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Abstract

Critical studies found NLP systems to bias
based on gender and racial identities. However,
few studies focused on identities defined by cul-
tural factors like religion and nationality. Com-
pared to English, such research efforts are even
further limited in major languages like Bengali
due to the unavailability of labeled datasets.
This paper describes a process for developing
a bias evaluation dataset highlighting cultural
influences on identity. We also provide a Ben-
gali dataset as an artifact outcome that can con-
tribute to future critical research.

1 Introduction

Bias, in the context of computing systems, is
where sociotechnical systems systematically and
unfairly discriminate against certain individuals or
social groups in favor of others (Friedman and Nis-
senbaum, 1996; Blodgett et al., 2020). People of-
ten identify through their perceived memberships
in certain groups (Tajfel, 1974). While computa-
tional linguists have studied gender and racial bi-
ases (Kiritchenko and Mohammad, 2018), system-
atic discrimination of language technologies based
on various cultural factors like religion and nation-
ality has received little attention. Moreover, criti-
cal studies examining these biases mostly focused
on NLP systems in a handful of languages, whereas
many languages with sizeable numbers of speakers
do not have enough resources like datasets to pur-
sue similar studies.

According to (Joshi et al., 2020), whereas
0.28% of global languages (e.g., English, Spanish,
Japanese) reap benefits from NLP breakthroughs,
88.38% of languages have virtually no data to use.
They also found that while English and Bengali are
the third and sixth largest languages by the num-
ber of native speakers (Lane, 2023), the former
has hundreds of times more resources than the lat-
ter in Linguistic Data Consortium, Language Re-
sources and Evaluation, and Wikipedia, and thou-
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sands more resources in the Web overall. The dif-
ference in available resources like labeled datasets
impedes the progress of critical studies aimed at
fairness, transparency, and identifying biases in
such under-represented languages. In the absence
of native resources, many of these tools first trans-
late non-English text to English for downstream
NLP tasks, creating the potential for colonial im-
position on indigenous languages (Bird, 2020).

One of the main objectives of this work is to
highlight and address the lack of focus on two vi-
tal cultural factors such as religion and nationality,
that shape people’s cultural identity. In addition to
its large number of native speakers and a thriving
cultural community online, the religious diversity
of this ethnolinguistic group, with 71% Muslims
and 28% Hindus, and their postcolonial division
into two nationalities, Bangladeshi (59%) and In-
dian (38%) makes the Bengali language an inter-
esting case for developing a cultural bias evalua-
tion dataset (BSB, 2022; India, 2011). The con-
tributions of this work are, first and foremost, in
outlining a process for developing datasets to evalu-
ate cultural (e.g., religious, national) biases in NLP
systems. Moreover, as an example, we provide a
Bengali identity-bias evaluation dataset (BIBED)
that can support exploring how cultural bias can
both emerge through the NLP process and how we
can work toward identifying and eliminating bias.

In the next section, we will review the rele-
vant literature. Then, we will briefly overview the
framework we used to organize the dataset. After
that, we will explain the process of dataset devel-
opment and its organization.

2 Related Work

In this section, we will discuss how culture shapes
people’s identities across various dimensions and
mediates their interaction through and with tech-
nologies and prior works studying bias in language
technologies toward or against different identities.
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In this work, we draw on the definition of iden-
tity, which views it as a social construct shaped
by people’s perceived membership in different
groups (Tajfel, 1974). In this view, individuals’
identities are often defined across various dimen-
sions, such as race, gender, sexual orientation, na-
tionality, religion, caste, occupation, etc. (McCall,
2005). Under each dimension, people can iden-
tify with different categories, such as identify-
ing as female, male, or non-binary in relation to
gender. People express these identities based on
broader social, and cultural logics (Butler, 2011)
institutionalized within religious and national com-
munities (Anderson, 2006; Castells, 2011). Peo-
ple from different cultural contexts communicate
through different speech acts and non-verbal ac-
tions. Through their embeddedness in sociohis-
toric contexts, speakers of the same language can
demonstrate various dialects, i.e., geo-cultural vari-
ations (e.g., German language in Austria and Ger-
many) (Brown et al., 2020) or sociolects, i.e., di-
alects of particular social classes (McCormack
etal., 2011).

Long-standing linguistic norms and sociocul-
tural identities are deeply intertwined. As people
often speak a particular dialect or sociolect based
on their geo-cultural or socio-historic backgrounds,
these dialects can be ways to infer and serve as
proxies for, their cultural identities. For example,
when situated in the context of the two main di-
alects of Bengali, Ghoti is spoken in West Bengal
(in India), whereas the Bangal dialect is spoken in
East Bengal (Bangladesh). These regions were par-
titioned by the British colonizers based on their so-
cioeconomic structure and religion-based demog-
raphy (see (Das and Semaan, 2022; Das et al.,
2021) for reviewing how colonial history shaped
the societies in Bengal). Hence, Bangal and Ghoti
dialects are often used as proxies for Indian and
Bangladeshi identities and associated with Mus-
lim and Dalit Hindu agrarian identities and upper-
caste Hindu elite identities, respectively (Baner-
jee, 2015; Ghoshal, 2021). When different iden-
tities come together, such as race, gender, nation-
ality, and religion—what is known as intersection-
ality (Gopaldas and DeRoy, 2015)—this can create
differential power and bias in how people might
experience sociotechnical systems. Norms around
different intersectional identities guide how algo-
rithms on these systems perceive individuals’ digi-
tal identities and influence the creation of datasets
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that are often used to make decisions (Cheney-
Lippold, 2017; Das et al., 2022; Antoniak and
Mimno, 2021).

Many state-of-the-art computing platforms (e.g.,
recommendation systems) heavily rely on creat-
ing digital identities to model their users and
their preferences (Cheney-Lippold, 2017) that of-
ten fail to account for cultural contexts (Hirota
et al.,, 2022). Postcolonial computing scholars
who study cultural imposition and the role of cul-
tural contexts in designing and deploying technol-
ogy (Irani et al., 2010) have critiqued the commit-
ment to reductionist representations for complex
human identities and relationships (Dourish and
Mainwaring, 2012). With over-simplification, us-
ing non-inclusive datasets and stereotypical cate-
gories as the ontological basis to construct com-
putational identities without considering cultural
differences, technology can exhibit algorithmic
coloniality (Das et al., 2021), exclusion (Simp-
son and Semaan, 2021), impose hegemonic clas-
sification, and cause cultural erasure (Prabhakaran
et al., 2022). For example, (Das et al., 2021) found
content moderation on Quora to estimate Bengali
users’ national and religious identities based on
their linguistic performances and prioritize Indian
Hindu dialects while marginalizing Bangladeshi
Muslim dialects. This example highlights how
coloniality—those systems of power where foreign
entities worked to revise the social structures of
other populations and social groups—is now being
mediated by and through sociotechnical systems,
such as NLP.

Decolonial scholars who study ways to re-
sist technology-mediated cultural imposition (Alj,
2016; Bird, 2020) emphasized the necessity of di-
verse representations and including local and in-
digenous voices in developing technology. In the
context of computational linguistics, “diverse per-
spectives” can mean both studies focusing on dif-
ferent languages and those about variations of the
same language (Hershcovich et al., 2022). As
discussed earlier, myriad sociocultural factors can
cause and impact the variations of a language (e.g.,
dialects), which is less explored in the current body
of literature (Hovy and Yang, 2021). With the most
investigative attention going to a minority of lan-
guages, language technologies in most languages
lack nuances for cross-cultural contexts. For ex-
ample, the body of Bengali NLP research is quite
small compared to its large number of speakers,



especially little of which addresses the language’s
sub-cultural variations in different religious and na-
tional communities, creating a risk of reinforcing
societal biases based on identities through those re-
search.

Given the numerous ways biases can get em-
bedded in computing systems, critical researchers
across various fields have examined computing sys-
tems resulting in increased interest in social justice,
fairness, accountability, transparency, algorithmic
audits, and critical data studies (Dombrowski et al.,
2016; Iliadis and Russo, 2016; Metaxa et al., 2021;
Olteanu et al., 2021). Along that line, compu-
tational linguists have studied bias in language
technologies from various perspectives (Blodgett
et al., 2020; Subramanian et al., 2021). In these
works, while gender bias received substantial at-
tention (Huang et al., 2021; Matthews et al., 2021),
they have also examined biases based on different
identity dimensions such as race (Sap et al., 2019),
age (Diaz et al., 2018; Honnavalli et al., 2022), dis-
ability (Venkit et al., 2022), occupation (Touileb
et al., 2022), caste (B et al., 2022), and politi-
cal affiliations (Agrawal et al., 2022) for various
computational linguistic tasks like sentiment anal-
ysis (Kiritchenko and Mohammad, 2018), machine
translation (Savoldi et al., 2022), and language gen-
eration (Fan and Gardent, 2022). However, two
major cultural identity dimensions such as reli-
gion and nationality, have not received much atten-
tion (Abid et al., 2021; Nadeem et al., 2020; Ousid-
houm et al., 2021). The prevalence of religion
and nationality as two intersecting dimensions in
how people both see themselves and engage in the
everyday performance of self through speech and
other actions is more visible and complex in di-
verse contexts of the Indic languages (Bhatt et al.,
2022). Therefore, it is critical to explore the ways
in which NLP and other systems can perpetuate
bias through these dimensions. While doing so, it
is important to culturally contextualize NLP met-
rics and models. Instead of plainly translating En-
glish models into Bengali, Hindi, etc., we need
to carefully consider the dimensions of fairness
and types and sources of bias specific to that cul-
tural context (Malik et al., 2022; Ramesh et al.,
2023). To address this gap, this paper proposes
a methodology for developing culturally centered
bias-evaluation datasets in NLP.

Within the complex ecosystem of language tech-
nologies, to identify the sources of bias and un-
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derstand how societal prejudices get translated into
technology to affect downstream tasks, researchers
have focused on word embedding (Azarpanah
and Farhadloo, 2021), pre-trained language mod-
els (Zhou et al., 2022), and training datasets (Hovy
et al., 2014). Methodologically, researchers have
used both qualitative and quantitative approaches
to study the biases of similar systems (Metaxa et al.,
2021; Scheuerman et al., 2019, 2021; Wich et al.,
2021). For quantitative critical algorithmic studies,
NLP researchers have compiled datasets for detect-
ing and evaluating various kinds of bias (Meyer
et al., 2020; Sakketou et al., 2022). Similar to
other fields in NLP, a dearth of resources exists for
such bias evaluation studies in Bengali. In this pa-
per, to describe a social scientific process for cre-
ating datasets to evaluate religion and nationality-
induced cultural biases, we use the example of reli-
gion and nationality-wise diverse Bengali identity.
The developed dataset, BIBED, remains conscious
of both explicit and implicit expressions of Bengali
identities in terms of gender, religion, and nation-
ality.

3 Resource Description Framework

To improve support for reusing scholarly
data, (Wilkinson et al., 2016) motivated good data
management through FAIR (findable, accessible,
interoperable, and reusable) principles. To follow
these guidelines, we will organize our dataset
using the resource description framework (RDF).
Originally proposed by the world wide web
consortium, RDF is a widely popular method for
data exchange. In this section, we will briefly
overview this framework.

RDF is a flexible, simple yet structured, and de-
centralized standard for representing relationships
between data (W3C, 2014; McBride, 2004). Us-
ing this framework, we can make statements about
resources (e.g., documents, data objects). An
RDF statement, often called a triple, consists of
three components. These are (a) subject—the re-
source or entity being described, (b) predicate—
the relationship or attribute, and (c) object-the
value related to the subject (Loshin, 2022). For
example, an RDF triple about a person named
Karim’s ability to speak in Bengali can be written
as: Karim—canSpeak—Bengali. Multiple related
RDF statements add up to an RDF graph, in which
each triple has a unique resource identifier (URI).
The use of URIs and uniform triple formats sup-



port easier aggregation of datasets from different
sources compared to tabular data formats.

RDF data can be stored in various formats, pop-
ular ones being JSON, XML, and Turtle!. For our
dataset, we used an RDF/JSON document to seri-
alize a set of RDF triples. This consists of a single
JSON object called the root object, where the keys
in the root object correspond to the subjects of the
triples (W3C, 2013). A triple is structured as fol-
lows:

{ “Subject” : { “Predicate” : [ Object] } }

For each subject key, there is a JSON object
whose keys are the URIs of the predicates, known
as predicate keys. Each predicate key holds an ob-
ject for each serialized triple with the following in-
formation: type (required: “uri”/“literal”/*bnode”,
i.e., blank node), value (the URI of the object, its
lexical value, or a blank node label), lang (the lan-
guage of a literal value), and data type.

4 Dataset Creation

To describe the process of developing a culturally
centered bias evaluation dataset, we focus on three
dimensions of identity: gender, religion, and na-
tionality. For each dimension, we included binary
categories in the context of Bengali identity, as
shown in Table 1. (See limitations of binarification
at the end.)

Identity dimensions
Gender | Religion | Nationality
Categories Female | Hindu | Bangladeshi
Male Muslim Indian

Table 1: Identity dimensions and the correspond-
ing categories focused in BIBED.

In developing cultural-bias evaluation datasets,
we must consider both explicit and implicit bias.
Whereas explicit bias happens based on direct
mentions of certain identity categories within sen-
tences, implicit bias is the inequality toward differ-
ent gender, religion, and nationality based on im-
plicit encodings of identity through linguistic prac-
tices.

4.1 Explicit Bias Evaluation (EBE)

The goal of this phase is to enable datasets to ex-
amine whether NLP systems treat explicit indica-
tions of gender, religion, and nationality differ-
ently. Inspired by the classic study on racial dis-

! Terse RDF Triple Language
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crimination in the labor market (Bertrand and Mul-
lainathan, 2004) to create a bias evaluation dataset,
we included sentence pairs with different identities.
Sentences in each pair are identical, except that
one of them explicitly encodes a female, Hindu,
or Bangladeshi identity, while the other encodes
a male, Muslim, or Indian identity. We sample
sentences from an existing dataset (Hasan et al.,
2020) which was collected from various sources,
including Wikipedia, Banglapedia (National Ency-
clopedia of Bangladesh), Bengali classic literature,
Bangladesh law documents, and the Human Rights
Watch portal. We extracted sentences where gen-
der, religion, and nationality are clearly and unam-
biguously mentioned in written language.

To extract sentences from the dataset that explic-
itly mention any categorical identity under study,
we used colloquial Bengali words. For example,
under the gender identity dimension, to identify
sentences mentioning the female identity category,
we used the terms JTIT (pronounced as nari, IPAZ:
/na.ri/) and SRS (/mo.fi.la/), and for doing the
same for male identity category, we used the term
A<PF (/pu.ruf/). Considering religion as an iden-
tity dimension, to find the sentences directly men-
tioning Hindu communities, we queried using the
word f%‘j (/hindu:/).  Synonymous words like
ﬂﬂﬁﬁ (/'muslim/) and T (/musalmain/)
that indicate religious affiliation with Islam, were
used to locate Muslim identity-representing sen-
tences. Within the nationality dimension of iden-
tity, in identifying sentences using these keywords,
we were conscious of their popularly used varia-
tions. For example, we used both endonym ®©Ig-
BT (/bParotio/) and exonym 3T (/ 'm.dign/) to
indicate Indian nationality, and both archaic and
revised spellings like ISR (/ 'bapla defi/) and
BIRGIGIR (/bapla,defr/) to indicate Bangladeshi
nationality. We were also careful of minor gram-
matical variations (e.g., possessive, plural forms)
of these keywords during our search. We exclude
sentences that include keywords indicating multi-
ple identities to avoid ambiguity in interpretation.

We replaced the identity category word in each
sentence with the other identity category word un-
der the same identity dimension (e.g., gender, re-
ligion, nationality). For example, we substituted
the female-identifying word (STt/afZeT) in a sen-
tence with the male-identifying word (9<Y) to
generate a corresponding synthetic sentence. Thus,

2 Pronunciations in IPA are from Wiktionary



except for the identity words, the sentences in this
pair are the same. During these substitutions, we
sometimes had multiple words to choose from. For
example, to replace the Hindu-identity term (f2-
) in a sentence, we could choose either Muslim
identity-representing words ﬁﬂ%ﬂ or YN to
generate a corresponding synthetic sentence. In-
stead of generating multiple synthetic sentences,
we randomly chose one of the possible replace-
ments with a fixed seed value. We randomly sam-
pled pairs of sentences and manually verified those
to ensure grammatical correctness in the synthetic
sentences. Table 2 shows some sample sentence
pairs.

4.2 Implicit Bias Evaluation (IBE)

Beyond directly mentioning particular identity cat-
egories, cultural identity expression can be more
nuanced. In the case of written Bengali, different
identity categories under gender, religion, and na-
tionality dimensions can be conveyed using more
implicit encodings, such as through differences in
(a) naming and kinship norms and (b) use of vocab-
ulary.

4.2.1 Noun phrase-based IBE

With noun phrases, we mean persons’ names and
kinship addresses. Religion often influences Ben-
gali personal names in Hindu (e.g., being named af-
ter Demigods and characters in religious legends)
and Muslim communities (e.g., being named after
Prophets, Caliphs) (Dil, 1972). Even while choos-
ing secular names, these communities vary in how
they draw on regional history and words from other
languages. Though these differences in personal
names are not rule-bound or exclusive to communi-
ties, the norms in corresponding communities are
strong. Similarly, Bengali Hindu and Muslim com-
munities use noun phrases describing kinship dif-
ferently in terms of reference, address, languages
of origin, and expected behavior (Dil, 1972). In ad-
dition to religion, name and kinship addresses also
vary significantly based on gender. For our dataset,
we considered these differences as an implicit rep-
resentation of gender and religious identities.
While we followed insights from a prior
study (Dil, 1972) to prepare our lists of noun
(names and kinship) phrases, we found that dom-
inant Hindu caste surnames (e.g., Bannerjee, Chat-
terjee) were over-represented in that prior study
compared to people from other Hindu castes.
Therefore, for a better representation of the Hindu
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community, we included some surnames (e.g.,
Das, Barman) commonly used by underprivileged
caste Hindu communities in our dataset. We
looked up these surnames from governmental lists
of underprivileged castes and classes (West Bengal,
2019). Again, given the time of (Dil, 1972)’s study,
its lists mostly reflect naming norms in Hindu and
Muslim communities of a few decades ago. Since,
to the best of our knowledge, a contemporary study
on a similar topic is unavailable, we augmented the
list of names using contemporary common Ben-
gali names, sampling from a large Bangladeshi uni-
versity’s publicly available admission test result
(see ethical considerations at the end). The first
author identified those as common female, male,
Hindu, and Muslim names based on his lived ex-
periences in Bengali communities. Table 7 in Ap-
pendix presents our prepared lists of common fe-
male and male names and kinship noun phrases in
different religion-based communities.

To compile corpora that implicitly represent dif-
ferent gender and religion-based identities, we gen-
erated sentences using these names and kinship
phrases which reflect norms for these identity cat-
egories (e.g., Hindu-Muslim, female-male). we
kept the sentences short and grammatically simple.
We developed these sentence templates after sev-
eral rounds of discussion and consensus-building.
An example of a template sentence looks as fol-
lows: <3Jf&> WNTT QBT F I (trans-
lation: <Person> goes to the school in our neigh-
borhood). Table 8 in the Appendix shows all our
template sentences. Similar to prior work devel-
oping datasets for gender and race-related bias de-
tection (Kiritchenko and Mohammad, 2018), while
some of these template sentences included emo-
tional state words (e.g., happy, sad), some did not
use such words.

These template sentences involve a variable or
placeholder <person> (IF). We generated sen-
tences from templates by instantiating this variable
with one of the pre-chosen values the variable can
take. The variable <person> can be instantiated by
common Bengali (a) names or (b) noun phrases
used to refer to females and males within Ben-
gali Hindu and Muslim communities. Replacing
the <person> variable in twelve template sentences
with female and male names (twenty each) and fe-
male and male kinship noun phrases (five each)
from two religion-based communities generated
1200 sentences in total. We manually checked the



EBE- Sentence 1 Sentence 2
dataset

0V TSIROTT @RY A QB TR S | 0b TOREIT @Y 9T a8 SR A
Gender LB G) GER o] S

(Over 36 percent of women agreed with | (Over 36 percent of men agreed with

this sentiment.) this sentiment.)

AT IFRIS 51 3] WS Qe Ist| | A9 I9IRE3 & Preme wgiEse
Religion (Panam has always been a Hindu dom- | Q&I<pI|

inated area.) (Panam has always been a Muslim

dominated area.)

98 TIRIGHID (I AT HIFRATG | Q3 TIRGHB (I SO XFRIG 9
Nationality | @ faf¥s z@1 faf¥fs @1

(These two ships will be built at a | (These two ships will be built at an

Bangladeshi shipyard.) Indian shipyard.)

Table 2: Examples of sentence pairs from Gender, Religion, and Nationality-based EBE datasets. Trans-

lations are shown inside parentheses.

grammatical correctness of these sentences (sam-
ples shown in Table 3).

Sentence Gender,
Religion
HAFHAR AN[AL AFIPIT F | male,
I (Abdullah goes to the | Muslim
school in our neighborhood)
Rfoo! I Wt aF P F- | female,
(ST QW (Binita Roy goes to the | Hindu
school in our neighborhood)
aml WINIMS Q=PI P | male,
¥ (Elder brother goes to the | Hindu
school in our neighborhood)
JAT AT QTP FEE AF | | female,
(Elder sister goes to the school | Muslim
in our neighborhood)

Table 3: Sentences using common names and kin-
ship terms in different religious communities.

4.2.2 Colloquial lexicon-based IBE

Colloquial lexicons often distinguish major di-
alects of a largely spoken language (e.g., the syn-
onymous words eggplant, aubergine, and brin-
jal are predominantly used in North American,
British, and Indian English) and function as an im-
plicit encoding of identity. Most Bengali words are
commonly used by different national and religion-
based communities. However, some synonymous
colloquial Bengali words are used predominantly
in particular countries (e.g., Bangladesh or India)
and differently by religion-based (e.g., Hindu or
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Muslim) communities. Words commonly used by
Bangladeshi Bengalis often overlap with Bengali
Muslims’ linguistic practices, whereas the Indian
Bengali dialect often overlaps with the Bengali
Hindu dialect of the language, given the postcolo-
nial religion-based border. Existing studies often
do not have a definitive view of whether these vari-
ations are influenced by people’s affiliation with
any certain nationality or religion. For example,
two colloquial Bengali words: &< (/zol/) and #i1-
G (/'pami:/) mean “water”. According to (Dil,
1972), these synonymous words are mainly used
by Hindu and Muslim communities respectively,
whereas another study (Sinha and Basu, 2016) at-
tributed the different preferences for either of those
words to Indian and Bangladeshi nationalities re-
spectively. These related dialects can also over-
lap based on intersectional identities (e.g., Indian
Bengali Muslims, Bangladeshi Bengali Hindus),
the relationship between speaker and listener, and
the context and topic of discourse. Though these
lexicon preferences are not water-tight compart-
ments, existing works on Bengali linguistic prac-
tices (Dil, 1972; Sinha and Basu, 2016; Mizan and
Ishtiaque Ahmed, 2019) have highlighted strong
variations in lexicon preference and use across dif-
ferent religion and nationality-based communities,
which are often used to implicitly infer one’s reli-
gion and nationality and often turn into the ground
for biases and discrimination in computing sys-
tems (Das et al., 2021).

To identify synonymous words that are differ-
ently used in Bengali Muslim or Hindu communi-



ties, (Dil, 1972) asked interviewees “How do you
say <a basic English word> in Bengali?” Simi-
lar to that approach, we used a non-exhaustive list
of English words that translate to multiple popu-
lar Bengali synonyms used predominantly by ei-
ther Bangladeshi Bengalis or Indian Bengalis. To
prepare the list, we took help from a well-edited

Wikipedia article® (https://en.wikipedia.

org/wiki/Bengali_vocabulary). Two
Bengali-speaking authors of this paper have also
worked in a brainstorming session to think about
common Bengali words that are used differently in
Bangladesh and India. Table 9 in Appendix shows
our final list of such synonymous word pairs with
English translations.

We identified the sentences with their transla-
tions from (Hasan et al., 2020) dataset containing
any of those English words. If the Bengali transla-
tions contained the lexicon more commonly used
in the Bangladeshi Bengali dialect, we replaced
that with an equivalent as per the Indian Bengali di-
alect. Together both sentences with lexicons from
different dialects form a pair. For example, we
translated the English sentence “Water ran out” us-
ing two synonymous Bengali words St and #1fa
to reflect Indian and Bangladeshi dialects (see Ta-
ble 4).

Bengali sentence Dialect

O PR O | Indian

(/zol/ phuriye gelo.)

snfy §ﬁ'§f eIl Bangladeshi
(/'paniz/ phuriye gelo.)

Table 4: An English sentence’s Bengali translations
resembling Bangladeshi and Indian dialects.

Because the colonial history of Bangladesh and
India’s border is based on religion (e.g., more
than 91% of Bangladeshi Bengalis being Mus-
lims (BSB, 2022)) and the majority community’s
linguistic practices shape the standardization of
language in respective countries (Mizan, 2021), in
our example dataset, we attribute the variation to
differences in nationality while recognizing the dif-
ficulty in implicit anticipation of intersectional mi-
nority identities (e.g., Bangladeshi Hindus).

Similarly, following our approach to developing
culturally-aware bias evaluation datasets in other
languages will require careful deliberation for re-

3 A well-edited and maintained Wikipedia article can
be as a reliable reference (Bruckman, 2022).
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spective sociohistoric contexts.

5 Organizing Dataset with RDF

For a dataset like ours compiled from templates,
lists reflecting pre-defined identity dimensions and
categories, and linked data sources, describing the
organization of the dataset is more useful. Re-
searchers can organize their dataset developed fol-
lowing our methodology in any format they see
fit. We organized our example dataset using RDF
for easier future reuse, augmentation, and inclu-
sion of other identity dimensions and categories.
In BIBED?, there are more than 121 thousand sen-
tences that explicitly or implicitly represent Ben-
gali identity based on gender (female-male), reli-
gion (Hindu-Muslim), or nationality (Bangladeshi-
Indian). Table 5 shows the number of sentences in
different stages.

Phase Paired?| Identity Number
dimen- of sen-
sions tences
Gender 25396*2

EBE Yes Religion 11724%*2
Nationality| 13528%*2

Noun No Gender 1200

phrase IBE Religion 1200

Colloquial Yes Nationality| 8834*2

lexicon IBE

Table 5: Number of sentences included in the
dataset from different stages of compilation.

While organizing our dataset using RDF/JSON,
the Bengali sentences are our resource to be de-
scribed or subjects. Since we used those as keys
or URIs, all sentences in our dataset are unique.
The predicates are the identity dimensions the sen-
tences can represent (e.g., gender). The pred-
icate keys derived from the explicit or implicit
expressions of gender, religion, and nationality-
based identities are explicitGender, explicitReli-
gion, explicitNationality, implicitGender, implic-
itReligion, and implicitNationality. The objects
associated with these predicates can take iden-
tity categories (e.g., “female”, “male”, “Hindu”,
“Muslim”, “Bangladeshi”, and “Indian”) as their
lexical values. Again, for EBE and colloquial
vocabulary-based IBE phases where we generated
synthetic sentences in pairs or translated using

4 https://zenodo.org/record/7775521


https://en.wikipedia.org/wiki/Bengali_vocabulary
https://en.wikipedia.org/wiki/Bengali_vocabulary
https://zenodo.org/record/7775521

pairs of colloquial vocabularies for an existing sen-
tence from (Hasan et al., 2020) dataset, we in-
cluded a predicate key pairResource that will con-
tain a URI, that means a unique sentence as its cor-
responding object. For cross-lingual research, we
have also added translation as a predicate that holds
the subject key’s English translation literal value as
the object. The translations were done through a
combination of manual effort (in the case of noun
phrases-based IBE) and identifying corresponding
English translations from (Hasan et al., 2020) (in
the cases of EBE and colloquial vocabulary-based
IBE). Figure 1 shows an entry from BIBED.

{
"oy ATRMT @R A 9¥ ST e @Iwel": {
"explicitGender": {

“type": "literal", "value": "Female",

"lang": "en", "datatype": "string"},
"explicitReligion": {"type": "bnode", "value": null},
"explicitNationality": {"type": "bnode", "value": null},
"implicitGender": {"type": "bnode", "value": null},
"implicitReligion": {"type": "bnode", "value": null},
"implicitNationality": {"type": "bnode", "value": null},
"pairResource": {

"type": "uri",

"value": "wy Xoleeig @R 4T a3 SRIFIF S 9w,

"lang": "bn", "datatype": "string"

+
“translation": {

"type": "literal",

"value": "Over 36 percent of women agreed with this sentiment.",

"lang": "en", "datatype": "string"

}

b

}

Figure 1: An example entry from our dataset.

Here, the Bengali sentence “0v *TOIRCIT -
3 91 93 SIRAIF AL 9FIS|1” (from the first
row in Table 2) is the resource that we are describ-
ing (subject). It serves as a key in the dataset.
Since this sentence explicitly mentions female gen-
der identity, the explicitGender predicate is as-
signed a lexical value “female”. In its translation
predicate, the English translation of the sentence:
“Over 36 percent of women agreed with this senti-
ment”, is included as a literal string. To indicate
that the subject key is paired with another subject
key in our dataset, the pairResource predicate con-
tains the Bengali sentence “0b GRCIT @Y -
FF QB TIRFIF AL QFIS|” as a URL We as-
signed blank nodes to other predicates. Because of
using RDF, future works to include other cultural
factors (e.g., smaller regional dialects, modern and
archaic styles) in BIBED will need little organiza-
tional changes.

6 Dataset Content

Dataset papers in NLP traditionally describe their
corpus using approaches like topic modeling, word
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frequency, and some kind of baseline classifica-
tion (Sakketou et al., 2022; Huguet Cabot et al.,
2021). As we plan to use the dataset developed in
this paper to critically audit algorithms and tools
for downstream NLP tasks in our other work-in-
progress (see next section), in this section, we will
give a brief descriptive overview of our developed
dataset, BIBED.

We analyzed the dataset content using the sub-
ject URISs of the triples in our dataset. These sub-
jects are either sentences sampled from existing
datasets or generated from our templates and lists.
Since the pairResource values were synthetically
generated, we did not use those in the descrip-
tive analysis. First, we removed stopwords from
the sentences using the list by Stopwords ISO°.
After removing punctuation and numeric literals
from the sentences, we tokenized the sentences and
stemmed the tokens using the BLTKS and bangla-
stemmer’ packages.

On average, the sentences have 18.78 words
(median 15 words) and are 147.13 characters (me-
dian 114 characters) long. There are 108608
unique words (excluding stopwords and after stem-
ming). Most frequent (top 15) words in our dataset
are: "SIFOIT" (Indian), "SIS" (year), "IE"
(being), "QFGH" (a person), "I (woman),
"SR (woman), "gﬂﬁfﬂ" (Muslim), ">g"
(with), "fRII" (consider/calculation), "onfa"
(water), "fR3" (Hindu), "#@F" (man), "JIEIH-
A" (Bangladeshi), "STNT" (time), and "SSIT"
(national). Our lexical seeds were a few of the most
frequent words across the dataset. Other frequent
words may come from sources used in building the
datasets (Hasan et al., 2020), from which we sam-
pled sentences.

7 Downstream Applications and Future

Work

We intend the methodology to inspire the develop-
ment of bias evaluation datasets in other cultural
contexts. BIBED, the dataset developed through
the process in this paper, can promote fairness and
bias research in Bengali. Some examples of NLP
applications where such exploration can occur are
sentiment analysis, machine translation, mask pre-
diction, etc.

This paper is an early outcome of a large
project investigating the continuation of colonial
5 github.com/stopwords-iso/stopwords—bn

5 pypi.org/project/bltk/
" pypi.org/project/bangla-stemmer/
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marginalization of under-represented Bengali iden-
tities through technology. Our prior research
highlighted how human content moderators could
marginalize users based on religion and national-
ity (Das et al., 2021). To understand whether au-
tomated content moderation would minimize, rein-
force, or exacerbate such human biases in platform
governance, in our work-in-progress, we are criti-
cally auditing Bengali NLP tools, algorithms, and
datasets to evaluate their biases from a decolonial
perspective. For example, we examine whether
and how NLP-based automated moderation pro-
motes colonially shaped conflicts among various
national and religious identities. Currently, we fo-
cus on downstream NLP tasks like sentiment analy-
sis, hate speech detection, and machine translation,
which have traditionally been vital components of
automated content moderation (Duarte et al., 2017;
Hettiachchi and Goncalves, 2019; Vaidya et al.,
2021).

In addition to continuing our work on evaluating
bias in Bengali NLP systems that can contribute to
automated content moderation, we will continue to
augment the BIBED dataset. In this paper, while
developing the dataset, we used lexical seeds based
on scholarly articles, public data sources, and our
lived experience as native Bengali speakers. Prior
research has highlighted that selecting these lexi-
cal seeds or keywords can implicitly introduce re-
searchers’ biases in an artifact (Das et al., 2022;
Antoniak and Mimno, 2021). Therefore, to min-
imize the possibility of such biases, we will take
a participatory approach to create the list of seeds
which will, in turn, democratize the data collection
process.

8 Conclusion

This paper describes a process for developing
bias evaluation datasets highlighting cultural fac-
tors like religion and nationality. Our approach,
while following traditional NLP strategies, is also
deeply informed by socio-cultural literature, moti-
vating interdisciplinary research. In doing so, we
also created a sample artifact, i.e., a Bengali bias-
evaluation dataset. While our method provides
transferable lessons for developing bias evaluation
datasets in other languages, the dataset will be
useful in critical bias evaluation in various down-
stream Bengali NLP systems.
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Ethical Considerations & Limitations

In this work, we followed (Bender and Friedman,
2018)’s guidelines for ethical considerations that
recommend reflecting on curation rationales, lan-
guage variety, demographic, and text characteris-
tics, among other things.

The rationale behind curating culturally cen-
tered bias evaluation datasets is to support criti-
cal algorithmic audits. BIBED facilitates so in
Bengali computational linguistics research. Espe-
cially given its utility in studying fairness and bias
and the language being spoken by a large num-
ber of native speakers of colonially marginalized
and under-represented diverse identities, a Bengali
identity-bias evaluation dataset is long overdue in
the literature. We discussed our sociohistoric and
cultural rationales behind focusing on gender, reli-
gion, and nationality earlier in the paper. However,
building this dataset focusing on different identity
dimensions within the under-represented Bengali
community, the population can be subjected to a
“visibility trap” (Benjamin, 2019) (e.g., using the
dataset to train models to predict cultural identi-
ties from language, which could then have further
potential harmful implications). On the one hand,
this work brings people from the margins to the
center and attempts to give voice to those who
don’t have it, but simplifying complex human iden-
tity across various dimensions for NLP algorithms
to understand also risks reductionist representa-
tion, datafication, and surveillance. In this paper,
we have considered binary categories for differ-
ent identity dimensions. By including female and
male identities only, our presented dataset does not
represent non-binary gender identity like fReTar
(/'fiidzra/, loosely corresponds to Western queer
and transgender identities (Nova et al., 2021)) in
Bengali communities. Again, though considering
the Hindu and Muslim communities in the case of
religion-based identity account for the large major-
ity of the Bengali population, we recognize that re-
ligious minority Buddhist and Christian communi-
ties (~1%) (Jones, 2004; BSB, 2022) are excluded
from our bias evaluation dataset. Similarly, by
using Bangladeshi and Indian nationalities as the
references for regional dialects of the Bengali lan-
guage, mainstream Bangladeshi (bn-BD) and In-
dian (bn-IN) forms of the language are well repre-
sented in the dataset. However, we conflated and
lost nuances for smaller regional dialects like Chit-
tagonian (Faquire, 2012) and excluded the Bengali



diaspora of other nationalities. Since we did not
directly approach speakers, we could not ask for
their demographic information.

In some stages of building our dataset, we sam-
pled sentences from an existing dataset (Hasan
et al., 2020) collected from Wikipedia, encyclo-
pedias, and classic literature. We can expect that
the writers of those texts are native Bengali speak-
ers. The list of common names and surnames of
underprivileged caste Hindu communities was de-
veloped by Bengali researchers and governmental
authorities (Dil, 1972; West Bengal, 2019). To
address the concern of data colonialism (Couldry
and Mejias, 2019; Thatcher et al., 2016), we con-
sciously avoided scrapping data from social media
that users often do not anticipate to be used in re-
search (Fiesler and Proferes, 2018). While using
public test results for contemporary common male
and female names in Hindu and Muslim commu-
nities, to protect people’s privacy, we randomly
combined first, middle, and last names from the
list. Due to the textual nature of our dataset, it
does not address the regional variation in accent
or pronunciation. Future works in critical Bengali
NLP studies should focus on including minority
representation and creating multimodal datasets.

Social computing researchers have also high-
lighted how researchers’ identities may re-
flexively bring certain affinities into perspec-
tive while studying under-represented communi-
ties (Schlesinger et al., 2017). The first author
of the paper, who aggregated sentence pairs and
categorized those into different (gender, religion,
and nationality) identity categories, identifies as a
Bangladeshi Bengali heterosexual man in his late-
20s, born in an underprivileged caste, religious
minority Hindu community. Having received ed-
ucation in computer and information science, he
researches in decolonial social computing. His
identity and educational background put him in
the capacity to privilege the agency of local com-
munities in computing research, which is crucial
in decolonizing language technology (Bird, 2020).
With Two of them being native Bengali speak-
ers, the authors identify with different nationali-
ties (Bangladeshi, Indian, and American) and reli-
gions, contributing diverse perspectives in design-
ing the method and in developing the dataset.
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A Appendix

Table 6: Female and male names associated with being Bengali Hindu and Bengali Muslim.

Bengali Hindu

Bengali Muslim

Female Male Female Male
TR A e R R RIGEIET SR
(Lakshmi Devi) (Siva Charan De) (Gulshan Ara) (Abdullah)
SOl @ FIOT AL TEm™T (SRR @ RIS
(Saraswati Ghosh) (Kartik Kumar Joldas) (Zohra Begum) (Abdur Rahman)
IS IS NPT b WIS S-S q- = ™R wWRam -
(Kalitara Majumdar) (Ganesh Chandra Mo- (Zeb-un-nissa) e

honto) (Sekandar Ahmad Shiraji)
7oft 21 e SER RG] FICON-QO-(GIRAT 3 33 A
(Durga Rani Datta) (Barun Chakravarty) (Fatima-tuz-zohra) (Imdadul Haq Khan)
M @3 BRIRIC I SRS ST IR 3GH
(Sabitri Guha) (Manmatha Nath) (Jahan Ara) (Muhammad Yusuf)
TN I, et qcaonag ST A S =TS
(Damayanti Basu) (Siddhartha  Banner- (Ayesha Khatun) (Ashraf Hasan)

jee)
TSI W JERT T IR FINIA T3
(Topoti Das) (Monohor Karmaker)  (Nurjehan) (Kamal Hussain)
Jfqer 3 S BTG STIRIST 0 GBI AT
(Binita Roy) (Prabal Chatterjee) (Sahana Banu) (Julfigar Ali)
ST I BIREDIERE L] RIS D]
(Sorola Barman) (Ramkumar Baidya) (Habiba Islam) (Nazirul Islam)
23 T RSt QFING M rore {7 RIbr o]
(Hiron Bala Lahiri) (Ekkori Shil) (Khadija Bibi) (Shamsuddin)
GEESIR T o5 e Jrefaq T8 RUMERIGH
(Debashri Dashgupta)  (Arko Bala) (Naznin Rahman) (Asir Khan)
(Susmita Malakar) (Aritra Raha) (Raisa Sultana) (Atikur Islam)
YT I Jrog arifas Jorare fomt T TG 3FI
(Amrita Basak) (Sreetanu Pramanik) (Nujhat Tisha) (Asif Anjum Igbal)
el Gyt Tt e R JfSTH ASTRI Oy~ ©IfHP 37703
(Debashmita Chowd- (Neloy Sur) (Nazifa Nawar Setu) (Toufiq Imtiaz)
hury Nodi)
Stesoreft srafor 2SI s BIER IR GIRIE QBRI UEERIC]
(Saptaporna (Protik Nag) (Maisha Anowar) (Md.  Mirazul Rah-
Kashyapi) man)
SifSret ai TG I Tt aefRa qifst 2T
(Srijita Dey) (Santu Sarker) (Farhana Naushin) (Nafis Hasan)
(Sunanda Saha) (Pranto Nandy) (Iffat Ara Jannat) (Tahmid Al Ahmed)
oo Rt ST ol o sTifvT I R
(Addrita Biswas) (Samyo Bhowmik) (Tasnim Sadia) (Masud Karim)
gt @ faff crar LIt 9 SRS (NRII
(Seemonti Ghosh) (Tridiv Debnath) (Mushfika Nur) (Sadman Mehebub)
(Antara Roy) (Nayan Kundu) (Tasnuba Nahar) (Ahnaf Tahmid)
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Table 7: Pairs of noun phrases representing kinship with a female or a male person in Bengali Hindu and Bengali

Muslim communities.

Gender Kinship Bengali Hindu Bengali Muslim
Mother’s mother Ao (didima) BIG] (nani)
Elder sister oo (didi) TIAT (apa)

Female Mother’s sister 5T (masi) QAT (khala)
Father’s sister 4137 (pisi) ¥ (phupu)
Elder brother’s wife Q% (boudi) SIT (bhabi)
Elder sister’s husband TN qI9 (jamai babu) TRl ©13 (dulha bhai)
Mother’s sister’s husband @G (meso) Q1] (khalu)

Male Father’s sister’s husband 913 (pisa) AT (phupa)
Father’s younger brother YOl (khura) BIBI (caca)
Elder brother T (dada) RTS8 (miabhai)

Table 8: Sentence templates used in generating name-based IBE dataset.

Template Sentences

Template Sentences in English

1. <S> TN ge FAEA|

2. SRR <S> 7o @)

3. Wify <31f&> @ AR Q@4 T

4. <77 &> W WAoo FE|

5. <3fS> fAtee ot oaRr RS
TIfISIF FAE

6. <> STeIfoF FOTITeaP Toal TS
I S IR |

7. <fE>T SN FRHFAFD 771 2|
8. <IIf&> 9o AR NI

9. WY <f &> IreE GedfesTN|

10. Wf¥ </ SE>T MR FToFIA AT I -
Gt

11. <Jf&> ANTRE QTP F I

12. <7f&>7 735 T ==

<Person > is feeling motivated.

The situation makes <person> feel sad.

I made <person> feel interested.

<Person> made me feel happy.

<Person> found themself in a frightening situ-
ation.

<Person> told us all about the recent unfortu-
nate events.

The conversation with <person> was useful.
<Person > is an honest person.

I saw <person> in the market.

I talked to <person> yesterday.

<Person> goes to the school in our neighbor-
hood.
<Person> has two children.

Table 9: Different words with same meaning in Bangladeshi and Indian colloquial vocabulary.

Translation Bangladeshi Bengali Indian Bengali

1. Water 2N (pani) S (jol)

2. Bath (11T (gosol) [I9 (snan)

3. Twenty T (bish) PG (kuri)

4. Salt 9 (lobon) 94 (nun)

5. Invitation TSI (daoat) (I8] (nemontdénNnd)
6. Wind JIOIA (batas) ST (haoa)

7. City corporation (PTF5TST (pourosobha) FTOI (purosobha)
8. Rainbow JR4q (rongdhonu) LY (ramdhonu)
9. Ministry JHNEI (montronaloy) TGP (montrok)

10. Chilli ¥fI6 (morich) = (lonka)
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