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Abstract

Causal events play a crucial role in explain-
ing the intricate relationships between the
causes and effects of events. However, com-
prehending causal events within discourse,
text, or speech poses significant semantic chal-
lenges. We propose a contrastive learning-
based method in this submission to the Causal
News Corpus - Event Causality Shared Task
2023, with a specific focus on Subtask 1 cen-
tered on causal event classification. In our
approach we pre-train our base model us-
ing Supervised Contrastive (SuperCon) learn-
ing. Subsequently, we fine-tune the pre-trained
model for the specific task of causal event clas-
sification. Our experimentation demonstrates
the effectiveness of our method, achieving a
competitive performance, and securing the 2nd
position on the leaderboard with an F1-Score
of 84.36.

1 Introduction

Understanding the intricate relationships between
cause and effect within events is a fundamen-
tal aspect of language comprehension. Causal
events, which provide insights into these connec-
tions, present semantic challenges when it comes
to their classification and analysis in discourse, text,
or speech.

We tackle the specific problem of causal event
classification in Subtask 1 of the Causal News Cor-
pus -Event Causality Shared Task 2023 (Tan et al.,
2023) in our submission. This task involves accu-
rately identifying and categorizing causal events,
which plays a vital role in unraveling the under-
lying mechanisms behind real-world phenomena.
Successful classification enables a wide range of
applications, such as information extraction, sum-
marization, and knowledge graph construction. To
address this challenge, we propose an innovative
approach that leverages SuperCon learning and
source-aware sampling.

Contrastive learning has shown promising re-
sults in computer vision to learn a better and robust
visual representations (Chen et al., 2020) and var-
ious natural language processing task like knowl-
edge graph embeddings (Luo et al., 2021), text clas-
sification (Chen et al., 2022), entity linking (Yuan
et al., 2022) and entity resolution (Brinkmann et al.,
2023) etc. It allows the models to learn by contrast-
ing positive and negative pairs, capturing informa-
tive representations.

The use of contrastive learning in text classifi-
cation has been investigated in various contexts.
For instance, the study by (Zuo et al., 2021) em-
ployed self-supervised learning techniques to ad-
dress event causality identification in scenarios
with limited annotated datasets. Similarly, (Chen
et al., 2022) took an approach to incorporate con-
trastive learning with synthesized counterfactuals
for data augmentation, demonstrating notable im-
provements in aspects such as counterfactual ro-
bustness, cross-domain generalization.

In this paper we apply the idea of SuperCon
learning introduced by (Khosla et al., 2020) to the
causal event classification task. Further, we loosely
connect to the idea of source-aware sampling strat-
egy introduced by (Peeters and Bizer, 2022) and
modify it to suite the classification SubTask for
pre-training the base encoder architecture.

Our methodology involves pre-training a trans-
former based encoder model using SuperCon Loss
with naive source-aware sampling, followed by
fine-tuning the pre-trained model on the causal
event classification task. Through extensive ex-
perimentation and evaluation on the Causal News
Corpus dataset, we demonstrate the effectiveness
of our approach.

This paper’s contributions can be summarized
as follows: (1) Introducing contrastive learning
as a method for causal event classification. (2)
Achieving competitive performance in the Causal
News Corpus - Event Causality Shared Task 2023,
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Figure 1: Learning Phases for Causal Event Classification: Phase-1: Pre-training with SuperCon | Phase-2:
Fine-tuning for Causal Events

with the F1 Score of 84.36.! on the encoder’s output embeddings
1 n
Z== Zl Z; (2)
1=

and normalize them using the L2-norm

2 Methodology

In this section, we present the methodology em-
ployed to address the causal event classification
task. Our approach utilizes contrastive learning
and consists of two main phases (Figure 1): (1) z

Pre-training the baseline transformer architecture S H 3
with SuperCon, and (2) Fine-tuning the pre-trained
model on the downstream classification task. For
the encoder architecture, we adopt the RoOBERTa
base model® which has been shown to achieve
strong results across different benchmark tasks (Liu

— a strategy effectively employed by (Brinkmann
et al., 2023) for entity resolution tasks. To train the
parameter of the encoder ROBERTa architecture
we apply SupCon Loss to to cluster or position

etal., 2019). records with the same label more densely within
the embedding space.
2.1 Contrastive Pre-training The SuperCon Loss employs the principle of

During the pre-training phase, we employ a batch contrastive learning, leveraging the label informa-
creation process similar to the work of (Khosla tion of the input text records. It maximizes the
et al., 2020) and augment it with the‘ naive source- ~ agreements between causal text records belonging
aware sampling strategy introduced by (Peeters (O the same class while minimizing agreements for
and Bizer, 2022). To train the encoder model, we causal text records from different classes. The for-
create two copies of the input dataset. From the mulation of the SuperCon loss is given as follows:
first dataset, we randomly select N records of input ~ Given a batch of 2V embedded records, z,

text z and subsequently sample another set of N 1
records of input text 2’ from the second dataset, L= Z L; = Z

where we record in the batch (of size 2/V) has at iel iel |7
least one corresponding record with the same label exp(z; - 2p/T)

pel . E log (@)
(even if it is a duplicate record only) Zae A exp(z - 24/7)

The RoBERTa encoder maps each input causal peP(i)

text record x to an embedding z as where i belongs to [ = 1,..., N and represents
the index of the anchor embedding z;. The set of
positive indices distinct from the anchor index ¢ is
denoted by P; = p; € A(3) : yp = yi, and | P is
its cardinality. Here, v, and y; indicate the labels of
the corresponding records. The scalar temperature

z = RoBERTa(z). (1)

To enhance the robustness and generalization of
the record embeddings, we perform mean pooling

Olur coie is available at https://github.com/rajathpatel23/ parameter 7 is used to scale the similarity measure.
causal-events.

“We use roberta-base model from Hugging Face model In the loss calculation for a given batch, each
hub - https://huggingface.co/roberta-base record embedding z; acts as an anchor embedding,
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attempting to bring all record embeddings of the
same class closer together in the embedding space
while pushing away the record embeddings from
different classes.

2.2 Fine-Tuning For Classification Task

In this phase, we leverage the pre-trained model
from the first phase and adapt it specifically to
the task of causal event classification.Fine-tuning
is employed to optimize the model’s parameters
for this specific task, effectively utilizing its prior
knowledge to enhance its ability to discern and
categorize causal relationships within textual data.

To accommodate the classification task, we in-
troduce a Classification Head atop the RoOBERTa
encoder

z = RoBERTa(x)
2 =W - 2+ be

C

6))
(6)

where W, and b, are feed-forward layer specific
weights and x is the input causal text. This is a
simple single-layer feed-forward architecture. The
primary purpose of this additional layer is to pro-
cess the extracted embeddings and make predic-
tions for the causal event classification. We employ
the sigmoid activation function on the feed-forward
output to derive the final probability
Zout = 0(2). @)
For training the model’s parameters, we use bi-
nary cross-entropy loss, defined as follows:

1 N
J(Q) N Z Yi IOg(zout>)+
=0

(1 - yz) : lOg(l - Zout) (8)
where 6 represents the parameters optimized during
the fine-tuning phase, and y; denotes the original
labels for the causal input text records. The bi-
nary cross-entropy loss minimizes the difference
between predicted and actual class assignments by
comparing probabilities and true labels.

During fine-tuning, the encoder layer parameters
are not frozen and fine-tuned end-to-end along with
Classification Head parameters. This allows the
model to specialize its learned representations for
the causal event classification task without losing
the valuable knowledge gained from pre-training.
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Dataset Causal Non-Causal Total
train 1624 1421 3075
dev 185 155 340
test 173 179 352

Table 1: Dataset distribution of Causal New Corpus

3 Experimentation Settings

3.1 Dataset

We utilize the Causal News Corpus, which is de-
rived from the work of (Tan et al., 2022) for our
experiments. This corpus is specifically prepared
for the Shared Task on CASE 2023 Workshop on
Event Causality Identification (Tan et al., 2023),
focusing on Subtask 1 for causal event classifica-
tion. This version contains more data than previ-
ous version of the dataset (Tan et al., 2022) while
some previous annotations have been revised. The
dataset comprises 869 news documents and 3767
English sentences that have been annotated with
causal information. The corpus is partitioned into
three sets: train, dev, and test splits to facilitate fair
evaluation. A detailed distribution of the dataset
can be found in Table 1.

3.2 Model Training

In the pre-training phase, we train the encoder ar-
chitecture using the SuperCon Loss, with a batch
size of 128. To guide the training process, we set
the learning rate to 5e-5 and use a scalar tempera-
ture parameter, denoted as 7, which is set to 0.07.
The pre-training runs for five epochs and involves
both the frain and dev splits from the causal news
corpus dataset. To efficiently handle the data, we
limit the maximum number of tokens for the en-
coder tokenizer to 256.

During the fine-tuning phase, we extend the
pre-trained encoder architecture by adding a feed-
forward network on top, known as the Classifica-
tion Head. This additional network allows us to
perform the specific task of causal event classifi-
cation. We employ the binary cross-entropy loss
(Eq. (8)) for training the model. Throughout fine-
tuning, we solely use the train dataset and use the
dev dataset to evaluate the model’s performance.
Finally, we submit the trained model’s predictions
on the test dataset to Codalab for evaluation on
the hold-out test set. The parameters used for fine-
tuning include - batch size of 16, the learning rate
of 2e-5, and the number of training epochs set to 3,
with an early stopping criterion.



User Recall Precision  Fl-score Accuracy MCC
DeepBlueAl 0.8613 (5) 0.8324 (2) 0.8466 (1)  0.8466 (1) 0.6937 (1)
rpatel12 0.8728 (4) 0.8162(3) 0.8436(2) 0.8409 (2) 0.6837 (2)
timos 0.8786 (3) 0.8000 (4) 0.8375(3) 0.8324 (3) 0.6683 (3)
csecudsg 0.8555(6) 0.8000 (4) 0.8268 (4)  0.8239 (4) 0.6495 (4)
elhammohammadi  0.8960 (1) 0.7635 (6) 0.8245(5)  0.8125(5) 0.6352 (5)
tanfiona 0.8902 (2) 0.7586(7) 0.8191(6) 0.8068 (6) 0.6237 (7)
sgopala4 0.8613 (5) 0.7801(5) 0.8187(7) 0.8125(5) 0.6288 (6)
nitanshjain 0.8728 (4) 0.6537(8) 0.7475(8)  0.7102 (8) 0.4483 (9)
kunwarv4 0.5260 (7) 0.8585(1) 0.6523(9) 0.7244 (7) 0.4819(8)
pakapro 0.4740 (8) 0.4409 (9) 0.4568 (10) 0.4460 (9) -0.1072 (10)

Table 2: The performance of the our model compared to all the other submission made to Codalab to CASE 2023
Shared Task 3 - Subtask 1 (Tan et al., 2023) on causal event classification

We manually select the hyper-parameters for the
model during training. This approach ensures that
the model’s configuration aligns with the specific
task requirements and contributes to its overall per-
formance.

3.3 Evaluation Metrics

We employ various metrics, including Precision,
Recall, F1-scores, Accuracy, and Matthew’s corre-
lation coefficient (MCC) to assess the performance
of our binary classification model. Among these
metrics, our model is optimized for the F1-score,
which provides a balanced evaluation of both pre-
cision and recall.

4 Results and Analysis

This section presents the outcomes of our model
architecture in the context of the causal event clas-
sification task. We conducted the model training
on an A10 GPU with 24GB RAM, utilizing the
available computational resources effectively.

4.1 Performance on Classification Task

Our contrastive learning based architecture is tai-
lored for binary classification, determining if a
given input text record = exhibits a semantic causal
relationship. We compare its performance against
other submissions in the event causality shared task
1 (Tan et al., 2023), summarized in Table 2. The
results reveal our model’s highly competitive per-
formance in the classification task. It secures the
2nd position in three key metrics - F1-Score, Ac-
curacy, and MCC. Additionally, it ranks 3rd in
Precision and 4th in Recall among all submissions.
Compared to the baseline model presented by (Tan
et al., 2023), a fine-tuned BERT model with hyper-
parameter tuning, our model shows significant im-
provements. Specifically, it achieves a remarkable
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Figure 2: TSNE visualization of the representations
from the pre-training phase

6-point increase in precision, a 3-point boost in
F1-Score, and a substantial 6-point improvement in
MCC score. These results provide strong evidence
supporting the effectiveness of applying SuperCon
learning to this specific classification problem.

4.2 Analyzing Pre-trained Feature Spaces via
t-SNE

To deepen our understanding of the impact of con-
trastive pre-training, we examine the feature repre-
sentation generated from the dev dataset. The repre-
sentation are visualized using the t-SNE technique
(van der Maaten and Hinton, 2008). As depicted
in Figure 2, the t-SNE plot reveals two clusters
among the text records in the dataset. This cluster-
ing underscores the efficacy of our SuperCon-based
pre-training approach. The visualization validates
that the pre-training phase successfully imbues the
model with meaningful representations, which, in
turn, bolsters the model’s performance in the causal
event classification task. Interestingly, we observe



Model Recall Precision F1-Score Accuracy MCC

BERT Baseline Model (Tan et al., 2023) 0.887  0.841 0.863 0.8471 0.6913
RoBERTa Non-Pre-trained Model 0.9180 0.8212 0.8181 0.8470 0.6941
Pre-trained OnlyModel 0.8756 0.7677 0.8673 0.7882 0.5755
Proposed SuperCon Model 0.8617 0.8556 0.8972 0.8617 0.7210

Table 3: Comparative study on the effectiveness of contrastive pretraining

some data point overlaps within the clusters, sug-
gesting that these could be further refined through
downstream tasks.

4.3 Effectiveness of Contrastive Pre-training

To comprehensively investigate the role of con-
trastive pre-training, we designed and executed ex-
periments involving various model architectures.
Specifically, we tested four different configura-
tions:

BERT Baseline Model: This version uses the
BERT architecture trained by (Tan et al., 2023) and
serves as our foundational comparison point for the
causal event classification task.

RoBERTa Non-Pre-trained Model: In this
setup, we circumvent the pre-training phase alto-
gether and train a ROBERTa encoder model with a
classification head for the same combined number
of epochs as our proposed model.

Pre-trained Only Model: In this scenario, the
RoBERTa encoder model undergoes initial pre-
training. During the fine-tuning stage, the feature-
extracting layers are frozen, leaving only the clas-
sification head to be updated.

Proposed SuperCon Model: Our proposed ar-
chitecture leverages the benefits of SuperCon Loss
during the RoBERTa encoder model’s pre-training
phase, followed by a fine-tuning stage on the causal
event classification task.

For a balanced comparative analysis, all model
training was confined to the available frain set,
while evaluations were conducted on the dev
dataset. The outcomes are summarized in Table 3.

The data reveal that our Proposed SuperCon
Model excels in four metrics: Precision, F1-Score,
Accuracy, and MCC, outperforming the other con-
figurations. We also see a drop in performance
metrics on the Pre-trained Only Model configu-
ration, underscoring the necessity of fine-tuning
subsequent to pre-training for achieving optimal re-
sults. Further the ROBERTa Non-Pretrained Model
shows high recall but with lower F1-Score, Preci-
sion scores over our proposed model architecture.
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5 Conclusion and Future Work

In this study, we have delved into the application
of SuperCon learning for the task of causal event
classification. By harnessing the power of Super-
Con, our model achieved competitive performance,
securing the 2nd position in key evaluation met-
rics such as F1-Score, Accuracy, and Matthew’s
correlation coefficient (MCC). These competitive
results provide strong evidence for the efficacy of
our approach in comprehending intricate causal re-
lationships within textual data. Additionally, our
comparative analysis highlights the model’s learn-
ing strength and the benefits of this learning ap-
proach.

In the future we could explore the use of a
large dataset from a distinct domain during the
pre-training phase. This would enable us to gauge
the inductive capacity of our learning paradigm
on the causal news corpus domain dataset. Such
investigations hold the potential for promising im-
plications in the realms of low-resource, few-shot,
and domain-specific causality event understanding.
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