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Abstract

Language teachers spend a lot of time developing good examples for language learners.
For this reason, we define a new task for language learning, lexical complexity controlled
sentence generation, which requires precise control over the lexical complexity in the
keywords to examples generation and better fluency and semantic consistency. The chal-
lenge of this task is to generate fluent sentences only using words of given complexity
levels. We propose a simple but effective approach for this task based on complexity
embedding while controlling sentence length and syntactic complexity at the decoding
stage. Compared with potential solutions, our approach fuses the representations of the
word complexity levels into the model to get better control of lexical complexity. And
we demonstrate the feasibility of the approach for both training models from scratch and
fine-tuning the pre-trained models. To facilitate the research, we develop two datasets
in English and Chinese respectively, on which extensive experiments are conducted. Ex-
perimental results show that our approach provides more precise control over lexical
complexity, as well as better fluency and diversity.

1 Introduction
In the fields of language teaching and acquisition, language instructors and textbook compilers
need to make teaching materials with example sentences, either synthetically designed or from
authentic resources (Caro and Mendinueta, 2017; Lu et al., 2019). In most cases, they are re-
quired to create appropriate example sentences that only use the words at particular complexity
for language learners passing through different learning levels (Nordlund and Norberg, 2020;
Laufer, 2021), which is very time-consuming and exhausting. Automatically generating good
examples can support educators and language learners in obtaining, analyzing, and selecting
proper example sentences. Besides, it can also assist in the development of graded reading
materials (Ryu and Jeon, 2020; Al-Jarf, 2021; Amer, 2021).

For language learners, good examples are not only required to be fluent and diverse but also
match the level of the learners, especially the level of vocabulary. Therefore, it is necessary
to effectively control the lexical complexity in good examples generation, which is a task of
controllable text generation.

Controllable text generation (CTG), a significant area of natural language generation, con-
tains a series of tasks that aim to generate text according to the given controlled requirements
(Prabhumoye et al., 2020; Zhang et al., 2022). CTG systems usually focus on controlling text
attributions such as sentiment (Hu et al., 2017; Zhang et al., 2019; Samanta et al., 2020), topic
(Dathathri et al., 2019; Tang et al., 2019; Khalifa et al., 2020) or keywords (He, 2021; Zhang
et al., 2020; He and Li, 2021), generating poems or couplets with specific formats (Chen et al.,

∗ Corresponding author:Liner Yang
©2023 China National Conference on Computational Linguistics
Published under Creative Commons Attribution 4.0 International License
This work was supported by the funds of Research Project of the National Language Commission No. ZDI145-24.

CC
L 
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 648-664, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

648



Computational Linguistics

Easy Hard

Keywords: 

Level A:

Level A and B:

Level A and C:

Level A Level B Level C
the

water
…

light
peach

...

palm
exposure

…

tree need

The tree needs water.

This peach tree needs light.

Palm trees need full sun exposure.

Figure 1: An example for lexical complexity controlled sentence generation. There are three
complexity levels (A, B, and C) from easy to hard. Given the keywords “tree” and “need”, we
will generate “The tree needs water.” if required to use all words from level A and generate
“This peach tree needs light.” if required to use words from both level A and B as both“peach”
and “light”are in level B.

2019; Shao et al., 2021; Sheng et al., 2021), and even predicting descriptions from structured
data (Zhao et al., 2020; Su et al., 2021; Ribeiro et al., 2021). However, few works have been
devoted to strict control over the lexical complexity for text generation. Although lexical sim-
plification has been paid attention to the text simplification task through substitution (Kriz et
al., 2018), it cannot strictly control the lexical complexity levels of the generated sentence.

To this end, we propose a new task of lexical complexity controlled sentence generation,
which requires that keywords and complexity levels be given to generate a sentence including
the keywords and consisting of the words in the given complexity levels. For example, as shown
in Figure 1, we assume that there are three complexity levels (A, B, and C) from easy to hard.
Given the keywords, we can generate sentences consisted with words of different complexity
according to the given levels.

It is challenging to generate fluent sentences for given keywords while using the words only at
specific complexity levels. This can be regarded as an extension and a particular case of lexical
CTG task (He and Li, 2021; Miao et al., 2019; Zhang et al., 2020). Differently, it combines
two aspects of constraints during generation: keywords constraint the semantics, and lexical
complexity levels constraint the surface form. It is difficult for the model to select suitable
words from a specific subspace satisfying the above two constraints in each generation process.
We formulate this problem in Section 2.1.

Some previous works can be customized as solutions to this problem, which are divided into
three branches: controlled decoding, prompting, and reranking. The first method forces to
change the probability distribution during the decoding phase to ensure that only words of the
specified levels are used in the generation (Dathathri et al., 2019; Post and Vilar, 2018). But the
hard constraint may lead to poor quality generation quality. The second one considers lexical
complexity through prompting (Brown et al., 2020; Raffel et al., 2020; Li and Liang, 2021) in the
input of the model, which introduce coarse grained information of training and inference. The
method of reranking is to select the sentence that best meets the lexical complexity requirements
from the candidates (Ravaut et al., 2022; Pandramish and Sharma, 2020), which executes after
decoding and does not consider lexical complexity in the training time.

The complexity constraint requires models to aware of lexical complexity and respond to com-
plexity control signals. Therefore, we use two mechanisms as enhancements to the transformer-
based models. For the complexity awareness, we propose the Complexity Embedding (CE)
method, which represents the complexity levels with trainable embeddings. We incorporate the
CEs into both training and prediction processes by fusing the CEs and word embeddings as to-
ken representations, which is simple but effective. For responding to complexity control signals,
we concatenate special tokens corresponding to specific complexity levels with the keywords as
the input sequence. To combine the awareness and response, we use CEs to represent these
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Figure 2: Encoder-Decoder model with our proposed CE method. The representation of each
input token is a summary of three embeddings, which are token embedding, position embedding,
and complexity embedding. And we concatenate the keywords and complexity level tokens as
the input sequence of the encoder. Note that the special tokens correspond to the complexity
level of “S”, and the punctuation correspond to “P”.

special tokens. The experiments show that our proposed method is effective for both training
from scratch and fine-tuning the pre-trained language models. And compared to the baseline
methods, our method achieves significant improvement in the restriction of lexical complexity
levels and generation quality. Our main contributions include:

• We propose a new task of lexical complexity controlled sentence generation and two datasets
in English and Chinese for this task. To evaluate the satisfaction of the lexical complexity
constraint, we develop four metrics.

• We propose a new method for this task based on complexity embedding.

• The experimental results show that the complexity embedding method we proposed signif-
icantly outperforms the baseline methods which are implemented for this task.

2 Method

2.1 Problem Definition
Lexical Complexity Controlled Sentence Generation aims at keywords to sentence gen-
eration with desired complexity levels. First, we give the keywords set K = {k1, k2, ..., km} and
the complexity levels L = {l1, l2, ..., ln} which correspond to a subset D = {W1 ∪W2 ∪ ...∪Wn}
of the whole vocabulary V and Wi is the word set of complexity level li. The control elements
in this task include three parts:

First, we define a predicate F (K,Y ) to be a boolean function indicating the occurrence of
keyword ki in a generated sequence Y = y1, y2, ..., yt, and t is the sequence length.

C1 = F (K,Y ) (1)
F (K,Y ) ≡ ∀ i, ki ∈ Y (2)

where C1 is the keywords constraint which means the keywords are required to be included in
the generated sentence.

Second, we define a predicate G(Y,D) to be a boolean function indicating the occurrence of
a word yi which is a word of the sentence Y in a word set D.

C2 = G(Y,D) (3)
G(Y,D) ≡ ∀ i, yi ∈ D (4)

where C2 is the complexity constraint on word which means the words in the generated sentence
are required to be the words of the given complexity levels.
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Then, we define a predicate H(Y,Wi) to be a boolean function indicating that there exist at
least one word in the generated sentence in the Wi.

C3 = H(Y,W1) ∧H(Y,W2)... ∧H(Y,Wn) (5)
H(Y,Wi) ≡ ∃ j, yj ∈ Wi (6)

where C3 is the constraint on the species of complexity level which means the lexical levels of
the generated sentence need cover all the given levels.

The task requires to seek optimal sequences in which all constraints are satisfied as much as
possible. The formula is as follows:

Ŷ = arg max
Y ∈Y

logPθ

(
Y |K,L

)
where

N∑
i=1

Ci = N (7)

where N is the number of constraints and N = 3.

2.2 Complexity Embedding
As illustrated in Figure 2, our model is based on the encoder-decoder architecture. To make
the model aware of the complexity levels, we fuse the complexity into the task by designing a
lexical complexity embedding for each token. To make the model respond to specific complexity
levels, we insert special tokens corresponding to complexity levels into the input sequence as
controllable elements. This section introduces these two key components as well as the training
and inference strategy.

We initialize a learnable matrix M ∈ RU×dim as representations of complexity levels, where
U is the total number of complexity levels, and dim is the dimensions of each embedding. For
each token input to the encoder and decoder, we retrieve a predefined hash-table to obtain its
complexity level li. Then we get the corresponding complexity embedding by comi = Mi. The
final embedding of this token embi is as following:

embi = toki + posi + comi (8)

where toki and posi are token and positional embeddings, which are obtained according to
Transformer model(Vaswani et al., 2017).

For example, as shown in Figure 2, when two keywords “tree” and “need” along with two
complexity levels A and B are required, the sentence “This peach tree needs light.” is gener-
ated which satisfies both constraints. We use different complexity representations (mapping
into a complexity embedding) for words of different complexity levels. And the complexity
representations of special tokens and punctuation are also different.

In practice, we apply the BPE (byte pair encoding) (Sennrich et al., 2015) algorithm to split
words into sub-word tokens to mitigate the OOV (out-of-vocabulary) problem. We mark each
sub-word with the same complexity level as the original word. More details about the complexity
levels can be found in the Appendix A.

2.3 Controllable Elements
As illustrated in Equation 4, each word in the sentence Y is constrained to the word set D. To
achieve this, we design a set of special tokens Z = {z1, z2, . . . , zn}, where each token corresponds
to a complexity level in L.

We concatenate the keywords and the special tokens as the input sequence X = [K; ⟨sep⟩;Z].
And we refer the special tokens Z as controllable elements, as they control the complexity of
the generated sentence. Note that the complexity embedding of zi is that of the level li.
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2.4 Training Complexity Embedding
We train the complexity embedding in the Transformer model from scratch or fine-tune the
pre-trained model discriminatively as there is no complexity embedding layer in the pre-trained
process. If a model is trained from scratch, the parameters of complexity embedding will be
trained the same as other parameters in the model. If the complexity embedding is added to
a pre-trained model for fine-tuning, we first train the complexity embedding layer by fixing the
original parameters of the pre-trained model and then fine-tune the whole model.

During the training process, in fact, both the word embedding and the complexity embedding
are in a teach-forcing pattern through the ground truth. At the time of inference, the next word
embedding at each step will be predicted by the probability distribution of the vocabulary of
the model. Since the complexity level of the next word is unknown at each step of the inference
stage, we utilize a look-up table method to map the predicted token id to complexity id. The
table is a mapping relation between the token id and its complexity id on the whole vocabulary.
At each step, the token id will be predicted by the model. We get its complexity id through its
token id and the table. The complexity id and token id will then be given as the input for the
next step of inference.

2.5 Length and Syntactic Complexity Control
The length of the generated text is also a factor that language learners may consider, and there
is a correlation between text length and syntactic complexity. From a statistical view, text
length and syntactic complexity are generally positively correlated. Thus, we design a method
to dynamically control text length and syntactic complexity, which is used in the decoding stage.
We set three sentence length modes: short, normal, and long, and the sentence length mode
also corresponds to the syntactic complexity. We introduce length penalties to beam search in
the decoding time in different modes. The formula for calculating the penalty coefficient is as
follows:

Penalty = Npen (9)
where N is the counts of keywords, pen = −1, 0, 1 if the mode is short, normal or long respec-
tively. We have observed from statistics that the larger the number of given keywords leads the
longer the generated sentences. Therefore, we set the relationship between the length penalty
and the number of keywords. In the mode of short or long, if the number of keywords is larger,
the greater the penalty required.

3 Datasets and Evaluation Metrics
3.1 Dataset Construction
We present two datasets for lexical complexity controlled sentence generation in English and
Chinese. The English raw corpus is collected from the monolingual English News dataset in
ACL2019 WMT. The Chinese raw corpus is collected from 500 textbooks for Chinese L2 learners.
We adopt the English word complexity levels in the Common European Framework of Reference
for Languages (CEFR) 0 which is divided into six complexity levels (A1, A2, B1, B2, C1, and
C2). The word complexity levels in Chinese Proficiency Grading Standards for International
Chinese Language Education (CPGS) 1 is divided into seven complexity levels (1 to 7). The
process for cleaning data is divided into three steps: split the raw data into sentences and choose
the proper sentences; obtain the keywords from the sentences; get the lexical complexity levels
from the sentences. More details of the two datasets are in the Appendix B.

3.2 Evaluation Metrics
Generated Quality To evaluate the quality of generated text, we employ some automatic eval-
uate metrics in three aspects. 1) N-gram Similarity with References: we use BLEU (Papineni et

0https://www.englishprofile.org/wordlists/evp
1http://www.chinesetest.cn
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al., 2002), METEOR (Lavie and Agarwal, 2007), and NIST (Doddington, 2002) evaluate the
difference between generated texts and reference texts, which are commonly utilized in machine
translation and text generation. 2) Diversity: We use 2-gram and 4-gram of Entropy (Zhang et
al., 2018) and 1-gram and 2-gram of Distinct (Li et al., 2015) to evaluate lexical diversity. 3)
Fluency: Following previous works (Zhang et al., 2020; He and Li, 2021), to assess the fluency
of generated sentences, we report the perplexity (PPL) over the test set using the pre-trained
GPT-2 (Radford et al., 2019) large model.

Satisfaction of Lexically Controlling The control elements of lexical complexity controlled
sentence generation have introduced in the Section 2.1. Our metrics are corresponding to the
three constraints.

• Keywords Constraint. For this aspect, we introduce Keywords Constraint (K-C) sat-
isfaction metric on word-level, which is computed using the percentage of the keywords
contained in the generated sentences. The formular describe is as below:

K − C =
1

N

∑N

i=1
countC1

i

/
mi (10)

where N is the total number of samples in the test dataset, countC1
i is the number of

keywords included in the generated sentence of the i-th sample, which satisfy the constraint
of C1, and mi is the number of the keywords of the input on the i-th sample.

• Word Complexity Constraint. The purpose of this metric is to calculate the Accuracy
(ACC) of the words that meet the lexical complexity levels requirement in the generated
sentence. As shown in the following formula:

ACC =
1

N

∑N

i=1
countC2

i

/
ti (11)

where countC2
i is the number of the words that satisfy the constraint C2 of the i-th sample,

and ti is the length of the generated sentence of the i-th sample.

• Complexity Levels Constraint. We propose three metrics to evaluate the satisfaction
of the species of the required complexity levels. It is unreasonable that the ACC is still
100% if given two complexity levels but the words of generated sentence only covers one of
the levels. Thus we design the metrics of Precision (P), Recall (R), and F1 to calcuate the
saticfaction of complexity level constraint. The formular discribes are as follows:

P =
1

N

∑N

i=1
countC3

i

/
gi (12)

R =
1

N

∑N

i=1
countC3

i

/
ni (13)

F1 =
2

N

∑N

i=1
countC3

i

/
(ni + gi) (14)

where countC3
i is the number of the complexity levels satisfy the constraint C3 of the i-th

sample, ni is the number of the complexity levels given in the source of the i-th sample,
and gi is the number of the complexity levels of the generated sentence of the i-th sample.

4 Experiments
Our experiments are based on the two datasets introduced in Section 3. Besides the strong
baselines of controlled decoding, prompting and reranking mentioned in Section 4.2, we generate
the sentence by setting the keys as the input directly as the basic baseline (K2S). This baseline
does not require complexity levels, which are just learnt from the data. Our evaluations include
automatic evaluation and human evaluation. The automatic metrics have been introduced in
the Section 3.

CC
L 
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 648-664, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

653



Computational Linguistics

Metrics
BLEU(%) NIST(%)

METEOR(%)
Entropy(%) Distinct(%)

PPL
B-2 B-4 N-2 N-4 E-2 E-4 D-1 D-2

Training Transformer from scratch
K2S 16.58 4.57 3.14 3.27 15.23 8.20 10.23 5.93 24.76 74.91
Ctrl-decoding 12.12 3.16 2.45 2.61 11.72 7.28 9.22 5.27 20.14 286.50
Prompting 18.19 5.73 3.57 3.64 15.93 8.30 10.36 6.10 25.55 52.10
Reranking 18.47 6.27 3.52 3.60 15.99 7.87 9.79 5.93 22.70 47.81
CE (ours) 18.37 6.66 3.64 3.69 16.06 8.43 10.47 5.80 25.75 42.06
Fine-tuning BART
K2S 17.40 5.96 3.20 3.26 15.60 8.60 10.52 6.36 28.53 33.11
Ctrl-decoding 14.17 3.55 2.73 2.48 13.15 8.03 9.87 5.96 21.96 223.43
Prompting 19.36 6.88 3.59 3.67 16.09 8.93 10.81 7.22 33.84 39.65
Reranking 18.95 6.54 3.54 3.58 16.03 8.72 10.67 6.60 30.09 34.24
CE (ours) 19.80 7.22 3.61 3.69 16.34 8.50 10.48 6.41 27.56 28.48

Table 1: Generation quality evaluation results on English dataset.

Metrics (%) K-C ACC P R F1
Training Transformer from scratch
K2S 96.93 95.68 89.03 83.27 84.93
Ctrl-decoding 85.56 99.02 97.84 83.51 89.19
Prompting 96.85 98.91 97.35 90.86 93.46
Reranking 97.33 96.80 91.81 87.97 88.98
CE (ours) 98.00 99.10 98.09 92.84 94.96
Fine-tuning BART
K2S 97.51 95.26 88.79 84.63 85.58
Ctrl-decoding 89.73 99.34 98.57 84.19 90.33
Prompting 96.57 97.79 95.77 90.17 92.25
Reranking 98.52 96.10 92.36 88.96 91.87
CE (ours) 98.68 99.13 98.54 93.72 95.77

Table 2: Satisfaction of controlling evaluation results on English dataset.

4.1 Experimental Setup
Our experimental setup contains two aspects:training from scratch and fine-tuning. From scratch
training experiments are on the Transformer model (Vaswani et al., 2017), which is the most
widely used model in text generation. The fine-tuning experiments are on the pre-trained model
of BART (Lewis et al., 2019), which has superior generation ability. During inference, we run
greedy decoding on all models for a fair comparison. We implement all models with the Fairseq
library 2 and the BART pre-trained model is from HuggingFace Transformers library 3 (Wolf et
al., 2019). All models are trained and tested on NVIDIA TITAN Xp GPU.
From Scratch Training Setup We adopt the typical Transformer (Vaswani et al., 2017) as the
model trained from scratch. We utilize a learning rate of 3e-4 and set the warming-up schedule
with 4000 steps for training. We train our model for around 100 epochs. The optimization
algorithm is Adam (Kingma and Ba, 2014). We set the maximum number of input tokens as
8192, which is the same as transformer-based baselines. Fine-tuning Setup We initialize our
model with BART-base (Lewis et al., 2019), which has comparable parameters to generation
baselines. For generation baselines and our models, we use Adam (Kingma and Ba, 2014) with
an initial learning rate of 1e-5 to update parameters for four epochs and choose the checkpoints
with the lowest validation loss. We train our model for around 30 epochs. We set the maximum
number of input tokens as 2048.

2https://github.com/pytorch/fairseq
3https://github.com/huggingface/transformers
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Metrics
BLEU(%) NIST(%)

METEOR(%)
Entropy(%) Distinct(%)

PPL
B-2 B-4 N-2 N-4 E-2 E-4 D-1 D-2

Training Transformer from scratch
K2S 13.92 4.17 2.73 2.76 15.00 8.83 10.20 8.60 37.70 48.32
Ctrl-decoding 12.84 3.57 2.48 2.50 13.70 8.70 10.30 6.08 34.90 224.59
Prompting 13.90 3.81 2.70 2.73 14.35 8.53 10.05 7.47 33.35 45.61
Reranking 15.46 5.37 2.98 3.02 15.34 8.84 10.15 9.13 37.88 38.56
CE (ours) 15.69 6.27 2.91 2.94 16.04 9.28 10.58 10.68 47.71 34.53
Fine-tuning BART
K2S 14.97 4.39 3.08 3.10 16.56 8.60 10.06 9.91 37.13 21.76
Ctrl-decoding 12.54 3.71 2.38 2.55 14.04 8.73 10.25 9.96 37.85 129.86
Prompting 16.81 5.47 3.15 3.17 16.24 8.69 10.13 10.04 38.33 31.75
Reranking 16.53 6.42 3.29 3.36 16.61 8.81 10.08 10.15 38.96 53.47
CE (ours) 17.07 6.46 3.18 3.26 16.73 9.34 10.27 10.55 48.76 26.52

Table 3: Generation quality evaluation results on Chinese dataset.

Metrics (%) K-C ACC P R F1
Training Transformer from scratch
K2S 87.36 92.74 85.40 68.40 73.75
Ctrl-decoding 71.83 99.96 99.96 61.79 74.73
Prompting 85.54 98.88 97.79 80.23 86.88
Reranking 88.22 96.70 93.05 75.74 81.59
CE (ours) 89.61 98.87 97.49 88.80 92.17
Fine-tuning BART
K2S 92.12 93.73 86.88 68.87 74.37
Ctrl-decoding 82.52 99.18 98.65 65.26 76.41
Prompting 86.94 98.73 97.98 81.78 88.02
Reranking 90.14 97.21 95.44 76.78 83.95
CE (ours) 92.58 99.07 97.91 89.34 92.85

Table 4: Satisfaction of controlling evaluation results on Chinese dataset.

4.2 Baseline
Controlled decoding We consider a strategy of controlled decoding (Dathathri et al., 2019)
to realize the generated sentence consists of the words belonging to the given complexity levels.
Since we know the words of the complexity level to be used in the sentence, we can restrict
the words of the subset of the vocabulary to only be used in the decoding stage. The specific
method is to set the probability of words outside the subset to zero so that they can meet the
requirements of the word complexity level.
Prompting Prompting is another feasible method for controlled text generation (Zou et al.,
2021). Inspired by the prefix-tuning (Li and Liang, 2021), which uses continuous vectors as
prompts, we add the required complexity levels as the prefix for controlling in the input of the
generation model.
Reranking Inspired by previous works (Ravaut et al., 2022; Pandramish and Sharma, 2020),
we select the sentence that best meets the lexical complexity requirements from the N-best
candidates. We take the score that is the sum of ACC score and F1 score on the test reference
hypothesis from this N-best list and choose the candidate that has the largest score. The detail
of the re-ranking method is shown as the Algorithm 1 in Appendix C.

4.3 Experimental Results
The experimental results on English dataset are shown in Table 1 and Table 2. From the evalu-
ation of generation quality in Table 1, it can be seen that the method of complexity embedding
has competitive results in different aspects, especially on fluency. In general, the CE method
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Metrics (%) Semantics Fluency Diversity
English dataset
Ctrl-decoding 2.68 2.40 2.92
Prompting 4.63 3.25 3.45
Reranking 4.60 3.39 3.40
CE (ours) 4.62 3.82 3.54
Chinese dataset
Ctrl-decoding 3.89 2.82 3.27
Prompting 4.23 3.08 3.02
Reranking 4.37 3.29 3.16
CE (ours) 4.57 3.80 3.71

Table 5: Human evaluations for fine-tuning BART model on two datasets.

has better performance in the control of lexical complexity, especially on the metrics of R and
F1. The method of controlled decoding has poor performance on PPL because it forces the
distribution of the logits to concentrate on the words of given complexity levels in the decoding
stage. This hard constraint pattern will impact the fluency of the generated sentences. But its
performances on the metrics of ACC and P are better than other methods from Table 2. The
methods of prompting and reranking are two competitive baselines. The prompting method has
better performance in the control of the word complexity because it has considered the word
complexity levels in training. But the reranking method has better generation quality on the
whole metrics of Table 1.

The experimental results on Chinese dataset are shown in Table 3 and Table 4. We can draw
similar conclusions from these two tables. Our approach performs well in terms of both text
generation quality and lexical complexity control. The rerank approach outperforms prompt in
all aspects of generation quality, both in terms of similarity to ground truth and in diversity
and fluency, and even achieves the best NIST metrics for the Chinese dataset.

4.4 More Analyses and Discussion
The CE method we proposed has an excellent performance in controlling lexical complexity.
The reason is that the CE method not only keeps the consistency of training and prediction but
also considers the information of the complexity at the token level. Thus, it has more precise
control of lexical complexity. And it also has competitive generation quality in the aspect of
fluency and similarity with the reference. From the metrics of Entropy and Distinct, its diversity
has a little poor performance in terms of the fine-tuning pattern on the English dataset. We
think the main reason is that the vocabulary of the English word complexity levels is less than
which of the Chinese, so the token level restrictions of complexity embedding will impact the
diversity of the sentences. The Chinese dataset, on the other hand, has a much larger coverage
of voabulary with complexity and the dataset comes from the field of second language teaching,
so the diversity of our model is better. It is worth noting that our CE method performs best in
terms of lexical complexity control, especially the metrics of K-C, R, and F1, compared to the
baseline model. This indicates that the CE method has higher coverage on complexity levels
due to it takes into account the complexity of each word.

4.5 Length and Syntactic Complexity Control
We evaluate the length and the depth of the syntactic tree of generated text in the modes of
short, normal and long, which can reflect the complexity of the generated text. As shown in
the table 6, the experiment of controlling sentence length and syntactic complexity is on the
English dataset. In the long mode, the generated sentences are longer, and the syntactic tree
is deeper. In the short mode, the generated sentences are shorter, and the syntactic tree depth
is smaller. The length penalty in the decoding stage can effectively control the sentence length
while affecting the complexity of the syntax.
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Metric/Mode Short Normal Long

Length 15.3 24.6 36.8
Syn-Depth 9.3 11.1 13.5

Table 6: The length and depth of syntactic tree of generated sentences in different modes.

4.6 Human Evaluation

We conduct a human evaluation to further compare our model with the three baselines with
fine-tuning the BART model on two datasets. For each model, we randomly select 200 generated
sentences from the test set for each dataset and invite three annotators to label the sentences,
who are postgraduates of the major in linguistics. To evaluate the quality of the sentences,
annotators rate the sentences on three dimensions: semantic consistency between the keywords
and sentence; the fluency of the sentence; the diversity of the sentence (Zhang et al., 2020). The
score is range from 0 to 5. As shown in Table 5, our method has better performance at the
three aspects of human evaluation, especially the fluency and diversity. We give some real cases
of two datasets in the Appendix D. From the cases study we can find that the CE method can
cover more lexical complexity levels than the baseline methods. This also confirms the reason
why the CE method that we proposed has a better performance on R and F1 metrics of the
automatic evaluation.

5 Related Work

Lexical constraint text generation is to generate a complete text sequence, given a set of key-
words as constraints (Zhang et al., 2020). Previous works involve enhanced beam search (Post
and Vilar, 2018; Hu et al., 2019) and the stochastic search methods (Zhang et al., 2020; Sha,
2020). Currently, Seq2Seq-based models such as Transformer and pre-trained models have been
increased in generation with lexical constraint (Wang et al., 2021b; Liu et al., 2020; Wang et al.,
2021a; Fan et al., 2020; Liu et al., 2021). But lexically constrained text generation is not able
to control the complexity of words used in the generation, which is different from our work.

Text readability assess research has shown that lexical complexity is also a crucial aspect of
evaluating the complexity of a text for text readability assess task (Chakraborty et al., 2021). In
the relevant study of sentence-level readability, it is generally accepted that apart from sentence
length, the most predictive indicator is the number of difficult words in the sentence (Weiss and
Meurers, 2022). In our work, we follow the definition and vocabulary of lexical complexity of
text readability assess.

Text simplification In text simplification field, lexical substitution, the replacement of complex
words with simpler alternatives, is an integral part of sentence simplification and has been the
subject of previous work (Alonzo et al., 2020; Nishihara et al., 2019). Differently, our work can
strictly control the lexical complexity levels of the generated sentence, not only simplify the
lexical complexity.

6 Conclusions

To summarize, we introduce a new task of lexical complexity controlled sentence generation,
where word complexity must be strictly controlled in generating. To promote the development
of this task, we develop two datasets and four metrics for the controlled element. In this paper,
we also develop a series of alternate solutions for this task and propose a novel method based
on complexity embedding to obtain better control of lexical complexity in a generation. Our
results indicate that the complexity embedding method has better performance in controlling
the lexical complexity and competitive generation quality.
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A Complexity Embedding Id
The English words have six levels. And the Chinese words have seven levels (Diff 1-7). We give
the design of the complexity embedding id for this two language in the table 7. Note that, if a
word is out of the complexity level vocabulary, its complexity is “⟨out⟩” which is mapping into
id 7 in English corpus and 8 in Chinese corpus. In addition, the special tokens such as “⟨s⟩”
“⟨pad⟩” ”⟨\s⟩” “⟨unk⟩” are the common meaning in data preprocessing for model training.

English Chinese
Token Id Token Id

Punctuation 0 Punctuation 0
A1-C2 1-6 Diff 1-7 1-7
⟨out⟩ 7 ⟨out⟩ 8
⟨sep⟩ 8 ⟨sep⟩ 9
⟨s⟩ 8 ⟨s⟩ 9

⟨pad⟩ 8 ⟨pad⟩ 9
⟨\s⟩ 8 ⟨\s⟩ 9
⟨unk⟩ 8 ⟨unk⟩ 9

Table 7: Complexity Embedding Id.

B Details of Datasets Construction
B.1 English Dataset
We adopt the English word complexity levels in the Common European Framework of Reference
for Languages (CEFR) 4 which is divided into six complexity levels (A1, A2, B1, B2, C1, and
C2). First, we need to restrict the words in the corpus to ensure most of the words are in the
complexity level vocabulary. Then, we need to extract keywords from the sentences. In this
process, we command the number of keywords is related to the length of the sentence, and the
number of keywords is between 1 to 5. Finally, we obtain the complexity information of each
sentence through the complexity level vocabulary. The English raw corpus is collected from the
monolingual English News dataset in ACL2019 WMT. We select those sentences which have
90% words in the complexity level vocabulary of CEFR. After the processes mentioned above,
we get 199k samples in the English corpus, and we split the train, validation and test dataset
as shown in the Table 8.

B.2 Chinese Dataset
The word complexity levels in Chinese Proficiency Grading Standards for International Chinese
Language Education (CPGS) 5 is divided into six complexity levels (1 to 7). The Chinese raw
corpus is collected from 500 textbooks for Chinese learners. These textbooks contain two types
of text: essay and dialogue. We split these texts into sentences and throw away those short
sentences. If the raw text is a dialogue, after splitting, we need to remove the speaker’s name
to guarantee it is a proper sentence. Then, we command the number of keywords is related to
the length of the sentence, and the number of keywords is between 1 to 5. After the processes
mentioned above, we get 156k samples in the Chinese corpus, as shown in the Table 8.

4https://www.englishprofile.org/wordlists/evp
5http://www.chinesetest.cn
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Figure 3: Distributions of the number of keywords and complexity levels.

Dataset Train Valid Test Total

English 180,000 16,000 3,615 199,615
Chinese 140,000 14,000 2,661 156,661

Table 8: Statistics of the two datasets.

B.3 Analysis of the Datasets

B.3.1 Coverage of Words with Levels
We first analyze the two datasets from the coverage rate of complexity level vocabulary. Due to
the requirement of complexity level, the target text is proper to cover most of the vocabulary of
complexity level. Both of the two datasets have covered over 93% of the vocabulary of complexity
levels.

B.3.2 Distributions of the Number of Keywords and Complexity Levels
One or multiple complexity levels and keywords are given as the input to generate sentences. We
give the distribution of the number of keywords and the complexity levels in Figure 3. From the
statistics of (a) and (c) in Figure 3, the number of keywords in all samples has covered the range
of 1 to 5 both in the English and Chinese datasets, but the distributions are quite different. On
account of the average sentence length of English news data is longer than the Chinese corpus,
the number of keywords in English is larger. From the statistics in (b) and (d) of Figure 3, the
number of complexity levels distribution of the Chinese dataset is close to a standard normal
distribution, and the English dataset concentrates on a wider range of complexity levels. This
indicates that in the English dataset it tends to use more words of different complexity levels in
the same sentence.

C Algorithm of Reranking

The algorithm is the detail of reranking method. We select the sentence that best meets the
lexical complexity requirements from the N-best candidates, and N = 10. On the test set, We
take the sum of ACC score and F1 score. The, we choose the candidate that has the largest
score.

D Case Study

We choose some cases of the fine-tuning pattern from two datasets. The English cases are in
the Table 9, and the Chinese cases are in the Table 10. In both tables, the required keywords
as well as appearing in the sentences are shown in blue font, and certain given grades as well as
words actually appearing in the sentences for the corresponding grade are shown in red font.
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Algorithm 1 Reranking Method
Input: Generated n best candidate sentences H = (h0, h1, h2, ..., hn−1) for given keywords and

n = 10
Output: Sentence having highest score

1: Let score = 0
2: for each sentence hj in H do
3: ACC = Facc(hj)
4: F1 = Ff1(hj)
5: scorej = ACC + F1
6: if scorej > score then
7: score = scorej
8: ret = hj
9: end if

10: end for
11: return ret

E Related Methods
E.1 Controlled Decoding
The gradients of an external discriminator is directly used to the generation of a pre-trained
language model toward the target topic(Dathathri et al., 2019). The output probabilities of a
language model is modified by using the output of a discriminator that determines whether the
future text will contain the desired attribute. Different from the controlled decoding methods,
our method considers the constraint of lexical complexity during both training and prediction.

E.2 Prompting
The prompting method has emerged as a new way to perform natural language processing by
conditioning on extra information. Brown et al. propose to use a task description and a few
examples to adapt the GPT-3 model to downstream tasks, which is referred to as in-context
learning (Brown et al., 2020). Their prompts are manually designed. Gao et al. present LM-BFF
for automatic prompts generation(Gao et al., 2020). Liang et al. propose prefix-tuning, which
uses continuous vectors as prompts(Li and Liang, 2021). Compared to the prompting method,
our method fuses more fine-grained information on lexical complexity in model training.

E.3 Reranking
The reranking approach has been proved to have excellent performance in machine translation
(Pandramish and Sharma, 2020) and text generation (Ravaut et al., 2022). The reranking
method rescores the n-best candidates through a model or a function and selects the highest
scoring candidate as the final prediction (Imamura and Sumita, 2017). Unlike the reranking
method, our method do not need to process the outputs after decoding.

F Limitation
Our proposed task has wide applications in the field of language teaching, and the proposed
method has precise control over lexical difficulty. However, the task requires that the lexical
complexity is known first. The vocabulary difficulty table is the experience summed up by the
predecessors, and it is difficult to apply to all vocabulary. Therefore, we are actively exploring
how to make the model automatically understand all vocabulary difficulties so that it can cover
a wider vocabulary at generation.
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Keywords: refuse, accept, country ; Complexity Levels: A1, A2, B1, C1
Ctrl-decoding I refuse to accept that this is a matter of time for the country, but I do not accept it.
Prompting I refuse to accept that I am the only one who has been elected to the country, but I

am not.
Reranking I refuse to accept that this is the best thing I can do for the country, ” he said.
CE (ours) I refuse to accept that this is a country that is going to be a place where people are

going to be unsafe.
Keywords: public, maintain, lose ; Complexity Levels: A1, A2, B1, B2
Ctrl-decoding I do not think the public will maintain the power to lose, but I do not think it will.
Prompting The public will maintain the public’s ability to lose, and the public will not lose,

and they will not lose.
Reranking I don’t want to be in public, but I don’t want to maintain my weight and lose.
CE (ours) The public must maintain their faith and not lose , and we will continue to do

everything we can to protect them.
Keywords: football, Leicester, City, magical ; Complexity Levels: A1, A2, B1, B2, C2
Ctrl-decoding I think football is a great way to play for the game and to be able to play for the

best of the game against the game against the game against the game and the way
we play against the game against the game against the game against the game is
not the same, but the way we are magical.

Prompting I think football is going to be the best of Leicester City, but I think it’s a magical
moment for us to have to play with.

Reranking This is a football game for Leicester City, and it’s a magical moment for us to be
part of the game and be a part of it.

CE (ours) It’s a football club that has been around for a long time and to see Leicester City
win the title is magical.

Table 9: Generated examples from the English dataset.

Keywords: 生活 ; Complexity Levels: 1, 2, 3, 7
Ctrl-decoding 生活中，我最喜欢的就是吃面。
Prompting 生活中的一切都是为了生活。
Reranking 我们的生活很美好，也很快乐。
CE (ours) 没有工作压力的生活多让人羡慕啊！
Keywords: 春天, 姑娘 ; Complexity Levels: 1, 2, 3
Ctrl-decoding 春天来了，姑娘又来了，他还在那儿等着我呢。
Prompting 春天来了，姑娘又来了，他的眼睛也变得很美丽。
Reranking 春天到了，一个年轻的姑娘爱上了他。
CE (ours) 春天来了，我认识了一位美丽的姑娘，他非常喜欢这个姑娘。
Keywords: 喜欢 ; Complexity Levels: 1, 7
Ctrl-decoding 我喜欢吃中国菜，我喜欢吃中国菜。
Prompting 我喜欢看中国电影。
Reranking 你喜欢什么样的女孩子呢？
CE (ours) 我最喜欢逗它们玩儿。
Keywords: 别人, 可能, 意思; Complexity Levels: 1, 2
Ctrl-decoding 别人看我懂了，我觉得我有可能去做一个人，意思是要看他。
Prompting 别人可能不会说，如果你觉得自己可能有可能，你可能会觉得自己是个很难的意思。
Reranking 如果别人问你一个问题，你的意思是什么？
CE (ours) 别人可能不知道你的意思，你要做我喜欢的，要我愿意跟别人说。

Table 10: Generated examples from the Chinese dataset.

CC
L 
20
23

Proceedings of the 22nd China National Conference on Computational Linguistics, pages 648-664, Harbin, China, August 3 - 5, 2023.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China

664


