
Proceedings of the Workshop on Computation and Written Language (CAWL 2023), pages 33–42
July 14, 2023 ©2023 Association for Computational Linguistics

Distinguishing Romanized Hindi from Romanized Urdu

Elizabeth Nielsen† Christo Kirov∘ Brian Roark∘
†School of Informatics, University of Edinburgh, UK ∘Google

e.nielsen@ed.ac.uk {ckirov,roark}@google.com

Abstract
We examine the task of distinguishing be-
tween Hindi and Urdu when those lan-
guages are romanized, i.e., written in the
Latin script. Both languages are widely in-
formally romanized, and to the extent that
they are identified in the Latin script by
language identification systems, they are
typically conflated. In the absence of large
labeled collections of such text, we con-
sider methods for generating training data.
Beginning with a small set of seed words,
each of which are strongly indicative of
one of the languages versus the other, we
prompt a pretrained large language model
(LLM) to generate romanized text. Treat-
ing text generated from an Urdu prompt
as one class and text generated from a
Hindi prompt as the other class, we build
a binary language identification (LangID)
classifier. We demonstrate that the result-
ing classifier distinguishes manually roman-
ized Urdu Wikipedia text from manually
romanized Hindi Wikipedia text far better
than chance. We use this classifier to esti-
mate the prevalence of Urdu in a large col-
lection of text labeled as romanized Hindi
that has been used to train large language
models. These techniques can be applied
to bootstrap classifiers in other cases where
a dataset is known to contain multiple dis-
tinct but related classes, such as differ-
ent dialects of the same language, but for
which labels cannot easily be obtained.

1 Introduction
Hindi and Urdu are considered the two stan-
dardized registers of the pluricentric Hindus-
tani language. In informal speech, they are
highly mutually intelligible, to the point where
it can be difficult to immediately assess which
one is being spoken (Masica, 1993). Written
(and more formal) Hindi and Urdu, however,
have more noticeable differences. First, out-
side of the colloquial vocabulary commonly

used in speech, they do differ in broad his-
torical influence on the lexicon – Hindi mak-
ing use of more Sanskrit-derived words and
Urdu using more Arabic- or Persian-derived
words. Most notably, however, the languages
differ in their native scripts: Hindi is written
in Devanagari, a Brahmic script, while Urdu
is written in a Perso-Arabic script. Despite
these stark differences, efforts have been made
to unify linguistic resources for the languages
(e.g., Bhatt et al., 2009; Visweswariah et al.,
2010; Bhat et al., 2016, 2017).

Additionally, however, both languages
are frequently written informally in the
Latin script, which is known as romaniza-
tion (Wellisch, 1978). Informal romanization
makes text in these languages far more diffi-
cult to distinguish than when they are writ-
ten in their distinct native scripts. Despite
their overall linguistic similarity, Hindi and
Urdu do represent different cultural contexts,
and may have different patterns of expression
that are useful to capture correctly. Predictive
models in service of, for example, romanized
text entry – perhaps providing next word pre-
diction and other utilities that should match
the user’s desired language – will be expected
to provide culturally appropriate predictions,
which may be difficult if all Urdu and Hindi
data is conflated in the training data. In gen-
eral, given the larger number of speakers, ro-
manized Hindi text may be more prevalent
and thus yield degraded performance for Urdu
speakers in a range of applications that pro-
cess romanized text if the two languages are
conflated.

In this preliminary study, we look at leverag-
ing multilingual large language models (LLMs)
that have been pretrained on data that in-
cludes (conflated) romanized Hindi and Urdu
text, along with a small seed word list, to gen-

33

erate training data that can capture character-
istic differences between romanized Urdu and
Hindi. LLMs have recently become the back-
bone of many state-of-the-art NLP systems
performing a wide range of tasks, often after
some amount of fine-tuning (see, e.g., Ruder
et al. (2021) for multilingual task benchmarks).
In a recent paper, Nielsen et al. (2023) demon-
strated that large language models learn some
degree of long-distance sensitivity to spelling
convention differences in English — i.e., the T5
LLM (Raffel et al., 2020) is more likely to
produce the British spelling of a word follow-
ing an earlier instance of British spelling than
otherwise, even though the English language
pretraining data is not labeled with the par-
ticular spelling convention. Unlike the well-
understood and conventional set of spelling
differences distinguishing US and UK English,
romanized Hindi and Urdu represent a case
where (a) there is no fixed orthography, i.e.,
spelling varies heavily; and (b) as far as we
know, there are no documented widely at-
tested differing romanization conventions be-
tween the two languages to rely upon. We thus
try to exploit any implicit knowledge about
such differences that a pretrained LLM may
contain, as the means to build systems that
can distinguish between the two languages.

We demonstrate that a simple decision
tree classifier using character n-gram features
can be profitably trained on LLM generated
text to distinguish romanized Hindi from ro-
manized Urdu, even in the face of domain-
mismatch, at nearly the same accuracy as
that classifier’s topline (i.e., when trained on
domain- and annotator-matched data). In-
terestingly, a more powerful neural classifier,
which yields a substantially higher topline ac-
curacy, overfits on the LLM generated train-
ing data to the point of performing essentially
at chance on the validation set, suggesting
that the neural classifier relies too heavily on
reliable yet spurious differences between the
classes in the generated text. We use the
resulting decision tree classifiers to estimate
the prevalence of Urdu in the mC4 corpus,
and also examine their most important fea-
tures, yielding some potentially useful gener-
alizations about the romanization tendencies
in the two languages.

2 Background
2.1 Romanized Hindi and Urdu
As stated earlier, distinguishing between Hindi
and Urdu when written in their native scripts,
Devanagari and Perso-Arabic respectively, is
straightforward. Informal romanization re-
moves this key distinction between the lan-
guages, and methods for automatic identifica-
tion of romanized Hindi/Urdu text often con-
flate the two, sometimes deliberately (Ansari
et al., 2021). This is particularly true since
the romanization in Hindi and Urdu is typi-
cally less transliteration (i.e., driven by writ-
ing system correspondences) than rough pho-
netic transcription, hence the written differ-
ences between the two languages are lessened.
For example, Urdu romanizations tend to in-
clude vowels even when the vowel is omitted
in the Perso-Arabic orthography.

To see examples of this, we can examine
the Dakshina dataset1 (Roark et al., 2020),
which includes both single word and full sen-
tence romanizations of Wikipedia data in 12
South Asian languages, including Hindi and
Urdu. The word ”گزر“ (pass) is romanized in
the Urdu portion of the collection as either
“guzar” or (less frequently) “gujar”, despite
having no vowels specified in the native script.
The same word in Hindi (गुज़र) is romanized
in the Hindi portion of the collection once as
“guzar” and once as “gujar”.

Such conventions obviously make it far more
difficult to distinguish romanized Hindi from
Urdu than when they are written in different
native scripts. Despite the lack of a widely
used standardized orthography in the Latin
script in the languages, there may be some ro-
manization conventions associated with each
community that would help tease them apart.
As we are not aware of any previous studies
describing such distinguishing features in the
linguistics literature, we turn to automated,
data-driven methods to find them.

Romanized Hindi is frequent enough that
it is commonly included in multilingual text
collections scraped from the internet, such as
mC4 (Xue et al., 2021), the multilingual cor-
pus derived from Common Crawl2 that is used

1https://github.com/google-research-datasets/
dakshina

2http://commoncrawl.org/

34

https://github.com/google-research-datasets/dakshina
https://github.com/google-research-datasets/dakshina
http://commoncrawl.org/

to train mT5 (Xue et al., 2021), the multilin-
gual version of the T5 language model (Raf-
fel et al., 2020). Six languages are included
in that corpus in both their native script and
the Latin script – Chinese, Japanese, Hindi,
Greek, Russian and Bulgarian – presumably
because the language identification system
used to identify the languages for the collec-
tion, CLD3,3 only includes Latin script class
labels for those six languages. Given the sim-
ilarity of romanized Hindi and Urdu, and the
lack of romanized Urdu as an option within
the system, one might expect that some frac-
tion of the Latin script Hindi data in mC4 is
in fact romanized Urdu instead.

2.2 Related work
Transliteration of informally romanized text
into the native script of the language has
been explored for languages making use of
Perso-Arabic scripts, including Arabic (Al-
Badrashiny et al., 2014), and South Asian lan-
guages Urdu and Sindhi (Roark et al., 2020),
as well as languages using Brahmic scripts
such as Hindi, Bengali and Tamil (Roark
et al., 2020). Work has also examined di-
rectly applying NLP models to informally ro-
manized text in Arabic (Chalabi and Gerges,
2012), Persian (Maleki and Ahrenberg, 2008)
and Urdu (Bögel, 2012; Irvine et al., 2012;
Rafae et al., 2015). Language identification
has been shown to be a particularly tricky
problem for a variety of informally roman-
ized languages (Bögel, 2012; Banerjee et al.,
2014; Das and Gambäck, 2014; Eskander et al.,
2014; Adouane et al., 2016; Zhang et al., 2018;
Kreutzer et al., 2022). We direct the interested
reader to Roark et al. (2020) for a more exten-
sive background on these and related topics.

The problem of distinguishing romanized
Hindi and Urdu, given a small set of seed
words believed to be indicative of each lan-
guage – the approach we pursue in this paper –
can be thought of as an instance of weak super-
vision, or semi-supervised learning. We have
a large, unlabeled dataset assumed to contain
both Hindi and Urdu, and can use the seed set
to “label” a small subset of the data depending
on which seed words it contains.

From here, a typical semi-supervised ap-
3https://github.com/google/cld3

proach would be to try to use the distribution
of unlabeled sentences around the “labeled”
points to build a decision surface that sepa-
rates the two classes. Various general methods
exist, including transductive support vector
machines (TSVM) (Vapnik, 1998), or graph-
based methods within the framework of mani-
fold regularization (Belkin et al., 2004). These
classic approaches, however, may require mak-
ing additional assumptions, such as defining a
distance metric between data points.

In this paper, we attempt a different ap-
proach. We exploit the implicit knowledge con-
tained in a pre-trained LLM, as well its abil-
ity to maintain context over longer spans of
generated text. In particular, we prompt the
model with a frame containing one of our seed
words, and allow it to generate an arbitrary
amount of text based on that template. Then,
we simply use this generated text as labeled
data and train a standard supervised classifier
to decide whether new text is either Hindi or
Urdu. Before presenting these methods in de-
tail, we first present data resources (two exist-
ing and one new) used for validation.

3 Datasets

Our work makes use of three independent data
sources, including a training/validation set de-
rived from Wikipedia, a general web-scraped
text collection labeled in part as being ro-
manized Hindi, and a set of Hindi and Urdu
language-indicating seed words.

Dakshina While most relevant datasets do
not distinguish between romanized Hindi and
romanized Urdu, the Dakshina corpus4 (Roark
et al., 2020) does distinguish between the
two. It contains hand-romanized sentences
(10k per language) taken from Hindi and Urdu
Wikipedia articles. This makes it ideal for eval-
uating our language ID system. We split the
Hindi and Urdu portions of the corpus into
training, development, and test sets,5 and we
use the development set (965 sentences from
each language) to evaluate all versions of our
language ID system. We also use the training

4https://github.com/google-research-datasets/
dakshina

5This data split and the seed words are available at
https://github.com/google-research/google-research/
tree/master/distinguishing_romanized_hindi_urdu.

35

https://github.com/google/cld3
https://github.com/google-research-datasets/dakshina
https://github.com/google-research-datasets/dakshina
https://github.com/google-research/google-research/tree/master/distinguishing_romanized_hindi_urdu
https://github.com/google-research/google-research/tree/master/distinguishing_romanized_hindi_urdu

Hindi Urdu English
urja ऊजाµ tawanai توانائی energy
chhati छाती seena سینا chest
shunya शूÊय sifar صفر zero
ang अंग aazoo عاضو organ
prakar Ēकार qisam قسم type

Table 1: Examples from the seed list, including
romanization and native script for both Hindi and
Urdu alternatives along with an English gloss.

set in one of our baselines (see Section 4.1).
All of the training and validation sets are bal-
anced between the two languages.

mC4 The mC4 corpus, described above, con-
sists of web-scraped data divided into 101 lan-
guage partitions, of which “hi-Latn,” nomi-
nally corresponding to romanized Hindi, is one.
However, as previously mentioned, we believe
this parition is likely to contain romanized
Urdu as well, which has been conflated with
Hindi due to the coverage of the CLD3 LangId
system used to build the corpus.

Seed words Consulting with professional
linguists who are familiar with both Hindi and
Urdu, we collected 147 Hindi/Urdu pairs of
words that differ between the two languages,
but otherwise share the same meaning and
are used in mostly the same semantic contexts.
These were elicited by asking for words that,
if seen in romanized text, would be strongly
indicative of either Urdu or Hindi. The seed
words were provided in the native scripts of
Hindi and Urdu along with common roman-
izations for those words. Table 1 presents five
example pairs from the set in both Latin and
native script, along with an English gloss.

4 Methods
In this paper, we focus on comparing differ-
ent sources of training data for distinguishing
romanized Hindi and Urdu, rather than devel-
oping new classification architectures.

As such, initial comparisons are done us-
ing a straightforward off-the-shelf decision tree
classifier (Breiman et al., 1984) from Scikit-
Learn6. This model has the advantage of being
highly interpretable, which makes it simple to
determine which features are most important

6https://scikit-learn.org/stable/modules/tree.html

for distinguishing Hindi from Urdu. We train
the decision tree with a maximum depth of 5
nodes, and use character 1- through 4-gram
features.

To see how a more complex neural model be-
haves, we also finetune7 the same mT5 check-
point we use for data generation (see Section
4.2) to act as a classifier, where the input is a
romanized sequence with the added task pre-
fix ‘Classify_HIUR:’, and the output is either
the string ‘hi’ or ‘ur’.

For each of the three sources of classifier
training data – Dakshina, mC4 and mT5 gen-
erated text – we provide the size of the re-
source and example strings in Table 2.

4.1 Baselines
Dakshina Topline. We train the classifiers
on the training portion of the romanized Dak-
shina fullstring data. The specific articles in
the Hindi and Urdu portions of the data dif-
fer, but otherwise span the entire range of
Wikipedia topics, so there is unlikely to a be
confound due to mismatched domains. The
romanizations were produced by specific sets
of annotators – disjoint between the two lan-
guages – hence the text may contain individual
romanization styles that can make detection
easier if present in the training data. Since
this kind of labeled training data — along with
a strong domain-match between the training
and development data — is unlikely to occur in
a realistic scenario, we consider this a topline
condition. Our Dakshina training corpus has
a total of 15.8k sentences, with a total of 1.6M
characters.

mC4 Sentences. We train our classifiers on
a balanced sample of sentences taken directly
from the hi-Latn portion of mC4 (which we
believe contains both Hindi and Urdu). In
order to distinguish Hindi-aligned and Urdu-
aligned sentences from the corpus, we use a
simple heuristic: We give a sentence the Hindi
label if it contains at least one of our Hindi
seed words, and none of our Urdu seed words.
The same applies in reverse to select potential
Urdu sentences. From these candidates, we se-
lect 45.9k sentences for each language. This

7The number of finetuning steps varied according to
training data size — 5k for the Dakshina topline, 50k
for the mc4 sentences baseline, and 100k for the data
generated by mT5.

36

https://scikit-learn.org/stable/modules/tree.html

Dataset Lines Lang Example

Dakshina train set 15.8k HI kul milakar yah 800 kilometer ki unchai tak pahunchegi.
UR jo bulandi mein duniya mein doosre number par hai.

mC4 sentences 91.9k
HI mainyual prakriyaon ko svachaalit kyon karen vyaapaar

prakriya prabandhan sophtaveyar

UR aik din mujhay asad bata raha tha blue flim banay mein
bht paisa hai aik flim banao tu 1lac ruppe

mT5 generated data 4.5m HI dva ka title oot bhi vechain wala tadap dono.
UR mulaqat ka abjad majamiyat duniya dono se se ghazal.

Table 2: Size of each dataset in number of lines, along with one line labeled with each language from
each set. All datasets are balanced, so half the data is labeled Hindi, and half Urdu.

results in a training corpus of 91.9k sentences,
with a total of 97.7M characters.

4.2 Improving language ID with
generated text

In this section, we present a method for using
an LLM to generate training data for identi-
fying romanized Hindi and Urdu. As we de-
scribe in Section 2, romanized Hindi and Urdu
are not easily distinguishable, and so a corpus
like the romanized Hindi section of mC4 likely
contains both romanized Hindi and romanized
Urdu.

We perform our experiments using
mT5 (Xue et al., 2021), a multilingual
offshoot of the original T5 model (Raffel et al.,
2020), trained on the entire mC4 dataset.
mT5 is an encoder-decoder transformer
architecture pre-trained on a span corruption
task, a form of masked language modeling.
Spans of text in the input string are replaced
with a sentinel token, whose contents are
recovered during decoding (e.g., “The cat in
the <extra_id_0>.” maps to “<extra_id_0>
hat <extra_id_1>”). The model uses a 250k
sentencepiece (Kudo and Richardson, 2018)
vocabulary, combined with 100 additional
vocabulary items to represent the text spans.

We start with a publicly available mT5
checkpoint, using the “large” configuration on
the t5x (Roberts et al., 2022) codebase8. We
fine-tune specifically on the romanized “Hindi”
(hi-Latn) portion of the mC4 dataset, using
the original span corruption task, for an addi-
tional 100k steps. This imparts a bias to out-
put Hindi and Urdu content specifically, while

8https://github.com/google-research/t5x/blob/
main/docs/models.md#mt5-checkpoints

the original checkpoint tends to generate out-
put from a wider language distribution which
is not relevant to our task.

It seems reasonable that most sentences in
the hi-Latn portion of mC4 come entirely from
either a Hindi or Urdu source. We hypothesize
that this will allow mT5 to learn that Urdu-
aligned features are more likely to co-occur
with other Urdu-aligned features, rather than
Hindi-aligned features, and vice versa – much
as such models have been shown to learn that
words written using British spelling conven-
tions tend to co-occur with words that also fol-
low British spelling conventions (Nielsen et al.,
2023).

In order to extract the information that
mT5 has learned about the features that dis-
tinguish Hindi and Urdu, we first use mT5 to
generate strings. We construct prompts for
generation that contain words from the list of
Hindi- and Urdu-specific seed words described
in Section 3. We do this by inserting these seed
words into short frame sentences, with a blank
span elsewhere for the model to fill in. See Ta-
ble 3 for the set of frame templates — outside
the seed words, the sentences are designed to
be language-neutral, and to be semantically
generic so as not to strongly constrain possi-
ble generated continuations. For each combi-
nation of seed word and template, we gener-
ate 1000 different continuations via random
sampling — given a prompt, each subsequent
symbol in a generated string is sampled from
the multinomial vocabulary distribution pro-
duced by the decoder at every timestep, with
decoding stopping when an end-of-string to-
ken is produced. This resulted in a total
of 4.5M strings, with 54.4M total characters,

37

https://github.com/google-research/t5x/blob/main/docs/models.md#mt5-checkpoints
https://github.com/google-research/t5x/blob/main/docs/models.md#mt5-checkpoints

Frames with Glosses
mainne[I] SEED aur[and] BLANK likha[wrote].

maine[I] likha[wrote] SEED BLANK
ye[this] kaho[say]: SEED BLANK

usane[he] yah[this] likha[wrote]: SEED BLANK
ye[these] hamaaree[our] pasandeeda[favorite] cheejen[things] hain[are]: SEED BLANK

maine[I] likha[wrote] SEED aur[and] BLANK
ye[this] kaho[say]: SEED aur[and] BLANK

usane[he] yah[this] likha[wrote]: SEED aur[and] BLANK
ye[these] hamaaree[our] pasandeeda[favorite] cheejen[things] hain[are]: SEED aur[and] BLANK

maine[I] likha[wrote] SEED, BLANK
ye[this] kaho[say]: SEED BLANK

usane[he] yah[this] likha[wrote]: SEED, BLANK
ye[these] hamaaree[our] pasandeeda[favorite] cheejen[things] hain[are]: SEED, BLANK

Table 3: Frames for text generation, with approximate glosses.

half of which are generated from Hindi-aligned
prompts, and half from Urdu-aligned prompts.
We label each generated string with the lan-
guage of the seed word in the prompt, strip
away any <extra_id> sentinel symbols, and
then train classifiers on these labeled strings.

For example, we can make use of the sec-
ond template in Table 3 and the first Hindi
seed word in Table 1, to construct the specific
prompt: “maine likha urja <extra_id_0>”.
The model would then map this input to
an output that effectively fills in the blank
(<extra_id_0>) at the end of the string with
some amount of output text that is prompt-
appropriate according to the training data.

5 Results and discussion

In this section, we first determine the lan-
guage identification classification accuracy of
our two classifiers when trained on three dif-
ferent sourcs, before attempting to estimate
the amount of Urdu in the romanized Hindi
section of mC4. We additionally examine the
most important features of the decision tree
model.

5.1 Language ID performance
Table 4 shows the accuracy of each model on
the Dakshina development set, under three
training conditions: training on (a) the Dak-
shina training set, which is the classifier’s
topline performance for the validation set,
since the training data is matched to the vali-
dation set for annotators and domain; (b) the

Accuracy
Training data DT mT5
Dakshina training set (topline) 85.6 96.7
mC4 sentences (baseline) 49.0 50.8
mT5 generated data 83.4 49.2

Table 4: Accuracy on the Dakshina development
set, for both Decisition Tree (DT) and finetuned
mT5 (mT5) classifiers.

mC4 extracted sentences, which is a baseline
method for making use of the provided seed
words; and (c) the mT4 generated data.

Examining the topline result for each clas-
sifier, i.e., training on the well-matched Dak-
shina training set, we can see clearly that
the mT5 classifier achieves much higher accu-
racy (96.7%) than the decision tree classifier
(85.6%). The neural classifier is simply more
powerful, having access to more than just the
local character n-gram features used by the
decision tree model, and is able to leverage
pretraining effectively. This is exactly why
the Dakshina training is labeled as a topline
evaluation, because strong classifiers can make
use of well-matched annotator and/or domain
characteristics that permit more effective dis-
crimination between examples in the collec-
tion. The decision tree classifier fails to ex-
ploit such dependencies, hence its topline per-
formance suffers relative to the neural model.

The mC4 trained baseline classifiers, how-
ever, perform essentially at chance (near 50%
accuracy) for both classificiation methods. In-

38

terestingly, the decision tree model trained
on the mT5-generated data performs quite
close to the topline model for that classifier at
83.4% accuracy. The classifier manages this in
spite of being trained on mT5-generated data,
which, unlike the Dakshina topline, is neither
domain- nor annotator-matched to the devel-
opment set.

Surprisingly, the decision tree model trained
on the generated data approaches the classi-
fier’s topline even though the generated data
itself is not very separable — the training ac-
curacy of the model is only 55%. Even though
the generated data must be very noisy, there
is a very large amount of it, which allows for
the detection of a few signal-rich features while
the remaining noise averages out.

Note that the useful features used by the de-
cision tree model cannot just be character n-
grams found in our seed words. Otherwise, the
balanced mC4 baseline would have performed
better than chance. The large amount of gen-
erated data must thus contain additional infor-
mation, effectively extracting knowledge from
the LLM.

In contrast, the neural classifier fails to rise
above chance performance on the validation
set in this condition. It has the capacity
to memorize the training data with nearly
100% accuracy, but hovers around chance
when tested on the development set. This is
likely due to a domain mismatch. The dev
set (as well as the mC4 data that mT5 was
pre-trained on) largely consists of proper sen-
tences, while the generated data often appears
to be random word sequences, since it was pro-
duced by having mT5 fill in blanks in a generic
template. Such a global mismatch is not a
problem for the decision tree, since it sees all
text as a bag of unordered ngram features. In
this instance, performance actually seems to
benefit from that simplification.

The ability of the decision tree classifier
trained on mT5 generated training data to per-
form with relatively high accuracy on the dev
set also suggests that, indeed, a substantial
amount of the text labeled as romanized Hindi
in mC4 is romanized Urdu. Otherwise the in-
dependently created set of prompts would not
have yielded data sufficient to perform better
than chance on the task. While we now have

Est. Urdu %
Generated data 61.1
Topline 35.0

Table 5: The percentage of mC4’s romanized Hindi
data that our models estimate to be Urdu.

validation that this text exists, we can go fur-
ther and try to estimate how much of the data
is actually romanized Urdu rather than Hindi.

5.2 Reconsidering mC4’s Hindi section
Given our decision tree model’s relatively high
performance on out-of-domain language ID,
we can use it to offer a tentative estimate of
how prevalent Urdu text is in the “Hindi” sec-
tion of mC4. This isn’t easily verified, since
mC4 doesn’t distinguish between the two lan-
guages, but we offer these estimates in Table
5 as a suggestion of what percentage of mC4’s
Hindi data is actually Urdu. The higher num-
ber seems likely to be an overestimate, given
differences in speaker population between the
two languages, hence this is an indication that
our model is somewhat biased towards Urdu
(when in fact a prior bias towards Hindi is
likely warranted). Further validation of this
is needed.

5.3 Interpreting top features
In addition to scoring the overall performance
of the language ID model, we investigate which
features are most important to the decision
tree model’s performance. We use Gini impor-
tance to rank the features of each version of
the decision tree. We then use Pearson’s cor-
relation coefficient to determine which of the
two languages each feature is correlated with.

When we examine the top features for the
topline model and the model trained on gener-
ated data (see Table 6), we can see some pat-
terns emerge. Most obviously, the character
v is more associated with Hindi, while q and
z are more associated with Urdu. One reason
for this is that the phonemes /z/ and /q/ are
more frequent in words with Arabic or Persian
origins. Hindi speakers are much more likely
to pronounce these phonemes as [�dZ] and [k]
respectively (Kachru, 2006). In addition, al-
though the phoneme / �dZ/ exists in both Hindi
and Urdu, as noted in Section 2, when we look
at Dakshina data, we find that Urdu speak-

39

Generated data Topline
ngram Pearson’s r ngram Pearson’s r

v -0.46 v -0.46
z 0.42 q 0.37
q 0.37 z 0.42
pr -0.37 men_ -0.28
f 0.24 pra -0.36

rez 0.01 va -0.39
ve -0.14 _men -0.27
ove -0.01 kee 0.24
pra -0.36 ovel 0.03
a 0.01 _me_ -0.23

ohol 0.00 dh -0.34
qu 0.09 _pra -0.35
e 0.05 equ -0.03

tra_ -0.17 ee 0.34
que -0.04 d -0.04

Table 6: Top 20 features for the model trained on
generated data and the topline model. Note that
the space character is represented here with an un-
derscore. The features shown in bold magenta
are correlated with the Urdu label (shown by the
positive Pearson’s r), and the features shown in
cyan are Hindi-correlated (negative Pearson’s r).

ers are more likely to transliterate it with the
character z than j.

These patterns in the top features suggest
that we may be able to use these features to un-
cover previously undocumented language vari-
ation between two related language varieties.
Of course, insofar as these features have not
been documented, it is difficult to evaluate
how successfully they reflect meaningful vari-
ations. One direction for future work would
be to verify this method on language varieties
with well documented variations, such as US
and UK English.

6 Conclusion
We demonstrate that it is possible to make use
of pretrained large language models to gen-
erate useful training data for language iden-
tification, even if the distinction between the
languages was only implicit in the pretraining
data. Our method only requires a corpus of
unlabelled, mixed data from the two language
varieties in question and a short list of seed
words from each language. It can therefore be
applied in cases where only unlabeled textual
data exists, including lower-resource language

scenarios.
Interestingly, the combination of a powerful

neural LLM for generating training data and
a relatively simple decision tree classifier mak-
ing use of local word-level features, yielded the
best results. By focusing on local word-form
features, the decision tree classifier avoided ex-
ploiting more global (but less relevant) cues in
the generated strings, and thus was able to
learn interesting word-level dependencies that
the more powerful model simply ignored.

Future work will include manual validation
and error analysis of classifier performance on
a range of texts. Further, we intend to exam-
ine this method, as suggested earlier, on more
clearly documented written language varieties,
such as those found with US and UK English
spelling differences. We also plan to investi-
gate similar language variety confounds, such
as that found between Bosnian, Croatian and
Montenegrin in the Latin script.

Acknowledgements
The authors wish to thank Raymond Doctor,
Cibu Johny, Anna Katanova and Alexander
Gutkin for help with this project.

Ethics Statement
This work does not propose a new model or
dataset, but rather probes the behavior of
existing models. Thus novel ethical consid-
erations about model behavior and dataset
contents are not directly raised by this work.
While not explicitly focused on ethical consid-
erations, this paper’s methods hopefully con-
tribute to better understanding model behav-
ior, and could be used to understand the ways
in which large language models treat underrep-
resented and marginalized language varieties.

Limitations
Our work is focused on just a single case study
of language identification of romanized text.
As detailed in Section 2, distinguishing roman-
ized Hindi and Urdu is a good candidate for
a case study for several reasons, but it would
be beneficial to extend this work to other lan-
guage situations.

Another limitation was our choice to focus
on already existing pre-trained models, rather
than directly controlling the training data that

40

is input to each model. This means some of
the conclusions about the connection between
training data and outcome are tentative, pend-
ing experimental confirmation.

References
Wafia Adouane, Nasredine Semmar, and Richard

Johansson. 2016. Romanized Berber and roman-
ized Arabic automatic language identification
using machine learning. In Proceedings of the
Third Workshop on NLP for Similar Languages,
Varieties and Dialects (VarDial3), pages 53–61.

Mohamed Al-Badrashiny, Ramy Eskander, Nizar
Habash, and Owen Rambow. 2014. Automatic
transliteration of Romanized dialectal Arabic.
In Proceedings of the Eighteenth Conference
on Computational Natural Language Learning,
pages 30–38, Ann Arbor, Michigan. Association
for Computational Linguistics.

Mohd Zeeshan Ansari, MM Sufyan Beg, Tanvir
Ahmad, Mohd Jazib Khan, and Ghazali Wasim.
2021. Language identification of Hindi-English
tweets using code-mixed BERT. In 2021 IEEE
20th International Conference on Cognitive In-
formatics & Cognitive Computing (ICCI* CC),
pages 248–252. IEEE.

Somnath Banerjee, Alapan Kuila, Aniruddha Roy,
Sudip Kumar Naskar, Paolo Rosso, and Sivaji
Bandyopadhyay. 2014. A hybrid approach for
transliterated word-level language identification:
CRF with post-processing heuristics. In Pro-
ceedings of the Forum for Information Retrieval
Evaluation, pages 54–59.

M Belkin, P Niyogi, and V Sindhwani. 2004. Man-
ifold regularization: A geometric framework for
learning from examples. Technical report, De-
partment of Computer Science, University of
Chicago TR-2004-06.

Riyaz A. Bhat, Irshad A. Bhat, Naman Jain, and
Dipti Misra Sharma. 2016. A house united:
Bridging the script and lexical barrier between
Hindi and Urdu. In Proceedings of COLING
2016, the 26th International Conference on
Computational Linguistics: Technical Papers,
pages 397–408, Osaka, Japan. The COLING
2016 Organizing Committee.

Riyaz Ahmad Bhat, Rajesh Bhatt, Annahita
Farudi, Prescott Klassen, Bhuvana Narasimhan,
Martha Palmer, Owen Rambow, Dipti Misra
Sharma, Ashwini Vaidya, Sri Ramaguru-
murthy Vishnu, and Fei Xia. 2017. The
Hindi/Urdu treebank project. In Nancy Ide
and James Pustejovsky, editors, Handbook of
Linguistic Annotation, pages 659–697. Springer
Netherlands, Dordrecht.

Rajesh Bhatt, Bhuvana Narasimhan, Martha
Palmer, Owen Rambow, Dipti Sharma, and Fei
Xia. 2009. A multi-representational and multi-
layered treebank for Hindi/Urdu. In Proceed-
ings of the Third Linguistic Annotation Work-
shop (LAW III), pages 186–189, Suntec, Singa-
pore. Association for Computational Linguistics.

Tina Bögel. 2012. Urdu-Roman transliteration via
finite state transducers. In FSMNLP 2012, 10th
International Workshop on Finite State Methods
and Natural Language Processing, pages 25–29.

L. Breiman, Jerome H. Friedman, Richard A. Ol-
shen, and C. J. Stone. 1984. Classification
and Regression Trees. The Wadsworth Statis-
tics/Probability Series. Chapman and Hall, New
York.

Achraf Chalabi and Hany Gerges. 2012. Roman-
ized Arabic transliteration. In Proceedings of
the Second Workshop on Advances in Text In-
put Methods, pages 89–96, Mumbai, India. The
COLING 2012 Organizing Committee.

Amitava Das and Björn Gambäck. 2014. Identify-
ing languages at the word level in code-mixed
Indian social media text. In Proceedings of the
11th International Conference on Natural Lan-
guage Processing, pages 378–387.

Ramy Eskander, Mohamed Al-Badrashiny, Nizar
Habash, and Owen Rambow. 2014. Foreign
words and the automatic processing of Arabic
social media text written in Roman script. In
Proceedings of the First Workshop on Computa-
tional Approaches to Code Switching, pages 1–
12, Doha, Qatar. Association for Computational
Linguistics.

Ann Irvine, Jonathan Weese, and Chris Callison-
Burch. 2012. Processing informal, Romanized
pakistani text messages. In Proceedings of the
Second Workshop on Language in Social Media,
pages 75–78, Montréal, Canada. Association for
Computational Linguistics.

Yamuna Kachru. 2006. Hindi. John Benjamins,
Philadelphia.

Julia Kreutzer, Isaac Caswell, Lisa Wang, Ah-
san Wahab, Daan van Esch, Nasanbayar
Ulzii-Orshikh, Allahsera Tapo, Nishant Subra-
mani, Artem Sokolov, Claytone Sikasote, Mo-
nang Setyawan, Supheakmungkol Sarin, Sokhar
Samb, Benoît Sagot, Clara Rivera, Annette
Rios, Isabel Papadimitriou, Salomey Osei, Pe-
dro Ortiz Suarez, Iroro Orife, Kelechi Ogueji,
Andre Niyongabo Rubungo, Toan Q. Nguyen,
Mathias Müller, André Müller, Shamsud-
deen Hassan Muhammad, Nanda Muhammad,
Ayanda Mnyakeni, Jamshidbek Mirzakhalov,
Tapiwanashe Matangira, Colin Leong, Nze Law-
son, Sneha Kudugunta, Yacine Jernite, Math-
ias Jenny, Orhan Firat, Bonaventure F. P. Dos-
sou, Sakhile Dlamini, Nisansa de Silva, Sakine

41

https://doi.org/10.3115/v1/W14-1604
https://doi.org/10.3115/v1/W14-1604
https://aclanthology.org/C16-1039
https://aclanthology.org/C16-1039
https://aclanthology.org/C16-1039
https://doi.org/10.1007/978-94-024-0881-2_24
https://doi.org/10.1007/978-94-024-0881-2_24
https://aclanthology.org/W09-3036
https://aclanthology.org/W09-3036
https://doi.org/10.3115/v1/W14-3901
https://doi.org/10.3115/v1/W14-3901
https://doi.org/10.3115/v1/W14-3901
https://aclanthology.org/W12-2109
https://aclanthology.org/W12-2109

Çabuk Ballı, Stella Biderman, Alessia Battisti,
Ahmed Baruwa, Ankur Bapna, Pallavi Baljekar,
Israel Abebe Azime, Ayodele Awokoya, Duygu
Ataman, Orevaoghene Ahia, Oghenefego Ahia,
Sweta Agrawal, and Mofetoluwa Adeyemi. 2022.
Quality at a glance: An audit of web-crawled
multilingual datasets. Transactions of the Asso-
ciation for Computational Linguistics, 10:50–72.

Taku Kudo and John Richardson. 2018. Sentence-
Piece: A simple and language independent sub-
word tokenizer and detokenizer for neural text
processing. In Proceedings of the 2018 Confer-
ence on Empirical Methods in Natural Language
Processing: System Demonstrations, pages 66–
71, Brussels, Belgium. Association for Computa-
tional Linguistics.

Jalal Maleki and Lars Ahrenberg. 2008. Convert-
ing Romanized Persian to the Arabic writing sys-
tems. In Proceedings of the Sixth International
Conference on Language Resources and Evalu-
ation (LREC’08), Marrakech, Morocco. Euro-
pean Language Resources Association (ELRA).

Colin P Masica. 1993. The Indo-Aryan languages.
Cambridge University Press.

Elizabeth Nielsen, Christo Kirov, and Brian Roark.
2023. Spelling convention sensitivity in neural
language models. In Findings of the Associa-
tion for Computational Linguistics: EACL 2023,
pages 1334–1346.

Abdul Rafae, Abdul Qayyum, Muhammad
Moeenuddin, Asim Karim, Hassan Sajjad, and
Faisal Kamiran. 2015. An unsupervised method
for discovering lexical variations in Roman Urdu
informal text. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Lan-
guage Processing, pages 823–828, Lisbon, Portu-
gal. Association for Computational Linguistics.

Colin Raffel, Noam Shazeer, Adam Roberts,
Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. 2020. Ex-
ploring the limits of transfer learning with a uni-
fied text-to-text transformer. The Journal of
Machine Learning Research, 21(1):5485–5551.

Brian Roark, Lawrence Wolf-Sonkin, Christo
Kirov, Sabrina J. Mielke, Cibu Johny, Isin
Demirsahin, and Keith Hall. 2020. Process-
ing South Asian languages written in the Latin
script: the Dakshina dataset. In Proceedings
of the 12th Language Resources and Evaluation
Conference, pages 2413–2423, Marseille, France.
European Language Resources Association.

Adam Roberts, Hyung Won Chung, Anselm Lev-
skaya, Gaurav Mishra, James Bradbury, Daniel
Andor, Sharan Narang, Brian Lester, Colin
Gaffney, Afroz Mohiuddin, Curtis Hawthorne,
Aitor Lewkowycz, Alex Salcianu, Marc van Zee,
Jacob Austin, Sebastian Goodman, Livio Bal-
dini Soares, Haitang Hu, Sasha Tsvyashchenko,

Aakanksha Chowdhery, Jasmijn Bastings, Jan-
nis Bulian, Xavier Garcia, Jianmo Ni, An-
drew Chen, Kathleen Kenealy, Jonathan H.
Clark, Stephan Lee, Dan Garrette, James Lee-
Thorp, Colin Raffel, Noam Shazeer, Marvin Rit-
ter, Maarten Bosma, Alexandre Passos, Jeremy
Maitin-Shepard, Noah Fiedel, Mark Omernick,
Brennan Saeta, Ryan Sepassi, Alexander Spiri-
donov, Joshua Newlan, and Andrea Gesmundo.
2022. Scaling up models and data with t5x and
seqio. arXiv preprint arXiv:2203.17189.

Sebastian Ruder, Noah Constant, Jan Botha,
Aditya Siddhant, Orhan Firat, Jinlan Fu,
Pengfei Liu, Junjie Hu, Dan Garrette, Graham
Neubig, and Melvin Johnson. 2021. XTREME-
R: Towards more challenging and nuanced mul-
tilingual evaluation. In Proceedings of the 2021
Conference on Empirical Methods in Natural
Language Processing, pages 10215–10245, On-
line and Punta Cana, Dominican Republic. As-
sociation for Computational Linguistics.

Vladimir N. Vapnik. 1998. Statistical learning the-
ory. Wiley, New York.

Karthik Visweswariah, Vijil Chenthamarakshan,
and Nandakishore Kambhatla. 2010. Urdu and
Hindi: Translation and sharing of linguistic re-
sources. In Coling 2010: Posters, pages 1283–
1291, Beijing, China. Coling 2010 Organizing
Committee.

Hans H. Wellisch. 1978. The Conversion of Scripts:
Its Nature, History, and Utilization. Informa-
tion sciences series. John Wiley & Sons, New
York.

Linting Xue, Noah Constant, Adam Roberts, Mihir
Kale, Rami Al-Rfou, Aditya Siddhant, Aditya
Barua, and Colin Raffel. 2021. mT5: A
massively multilingual pre-trained text-to-text
transformer. In Proceedings of the 2021 Con-
ference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies, pages 483–498, On-
line. Association for Computational Linguistics.

Yuan Zhang, Jason Riesa, Daniel Gillick, Anton
Bakalov, Jason Baldridge, and David Weiss.
2018. A fast, compact, accurate model for
language identification of codemixed text. In
Proceedings of the 2018 Conference on Empir-
ical Methods in Natural Language Processing,
pages 328–337, Brussels, Belgium. Association
for Computational Linguistics.

42

https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.1162/tacl_a_00447
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
https://doi.org/10.18653/v1/D18-2012
http://www.lrec-conf.org/proceedings/lrec2008/pdf/738_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/738_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/738_paper.pdf
https://aclanthology.org/2023.findings-eacl.98
https://aclanthology.org/2023.findings-eacl.98
https://doi.org/10.18653/v1/D15-1097
https://doi.org/10.18653/v1/D15-1097
https://doi.org/10.18653/v1/D15-1097
https://aclanthology.org/2020.lrec-1.294
https://aclanthology.org/2020.lrec-1.294
https://aclanthology.org/2020.lrec-1.294
https://arxiv.org/abs/2203.17189
https://arxiv.org/abs/2203.17189
https://doi.org/10.18653/v1/2021.emnlp-main.802
https://doi.org/10.18653/v1/2021.emnlp-main.802
https://doi.org/10.18653/v1/2021.emnlp-main.802
https://aclanthology.org/C10-2147
https://aclanthology.org/C10-2147
https://aclanthology.org/C10-2147
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/2021.naacl-main.41
https://doi.org/10.18653/v1/D18-1030
https://doi.org/10.18653/v1/D18-1030

