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Abstract

Sentiment analysis is a crucial text classification task that aims to extract, process, and analyze
opinions, sentiments, and subjectivity within texts. In current research on Chinese text, sentence
and aspect-based sentiment analysis is mainly tackled through well-designed models. However,
despite the importance of word order and function words as essential means of semantic ex-
pression in Chinese, they are often underutilized. This paper presents a new Chinese sentiment
analysis method that utilizes a Learnable Conjunctions Enhanced Model (LCEM). The LCEM
adjusts the general structure of the pre-trained language model and incorporates conjunctions
location information into the model’s fine-tuning process. Additionally, we discuss a variant
structure of residual connections to construct a residual structure that can learn critical informa-
tion in the text and optimize it during training. We perform experiments on the public datasets
and demonstrate that our approach enhances performance on both sentence and aspect-based
sentiment analysis datasets compared to the baseline pre-trained language models. These results
confirm the effectiveness of our proposed method.

1 Introduction

Sentiment analysis is a crucial area of research within the field of natural language processing. Before
the advent of Transformer (Vaswani et al., 2017), Recurrent Neural Networks (RNNs) were the primary
method used to model sequences in language modeling tasks (Tang et al., 2016a; Li et al., 2018; Li
et al., 2019; Majumder et al., 2022). RNN, along with its variants LSTM (Long-Short Term Memory)
and GRU (Gated Recurrent Unit), are powerful models for processing sequences of varying lengths
and addressing long-term dependencies. However, the sequential nature of RNNs makes parallelization
difficult. Transformer introduces the attention mechanism to encode the context information, which can
well capture the internal correlation and ease the problem of long-term dependencies. This allows for
greater parallelization and improved performance on certain tasks.

Nevertheless, since self-attention discards sequential operations when processing sequences, the po-
sition information in the sequence cannot be fully utilized. In languages such as Chinese, word order
plays a crucial role in conveying grammatical meaning °, making it important to consider the sequen-
tial nature of the language when developing natural language processing models. Word order refers to
the sequence of words in a phrase or sentence, while Chinese word order is relatively fixed, and the
change of word order can make the phrase or sentence express different meanings. “Speak well/i}i 4
17, “easy to speak with/%f 1515, and “easier said/iG%f 1} are three Chinese phrases that demonstrate
the importance of word order in conveying meaning. Although these phrases share similar characters,
their meanings differ greatly depending on how those characters are arranged. “Speak well/Ui i 15"
means to speak positively or say good things about someone or something, while “easy to speak with/4F
V1% describes someone who is easy to communicate with. Lastly, “easier said/i& #f i implies that
something may sound simple or easy to do but can be more difficult in practice. It’s essential to consider
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both the context and word order when interpreting or translating Chinese phrases. In addition, function
words in Chinese play an important role in constructing the grammatical structure of a sentence and re-
flecting specific grammatical relationships. They are a crucial grammatical tool necessary for expressing
meaning '. Among them, conjunctions connect grammatical units at different levels, and their positions
in sentences are significantly different (Liu, 2016), which can be used as an essential aspect of studying
syntactic distribution.

Therefore, in this paper, we propose LCEM, a learnable conjunctions augmentation model for Chinese
sentiment analysis. By adjusting the structure of the pre-trained language model, LCEM introduces the
conjunction position information into the fine-tuning process. The paper also explores variants of residual
structure and constructs an enhanced model capable of learning critical information during training and
optimization of the residual structure.

The main contributions of this paper can be summarized as follows:

* LCEM is a generic structure that can be easily integrated into a pre-trained language model based
on Transformer using an adaptive update optimized network of learnable parameter factors.

* By incorporating the relative position of conjunctions in each layer of the pre-trained language
model, LCEM enhances multi-head self-attention and effectively considers the sentiment range of
sentences connected by conjunctions.

* Additionally, LCEM combines a learnable residual structure to better balance the network and op-
timize semantic representation more efficiently.

* LCEM is evaluated on benchmark datasets for sentence and aspect-based sentiment analysis. Exper-
iments show that LCEM consistently achieves state-of-the-art performance across all test datasets.

2 Related Work

2.1 Chinese sentiment Analysis

Early Chinese sentiment analysis methods (Zhu et al., 2006; SHI Wei, 2021; Liu et al., 2015) pri-
marily relied on sentiment lexicons, such as HowNet sentiment word dictionary and National Taiwan
University Sentiment Dictionary (NTUSD), and classified sentiment polarity based on dictionaries and
rules. However, these methods are limited by the quality and coverage of lexicons. The sentiment anal-
ysis in a specific field needs to construct a specific dictionary, which is time-consuming and laborious.
When traditional machine learning algorithms are used in sentiment classification, different features en-
able different classifiers to obtain higher accuracy than dictionary methods (Xu et al., 2007; Yang and
Lin, 2011; He et al., 2018). However, traditional machine learning methods rely on the quality of the
annotated corpus and cannot fully use contextual semantic information.

With the rapid development of deep learning, neural network and attention mechanism have been
widely concerned and applied in Chinese sentiment analysis (Cheng et al., 2019; Peng et al., 2018).
Transformer with self-attention mechanism, which employs an encoder-decoder framework to better ad-
dress long-term dependencies and allows for more robust scalability of parallel computations, is widely
used in natural language processing. Based on the Transformer architecture, a series of landmark pre-
trained language models have emerged, showing a strong ability to learn generic Chinese representa-
tions. Li (2021) fully extracted context information using improved attention to encode relative position
between words based on ELMo (Peters et al., 2018). Xie(2020) used BERT to encode the set of sen-
timent words extracted from texts and used attention to obtain sentiment information. However, in the
above studies, although the pre-trained language model has powerful modeling ability, it neglects the
application of syntactic structure or semantic information in sentiment analysis and fails to use sentiment
features effectively.
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2.2 Relative Position Feature

In order to leverage the sequential information contained within input text, Transformers incorporate
position embeddings into the original input embedding. This process is calculated as follows:

PE(pos 0y = sin(pos/10000(2/ dmodct))

: (1

PE(pos 9i+1) = c0s(pos 100002/ dmodc1))
where pos represents position, ¢ represents the number of dimensions, d,,.qe; 1S the input and output
vector dimensions. The sines and cosines enable the model to learn the relative position and easily
extend to longer sequences.

The BERT-based pre-trained language model adopts the encoder structure in Transformer and selects
absolute position embedding to better adapt to downstream tasks. In the input layer, word embedding is
combined with position embedding to ensure that identical words at different positions can learn repre-
sentations that are appropriate for their respective contexts. Li (2021) improved attention by encoding
relative positions between words. Shaw (2018) used relative encoding as an additional value in the
self-attention to capture information about the relative position differences between input elements. Ac-
cording to different task characteristics, different position embeddings contain different meanings. For
instance, in the named entity recognition task, entity term is often introduced by designing different
position features (Li et al., 2020; Yan et al., 2019; Mengge et al., 2020). In the causality extraction
task, position features can reflect the position of connectives and the distance between causal events and
connectives (Zhao et al., 2016).

2.3 Residual Structure

Neural networks have a strong representation ability and can optimize and update the network structure
through the back propagation algorithm. However, during backpropagation, gradients may either vanish
or increase exponentially, resulting in ineffective updates to the underlying parameters, or gradient ex-
plosion. Furthermore, deeper networks are susceptible to degradation problems. He (2016) verified that
adding more layers to a network model with a certain depth will lead to higher training errors.

Recently, residual learning has been widely used in natural language processing and computer vi-
sion as a technique for optimization of deep neural network to alleviate gradient vanishing or explosion
problems (He et al., 2016; Srivastava et al., 2015; Liu et al., 2019a; Liu et al., 2021). Since each sub-
module of the Transformer encoder contains residual structures with layer normalization, BERT-based
pre-trained variants can also make full use of residual connections to optimize the network.

This paper introduces the learnable residual structure based on enhanced self-attention by the position
features of conjunctions. By assigning learnable parameters to each branch, the residual structure can be
adjusted adaptively, and performance can be improved through simple model adjustment.

3 Methodology

3.1 Overview

LCEM is based on the basic architecture of the pre-trained language model. The overall structure of
LCEM is described in Figure 1. LCEM uses the conjunction relative position enhanced multi-head
attention to replace the multi-head attention module in each layer of the pre-trained language model.
By combining the relative position feature with the attention mechanism, the model can learn global
semantic information while still paying close attention to important local ranges. In addition, the residual
structure of the pre-trained language model is improved to a more flexible structure to optimize the
network and enable better internal information sharing. The learnable factors can adaptively control the
residual structure, better integrating the semantic information learned by the relative position feature and
further optimizing by assigning different importance to each residual branch.
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Figure 1: Overview of LCEM

3.2 Conjunction Relative Position Enhanced Multi-Head Attention

LCEM uses the relative position feature to enhance attention to learn the interaction between input text
and the conjunctions representation. Conjunctions of transition, progression, selection, and coordinate
are selected in the Chinese Function Word Usage Knowledge Base(CFKB) (Zan et al., 2011; Kunli et
al., ; Zhang et al., 2015), and the distance d(d > 0) between each character in a sentence and the first
character of the conjunction is calculated. We map the relative position of conjunctions into the interval
of (0, 1) to obtain the relative position feature RP, and the calculation is as follows:

1

Tiged @

RP =1— Sigmoid(d) =1
If there is no conjunctions in the sentences, the d in the formula is the distance between each word in the
sentences and the beginning of the sentences.

Then, as shown in Figure 2, RP increases the attention to the context near conjunctions. At the
same time, the learnable parameter w is introduced to reduce the noise caused by introducing the relative
position feature to the original input representation H. The attention after adding the relative position
feature is as follows:

T

: QK
Attet K, V) = Soft +wRP)V
etnion(Q ) oftmax( NG wRP) 3)

where Q=HW® K =HWX v =HWV

3.3 Learnable Residual Structure

Some studies (Liu et al., 2019a; Liu et al., 2021) divided the problems existing in residual connection
into two types: the balance problem of each residual branch and the optimization problem. Liu (2019a)
analyzed existing works and summarized the general residual structure as follows:

Y=ax+ pF+~vyLN(x+ F) 4)

Where z is the input branch, i.e., the skip connection, F is the residual branch, LN is layer normalization,
Y is the output of the residual block, and «, 3, v are the weight factors. The residual block can be
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Figure 3: Residual Structure in Transformer and LCEM

adjusted and optimized adaptively by adjusting values for «, (3, and . Liu (2021) proposed formula 5 to
summarize the residual connection with normalization. Normalization G was placed outside the sum of
input = and nonlinear transformation F (z, W), and A was used to enhance the input branch.

Y=GA\z+ F(z,W)) 5)

Drawing inspiration from the residual structure present in every layer of the Transformer (Figure 3
(a)), layer normalization plays a crucial role in the model’s overall performance. It can help the opti-
mization of nonlinear transformation to a certain extent. And, in combination with the idea of adjusting
each branch of residual in the neural network by the weight factor mentioned above, the residual structure
is summarized as follows:

Y = LN(az + BF) (6)

As shown in Figure 3 (b), the residual structure in Transformer can be regarded as a particular case
Y = LN(x + F) when @« = 8 = 1. In Transformer, the residual branch F can be either multi-
headed attention or feedforward networks. In this paper, we focus on the residual structure of multi-
head attention. We propose to replace the residual branch with conjunctions relative position enhanced
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Table 1: Statistical data of each category in the datasets.
COAE2013 NLPCC2014 SemEvall6_.CAM SemEvall6_.PHO

Datasets

Train Test Train Test Train Test Train Test
Positive 753 305 5000 1250 809 344 758 310
Negative 876 239 5000 1250 450 137 575 219

attention. Meanwhile, o and 3 are set as learnable parameters so that the model can self-learn appropriate
scaling factors. The proportion of input branch = and residual branch F in the network is constantly
modified to achieve optimization.

The semantic representation obtained by the enhanced attention will further learn the appropriate pro-
portion in the propagation under the adjustment of scaling factor 3, reducing the noise caused by the
introduction of the relative position feature. Scaling factors o and S jointly determine the different dis-
tribution of x and F. The layer normalization is used to make the distribution of each layer in the network
relatively consistent to avoid gradient vanishing or explosion caused by the change of learnable param-
eters. Through multi-layer structure with learnable conjunctions enhanced attention, the final output is
obtained by a linear classifier.

4 Experimental Settings

4.1 Datasets

In this paper, we study two granular subtasks in Chinese sentiment analysis. Statistical data of the above
datasets are shown in Table 1.

For Chinese sentence-level sentiment analysis, COAE2013 and NLPCC2014 are selected. COAE2013
is a dataset of annotated data from The Fifth Chinese Opinion Analysis Evaluation, consisting of 1004
positive reviews and 834 negative reviews. The dataset was divided into train set and test set according
to the ratio of 9:1. NLPCC2014 is from the 3rd CCF Conference on Natural Language Processing &
Chinese Computing, including reviews of books, DVDs, electronic products, and other domains. The
train set consisted of 5,000 positive and 5,000 negative texts, and the test set consisted of 2,500 texts.

For the Chinese aspect-based sentiment analysis task, this paper selects SemEval2016 (Pontiki et al.,
2016). Task 5 of SemEval2016 provides a Chinese dataset of electronic product aspect-based reviews
in two specific domains, including phone and camera, including 400 samples, a total of about 4100
sentences.

4.2 Baselines

We evaluate LCEM with typical sentiment analysis and text classification models as baselines for
sentence-level sentiment analysis, including BiLSTM (Zhang et al., 2015), BiLSTM+Att (Zhang and
Wang, 2015), TextCNN (Kim, 2014), DPCNN (Johnson and Zhang, 2017), and pre-trained language
models like EBi-SAN (2021), BERT, BERT_wwm (Cui et al., 2021), RoBERTa (Liu et al., 2019b),
ERNIE (Sun et al., 2019b). For aspect-based sentiment analysis, we compare our solution to several
models that can be applied to Chinese text, including MemNet (Tang et al., 2016b), ATAE-LSTM (Wang
etal., 2016), IAN (Ma et al., 2017), Ram (Chen et al., 2017), AOA (Huang et al., 2018), MGAN (Fan et
al., 2018), Tnet (Li et al., 2018), and QA-B (Sun et al., 2019a) and NLI-B (Sun et al., 2019a), and also
BERT and ERNIE.

The word vector pre-trained by the Sogou News corpus is selected as the initial embedding in the
general baselines. The batch size is 128, the learning rate is 1E-5, and 30 epochs are trained by Adam
optimization. Based on the pre-trained model, the baselines all follow the default 12 hidden layers with a
size of 768, the batch size is 20, and the learning rate is SE-5. Adam is used to optimize the cross-entropy
loss function and fine-tunes the parameters.
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5 Experimental Results

5.1 Results on Sentence-level Sentiment Analysis

Table 2 shows the results of comparative experiments on the sentence-level datasets.Compared with
the pre-trained model ERNIE and neural network models based on RNN and CNN, such as TextCNN
and DPCNN, the results indicate that the fine-tuned pre-trained language model performs better on the
datasets than the neural network models based on RNN and CNN, highlighting the huge advantage
of pre-trained language models in sentiment analysis tasks. Additionally, compared to other pre-trained
models, ERNIE performs better on two sentiment analysis datasets. By using relative positional encoding
of conjunctions and learnable residual structures based on ERNIE, LCEM further optimized the model
and improved its performance, demonstrating the effectiveness of the proposed method in this paper.

Table 2: Results on sentence-level sentiment analysis datasets.

Datasets COAE2013 NLPCC2014

Acc(%) Fl1(%) Acc(%) Fl(%)
BiLSTM 8574 8539 6048  60.48
BiLSTM+Att 8691 8676 69.60  69.56
TextCNN 89.65 89.46  69.04  68.85
DPCNN 8730 87.07 6248  58.88
EBi-SAN : - 79.08  78.48
BERT 9357 9353  79.61  79.61
BERT wwm  94.88  94.83 8021  80.20
RoBERTa 9499 9501 79.57  79.56
ERNIE 9577 9574  80.89  80.88
LCEM 96.69 96.68 81.08 81.08

5.2 Results on Aspect-based Sentiment Analysis

Experimental results are shown in Table 3 compared with aspect-based sentiment analysis baselines. Un-
der the accuracy and F1, LCEM outperforms all baselines in SemEvall16_CAM and SemEvall16_PHO.
The accuracy of LCEM on the SemEvall6_CAM is 1.25% higher than that of ERNIE, and the F1 value
is 0.72% higher than that of QA-B. Compared with IAN, MGCN, and other non-pre-trained language
models, the fine-tuned results of the pre-trained model have great advantages. On the one hand, the
pre-trained model has been trained on large text corpus and has learned rich language representation ca-
pabilities, which enables the pre-trained model to better understand the semantics and context of the text,
which is very helpful for sentiment analysis tasks. On the other hand, pre-trained models can achieve
better results on small datasets, while recurrent neural networks require large amounts of manually an-
notated training data, and the size of the training data will limit the performance of the model.

5.3 Ablation Study

Table 4 shows the results of LCEM ablation experiments on four datasets.

In which, +RP and +wRP respectively represent adding relative position encoding (RP) and
weighted relative position encoding (Weighted RP) only in the self-attention module on top of the
baseline model. Comparing +RP and +wRP with baseline ERNIE, we can see that +wRP is bet-
ter than + R P, improves performance on both sentence-level datasets and SemEval16_PHO. But on Se-
mEvall6_CAM, neither +RP nor +wRP can achieve effective performance enhancement, which may
be because the relative position feature is added to each layer of the pre-trained language model. The
output of each layer will serve as input to the next layer and participate in the residual structure. As the
network depth increases, each addition of the relative position feature will introduce some noise into the
original representation. Although the weighted relative position feature(4+-w R P) introduces parameters
that can learn relative positional shifts with the network structure, its effect varies on different datasets.
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Table 3: Results on aspect-based sentiment analysis datasets.
SemEvall6_CAM SemEvall6_PHO

Datasets Acc(%)  Fl(%) Acc(%) F1(%)
ATAE-LSTM 8711 8279 7902  73.78
MemNet 88.57 8533 7788 7677
AN 8877 8597 7940 7891
Ram 8565 8266 77.69 768l
Tnet 8732 8347 7977 79.14
AOA 8836 8552 7958 7921
MGAN 8545  82.65 7996  79.38
BERT 8704 8557 8374 8322
ERNIE 93.14 9145 9017  89.84
ERNIE-SPC 9252 9065 9036  90.07

QA-B 9241 9241 8923  89.22
ERNIE-based  \y 1 B 9148 9148 8894  88.94
LCEM 9439 9313 9112  90.79

Table 4: Results of ablation experiment

Datasets COAE2013 NLPCC2014  SemEvall6.CAM SemEvall6_PHO

Acc(%) FlL(%) Acc(%) FlL(%) Acc(%) Fl(%) Acc(%) Fl(%)
Baseline(ERNIE) 9577 9574 80.89 80.88 93.14 9145  90.17  89.84
+RP 95.96 9594 8076 80.75 9293 9177  89.60  89.17
+wRP 95.96 9593 8092 8091 9293 9132 90.74  90.42
+LRS 9651 9649 8040 8040 9231  90.74  90.17  89.83
+RP&LRS 95.96 9593 8096 80.95 9335 9335  90.55  90.27

+wRP&LRS(LCEM) 96.69 96.68 81.08 81.08 94.39 93.13 91.12  90.79

+ L RS represents only the learnable residual structure added to ERNIE. The comparison results also
show that +LRS has a slight improvement, indicating that the structure of the pre-trained language
model, especially the residual structure, has the advantages of efficiency, stability, and universality.

Accuracy and macro-F1 of + RP&LRS are better than +RP, +wRP, and +LRS in both datasets.
This suggests that scaling within the residual structure can effectively adjust the enhanced multi-head
attention as a branch of residual connection. In addition, the output of the previous layer serves as the
skip connection branch of the residual structure of the next layer, and residual scaling can adjust the
input branch and the residual branch adaptively. At the same time, it shows that enhanced attention by
relative location features can capture both content and distance information, and learn richer context
representation under the role of location information.

The proposed model LCEM(4+wRP& L RS) achieves the highest accuracy and F1 in both sentence-
level datasets. In the two datasets of SemEvall6, the F1 improved by 1.68% and 0.95%, respectively,
compared with baseline model ERNIE, and achieved the highest accuracy in both datasets. Compared
with + RP& L RS, the accuracy is significantly improved, indicating that weighted relative position en-
coding can achieve more effective optimization. The learnable weights during network training also
reduce the noise effects introduced by relative position encoding, better capture the balance within the
network and maximizing the gain of residual scaling.

5.4 Case Study

For further analysis of the model, the LCEM and ERNIE models are analyzed in this paper, as shown in
Table 5.

For the adversative conjunction »fHE”, it serves as a transitional element between two sentences or
clauses. It indicates a contrast or contradiction between the information presented before and after it. In
the given context, the emotional tone of the sentence preceding the transition is predominantly negative.
However, the emotional tone of the sentence following the use of {H f&” changes from negative to
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Table 5: Case studies of LCEM and ERNIE models

Type of conjunction  Conjunction Example Model Label
i (GRS SH RN R, RS ERN, R, JEH RS Lo (1’

i ME  RAEMWSNG BUEE (BTEE) | MAWEGAK RE. o

Weight_of_RP = The_ratio_of_a_to_ =

]
S
T S S S S .

|

Figure 4: The parameter w of RP over time. Figure 5: The ratio of « to 8 over time.

positive. Therefore, the emotional label of the first sentence in Table 5 is 1, signifying a shift from
negative to positive emotion.

On the other hand, the coordinating conjunction "Tfll H is used to connect two sentences or clauses to
express a progression or addition of information. While the emotional information in the sentence before
the conjunction may not be overtly expressed, it is more fully conveyed in the sentence that follows the
use of 11 H.” Consequently, the emotional label of the second sentence in Table 5 is 1, indicating the
enhanced expression of emotional content instead of label 0. When compared to ERNIE, LCEM, which
incorporates conjunctive information, provides more accurate predictions of emotional labels.

6 Learnable Parameters Analysis

Figure 4 and Figure 5 show the changes of relative position parameter w and « to [ ratio over time. The
X-axis represents the range of parameter values, while the Y-axis on the right represents the number of
training steps. Each slice in the figure is a single histogram, representing the distribution of parameters
in a training step. The number of training steps is gradually increased from back to front.

According to Figure 4, the learnable parameter w of the relative position feature RP is more evenly
distributed in [0.919,0.999], indicating that the relative position feature occupies a vital proportion of
attention. Moreover, combined with the ablation experiment results in Section 5.4, relative location
feature enhanced attention can capture both content and distance information and learn a richer context
representation under the effect of location information.

Figure 5 shows that the ratio of « to /3 is evenly distributed in [0.919,1.01]. In most cases, the
proportion of input branches is smaller than that of residual branches. In each Transformer encoder, the
proportion of representations from the previous layer is smaller than that of expressions enhanced by
the relative position of the conjunctions. It demonstrates the significance of the semantic representation
obtained through enhanced attention in the network. Moreover, input branches also play an important
role in network. Through layer-by-layer propagation, the semantic representation acquired by each layer
can be preserved in the lower layers and will participate in the attention mechanism to further extract
abstract semantics. The learnable parameters greatly help the information transfer and optimization of
network structure.
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7 Conclusion

In this paper, we introduce LCEM, a model that incorporates semantic information using relative posi-
tion features of conjunctions, and guides the Chinese sentiment analysis task through adaptive residual
structure.Specifically, weighted relative position features reduce the introduced noise and improve the
learning ability of location-related syntactic features, which can better guide the self-attention mecha-
nism and help the model focus on the critical sentences for semantic representation. At the same time,
we propose a novel learnable residual structure based on pre-trained language models that can effectively
handle the interaction between residual and input branches in an adaptive manner. Experimental results
show that our method is effective in Chinese sentiment analysis, where relative position and adaptive
residual structure complement each other. The relative position information helps the model to focus on
crucial information for sentiment analysis, while the residual structure in each layer balances the learned
knowledge within the network structure.
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