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Abstract

The scarcity of data poses a significant chal-
lenge in closed-domain event extraction, as is
common in complex NLP tasks. This limitation
primarily arises from the intricate nature of the
annotation process. To address this issue, we
present a multi-task model structure and train-
ing approach that leverages the additional data,
which is found as not having any event informa-
tion at document and sentence levels, generated
during the event annotation process. By incor-
porating this supplementary data, our proposed
framework demonstrates enhanced robustness
and, in some scenarios, improved performance.
A particularly noteworthy observation is that
including only negative documents in addition
to the original data contributes to performance
enhancement. When training the model with
only 80% of the original data alongside nega-
tive documents, the outcome closely paralleled
employing the entire original data set without
any negative documents. Our findings offer
promising insights into leveraging extra data
to mitigate data scarcity challenges in closed-
domain event extraction.

1 Introduction

Closed-domain event extraction is a specialized
task in Natural Language Processing (NLP) that
focuses on automatically identifying and extracting
specific events or occurrences from text within a re-
stricted domain, such as biomedical research, finan-
cial markets, political events, or sports (Xiang and
Wang, 2019; Parolin et al., 2021). It plays a crucial
role in capturing and categorizing relevant events,
their attributes, and relationships, enabling appli-
cations such as information retrieval (Abuleil and
Evens, 2004), trend analysis (Cheng et al., 2022;
Wang et al., 2012), and knowledge base construc-
tion (Schrodt and Idris, 2014; Hürriyetoğlu et al.,
2021; Jenkins et al., 2023). However, despite the
advancements in NLP models, the scarcity of anno-

tated data poses a persistent bottleneck in achieving
accurate and reliable event extraction models. The
limited availability of annotated data, crucial for
training and evaluating such models, hinders their
performance and generalizability (Caselli et al.,
2021; Hu et al., 2022).

The annotation process plays a vital role in event
extraction, requiring domain experts to meticu-
lously label relevant events and their associated
attributes. However, this process is often labor-
intensive, time-consuming, and expensive (Puste-
jovsky and Stubbs, 2012). The complexity and
diversity of event types further complicate the task,
as events can vary in structure, context, and repre-
sentation. Moreover, the need for inter-annotator
agreement adds to the complexity, requiring mul-
tiple annotators to reach a consensus on the event
labels. These challenges contribute to the limited
availability of annotated data, restricting the per-
formance and generalizability of event extraction
models.

To overcome the data scarcity challenge, we pro-
pose a model structure and training schema that
harnesses the additional data generated as a natural
by-product of the annotation process. Specifically,
we utilize coarse-grained data that classifies docu-
ments or sentences as containing an event or not,
as shown in Table 1. The first example shows the
inherent document and sentence labels in a token-
annotated document, while the second example is
a document with no event information. This data
can be easily generated from already annotated
documents for event extraction, and one could eas-
ily gather more samples without token-level an-
notations. Labeling such data is relatively pain-
less, effectively circumventing most of the afore-
mentioned issues with annotating event extraction
documents. Thus, achieving a higher data quality
is considerably cheaper and easier. We analyze
the trade-off between using token annotations and
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Document
No

Sentence
No

Sentence
Sentence

label
Document

label

1

1
He said the union had already send a statutory letter
to the Uber office here in connection with the strike.

Negative

Positive
2

The leaders of the union also said the
local taxi drivers had launched an attack against the

online taxi drivers at the airport.
Positive

3
The online taxi drivers have been having a tough

time for the last one year.
Negative

4
Uber and Ola are two prominent online taxi service

providers in Kochi.
Negative

5
Earlier, some trade unions representing local taxi

operators had come out in protest against the
online taxi networks such as Uber and Ola.

Positive

2
1

Tributes paid to Field Marshal Cariappa, students
sing prayers at his ‘samadi’

Negative
Negative

2

Madikeri: Rich tributes were paid to the late Field
Marshal K.M.Cariappa at “Roshanara” here, where

his “samadhi” is located, to observe the birth
anniversary of one of the great soldiers of the

country.

Negative

3

Prayers in different languages were rendered by
students of the Bharatiya Vidya Bhavan-Kodagu

Vidyalaya (BVB-KV) and family members of the
late Field Marshal.

Negative

Table 1: A table that consists of 2 sample documents from ACL CASE 2021 shared task. The first document is
positive and token-annotated. The second document has no event information, therefore negative. The event triggers
are shown in bold, and event arguments are underlined.

coarse-grained labels, evaluating performance vari-
ations with different ratios of these data types.

In our training schema, we incorporate the extra
coarse data as two auxiliary tasks alongside the
main event extraction task: document binary classi-
fication and sentence binary classification. By uti-
lizing this supplementary data, our approach aims
to augment the training set and enhance the per-
formance and robustness of the event extraction
model. The integration of this additional data has
yielded promising results, effectively addressing
the limitations caused by the lack of annotated data
in closed-domain event extraction.

This study contributes to the field by providing
a practical solution to the data scarcity problem in
closed-domain event extraction. By leveraging the
extra data generated during the annotation process,
we strive to advance the state-of-the-art in event
extraction, paving the way for more accurate and
efficient systems across various domains. The out-
comes of our research have potential implications

for numerous downstream applications, ultimately
benefiting various sectors that rely on event extrac-
tion for knowledge extraction and decision-making
processes (Hogenboom et al., 2016).

The following section provide a brief overview
on studies related to our study. Next we provide de-
tails of the multi-task model and the data we utilize
for our experiments in Sections 3 and 4 respectively.
The experimental setting is described in Section 5
in terms of a baseline and three experiment sets.
We report results of our experiments in Section 6
and summarize our findings in Section 7.

2 Related Work

The performance of event extraction has been sig-
nificantly depended on the amount of relevant
data utilized for creating an event extraction sys-
tem (Chen and Ji, 2009; Hsu et al., 2022). The
variety of the data contributes to the performance
and generalizability of an event extraction system
as well (Yörük et al., 2022).
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Figure 1: The main structure of the multi-task model. After creating embeddings for each sentence in the document
(see Figure 2), these are sent through a bi-GRU to get a context-aware representation for each sentence and a single
representation for the whole document. The losses for the document and the sentences are obtained by passing these
embeddings through their respective classification layers.

The design of an event extraction system is an-
other major determiner of the performance (Pei
et al., 2023). The design should be able to utilize
and encode as much as information available in
the data for the target task. Consequently, syntax-
oriented rule creation (Fleissner and Fang, 2012;
Oostdijk et al., 2016), joint learning (Chen et al.,
2018), multi-task learning (drissiya El-allaly et al.,
2021), and pre-trained architectures (Yang et al.,
2019) have been developed and successfully ap-
plied in many event extraction scenarios.

We follow these approaches both for data by
increasing the size and variety of the data and
benefiting from multi-task learning that is based
on pre-trained architectures. Although in differ-
ent domains, both Rei and Søgaard (2019) and
Tong et al. (2021) are highly similar to our ap-
proach. They both adopt a multi-task structure
within a joint learning framework, leveraging data
at multiple levels of granularity. However, our ap-
proach diverges from theirs primarily in terms of
incorporating document-level information, along-
side sentence-level. An innovative aspect of our
study is the revelation that integrating negative doc-
uments substantially augments performance and
robustness, particularly in scenarios with limited
data availability.

3 Model Structure

To solve event extraction tasks using deep learning
techniques, they are commonly approached as to-
ken classification problems. In token classification,
each word or token in the input text is assigned
a label indicating its role in the event extraction

process. One popular labeling scheme is the BIO
format (Ramshaw and Marcus, 1995), which stands
for “Beginning, Inside, and Outside.” In this format,
each token is labeled as either B-event, I-event, or
O. The B-event label denotes the beginning of an
event mention, the I-event label indicates that the
token is inside the event mention, and the O label
signifies that the token is outside any event men-
tion. By converting the event annotations into the
BIO format, deep learning models can be trained
to recognize and classify tokens based on their in-
volvement in events, facilitating the automated ex-
traction of important information from text.

The model structure is designed to effectively
leverage document and sentence-level information,
alongside the main task of token classification, in a
coherent manner. To achieve this, our model1 pre-
dicts labels and trains on all three levels simultane-
ously, enabling comprehensive learning. Inspired
by ScopeIt (Patra et al., 2020), our multi-task archi-
tecture, illustrated in Figure 1, enables the creation
of representations for tokens, sentences, and doc-
uments to then put these through the respective
classification layers for each task. We build on
their model structure by adding the facilities for
the token classification task. So, our model trains
on the two auxiliary tasks, document and sentence
classification tasks, in addition to the primary token
classification task.

The model processes each sentence, with its split
tokens, using a transformers-based encoder2 to ob-

1https://github.com/OsmanMutlu/ms_
thesis

2https://huggingface.co/

https://github.com/OsmanMutlu/ms_thesis
https://github.com/OsmanMutlu/ms_thesis
https://huggingface.co/
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tain representations for individual tokens. To ad-
dress the limited input problem of the encoder, each
sentence is processed independently. Within each
sentence, a bidirectional Gated Recurrent Unit (bi-
GRU) (Cho et al., 2014), dubbed intra-sentence
bi-GRU, is employed to further enhance token rep-
resentations and generate a representation for the
entire sentence by concatenating the last hidden
states from both directions of the bi-GRU. These
sentence embeddings are further enriched with con-
textual information by passing them through a sec-
ond bi-GRU, named inter-sentence bi-GRU. Addi-
tionally, a single representation for the entire docu-
ment is obtained by concatenating the last hidden
states from the inter-sentence bi-GRU in both di-
rections. Each representation, whether for tokens,
sentences, or documents, is then passed through
their respective classification layers to calculate the
corresponding losses. The document and sentence
tasks employ binary cross-entropy loss, while the
token task utilizes categorical cross-entropy loss.
The losses from each task are combined, yielding
a final loss value for backpropagation (Rumelhart
et al., 1986).

It is important to note that we maintain a con-
sistent model structure across all our experiments,
even if document or sentence loss is not calculated
in certain scenarios. This ensures a standardized
approach and facilitates fair comparisons across
different variations of the model.

Figure 2: Each sentence of the document goes through
a shared transformers-based encoder and a bi-GRU to
produce embeddings for each token and the sentence.
A categorical cross-entropy loss is calculated for each
token after passing their embeddings through a classifi-
cation layer.

4 Data

We leverage the data provided by the ACL CASE
2021 shared task (Hürriyetoğlu et al., 2021), which
focuses on detecting protest events in the languages

English, Portuguese, Spanish, and Hindi. The
shared task encompasses four sequential steps, rep-
resenting different stages of a real-world event ex-
traction pipeline (Duruşan et al., 2022). For our
experiments, we specifically utilize a subset of the
English training data from subtask four, along with
the corresponding English test data.

The training data consists of 717 token-
annotated documents. These annotations were dis-
tributed in BIO format, meaning there are no over-
lapping labels for any individual token, effectively
turning this task into token classification. The test
set, which remains the same across all experiments
since token classification serves as the primary task,
includes 179 token-annotated documents. The dis-
tribution of token labels for the training and test
sets is outlined in Table 2.

4.1 Inherent coarse-grained data

As mentioned earlier, our training schema takes
advantage of the additional data inherent in the
token-annotated documents. From a document clas-
sification perspective, the training set contains 717
positive documents, as all documents have at least
one token annotation. Conversely, there are no neg-
ative documents. Regarding sentence classification,
out of 14.06 sentences on average per document,
29% are positively labeled as they contain at least
one token annotation. This translates to 2,893 posi-
tive and 7,191 negative sentences. It’s worth noting
that the statistics for the test set are irrelevant for
coarse-grained data, given that token classification
is the primary task.

4.2 Negative documents

Some of our experiments (explained in section 5)
uses extra data that is not any part of the original
717 token-annotated documents. This extra data
is sourced from subtask 1 of the same shared task
and consists of 717 negatively labeled documents,
indicating the absence of token annotations. These
negative documents emerge as a by-product of the
annotation process. When selecting documents for
token-level annotation, the non-selected ones in-
advertently contribute to the creation of negative
documents. This set of 717 negative documents
were randomly selected out of 7,412 negative doc-
uments in training set of subtask 1.
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etime fname organizer participant place target trigger
Train 1,071 1,089 1,187 2,435 1,436 1,334 4,096
Test 260 224 223 542 313 286 929

Table 2: The distribution of token labels for the training and test sets of subtask 4 of ACL CASE 2021 shared task.

5 Experimental Setup

Aside from the baseline, we conducted three main
sets of experiments to address three key research
questions, with each subsequent set incorporating
additional data. In the first set, we utilized the
inherent coarse-grained data available in token-
annotated documents. In the second set, we in-
troduced negative documents to balance the pos-
itive ones and further explored the effects of the
document classification task. In the third set, we
removed some of the 717 documents to be used
as extra coarse-grained data without token annota-
tions.

For each experiment set, we conducted three
experiments based on different combinations of
losses in addition to the token classification loss:
only sentence classification loss (variation 1), only
document classification loss (variation 2), and both
sentence and document classification losses (vari-
ation 3). This approach allowed us to assess the
individual effects of each auxiliary task introduced.
Although some weights of the model may not up-
date in certain cases due to the architecture, we
maintained the same model for all experiments to
ensure fair comparisons. Each experiment was
run three times to calculate average performance
and standard deviation scores. Additionally, we
gradually decreased the amount of data in each ex-
periment to measure the influence of data size on
model performance.

Listed below are the parameters employed for
our model. It’s important to note that no parameter-
specific experiments were conducted to fine-tune
these values. They remain consistent throughout
all experiments, thereby minimizing the potential
impact of parameter variations. The selection of
these parameters was driven by pragmatic consid-
erations, encompassing factors such as data size,
GPU capacity, and practical feasibility. The param-
eter settings are as follows:

• Number of training epochs: 30

• Pretrained transformers model: sentence-
transformers/paraphrase-xlm-r-multilingual-v1

• Learning rate for the encoder: 2e-5

• Learning rate for the general model: 1e-4 (same
as ScopeIt)

• Batch size of documents: 16

• Maximum num of sentences in a document: 200

• Maximum token length of a sentence: 128

• Number of GRU layers: 2

• Size of GRU hidden layer: 512

• Development data: random selection of 10%
from the training data

Baseline:

As for the baseline, our model was trained using the
717 span-annotated documents. It’s important to
note that for the baseline model, the inter-sentence
bi-GRU and MLPs for document and sentence clas-
sification did not train, as we solely utilized the
loss for the primary task. However, the same model
structure was retained to facilitate a fair compari-
son. To evaluate our experiments, we use a Python
implementation 3 of the original 4 conlleval eval-
uation script, which we simply refer to as the F1
score.

Experiment Set 1:

In Experiment Set 1, we focused on the inherent in-
formation present in token annotations, aforemen-
tioned in Section 4.1, without incorporating any
additional coarse-grained data. This allowed us to
measure the impact of introducing auxiliary tasks
to the baseline model without modifying the exist-
ing data. This reference point was important for
comparing loss variations in the other two experi-
ment sets and determining whether the fine-grained
task of token classification inherently encompasses
the coarser tasks during training.

3https://github.com/sighsmile/
conlleval, accessed on July 6, 2023.

4www.cnts.ua.ac.be/conll2000/chunking/
conlleval.txt, accessed on July 6, 2023.

https://github.com/sighsmile/conlleval
https://github.com/sighsmile/conlleval
www.cnts.ua.ac.be/conll2000/chunking/conlleval.txt
www.cnts.ua.ac.be/conll2000/chunking/conlleval.txt
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Experiment Set 2:

Experiment Set 2 addressed the limitation of in-
troducing the document classification task in the
baseline model, where all 717 token-annotated doc-
uments were positive. To balance out the positive
documents and mitigate the training challenges, we
introduced negative documents obtained from an-
other subtask of the same shared task as mentioned
in Section 4.2. As this change only affected the cal-
culation of document classification loss, there was
no need to repeat this experiment for loss variation
1 (only sentence classification loss).

Experiment Set 3:

Finally, in Experiment Set 3, we investigated the ef-
fects of including extra coarse-grained data. To sim-
ulate a real-world scenario where researchers de-
cide how many documents to annotate, we modified
the data size reduction scenario. Instead of com-
pletely discarding a certain percentage of the data,
we utilized that percentage of documents as extra
training data for the sentence and document classi-
fication tasks. This experiment set aims to answer
the following question; in a scenario where token-
annotated data is small, and the training curve does
not indicate data saturation for token classification,
would easy-to-label coarse-grained data improve
the model performance?

6 Results and Discussion

Figure 3: Results from experiment set 1. The black
line in each bar indicates the standard deviation. “sent”,
“doc,” and “sent+doc” is for variation 1, 2, and 3 for loss
calculation, respectively.

Experiment Set 1:

The results obtained from the initial experiment set,
depicted in Figure 3, closely align with our baseline
performance, with minor fluctuations attributable
to the standard deviation from three runs. Notably,
we observe that incorporating document and sen-
tence classification tasks alone does not yield any
improvement in the absence of new data introduced
to our model. This suggests that during training for
the token classification task, the internal representa-
tions of our model already encompass the essential
information for coarser tasks.

Experiment Set 2:

Figure 4: Results from experiment set 2. The black
line in each bar indicates the standard deviation. “sent”,
“doc,” and “sent+doc” is for variation 1, 2, and 3 for loss
calculation, respectively.

Figure 4 illustrates a clear improvement in re-
sults, particularly evident when the data size is re-
duced to at least 80%. The introduction of negative
documents to balance the positive ones is responsi-
ble for enhancing the model’s performance. Since
acquiring negative documents is relatively straight-
forward – they naturally arise during the document
selection process for token-level annotations – this
method offers a quick and effective way to boost
existing event extraction models. This outcome rep-
resents a significant finding from our experiments;
even in documents with no information related to
events, the model can still exhibit improvements.

Experiment Set 3:

Figure 5 demonstrates a substantial overall gain.
Notably, we observe that with only 60% of the
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Figure 5: Results from experiment set 3. The black
line in each bar indicates the standard deviation. “sent”,
“doc,” and “sent+doc” is for variation 1, 2, and 3 for loss
calculation, respectively.

717 documents token-annotated, and the remain-
ing 40% having only document and sentence la-
bels, we still achieve results comparable to hav-
ing all documents token-annotated. Additionally,
a general trend emerges, indicating that as token-
annotated data decreases and extra coarse-grained
data increases, the improvements from the baseline
become more pronounced. This trend is further
investigated in the experiment set 3.2. Experiment
Set 3 involves two variables: token-annotated data
size and extra coarse-grained data size. To clarify
the impact of each, we conduct experiment set 3.1,
where we fix the extra coarse-grained data size and
focus solely on changes in token-annotated data
size.

Experiment Set 3.1:

Starting with 50% of the data, we fix the discarded
50% as extra coarse-grained data and use it in all
subsequent runs. By doing so, we can analyze
performance changes between experiments with-
out confusion as to whether the change originated
from alterations in extra data size or token data
size. As shown in Figure 6, the results align with
the original experiment set 3, confirming that the
improvement increases as the token data size de-
creases. Comparing the yellow line representing
10% of the data from this experiment with the same
data size in the experiment set 3 reveals that hav-
ing even more extra coarse-grained data than 50%
could lead to further performance gains.

Figure 6: Results from experiment set 3.1. The black
line in each bar indicates the standard deviation. “sent”,
“doc,” and “sent+doc” is for variation 1, 2, and 3 for loss
calculation, respectively.

Experiment Set 3.2:

Designed to measure the impact of utilizing coarse-
grained data in scenarios akin to few-shot learning
settings, this experiment set presents noteworthy
results, as depicted in Figure 7. The model exhibits
significant improvement over the baseline, suggest-
ing that leveraging coarse-grained data enhances
the model’s robustness, even with minimal data
sizes.

Figure 7: Results from experiment set 3.2. The black
line in each bar indicates the standard deviation. “sent”,
“doc”, and “sent+doc” is for variation 1, 2, and 3 for loss
calculation, respectively.
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7 Conclusion and Future Work

In this study, we addressed the challenge of data
scarcity in closed-domain event extraction, a com-
mon hurdle in complex NLP tasks. Through our
proposed multi-task model structure and training
approach, we successfully leveraged additional
data generated during the token annotation pro-
cess. The inclusion of this supplementary data,
particularly negative documents without event in-
formation, proved to be crucial in enhancing the
performance and robustness of our event extraction
model.

Our experiments demonstrated that introducing
extra coarse-grained data, which identifies docu-
ments and sentences without events, significantly
contributed to performance improvements. The in-
tegration of document and sentence classification
tasks alongside token classification did not yield no-
ticeable benefits on their own, reaffirming that the
internal representations of our model already en-
compassed essential information for coarser tasks.
Remarkably, even in scenarios where only a por-
tion of the data was token-annotated, the model’s
performance remained comparable to situations
with complete token annotations. We observed a
clear trend of increasing performance gains as the
token-annotated data size decreased and the extra
coarse-grained data size increased. This trend was
further reinforced when examining few-shot learn-
ing settings, where leveraging coarse-grained data
notably enhanced the model’s robustness even with
minimal data sizes.

In conclusion, our findings offer promising in-
sights into mitigating data scarcity challenges in
closed-domain event extraction by effectively uti-
lizing extra data obtained during the annotation
process. This practical solution opens the door
to more robust and efficient event extraction sys-
tems across various domains, with implications
for knowledge extraction and decision-making pro-
cesses. We utilized gold-standard data throughout
all our experiments. We will be investigating the
possible usage of silver coarse-grained data, which
does not even require the considerable ease of la-
beling documents or sentences. We also plan to
include more event information extraction data sets
to test our hypothesis further.
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A Detailed Results

In this chapter of the appendices, tables with de-
tailed results for all the experiments is listed. Each
table contains a column named “exp base” refer-
ring to the same baseline results for reference.
“sent”, “doc” and “sent+doc” columns represent
the usage of only sentence classification loss (varia-
tion 1), only document classification loss (variation
2), and both sentence and document classification
loss (variation 3) in addition to token classification
loss when training, respectively.
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#num of
documents exp base sent doc sent+doc

717 64.3420 ± 0.2921 65.3298 ± 0.1894 64.7353 ± 0.2444 64.8228 ± 0.3512
645 64.3836 ± 0.5550 64.0928 ± 0.6175 64.5901 ± 1.0282 64.1613 ± 0.4205
573 62.7110 ± 0.5453 63.6060 ± 0.0960 63.3323 ± 0.7521 63.2426 ± 0.3936
501 62.1977 ± 0.3972 61.9715 ± 0.0423 62.7257 ± 0.2095 62.9463 ± 1.2105
430 60.6711 ± 0.5854 61.6818 ± 1.0062 61.8722 ± 0.1173 61.7387 ± 0.8262
358 61.0600 ± 0.4680 60.8886 ± 0.0812 60.2817 ± 0.2523 60.8147 ± 0.8071
286 58.1234 ± 0.6325 58.0093 ± 0.6460 57.6096 ± 0.1267 58.0629 ± 0.4495
215 55.4766 ± 0.1252 54.4221 ± 0.4860 55.2202 ± 0.9379 56.1987 ± 0.4816
143 51.2678 ± 0.5567 51.4187 ± 0.4740 51.9452 ± 0.4664 49.6417 ± 1.0795
71 39.2988 ± 1.8238 39.5794 ± 1.1141 41.0561 ± 0.8125 40.1392 ± 1.2548

Table 3: Detailed results for experiment set 1, which focuses on the effects of our auxiliary tasks without any data
addition.

#num of
documents exp base sent doc sent+doc

717 64.3420 ± 0.2921 65.3298 ± 0.1894 65.1503 ± 0.4439 65.3221 ± 0.2928
645 64.3836 ± 0.5550 64.0928 ± 0.6175 64.0194 ± 0.0571 65.0234 ± 0.8096
573 62.7110 ± 0.5453 63.6060 ± 0.0960 64.1297 ± 0.7640 63.3397 ± 0.5576
501 62.1977 ± 0.3972 61.9715 ± 0.0423 63.0002 ± 0.3124 62.7757 ± 0.5070
430 60.6711 ± 0.5854 61.6818 ± 1.0062 62.3406 ± 0.0275 61.7372 ± 0.3482
358 61.0600 ± 0.4680 60.8886 ± 0.0812 61.8366 ± 0.4351 61.4128 ± 0.2562
286 58.1234 ± 0.6325 58.0093 ± 0.6460 59.2479 ± 0.7000 58.2156 ± 0.9521
215 55.4766 ± 0.1252 54.4221 ± 0.4860 55.9617 ± 0.4265 56.1648 ± 1.0320
143 51.2678 ± 0.5567 51.4187 ± 0.4740 52.3773 ± 0.7498 50.5637 ± 3.4775
71 39.2988 ± 1.8238 39.5794 ± 1.1141 43.2710 ± 0.8947 43.9792 ± 0.2619

Table 4: Detailed results for experiment set 2, which focuses on the effect of adding negatively labeled documents
with no event information.

#num of
token

annotated
documents

#num of
extra

auxiliary
data

exp base sent doc sent+doc

717 0 64.3420 ± 0.2921 65.3298 ± 0.1894 65.1503 ± 0.4439 65.3221 ± 0.2928
645 72 64.3836 ± 0.5550 64.5663 ± 0.5121 64.2650 ± 0.1842 65.2259 ± 0.3991
573 144 62.7110 ± 0.5453 64.1659 ± 0.8118 63.0057 ± 0.4911 63.4717 ± 0.0919
501 216 62.1977 ± 0.3972 63.4803 ± 0.3426 62.7125 ± 0.1686 63.4292 ± 0.1548
430 287 60.6711 ± 0.5854 63.5683 ± 0.4099 61.9322 ± 0.9456 63.0599 ± 0.0922
358 359 61.0600 ± 0.4680 61.7831 ± 0.3405 61.4165 ± 0.5701 61.5980 ± 0.4963
286 431 58.1234 ± 0.6325 60.1496 ± 0.2897 59.1478 ± 0.1192 60.2890 ± 0.2159
215 502 55.4766 ± 0.1252 57.7715 ± 0.7474 56.2983 ± 0.3384 58.2433 ± 0.9674
143 574 51.2678 ± 0.5567 55.0612 ± 0.6047 54.7686 ± 0.6523 55.4178 ± 0.1332
71 646 39.2988 ± 1.8238 49.4441 ± 1.1924 49.7398 ± 0.4377 51.8297 ± 0.9912

Table 5: Detailed results for experiment set 3, which focuses on the effects of adding extra coarse-grained data.
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#num of
token

annotated
documents

#num of
extra

auxiliary
data

exp base sent doc sent+doc

358 359 61.0600 ± 0.4680 61.7831 ± 0.3405 61.4165 ± 0.5701 61.5980 ± 0.4963
286 359 58.1234 ± 0.6325 59.8364 ± 0.2759 59.7761 ± 0.8661 59.7066 ± 0.2504
215 359 55.4766 ± 0.1252 57.8553 ± 0.5770 56.6985 ± 0.5273 58.2742 ± 0.9637
143 359 51.2678 ± 0.5567 54.6631 ± 0.5420 53.9005 ± 0.9373 54.7954 ± 0.4511
71 359 39.2988 ± 1.8238 49.0730 ± 0.3271 48.7882 ± 0.2006 49.6189 ± 0.7479

Table 6: Detailed results for experiment set 3.1, which is variation of experiment set 3 where extra data size is fixed.

#num of
token

annotated
documents

exp base sent doc sent+doc

20 12.8237 ± 4.0776 43.2263 ± 0.3178 37.8599 ± 0.5719 42.5216 ± 0.5838
10 0.0000 ± 0.0000 35.4900 ± 0.7729 31.1247 ± 0.8497 34.3691 ± 1.0103
5 0.0000 ± 0.0000 21.9365 ± 3.4075 9.9743 ± 3.1956 11.9494 ± 4.2202
3 0.0000 ± 0.0000 12.4881 ± 3.2203 9.7442 ± 2.7849 7.9693 ± 4.0605
1 0.0000 ± 0.0000 3.3871 ± 2.5824 0.5398 ± 0.3380 2.8559 ± 0.4523

Table 7: Detailed results for experiment set 3.2, which is variation of experiment set 3 with tiny data sizes.


