib

CD74-ROS1 G2032R CD74-ROS1 G2032R of ROS1 identified in lung adenocarcinoma
is associated with DS-6501b

BRD4-NUTM1 BRD4-NUTM1 of BRD4 identified in NUT midline carcinoma
is associated with JQ1

KIAA1549-BRAF KIAA1549-BRAF of BRAF identified in childhood pilocytic
astrocytoma is associated with trametinib

TPM3-NTRK1 TPM3-NTRK1 of NTRK1 identified in spindle cell sarcoma
is associated with larotrectinib

KIAA1549-BRAF KIAA1549-BRAF of BRAF identified in childhood pilocytic
astrocytoma is associated with vemurafenib and sorafenib

CD74-NRG1 CD74-NRG1 of NRG1 identified in mucinous adenocarcinoma
is associated with afatinib

EWSR1-ATF1 EWSR1-ATF1 of EWSR1 identified in clear cell sarcoma
is associated with crizotinib

Table A.3
AUCs and Brier scores for the balanced test set stratified by evidence level. KNN performs
significantly worse for evidence level D compared with the transformers (bold).

Evidence level
AUC Brier score loss

B C D B C D

BioBERT 0.683 0.900 0.812 0.254 0.148 0.202
BioMegatron 0.703 0.939 0.816 0.274 0.103 0.178
KNN 0.682 0.910 0.705 0.231 0.122 0.228
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Table A.4
Pairs in cluster 5 in BioBERT representations containing only PIK3CA and ERBB3 genes.

Cluster #5 (brown) Variant Gene TRUE Predicted probability
1 R93W PIK3CA 1 0.678
2 H1047R PIK3CA 1 0.664
3 D350G PIK3CA 1 0.666
4 G1049R PIK3CA 1 0.624
5 H1047L PIK3CA 1 0.673
6 R103G ERBB3 1 0.773
7 E545G PIK3CA 1 0.657
8 E281K ERBB3 0 0.756
9 C475V ERBB3 0 0.780
10 F386L PIK3CA 0 0.680
11 D816E ERBB3 0 0.776

Table A.5
Cluster 2 for BioBERT and cluster 1 for BioMegatron, where the variant entities contain gene
names.

# Variant Gene True/false cluster # in BioBERT HAC cluster # in BioMegatron HAC

1 D1930V ATM 1 2 other
2 M2327I ATM 0 2 other
3 R777FS ATM 1 2 other
4 ZKSCAN1-BRAF BRAF 1 2 1
2 IGH-CRLF2 CRLF2 1 2 1
6 DEK-AFF2 DEK 1 2 1
7 EWSR1-ATF1 EWSR1 1 2 1
8 FGFR2-BICC1 FGFR2 1 2 1
9 ATP1B1-NRG1 NRG1 1 2 1
10 CD74-NRG1 NRG1 1 2 1
11 NRG1 NRG1 1 2 1
12 ETV6-NTRK2 NTRK1 0 2 1
13 LMNA-NTRK1 NTRK1 1 2 1
14 SQSTM1-NTRK1 NTRK1 1 2 1
12 ETV6-NTRK2 NTRK2 1 2 1
16 NTRK1-TRIM63 NTRK2 0 2 1
17 RCSD1-ABL1 RCSD1 1 2 1
18 TFG-ROS1 ROS1 1 2 1
19 UGT1A1*60 UGT1A1 1 2 1
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Table A.6
BioBERT quadruples from clusters #5 and #6. No obvious patterns. R stands for Resistance and
S/R is for Sensitivity/Response.
E17K AKT3 Melanoma Vemurafenib R 5
ALK FUSION G1202R ALK Cancer Alectinib R 5
D835H FLT3 Acute Myeloid Leukemia Sorafenib R 5
G12D KRAS Colorectal Cancer Panitumumab R 5
G12R KRAS Colorectal Cancer Panitumumab R 5
K117N KRAS Clear Cell Sarcoma Vemurafenib R 5
OVEREXPRESSION PIK3CA Melanoma Vemurafenib R 5
LOSS PTEN Melanoma Vemurafenib R 5
M237I TP53 Glioblastoma AMGMDS3 R 5
L3 DOMAIN MUTATION TP53 Breast Cancer Tamoxifen R 5
T790M EGFR Lung Non-small Cell Carcinoma Cetuximab and Panitumumab and Brigatinib S/R 6
Y842C FLT3 Acute Myeloid Leukemia Lestaurtinib S/R 6
ITD D839G FLT3 Acute Myeloid Leukemia Pexidartinib R 6
ITD I687F FLT3 Acute Myeloid Leukemia Sorafenib R 6
D839N FLT3 Acute Myeloid Leukemia Pexidartinib R 6
ITD Y842C FLT3 Acute Myeloid Leukemia Sorafenib and Selinexor R 6
G12D KRAS Melanoma Vemurafenib R 6
G12S KRAS Lung Non-small Cell Carcinoma Erlotinib R 6
G12V KRAS Colon Cancer Regorafenib S/R 6
G12V KRAS Lung Cancer Gefitinib R 6
E545G PIK3CA Melanoma Vemurafenib R 6

Table A.7
Homogeneity in clusters obtained from 2-dimensional UMAP representation using HDBSCAN
algorithm.

# cluster BERT BioBERT BioMegatron

1 99.7% variant 99.6% variant 100% disease
2 100% drug 100% disease 100% drug
3 100% disease 99.7% variant 100% variant
4 98.8% disease 99.7% drug 100% disease
5 59.9% gene, 40.1% variant 79.3% gene, 20.7% variant 77.3% gene, 20.0% variant
6 100% variant
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Supplementary Figures

(a) (b)

(c)

Figure A.1
Top 50 pairs in the dataset from Task 1. Most frequent entities occur mostly in true pairs, except
for variants in variant-gene pairs.
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(a) (b)

(c) (d)

Figure A.2
Top 30 entities of each type in the dataset from Task 2: (a) variants, (b) genes, (c) diseases, and (d)
drugs.
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