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Abstract

Zero-shot stance detection intends to detect previously unseen targets’ stances in the testing
phase. However, achieving this goal can be difficult, as it requires minimizing the domain trans-
fer between different targets, and improving the model’s inference and generalization abilities.
To address this challenge, we propose an adversarial network with external knowledge (ANEK)
model. Specifically, we adopt adversarial learning based on pre-trained models to learn transfer-
able knowledge from the source targets, thereby enabling the model to generalize well to unseen
targets. Additionally, we incorporate sentiment information and common sense knowledge into
the contextual representation to further enhance the model’s understanding. Experimental re-
sults on several datasets reveal that our method achieves excellent performance, demonstrating
its validity and feasibility.

Keywords: Zero-shot stance detection , Adversarial learning , External knowledge ,
Contrastive learning

1 Introduction

Stance detection (Küçük and Can, 2020; Mohammad et al., 2016; Augenstein et al., 2016) is a significant
task in NLP, focusing on identifying the stance (e.g., against, favor, or neutral) conveyed in the text
towards a given target. It can be efficiently applied to social opinion analysis (Lai et al., 2020), rumor
detection (Kumar and Carley, 2019), and other research fields by mining text opinions.

Traditional intra-target stance detection (Mohammad et al., 2016) has limited applications since it re-
quires training and testing under the same target and depends heavily on labeled data to achieve excellent
performance. With the frequent and vast updates of topics on social platforms, manually labeling new
targets becomes expensive and time-consuming, making it impractical to create a labeled dataset with
all potential targets (Wang et al., 2020). Therefore, the study of zero-shot stance detection (Allaway and
Mckeown, 2020) for unseen targets is essential and promising.

To tackle the zero-shot stance detection task, existing works generally incorporate external knowledge
(Liu et al., 2021) as support for inference or introduce attention mechanisms (Allaway and Mckeown,
2020) to capture the relationships between targets, which do not explicitly model of the transferable
knowledge between source and destination targets. Some methods solely focus on employing adversarial
training (Allaway et al., 2021; Xie et al., 2022) to learn a target-invariant representation of the text
content, disregarding the possibility that the model may encounter challenges in correctly predicting
sentences that contain implicit viewpoints or require more profound understanding.

For example 1 in Table 1, the document does not explicitly mention the target ”Donald Trump.” If the
model is unaware that Donald Trump is affiliated with the Republican Party, it is easy to misclassify the
stance as neutral. Therefore, by incorporating common sense knowledge into adversarial networks and
supplementing the target-related concept representations in the knowledge base, we can help the model
more efficiently understand the text content, thus improving its generalization. In addition, we find a
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Text Target Gold Label
I do not understand why the Republicans don’t dismiss him. Donald Trump Against

@HillaryClinton bad wife, bad role model for women, bad lawyer,
bad First Lady, bad Senator, horrible Secretary of State.

Hillary Clinton Against

Table 1. Examples of zero-shot stance detection.

certain correlation between sentiment information and stance detection (Li and Caragea, 2019). For
example 2 in Table 1, when a document contains some negative words, it generally implies an Against
stance. Stance detection will perform better if some sentiment knowledge can be acquired concurrently.

Motivated, on the one hand, based on the knowledge transfer ability of pre-trained models, we jointly
embed the text and target into BERT and sentiment-aware BERT (noted as SentiBERT), and employ
a cross-attention module to integrate the sentiment information extracted by SentiBERT with the con-
textual representations, resulting in semantic feature representations of the text. Meanwhile, we impose
supervised contrastive learning (Liang et al., 2022) to make the model learn to distinguish stance category
features in the potential distribution space. We separate the target-specific and target-invariant represen-
tations using a feature separator, then feed the target-invariant representation into the target discriminator
for adversarial training, which enables the model to learn robust and transferable representations that can
generalize well across different targets. On the other hand, we extract document-specific subgraphs from
ConceptNet, and obtain concept representations of the common sense graph by using a graph autoen-
coder trained on the ConceptNet subgraph, which is fused into the text representation to enhance the
model’s performance. Our contributions are as follows:

(1) Our proposed ANEK model utilizes semantic information, sentiment information and common
sense knowledge for zero-shot stance detection, especially adding sentiment information to assist stance
detection and implicit background knowledge to enhance the model’s comprehension.

(2) We employ adversarial training to learn target-invariant information to transfer knowledge effec-
tively. Stance contrastive learning is used to enhance the inference of the model.

(3) We experimentally demonstrate that ANEK obtains competitive results on three datasets, and the
extension to target stance detection is also effective.

2 Related Work

2.1 Stance Detection

Stance detection is the study of determining a text’s viewpoint on a prescriptive target. (Küçük and Can,
2020). Previous studies have primarily focused on scenarios where the training and testing sets share the
same target, known as intra-target stance detection (Augenstein et al., 2016; Mohammad et al., 2016).
However, when new topics emerge, there is insufficient labeled data. Some studies explore cross-target
stance detection (Liang et al., 2021; Wei and Mao, 2019; Xu et al., 2018), which trains a model on one
target and tests it on another related target. Xu et al. (2018) presented a self-attentive model to extract
shared features between targets. Wei et al. (2019) further exploited the hidden topics between targets as
transferred knowledge. In contrast, zero-shot stance detection does not rely on any assumption of target
correlation and is a more general study that can handle irregular target emergence.

Allaway et al. (2020) developed a dataset containing multiple targets and presented a topic-grouping
attention model to capture implicit relationships between them. Liu et al. (2021) utilized the struc-
tural and semantic information of the common sense knowledge graph to enhance the model’s inference.
Allaway et al. (2021) regarded each target as a domain and modeled the task as a domain adaptation
problem, which successfully learnd the target-invariant representation. Liang et al. (2022) designed
an agent task that distinguished stance expression categories and implemented hierarchical contrastive
learning. These works are considered incomplete as they overlook the impact of external knowledge
containing sentiment information on the model. Whereas, we not only learn transferable target-invariant
knowledge, but also take into account the introduction of multiple knowledge to enhance semantic infor-
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mation, further improving the model’s predictive ability. To the best of our knowledge, we are the first
to systematically introduce external knowledge into adversarial networks and achieve good results.

2.2 Adversarial Domain Adaptation

Domain adaptation mainly aims to minimize domain differences, ensure available knowledge transfer,
and increase the model’s generalization ability. Adversarial loss methods, inspired by the generative
adversarial network (GAN) (Goodfellow et al., 2014), have been commonly applied to domain adap-
tation. Ganin et al. (2016) proposed a domain adversarial neural network (DANN), which utilized a
gradient reversal layer to obfuscate the domain discriminator and enable the feature extractor to cap-
ture domain-invariant knowledge. Tzeng et al. (2017) presented an adversarial discriminative domain
adaptation (ADDA) model, which involved a discriminative method, GAN loss, and unshared weights
to decrease the domain disparity. Therefore domain adaptation is an effective solution for the zero-shot
stance detection task.

2.3 External Knowledge

Neural networks enhanced with external knowledge have been used for various NLP tasks, like dialogue
generation, sentiment classification, and stance detection. Ghosal et al. (2020) employed a domain ad-
versary framework to handle cross-domain sentiment analysis and further improved the performance by
injecting common sense knowledge using ConceptNet. Zhu et al. (2022) incorporated target background
knowledge from Wikipedia into the stance detection model. In addition, sentiment information is useful
external knowledge for stance detection tasks. Li et al. (2019) designed a sentiment classification task as
an auxiliary task and built sentiment and stance vocabularies to guide attention mechanisms. Hardalov
et al. (2022) adopted a pre-trained sentiment model to generate sentiment annotations for text, which
improved cross-lingual stance detection performance. Based on the above work, we simultaneously
consider introducing common sense and sentiment knowledge to aid stance detection.

3 Method

The structure of our ANEK model is displayed in Figure 1, which mainly contains two parts. (1) Knowl-
edge graph training: we train a graph autoencoder using ConceptNet relation subgraphs. (2) Stance
detection: we obtain context and sentiment information with pre-trained models, use contrastive learn-
ing to improve representation quality, separate features and perform adversarial learning, and finally
incorporate the extracted common sense knowledge graph features to implement stance detection.
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Figure 1. Overview of the ANEK model
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3.1 Task Description

Suppose we are given an annotated dataset Ds =
{
xis, t

i
s, y

i
s

}Ns

i=1 from source targets and an unlabeled
dataset Dd =

{
xid, t

i
d

}Nd

i=1 from a destination target (unknown target), where x is a document, t and y are
its corresponding target and stance label, respectively, and N is the number of examples. The purpose of
zero-shot stance detection is to train the model using labeled data from multiple source targets to predict
the stance labels of the unknown target examples.

3.2 Knowledge Graph Training
3.2.1 Common Sense Subgraph Generation
ConceptNet is a common sense knowledge base denoted as a directed graph G = (V,E,R), where
concepts vp ∈ V , edges (vp, r, vq) ∈ E, and r ∈ R is the relation type of the edge between vp and vq.
Given that ConceptNet contains tens of millions of triplet relations like (cake, IsA, dessert), we use it
to construct our knowledge subgraph. To be specific, we extract unique nouns, adverbs, and adjectives
from the datasets of all targets as seed words. We then extract all triples that are one edge distance away
from these seed concepts to obtain a subgraph G

′
=

(
V

′
, E

′
, R

′
)

.

3.2.2 Graph Autoencoder Pre-training
To integrate common sense knowledge into our model, we obtain the concept representations in the
subgraph G

′
by training a graph autoencoder composed of a RGCN encoder and a DistMult decoder

(Schlichtkrull et al., 2018). We feed the incomplete set of edges Ê′ from E
′

into the autoencoder. We
then assigns scores to the potential edges (vp, r, vq) to ascertain the possibility of these edges being in
E

′
.
Encoder Module. To obtain enriched feature representations of the target-related concepts, we utilize

two stacked RGCN encoders to compose our encoder module. RGCN can create a rich stance aggregated
representation for each concept by combining related concepts in the process of neighborhood-based
convolutional feature transformation. Specifically, we randomly initialize the hidden vector gp of concept
vp and then transform it into the stance aggregated hidden vector hp by a two-step graph convolution.

f(xp, l) = σ(
∑
r∈R

∑
q∈Nr

p

1

ap,r
W (l)

r xq +W
(l)
0 xp) (1)

hp = h(2)p = f(h(1)p , 2);h(1)p = f(gp, 1) (2)

where f denotes the encoder function with vector xp and layer l as inputs, σ is the activation function,
N r

p indicates the neighbouring concepts of concept vp with relation r, ap,r is a normalization constant,

W
(l)
r , W (l)

0 are trainable parameters.
Decoder Module. To reconstruct the edges of the graph to recover the triples’ missing information, we

utilize the DistMult factorization as a scoring function to calculate the score of a given triple (vp, r, vq).

s(vp, r, vq) = σ(hTp , Rr, hq) (3)

where σ is the logistic function, hTp is the transpose vector of concept vp encoded by RGCN.
Training. We use negative sampling to train our graph autoencoder model (Ghosal et al., 2020).

Specifically, for the triples in Ê′ (i.e., positive samples), we generate the same amount of negative ex-
amples by destroying the concepts or relation of links at random, resulting in the complete sample set Z.
Our training goal is to perform binary classification between positive/negative triples with optimization
using a cross-entropy loss function.

LG′ = − 1

2|Ê′ |

∑
(vp,r,vq ,y)∈Z

(y log s(vp, r, vq) + (1− y) log(1− s(vp, r, vq))) (4)

where y is an indication that is set to 0 for negative triples and 1 for positive triples.
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3.3 Stance Detection Training
3.3.1 Commonsense Feature Encoding
After training the graph autoencoder, we utilize it to generate common sense graph features for a specific
target t and document x. Specifically, we extract all seed words in the document and denote them as the
set K. Then the subgraph G

′
K is extracted from G

′
, where triples consist of concepts in K or around

radius 1 of any concept in K. Next, we feed G
′
K to the pre-trained RGCN encoder module and make

a forward pass to get the feature representations. We calculate the average of the representations hp for
all concepts p of document x as its common sense graph features hk. Finally, we input hk to an encoder
layer to obtain its hidden representation hx.

hx = Wxhk + bx (5)

where Wx and bx are trainable parameters.

3.3.2 Encoding with Sentiment Information
Considering that the stance of a text is influenced by sentiment information, we learn the sentiment
knowledge of the text to increase prediction accuracy. Following Zhou et al. (2020), we exploit a
perceptual sentiment language model (SentiBERT) to extract sentiment knowledge. We input the given
document x and target t into the pretrained SentiBERT model in the form of ”[CLS]x[SEP ]t[SEP ]” to
obtain a hidden vector hs with sentiment information.

hs = SentiBERT ([CLS]x[SEP ]t[SEP ]) (6)

Moreover, to take advantage of the contextual information, we also adopt a pretrained BERT [11]
model to jointly embed document x and target t to obtain a hidden vector hb of each example.

hb = BERT ([CLS]x[SEP ]t[SEP ]) (7)

Then hb and hs are concatenated, and the information of both is fused by the cross-attention module.
Cross-attention can effectively capture the interdependencies between text and sentiment, facilitating the
integration of knowledge and resulting in the generation of more accurate and meaningful features. The
final output ha is the hidden state of the [CLS] token.

ha = CrossAttention([hb, hs])[CLS] (8)

3.3.3 Stance Contrastive Learning
Supervised contrastive learning can bring examples of identical categories closer together and push ex-
amples of distinct categories apart, thus learning a superior semantic representation space. To improve
the generalization of the stance representation, based on the stance label information of the examples,
we perform contrastive learning on their hidden vectors ha (Liang et al., 2022). Specifically, given the
hidden vectors H = {hm}Nb

m=1 of a batch of examples, for a specific anchor hm ∈ H , if hn ∈ H and hm
have the same stance label, i.e., yn = ym, then hn is considered to be a positive example of hm, while
other examples ho ∈ H are considered to be negative examples. The final contrastive loss is calculated
over all positive pairs, including (hm, hn) and (hn, hm) in a batch:

Lc =
1

NB

∑
hm∈H

l(hm) (9)

l(hm) = − log

∑Nb
n=1 1[n̸=m]1[ym=yn] exp(sim(hm,hn)/τ)∑Nb

o=1 1o ̸=m exp(sim(hm,ho)/τ)
(10)

sim(s, t) =
sT t

||s||||t||
(11)

where 1[m=n] ∈ (0, 1) is an indicator function that evaluates to 1 iff m = n. sim (s, t) represents the
cosine similarity of vectors s and t. τ denotes a temperature parameter.
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3.3.4 Target Discriminator
The contextual representations generated by Bert and the fused sentiment information contain both
target-specific and target-invariant information. Learning and exploiting transferable target knowledge
is effective in enhancing the model’s generalization to new targets. We separate and differentiate target-
specific and target-invariant features by a simple linear transformation, which can decrease the transfer
challenge with no removal of stance cues. We first extract target-specific features using a linear transfor-
mation layer (Xie et al., 2022):

hg = Wgha + bg (12)

where Wg and bg are trainable parameters. By subtracting target-specific features from ha, the target-
invariant features hz can be obtained:

hz = ha − hg (13)

To further make the feature representation hz target invariant and facilitate automatic adaptation of
the model among different targets, we utilize a target discriminator to identify the target that the hz
comes from. If the discriminator cannot accurately predict the target label of hz , we consider hz has
target-invariance. Our target discriminator is a linear network with softmax, which is trained with a
cross-entropy loss function.

ŷd = Softmax(Wdhz + bd) (14)

Ld =
∑
x∈Ds

CrossEntropy(yd, ŷd) (15)

where Wd and bd are the trainable parameters of the target discriminator, ŷd and yd are the predicted and
true target labels. Specifically, hz attempts to confound the target discriminator and increase the target
classification loss Ld in order to learn the target-invariant features. Meanwhile, the discriminator itself
struggles to decrease Ld. So we adopt the gradient reversal layer (GRL) technique, inspired by (Ganin
et al., 2016), to achieve this adversarial effect by placing the GRL before the target discriminator. The
essence of adversarial training is the minimum-maximum game:

min

θZ

max

θD
− λ log fD(hz) (16)

where θZ are the parameters of all network layers that generate hz , including fine-tuned Bert, graph
encoder, Wg and bg, etc., θD is the discriminator parameters, and fD is the discriminator function.

3.3.5 Stance Classifier
Since stances are essentially dependent on targets, target-specific information for each target is also
indispensable. We concatenate the common sense knowledge graph features hx, the target-invariant
features hz and the target-specific features hg to obtain hc, as the input for the stance classifier with
softmax normalization. We minimize the stance classification loss using cross-entropy loss.

hc = hx ⊕ hz ⊕ hg (17)

ŷ = Softmax(Wchc + bc) (18)

Ls =
∑
x∈Ds

CrossEntropy(y, ŷ) (19)

where Wc and bc are the trainable parameters of the stance classifier, ŷ and y are the predicted stance
probability and ground-truth distribution.

The training goal of our proposed model is to minimize the overall loss, defined as follows:

L = Ls + αLc + βLd (20)

where α and β are hyperparameters.
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4 Experiments

4.1 Datasets

We conduct experiments on three publicly available datasets. 1)SEM16 (Mohammad et al., 2016) is a
Twitter dataset that contains six targets for stance detection, including the Legalization of Abortion (LA),
Feminist Movement (FM), Hillary Clinton (HC), Donald Trump (DT), Atheism (A), and Climate Change
is a Real Concern (CC). 2)WT-WT (Conforti et al., 2020) is a stance detection dataset in the financial do-
main. The dataset contains four targets, including ANTM CI (AC), AET HUM (AH), CVS AET(CA),
and CI ESRX (CE). 3)COVID-19 (Glandt et al., 2021) is a dataset related to COVID-19 health tasks,
which includes four targets: Anthony S. Fauci, M.D. (AF), Wearing a Face Mask (WA), Keeping Schools
Closed (SC), and Stay at Home (SH). Each text in the three datasets contains a stance (favor, against,
neutral) for a specific target.

Following (Liang et al., 2022), we utilize the data from one target as the test set and the remaining
targets as the training set. Moreover, we report the F1 avg (the Macro-averaged F1 of against and favor)
as evaluation metrics.

Table 2 represents the statistics for the three datasets, listing all targets under each dataset and the
number of samples labeled ”favor, against, neutral, unlabeled” (where WT-WT and COVID-19 have no
unlabeled samples) for each target.

Dataset Target Favor Against Neutral Unlabeled

SEM16

DT 148 299 260 2,194
HC 163 565 256 1,898
FM 268 511 170 1,951
LA 167 544 222 1,899
A 124 464 145 1,900

CC 135 26 203 1,900

WT-WT

CA 2,469 518 5,520 -
CE 773 253 947 -
AC 970 1,969 3,098 -
AH 1,038 1,106 2,804 -

COVID-19

WA 515 220 172 -
SC 430 102 85 -
AF 384 266 307 -
SH 151 201 396 -

Table 2. Statistics of the SEM16, WT-WT and COVID-19 datasets.

4.2 Experimental Implementation

We employ the pretrained SentiBERT and BERT models as the encoder, whose maximum sequence
length is 85. Adam (Kingma and Ba, 2014) is used to optimize the model. In the graph autoencoder
training stage, the graph batch size is 10000, the learning rate is 0.01, the dropout rate is 0.25, and we
apply gradient clipping to 1.0. In the stance detection training stage, the batch size is 8, the learning rate
is 1.5e-5, the dropout rate is 0.1, we train up to 50 epochs, the patience is 5, the temperature parameter
for contrastive loss is 0.07. We use different seeds to train our model and record the best results.

4.3 Baselines

We compare the ANEK with several strong baselines, including BiCond (Augenstein et al., 2016) bidi-
rectional conditional encoding model, CrossNet (Xu et al., 2018): BiCond with topic-specific attention,
TOAD (Allaway et al., 2021): BiCond with adversarial learning, BERT (Kenton and Toutanova, 2019):
pretrained language model, BERT-GCN (Liu et al., 2021): BERT with GCN for node information ag-
gregation, TGA Net (Allaway and Mckeown, 2020): Bert with topic-group attention, TPDG (Liang
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Model
SEM16(%) WT-WT(%) COVID-19(%)

DT HC FM LA A CC CA CE AC AH WA SC AF SH
BiCond 30.5 32.7 40.6 34.4 31.0 15.0 56.5 52.5 64.9 63.0 30.1 33.9 26.7 19.3

CrossNet 35.6 38.3 41.7 38.5 39.7 22.8 59.1 54.5 65.1 62.3 38.2 40.0 41.3 40.4
TOAD 49.5 51.2 54.1 46.2 46.1 30.9 55.3 57.7 58.6 61.7 37.9 47.3 40.1 42.0
BERT 40.1 49.6 41.9 44.8 55.2 37.3 56.0 60.5 67.1 67.3 44.3 45.1 47.5 39.7

BERT-GCN 42.3 50.0 44.3 44.2 53.6 35.5 67.8 64.1 70.7 69.2 - - - -
TPDG 47.3 50.9 53.6 46.5 48.7 32.3 66.8 65.6 74.2 73.1 48.4 51.6 46.0 37.3

TGA Net 40.7 49.3 46.6 45.2 52.7 36.6 65.7 63.5 69.9 68.7 - - - -
PT-HCL 50.1 54.5 54.6 50.9 56.5 38.9 73.1 69.2 76.7 76.3 58.8 44.7 41.7 53.3
ANEK 50.3 54.7 55.0 49.0 54.1 39.2 71.4 69.8 74.8 76.3 52.9 49.8 48.6 50.3

Table 3. Experimental results on three datasets. Bold indicates the best score for each test target.

et al., 2021): GCN-based model for designing target-adaptive pragmatic dependency graphs, PT-HCL
(Liang et al., 2022): hierarchical contrastive learning model.

4.4 Main Results

We implemented comparison experiments on three datasets and show the F1 avg results (Percentage
System) in Table 3. Our proposed ANEK model presents superior performance compared to the baseline
models on most target datasets. Specifically, BiCond and CrossNet perform the worst overall, as they
do not consider the target invisibility to learn transferable information. Although TOAD also adopts an
adversarial strategy to learn target-invariant information, its use of BiLSTM encoding is prone to poor
performance in case of an unbalanced target distribution. It can be observed that it performs even less
efficiently than Bert on multiple targets. As a strong baseline in NLP, BERT has good generalization
because it learns rich semantic information in a large corpus, despite ignoring transferable information
between targets. However, when it is applied to target transfer, it causes performance degradation due to
its tendency to fit the source data. Our model explores adversarial learning based on pre-trained models,
which can learn enhanced target-invariant features and improve the model’s transferability.

Table 3 shows that relying solely on the introduction of common sense knowledge to help the model
understand is not enough for Bert-GCN, and our model also accounts for learning sentiment informa-
tion to enhance the discriminative capability of the model. We can find that ANEK slightly outperforms
the PT-HCL method with hierarchical contrastive learning. Although PT-HCL obtains excellent gener-
alization by identifying the invariant stance expressions from specific syntactic levels, it requires pre-
processing the data to generate pseudo-labels, which increases the complexity of the model. Moreover,
the noise brought by pseudo-labels may affect the prediction results. In contrast, our model has stronger
generality and interpretability.

4.5 Ablation Study

We further designed several variants of ANEK for ablation experiments to analyze the effects of differ-
ent components on the model, where ”w/o CL”, ”w/o SK”, ”w/o CK”, ”w/o TD” denote the removal of
contrastive learning, sentiment information, common sense knowledge and adversarial learning, respec-
tively.

We report the F1 avg scores (Percentage System) of the ablation study in Table 4. The experimental
results indicate that removing stance contrastive learning (”w/o CL”) significantly decreases the model’s
performance, which suggests that we perform stance contrastive learning on the text representation assists
the encoder in learning better category representations from samples, leading to better generalization.
The removal of sentiment information (”w/o SK”) reduces model performance, implying that the model
may learn the potential relationship between stance and sentiment and make judgments with the help
of sentiment knowledge. Removing common sense knowledge (”w/o CK”) leads to poor performance
in stance detection, indicating that introducing common sense knowledge can indeed help the model
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understand text information and improve its reasoning ability. ”w/o TD” indicates that the removal of the
target discriminator becomes less effective on multiple targets, demonstrating the success of adversarial
learning applied to zero-shot scenarios, generalizing to unseen targets by encouraging the encoder to
generate target-invariant representations.

Model
SEM16(%) WT-WT(%) COVID-19(%)

DT HC FM LA A CC CA CE AC AH WA SC AF SH
ANEK 50.3 54.7 55.0 49.0 54.1 39.2 71.4 69.8 74.8 76.3 52.9 49.8 48.6 50.3
w/o LC 49.2 52.8 52.9 47.8 53.2 38.0 69.2 66.5 73.2 75.2 51.3 48.2 48.1 49.2
w/o SK 48.7 51.8 53.4 47.2 52.0 37.8 68.1 67.5 71.3 74.0 51.0 49.3 47.2 48.0
w/o CK 48.0 52.4 53.0 46.8 51.1 36.5 67.6 66.8 72.0 73.8 49.7 48.7 46.5 47.9
w/o TD 47.8 51.2 52.3 46.5 52.9 37.8 69.0 68.8 72.6 73.3 50.4 47.9 47.8 47.2

Table 4. Experimental results of the ablation study.

4.6 Generalizability Analysis

We further performed experiments on the SEM16 dataset for cross-target stance detection and report
the F1 avg results (Percentage System) in Table 5. The cross-target stance detection task is treated as a
particular zero-shot setting, as we need to train using data from a source target related to the test target.
Table 5 illustrates that our ANEK model achieves better performance. We can also find that the cross-
target setting outperforms the zero-shot setting, which indicates that knowing the relationship between
targets in advance can learn more reliable target-invariant representations to generalize to unseen targets,
illustrating the challenges of zero-shot stance detection. Additionally, enhancing the understanding and
generalization of the model by introducing external knowledge is also effective.

Model
SEM16(%)

FM→LA LA→FM HC→DT DT→HC
BiCond 45.0 41.6 29.7 35.8

CrossNet 45.4 43.3 43.1 36.2
BERT 47.9 33.9 43.6 36.5
TPDG 58.3 54.1 50.4 52.9

PT-HCL 59.3 54.6 53.7 55.3
ANEK 58.5 54.8 54.3 56.4

Table 5. Experimental results of cross-target stance detection. ”FM→LA” indicates training on FM,
testing on LA, etc.

Text Target Gold Label BERT TOAD ANEK
Your have to wonder if Hillary will attempt to re-
place #ObamaCare with #HillaryCare.

Donald
Trump

Against Neutral Against Against

Donald trump is way better than ANY candidate
out there. Because he’s real, not a lobbyist backed
puppet.

Donald
Trump

Against Favor Favor Against

I do not understand why the Republicans don’t
dismiss him.

Donald
Trump

Against Neutral Neutral Against

......and some, I assume, are good people.
Donald
Trump

Against Favor Favor Favor

Table 6. Four cases of the predictions by BERT, TOAD and ANEK.
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4.7 Case Study

To qualitatively analyze our model, we conduct a case study and error analysis. We select four cases from
the test data of SEM16 and compare our results to the predictions of BERT and TOAD. Table 6 reports
these results. In the first case, our model and TOAD with adversarial learning output the correct labels,
while the output of BERT is wrong. We believe that because the training data contains the target ”Hillary
Clinton,” the model learns the election relationship between the two targets and transfers the knowledge,
and semantically focuses more on the stance-related words rather than the target words, with a robust
target generalization. In the second case, only our method makes the correct prediction, demonstrating
that depending only on contextual information is insufficient. Adding sentiment information strengthens
the model’s comprehension of texts with a sarcastic sentiment. In the third case, our method still correctly
predicts the outcome. Although no words about Trump appear in the text, we speculate that the model
learns the hidden connection between “Republican” and “Donald Trump” and understands the implied
meaning of the text, further confirming the validity of common sense knowledge.

In the fourth case, all models output incorrect results. We suspect that this is because the text is too
brief, resulting in less valid information being learned, and the background knowledge is too complex,
which reveals that we can explore data augmentation methods in the future to improve the performance
of zero-shot stance detection by expanding the data.

5 Conclusion

This paper proposes an adversarial network with external knowledge (ANEK) to handle the zero-shot
stance detection task. The model applies adversarial learning based on pre-trained models to ensure
knowledge transferability, and introduces common sense knowledge and sentiment information to en-
hance the model’s deep understanding and assist stance detection. In addition, stance contrastive learn-
ing is used to improve the model’s generalization. The experimental results on three benchmark datasets
indicate that our method performs competitively on some unseen targets. In future work, we will de-
sign a data enhancement method to alleviate the data scarcity problem in zero-shot settings and improve
performance.
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