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Abstract

A crucial step in deciphering a text is to iden-
tify what set of characters were used to write it.
This requires grouping character tokens accord-
ing to visual and contextual features, which can
be challenging for human analysts when the
number of tokens or underlying types is large.
Prior work has shown that this process can be
automated by clustering dense representations
of character images, in a task which we call
“script clustering”. In this work, we present
novel architectures which exploit varying de-
grees of contextual and visual information to
learn representations for use in script cluster-
ing. We evaluate on a range of modern and
ancient scripts, and find that our models pro-
duce representations which are more effective
for script recovery than the current state-of-the-
art, despite using just 2% as many parameters.
Our analysis fruitfully applies these models to
assess hypotheses about the character inven-
tory of the partially-deciphered proto-Elamite
script.

1 Introduction

One of the first tasks in decipherment is to solve
an instance of the token-to-type problem by recog-
nizing which tokens represent the same underlying
character, and thereby to construct a list of every
character used in the script (cf. Gelb and Whiting
1975). Accurate character inventories are impor-
tant for decipherment, as they indicate patterns of
frequency and adjacency which can reveal infor-
mation about the underlying message. However,
it can be challenging for human annotators to de-
termine which characters are truly distinct: tokens
with different appearances can represent the same
underlying character (such as English and ),
while visually-similar tokens can represent distinct
characters (such as and or ß and B).

This work introduces novel, VAE-based tech-
niques for learning the character inventory of an
unknown script by clustering images of character

tokens. We show, through a range of experiments
on deciphered and undeciphered scripts from mod-
ern and ancient corpora, how the complexity and
number of characters in a script impact our mod-
els’ ability to learn the underlying character inven-
tory. On the ancient Cypro-Greek syllabary, our
models outperform the recent Sign2Vec architec-
ture (Corazza et al., 2022a) despite using just ∼2%
as many parameters. We also apply these models
to the undeciphered proto-Elamite script (PE; Dahl
2019), and find that they independently replicate
expert intuitions about the underlying character
inventory and suggest new relationships between
signs which have not yet been noted in prior work.

2 Methodology

Corazza et al. 2022a and Corazza et al. 2022b out-
line a two-step procedure for learning the charac-
ter inventory of an unknown script by clustering
images of character tokens. They first train an
unsupervised neural encoder to learn vector repre-
sentations for images of the characters in question.
After training, they cluster these representations:
the resulting clusters serve as an estimate for the
script’s underlying character inventory. The au-
thors demonstrate good performance on the ancient
Cypro-Greek script, and fruitfully apply this tech-
nique to the study of a related, undeciphered script
called Cypro-Minoan.

Our work follows the same overall approach, and
investigates how changes to the encoder architec-
ture, data quality, and training process can affect
the final clustering.

2.1 Motivation

Sign2Vec (Corazza et al., 2022a) uses the ResNet18
encoder (He et al., 2016), which is an 18-layer con-
volutional stack with residual connections. ResNet
was originally developed for object detection and
segmentation on the ImageNet (Deng et al., 2009)
and COCO (Lin et al., 2014) datasets, which in-
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clude photorealistic depictions of complex scenes.
In this setting, very deep networks are necessary to
capture the full range of visual information present
in the input images (He et al., 2016). By con-
trast, images of written characters tend to be vi-
sually simple: they often read clearly in greyscale
or black-and-white, and can generally be broken
down into simple lines, curves, or wedges against
a uniform background. In light of this, we hypothe-
size that the ResNet encoder may be significantly
over-parameterized for the task of script clustering.
This may lead to longer training times than neces-
sary, more expensive compute costs, and increased
risk of overfitting when applied to low-resource
decipherment corpora.

Additionally, one of the tasks used to train the
Sign2Vec encoder is a masked prediction task,
where information about a character must be re-
covered given the representations of the characters
to its immediate left and right. This provides the
model with a very narrow context window, which
is sufficient for the experiments in the original
work (Corazza et al., 2022a), but which we hy-
pothesize may hamper the model’s performance in
settings where wider context is available.

2.2 Model Architectures
In light of these limitations, we propose to compare
four architectures which reduce the size of the en-
coder relative to Sign2Vec and incorporate varying
degrees of context.1

VAE All of our models are built around a vari-
ational autoencoder (VAE; Kingma and Welling
2014) with a convolutional encoder and a deconvo-
lutional decoder (Figure 1). This architecture uses
three stacked convolutional layers to learn vector
representations µ, σ ∈ Rd from an input image
x ∈ Rn×n. These are used to sample a “code”
z ∼ N (µ, σ). A stack of transposed convolutional
layers decodes z to an image x̃ ∈ Rn×n. This
model is trained to minimize the reconstruction
error of x̃ with respect to the input x:

L = BCE(x̃, x) (1)

where BCE is binary cross-entropy.

VAE+Neighbors Our second model adds an aux-
iliary masked prediction task (Figure 2). Let zi−1

and zi+1 be the encodings of the images to the
1Code to be released at https://github.com/

MrLogarithm/cawl-clustering
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Figure 1: VAE architecture. This model reconstructs its
input from a dense vector encoding.

direct left and right of a token xi. We learn a pro-
jection M ∈ R2d×d and decode M(zi−1 ⊕ zi+1)
to produce an image x̃′

i. We add a new loss term to
Equation (1) to minimize the reconstruction error
of x̃′

i with respect to xi:

LNeighbor = BCE(x̃′
i,xi)

This is similar to the auxiliary task in
Sign2Vec (Corazza et al., 2022a), with the
difference that our model draws the masked sign,
whereas Sign2Vec was trained to predict a property
called its “pseudolabel” (see Section 2.3).

x~

~

i

x'ix i-1

x i

x i+1

M

Figure 2: VAE+Neighbor architecture. This model adds
the auxiliary task of reconstructing a character image
given the encodings of the adjacent characters.

VAE+LSTM To include wider context, we pro-
pose a third architecture incorporating an au-
toregressive LSTM (Hochreiter and Schmidhuber,
1997) language model. The input to this model is
a sequence of character images {x1, ...,xn}. We
encode each image using convolutional encoders
with tied parameters to produce a sequence of codes
{z1, ..., zn}, and decode these using tied decoders
to produce a sequence of images {x̃1, ..., x̃n}. Up
to this point, the model is equivalent to a batched
version of the basic VAE model. To incorpo-
rate context, we pass {z1, ..., zn} to a unidirec-
tional LSTM, and use our VAE decoder to decode
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the LSTM outputs to a second image sequence
{x̃′

1, ..., x̃
′
n}.

~

~

~

xi-1

x i

x i+1

x'i

x'i+1

x'i+2

μ

σ

zConv.
Encoder

μ

σ

zConv.
Encoder

μ

σ

zConv.
Encoder

Conv.
Encoder

Conv.
Encoder

Conv.
Encoder

LSTM
... ...

... ...

Figure 3: VAE+LSTM architecture. This model adds
the auxiliary task of drawing the next token given a
sequence of encodings for the preceding tokens.

We add the following loss term to Equation (1)
to minimize the reconstruction error of this image
sequence:

LLSTM =

n−1∑

i=1

BCE(x̃′
i,xi+1)

This can be viewed as an autoregressive
character-level language modeling objective, where
we wish to draw the image of the next charac-
ter xi+1 given all of the preceding characters
x1, ...,xi.

VAE+Transformer Our final model replaces the
LSTM component from the previous model with a
Transformer encoder stack (Vaswani et al., 2017);
we obtain the output image sequence {x̃′

1, ..., x̃
′
n}

by decoding the top layer of this Transformer. We
train this model on a masked language modeling
task: we mask input tokens at random by replacing
their images with standard Gaussian noise, and
train the model to recover the unmasked image
sequence by adding the following term to Equation
(1):

LTransformer =

n∑

i=1

BCE(x̃′
i,xi)

2.3 Training Details

At training time, we use a denoising tech-
nique (Vincent et al., 2008, 2010) to regularize
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Figure 4: VAE+Transformer architecture. This model
adds the auxiliary task of reconstructing characters
which have been masked by random Gaussian noise.

our models: we apply a random transformation (ro-
tation of up to 45 degrees, shear of up to 25 degrees,
and a random scale factor between 0.4 and 1) to
each input image, while keeping the target of the
reconstruction loss unchanged.

All of our models are trained using stochas-
tic gradient descent (SGD) to minimize Eq. (1),
plus the appropriate model-specific auxiliary loss
(LNeighbor, LLSTM, or LTransformer), plus a pseu-
dolabel loss term LΨ which we describe below. We
jointly minimize the sum of all of the relevant loss
terms in a single pass, with no pretraining and no
warmup steps.

Pseudolabels We follow Corazza et al. 2022a in
using a soft, unsupervised technique to organize
our models’ encodings into loose clusters. This
technique, inspired by the neural clustering algo-
rithm DeepCluster-v2 (Caron et al., 2018), begins
by clustering the encodings using K-Means with
an arbitrary number of clusters k. Let C be a ma-
trix with columns corresponding to the K-Means
centroids (normalized to unit length). Let zi be an
arbitrary encoding, let Cj be the centroid which is
closest to zi, and let yi be a one-hot vector with
a one in the jth position. The pseudolabel loss is
then given by:

LΨ =

n∑

i=1

CCE(
zi

||zi||
C,yi) (2)

where CCE is categorical cross-entropy. For each
zi, this constructs a probability distribution zi

||zi||C
over k categories, where the mass in each category
is proportional to the similarity between zi and the
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corresponding centroid. Minimizing this loss con-
centrates the mass of the distribution into a single
term; in other words, this performs a soft clustering
by pulling each zi towards the nearest centroid in
the embedding space.

We follow Corazza et al. 2022a in using a pseu-
dolabel loss with 100 centroids, which we recom-
pute using K-Means at the beginning of each train-
ing epoch.

3 Data

We aim to apply these models to the study of the un-
deciphered proto-Elamite script, which is attested
across ca. 1581 clay tablets recovered from the an-
cient city of Susa and other parts of the Iranian
plateau. These texts have been transliterated by do-
main experts using a work-in-progress list of about
1500 distinct signs;2 the most complete and up-to-
date transliterations are hosted by the Cuneiform
Digital Library Initiative3 and described in a re-
cent survey by J. Dahl (2019). Each sign has
an accompanying digital image, also produced by
Dahl, depicting its “archetypal” form. These im-
ages smooth over many of the irregularities of the
original shapes drawn on clay, while still preserv-
ing slight visual differences between tokens which
may actually represent the same underlying char-
acter (such as and ). They therefore represent
an intermediate level of detail that is cleaner than
segmented images of the original texts, yet still
faithful to the original hand. We convert the entire
transliterated proto-Elamite corpus4 into a set of
image sequences by replacing each transliterated
sign name with the corresponding sign image (Fig-
ure 5). Table 1 summarizes the token count for the
resulting dataset.

We evaluate our models on their ability to re-
cover three scripts whose character inventories
are already known (English, Japanese, and Cypro-
Greek). We construct an English dataset by ex-
tracting the first 33k alphanumeric tokens (approxi-
mately the same number of tokens as are attested in

2Different sign-counting methodologies can yield sign
counts as low as 287 or as high as 1623 (Born et al., 2019),
depending on whether numerals, tilde-variants, complex
graphemes, and other categories of grapheme are included. To
further complicate matters, the signlist continues to vary as
transliterations are updated and sign names are revised. At the
time of publication, a list of sign names which are currently in
use can be found at https://cdli.mpiwg-berlin.mpg.de/
resources/token-lists

3https://cdli.mpiwg-berlin.mpg.de/
4https://cdli.mpiwg-berlin.mpg.de/search?

period=proto-elamite&genre=administrative

Figure 5: Samples of image sequences from our PE
(top), En (middle) and Jp (bottom) datasets.

Language # Characters #Tokens # Images

EN 62 33k 3410
JP 938 33k 1607
CG 55 3k 3005

PE — 35k 1319

Table 1: Size and character inventories of scripts used
for training. PE is undeciphered, and the size of its
character inventory remains unknown.

proto-Elamite) from the WikiText-2 corpus (Mer-
ity et al., 2016). We convert this text into image
sequences by replacing each character token with a
handwritten image of that character. We use images
from de Campos et al. 2009, who provide 55 hand-
written instances of all 62 upper- and lowercase
English letters and digits: one of these 55 images
is chosen at random each time a character occurs.
The resulting sequences (Figure 5) imitate the level
of detail in our proto-Elamite data, in that each let-
ter is attested by multiple distinct images, and the
same image can be used for multiple tokens.

We construct a Japanese dataset according to the
same procedure, using the first 33k tokens from the
Japanese Tatoeba corpus (Artetxe and Schwenk,
2018; Tiedemann, 2012). As we do not have hand-
written character images for Japanese, we instead
extract the glyphs from two Japanese fonts (Yuji
Boku and Zen Old Mincho). The Japanese writing
system uses three scripts: kanji which are highly lo-
gographic, and two syllabaries called hiragana and
katakana. Similarly, proto-Elamite has been spec-
ulated to contain a set of possibly-syllabic signs,
together with a large number of logograms (Dahl,
2019). Syllabic signs convey phonetic information
that can provide crucial insights for decipherment,
and are therefore a major focus of decipherment
efforts on this script. In our Japanese experiments
(see Section 4), we therefore train on the entire
script, but only evaluate the model’s ability to re-
cover the two syllabaries.

We use the same Cypro-Greek data as Corazza
et al. 2022a. Unlike the other datasets, this
uses manually-segmented images from hand-drawn
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copies of artifacts bearing the Cypro-Greek script.
There is therefore a greater degree of variation be-
tween the character shapes in this data, and no two
tokens ever have identical images. This means that
our three datasets fall along a cline from fully natu-
ralistic, handwritten sequences (Cypro-Greek), to
synthetic sequences derived from handwritten im-
ages (English), to synthetic sequences derived from
digital fonts (Japanese).

We trim extraneous whitespace from all charac-
ter images and resize them to 64× 64 pixels with
a single grayscale color channel before training.5

4 Experiments

We train each of the models from Section 2.2 on the
four corpora detailed above (see Appendix B for
hyperparameters and additional training details).
After training, we encode each image using the
trained encoder and cluster the resulting encod-
ings using (i) agglomerative clustering with vary-
ing numbers of clusters (English, Japanese, proto-
Elamite) or (ii) DBSCAN (Ester et al., 1996) with
varying ε (Cypro-Greek). We use DBSCAN for
Cypro-Greek to enable a fair comparison against
the results in Corazza et al. 2022a; however, we
find that DBSCAN is generally not effective when
clustering the other scripts. When clustering with
DBSCAN, we follow Corazza et al. 2022a in using
a minimum cluster size of 2, to imitate a decipher-
ment setting where the true number and frequency
of characters is unknown; for the other scripts we
vary the number of clusters for the same reason.6

For English, Japanese, and Cypro-Greek,
we report homogeneity, completeness, and V-
measure (Rosenberg and Hirschberg, 2007) relative
to the gold labels. Homogeneity ranges from 0 to 1,
where 1 means that each cluster contains instances
from just one of the underlying characters, and
smaller values imply that some clusters combine
instances of two or more distinct characters. Sim-
ilarly, a completeness of 1 means that each of the
underlying characters is represented by a single

5Rescaling the images to a fixed size obscures the height of
the original character (see Fig. 5, whereって is indistinguish-
able from つて). For this reason, our Japanese evaluation
only tests the model’s ability to recover the gojūon, dakuon,
and handakuon, ignoring the yōon, sokuon, and small vowels
which are distinguished only by size.

6The present work will otherwise ignore the problem of
selecting the correct number of clusters, for which a variety
of heuristics have been proposed in prior work (Rousseeuw
1987; Thorndike 1953; Sugar and James 2003; Honarkhah and
Caers 2010; Tibshirani et al. 2002 i.a.).

cluster, while smaller values mean that some char-
acters have been divided across multiple clusters.
Intuitively, low homogeneity scores mean that a
clustering merges together characters which are ac-
tually distinct, while low completeness means that
it splits some characters into subgroups that are not
underlyingly distinct. V-Measure is the harmonic
mean of homogeneity and completeness.

DBSCAN can label samples as outliers (and thus,
not part of any cluster): we only evaluate on tokens
which it assigns to a cluster.

In our Japanese experiments, we only evaluate
on hiragana and katakana, in imitation of the proto-
Elamite setting where we eventually aim to under-
stand the divisions of a putative syllabary compris-
ing only a subset of the overall script.

In our Cypro-Greek experiments, we compare
against the Sign2Vec and DeepCluster-v2 results re-
ported in Corazza et al. 2022a. For the other scripts,
we compare against agglomerative clusterings over
the input images.

In proto-Elamite, where the ground truth is not
known, we perform a qualitative evaluation in
collaboration with domain experts. We look for
sets of tokens which are assigned to the same
cluster by our VAE+Neighbor, VAE+LSTM, or
VAE+Transformer model, but belong to different
clusters in the vanilla VAE model. The vanilla
VAE differs from the other models in that it lacks
contextual information; therefore, any groupings
which are absent from this model’s output likely
reflect primarily contextual similarities. Contextual
resemblances are harder for human annotators to
notice than visual resemblances, and so we expect
these groupings to reflect similarities which may
have been overlooked in prior work. We collabo-
rate with domain experts to assess how these token
groupings relate to their intuitions about this script.

5 Results

5.1 Modern Scripts

Figure 6 plots V-Measure from agglomerative clus-
terings over our models’ representations of hand-
written English letters (Appendix A shows the
breakdown into homogeneity and completeness
scores). The curve for the baseline is obtained
by clustering the raw character images, rather than
their encodings.

All four of our proposed models are able to re-
cover the underlying script more accurately than
the baseline. When the number of clusters is close
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Figure 6: V-Measure on handwritten English. The true
character inventory comprises 52 upper- and lowercase
letters plus 10 digits.

to the true size of the alphabet, our LSTM and
Transformer-based models achieve the highest per-
formance, which supports our hypothesis that wider
context windows allow for more accurate script re-
covery.
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Figure 7: V-Measure on a synthetic mixture of Japanese
fonts. The target character inventory comprises 142
hiragana and katakana (46 gojūon, 20 dakuon, and 5
handakuon each).

Figure 7 plots the same metrics for our synthetic
Japanese dataset. In this setting, the differences
between models are much less pronounced: the
context-aware models do not exhibit the same ad-
vantage as in English, and in fact the VAE+LSTM
model fails to outperform the naive baseline when
the number of clusters exactly matches the true
number of underlying characters. When the num-
ber of clusters is much larger than the true number
of signs, our models do outperform the baseline,
however, the contextual models continue to slightly
underperform the contextless VAE on average. Re-
gardless of the number of clusters chosen, the V-
Measure for Japanese is always much higher than
for English.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 20 40 60 80 100 120 140

V
-M

ea
su

re

Number of Clusters

VAE
VAE+Neighbor

VAE+LSTM

VAE+Transformer
Best S2V

Best DCv2

Figure 8: V-measure vs number of clusters for DB-
SCAN clusterings on Cypro-Greek. We evaluate over
the interval 0.1 ≤ ε < 8 in steps of 0.1. The dotted line
represents the true number of signs in the script.

These differences between English and Japanese
are likely due, in part, to the fact that there are only
two distinct images per character in the Japanese
data, compared to 55 in English. The Japanese
data are also fully synthetic, whereas the English
is handwritten. This may make the Japanese task
too easy (despite covering a much larger number of
unique characters) to the point that contextual mod-
els are not needed. This is nevertheless a useful
result, as it suggests that the difficulty of script clus-
tering depends less on the number of graphemes
than on the degree of variation between allographs.

5.2 Cypro-Greek

Table 2 compares the best result from each of our
models against the best results reported in Corazza
et al. 2022a; Figure 8 shows our full results for dif-
ferent values of DBSCAN’s ε parameter. Our best
models (VAE+LSTM and VAE+Transformer) out-
perform the Sign2Vec baseline, and all of our mod-
els outperform DeepCluster-v2 (Caron et al., 2018)
which was the inspiration for Sign2Vec. Although
our V-measure gains are modest, we emphasize that
our models use ∼98% fewer parameters than
Sign2Vec, and ∼99% fewer than DeepCluster-
v2. This supports our hypothesis that the ResNet
encoder is over-parameterized for the task of script
clustering, and demonstrates that accurate script
recovery is clearly possible even with much more
lightweight architectures.

Figure 9 plots homogeneity and completeness
vs number of clusters for each of our CG mod-
els. Each model exhibits a unique trend: the
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Figure 9: Completeness (left) and homogeneity (right) vs number of clusters for DBSCAN clusterings on Cypro-
Greek. We evaluate over the interval 0.1 ≤ ε < 8 in steps of 0.1. The dotted line represents the true number of
signs in the script.

V ↑ Parameters↓
DeepCluster-v2 (Corazza et al., 2022a) 0.73 > 23M
Sign2Vec (Corazza et al., 2022a) 0.75 > 11M

VAE (Ours) 0.75 0.215M
VAE+Neighbor (Ours) 0.74 0.215M
VAE+LSTM (Ours) 0.76 0.218M
VAE+Transformer (Ours) 0.76 0.227M

Table 2: V-measure (V ) and parameter counts for Cypro-
Greek. Best results for each model from Figure 8 and
Corazza et al. 2022a.

VAE+Transformer exhibits less variation in its
completeness scores across a range of cluster-
ing sizes, while the other models exhibit a more
pronounced fall and rise as the number of clus-
ters increases. All models are capable of achiev-
ing comparable homogeneity in the neighborhood
surrounding the true number of clusters, but the
VAE+Transformer maintains high homogeneity up
to a much higher number of clusters than the other
models. Geshkovski et al. 2023 have argued that
self-attention mechanisms cause tokens to cluster
around certain attracting states in the representa-
tion space; pseudolabeling (Caron et al., 2018) is
intended to have the same effect. We speculate that
the VAE+Transformer’s strong performance may
result in part from these behaviours reinforcing one
another to perform a more effective soft clustering
at training time.

5.3 Proto-Elamite

Table 3 shows pairs and triplets of proto-Elamite
characters which have distinct labels in the work-
ing signlist and VAE clustering, yet occupy the

same cluster in the VAE+Neighbor, VAE+LSTM,
or VAE+Transformer clusterings.7

The VAE+Neighbor model differs from the
working signlist and VAE clustering in only two
places, merging M332∼g with M297∼B and
M356∼B with M327∼N . Neither merger
appears to reflect any known similarities in how
these signs are used.

By contrast, the 6 mergers proposed by the
VAE+LSTM model appear much more plausible.
One cluster combines tokens which are currently

labeled as M362 and M362∼a , which adds
hatching to the central circle in a manner resem-
bling “gunuification” in early cuneiform. The ∼
notation in the working sign name explicitly ac-
knowledges that experts believe M362∼a may8 be
a graphic variant of M362; both signs have been
glossed as ‘nanny goat’ (Dahl, 2005), and previ-
ous scholarship has already acknowledged a likely
equivalence between M362∼a and another hatched
variant called M362∼b (Dahl, 2005) .

The output from our VAE+Transformer differs
the most from the working signlist, suggesting
17 sets of shapes which may represent the same

7For the VAE model, we use 1306 clusters, which equals
the number of unique sign images available at the time we
created our training data. We cluster the other models using
3.5× this many clusters; using such a large number helps
to guarantee that the observed groupings reflect legitimate
similarities and are not simply a side effect of compressing
too many tokens into too few groups.

8Specifically, ∼ followed by a number marks one sign as
a graphic variant of another; ∼ followed by a letter means
that the sign may be a variant of another, but experts remain
agnostic in the absence of further evidence.
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VAE+Neighbor VAE+LSTM VAE+Transformer

Table 3: Pairs/triplets of character images which have distinct labels in the working signlist, but which our models
merge into single clusters.

underlying character. A significant number of
these are complex graphemes, where one glyph
has been drawn inside the whitespace at the cen-
ter of another. Previous work has suggested that
the meaning of a complex grapheme is principally
determined by its outer component (Born et al.,
2021), and indeed most of the merges proposed
by the VAE+Transformer occur between complex
graphemes with the same outer part. This suggests
that the model has rediscovered the same pattern
identified in prior work, and that these particular
merges do reflect plausible groupings on the part
of our model. Many of the other mergers occur be-
tween signs which are already labeled as possible
variants in the working signlist (such as M029∼a
and M029∼b , or the possible syllables M387∼h

and M387∼ca ) and thus appear similarly plau-
sible.

Of greater interest are cases such as M209∼a ,
M210∼f , and M195+M057 . The working
signlist labels these as wholly distinct characters,
and no explicit relationship between these signs
has been proposed in prior work. However, the
visual resemblance between M209∼a and M210∼f
is undeniable; both signs occur in texts which con-
tain the “yoke” character M054 , and both occur
in texts which appear to record amounts of grain
(M209∼a appears with the speculative grain capac-
ity sign M354 , while M210∼f occurs with the
more common container sign M288). Moreover,
in one text M209∼a is attested alongside a related
variant of M210, labeled M210∼d . Given these
signs’ visual resemblance to a plant sprouting from
a field, and their association with yokes and grain
accounts, we believe it is reasonable for the model
to have grouped these characters under the same
umbrella. M195+M057 is also attested in texts
alongside both M288 and M354; although it does
not occur next to the yoke sign M054, it often oc-
curs near the sign M003∼b , which is speculated
to be another field utensil and which experts note is

“related to M054” (Dahl, 2007). Both M195+M057
and M209∼a are also attested as “headers”, the
first sign of a document which is believed to of-
fer global context for interpreting the following
text (Damerow and Englund, 1989; Born et al.,
2022). While we are skeptical that M195+M057
is truly the same underlying character as M209∼a
and M210∼f, they clearly share contextual simi-
larities and are attested in comparable, apparently
agricultural, contexts. This demonstrates our pro-
posed model’s ability to detect contextual parallels
which are helpful for understanding the possible
relationships between signs in this script.

By reducing the number of clusters to force ad-
ditional merges, we can obtain yet more group-
ings of the sort reported in Table 3. For exam-
ple, when we reduce the number of clusters in the
VAE+Transformer model by a factor of 1

7 , a new
merger appears between M175+M131∼d and
M157+M131∼d . The outer components M157

and M175 differ only in the shape of the pro-
trusion at the top of the box, and a merger between
these signs is tentatively expected based on cur-
rent understandings of the corpus. Other mergers
which appear, and which are also expected based
on current understandings of the corpus, include
M056∼f with M056∼e , both signs being un-
derstood to depict a plow; M075∼ff , M075∼g ,
M075∼h , and M075∼o apparently depicting
minor variations on a sprouting plant; and M111∼c

, M111∼d , and M111∼e which differ only
in the direction of the internal hatching. Such cases
serve as useful confirmations of experts’ current
understanding of sign use in this script.

The cases reported so far represent only a small
fraction of the candidate mergers which can be ex-
tracted from our models, and we are optimistic that
this work will continue to give rise to useful in-
sights as experts take the opportunity to investigate
this space more fully.

99



6 Related Work

Scribal hand identification (Popović et al., 2021;
Srivatsan et al., 2021) is a related task which seeks
to cluster instances of characters from a known
script according to the hand which wrote them.

Yin et al. (2019) describe a system for segment-
ing, transliterating, and deciphering images of his-
torical manuscripts. In the transliteration step, their
model implicitly learns an underlying script by
clustering character representations obtained from
a Siamese neural network trained to discriminate
between characters from known scripts. This net-
work learns character representations without ac-
cess to context, similarly to our vanilla VAE and the
DeepCluster-v2 baseline in Corazza et al. 2022a.

In a setting where the underlying script is al-
ready known, Dencker et al. (2020) and Gordin
et al. (2020) also describe systems for automated
transliteration from images of cuneiform text.

Kelley et al. (2022) study the character inven-
tory of proto-Elamite using a model similar to our
VAE+LSTM. Their model is not variational; it uses
softmax decoding over a fixed vocabulary initial-
ized to match the working signlist, which biases it
towards recovering the same divisions speculated
by experts. Our models use a deconvolutional de-
coder, which sidesteps this bias by allowing an
open vocabulary. Their evaluation does not test on
any known scripts, which makes it challenging to
determine the accuracy of the clusters their model
produces.

7 Conclusion

We have described four models which add vary-
ing degrees of contextual information to a VAE,
and have shown how these can be used to clus-
ter token images to recover a script’s character in-
ventory. On the ancient Cypro-Greek script, our
best models meet or outperform the state-of-the-art
Sign2Vec baseline using just ∼2% as many pa-
rameters, which supports our claim that written
text lacks the visual complexity to warrant mod-
els of the depth used in other image processing
applications. Our English and Cypro-Greek experi-
ments also demonstrate that contextual models are
more effective for script recovery than contextless
models. On synthetic Japanese data, which con-
tains many distinct graphemes but little variation
between allographs, our models achieve extremely
high V-Measure (>0.91), suggesting that they han-
dle large character inventories more easily than

they handle allography.
We apply our models to study the undeciphered

proto-Elamite script, and show that they capture ex-
isting intuitions about this script as well as suggest
new parallels between signs which have never been
noted in prior work. Our best insights for proto-
Elamite come from the LSTM and Transformer
models, while for Cypro-Greek our VAE+Neighbor
model is the only one which produces a clustering
with precisely the same number of clusters as there
are signs in the underlying script. This indicates
that it is useful to consider models with varying
access to contextual information according to the
number of long-distance contextual dependencies
the input script is expected to exhibit.

Limitations

Proto-Elamite is undeciphered, which means that
our results on this script cannot be compared to
any known ground truth. We attempt to ground
our results by situating them relative to current
Assyriological scholarship instead.

Writing systems exhibit considerable variation
in terms of the number of characters used, the vi-
sual complexity of those characters, and the degree
to which they represent phonetic information. Al-
though we try to cover a range of alphabetic and
non-alphabetic scripts in our evaluations, we can-
not cover all possible cases, and focus on those
which have some similarity to the proto-Elamite
script which is the main concern of our work.
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B Reproducibility Details

The code for our models will be published
at https://github.com/MrLogarithm/
cawl-clustering. All of the models in this work
are implemented with PyTorch. All settings use an
encoder with the following structure:

Sequential(
Dropout(0.5)
Conv2d(1 input channel, 3 output

channels, kernel size 8)
ReLU()
Conv2d(3 input channels, 6 output

channels, kernel size 8)
ReLU()
MaxPool2d(kernel size 3, stride

length 3)
Conv2d(6 input channels, 8 output

channels, kernel size 8)
ReLU()
MaxPool2d(kernel size 3, stride

length 3)
Flatten()
Dense(72 input dims, 16 output

dims)
)

A pair of Dense(16, 16) layers project the en-
coded output to µ and σ.

All settings use a decoder with the following
structure:

Sequential(
ConvTranspose2d(16 input channels,

60 output channels, kernel size
8)

BatchNorm2d(60 channels)
ReLU()
ConvTranspose2d(60 input channels,

30 output channels, kernel size
8, stride length 2)

BatchNorm2d(30 channels)
ReLU()
ConvTranspose2d(30 input channels,

15 output channels, kernel size
8, stride length 2)

BatchNorm2d(15 channels)
ReLU()
ConvTranspose2d(15 input channels,

1 output channel, kernel size
15, stride length 1)

Sigmoid()
)

The VAE+LSTM model uses a single-layer uni-
directional LSTM with a hidden dimension of
size 16. The VAE+Transformer uses a 6-layer
TransformerEncoder with 8 heads per layer, in-
put and output dimensions of size 16, and 0.5
dropout. We apply a standard sinusoidal posi-
tional encoding to the Transformer inputs following
Vaswani et al. (2017).
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In the VAE+LSTM and VAE+Transformer mod-
els, we re-apply the reparameterization trick
from Kingma and Welling 2014 to the LM out-
puts before decoding the image sequence. We add
new Dense(16,16) layers to compute µ and σ at
this stage, separate from those used to compute µ
and σ within the VAE itself. When computing the
overall KL divergence loss for these models, we
sum the KL divergence from these projections with
that of the VAE projections.

We train on sequences of length 50 using the
Adam optimizer (Kingma and Ba, 2015) with learn-
ing rate 0.001. When computing the loss, we scale
the KL divergence loss term by 0.45. The LR and
loss scaling hyperparameters were tuned via a small
manual grid search. We recompute pseudolabel
assignments at the start of every 600th training
iteration.
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