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Abstract

Radiology reports are vital elements of direct-
ing patient care. They are usually delivered
in free text form, which makes them prone to
errors, such as omission in reporting radiologi-
cal findings and using difficult-to-comprehend
mental shortcuts. Although structured report-
ing is the recommended method, its adoption
continues to be limited. Radiologists find struc-
tured reports too limiting and burdensome. In
this paper, we propose the model, which is
meant to preserve the benefits of free text, while
moving towards a structured report. The model
automatically parametrizes Polish radiology re-
ports based on language models. The models
are trained on a large dataset of 1200 chest com-
puted tomography (CT) reports annotated by
multiple medical experts reports with 44 obser-
vation tags. Experimental analysis shows that
models based on language models are able to
achieve satisfactory results despite being pre-
trained on general domain corpora. Overall, the
model achieves an F1 score of 81% and is able
to successfully parametrize the most common
radiological observations, allowing for poten-
tial adaptation in clinical practice. Our model
is publicly available 1.

1 Introduction

A radiology report is the most important product ra-
diologists generate to help direct patient care. They
are vital to the referring physicians that depend
upon them while making a decision about further
treatment of a patient. It represents the highest
level of radiologists’ synthesis and insight into a
patient’s condition. However, radiology reports
are almost always formulated in natural language.
Natural language is flexible and enables the writer
to express the same idea in a variety of different
ways with varied complexity. As a result, the style,

1github.com/AleksanderObuchowski/PLRadIE

length, and level of detail vary among the radiol-
ogists, even among those coming from the same
institution. Moreover, the reports often contain
misspellings and mental shortcuts. Such proper-
ties make them difficult to analyze for referring
physicians and incomprehensible to patients.

The well-known initiative of the American Col-
lege of Radiology – Imaging 3.0 introduced a
roadmap to transition radiological practice from
volumed-based care to value-based care. The crit-
ical element of the roadmap was the adoption of
structured reporting. A structured report (SR) is a
report generated from a predefined, standardized
format. The SR is considered a better strategy in
terms of reduction in diagnostic error, comprehen-
siveness, adherence to consensus guidelines, and
reduction in the omission of findings and other pre-
ventable errors. The negative effects of medical
errors were publicized by the report of the Institute
of Medicine "To Err is Human" (Donaldson et al.,
2000). The report highlighted the importance of
limiting preventable medical errors, such as omis-
sion in reporting radiological findings.

The adoption of SR was defined as a critical step
to provide the best quality of service to referring
physicians and patients by both the European Soci-
ety of Radiology (ESR) and Radiological Society
of North America (RSNA) (European Society of
Radiology (ESR), 2018). The SR is believed to im-
prove the quality of reports by providing a checklist
to ensure that all relevant points were addressed.
Moreover, the SR is easier to integrate with tools
helping radiologists express relevant information,
e.g., CO-RADS classification (Prokop et al., 2020).
Lastly, they could facilitate the adoption of value-
based healthcare – a new healthcare delivery model
in which healthcare providers are paid based on
patient outcomes, not the number of performed
procedures.
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Although structured reports have many benefits,
their acceptance among radiologists is still limited
(Faggioni et al., 2017). They require radiologists
to change their habits which they often practiced
for many years. The radiologists may be reluctant
to change for many reasons, including the limited
scope of expression resulting in the downgrade of
quality, the feeling that there is no clinical neces-
sity to change, and even because they perceive it as
an attack on the art of medicine (Ganeshan et al.,
2018). With SR, the structure of a report would
also have to be manually updated with the changes
in classification ontology, possibly resulting in dis-
crepancies between the latest state of knowledge
and clinical practice. Moreover, while the proposed
structured reports schema could be introduced in
clinical practice, it does not solve the problem of
already generated reports, where the clinical ob-
servations may need to be rewritten to follow the
parameterized structure, therefore resulting in ad-
ditional labor. Although those older reports might
not be used in further clinical practice due to be-
ing outdated, their parametrization could still be
beneficial for data analysis and training of machine
learning models.

To bring the most out of both structured re-
porting and free-texts, in this paper we propose
a model for the automatic parametrization of Pol-
ish radiology reports based on language models.
The model’s role is to assign one of 44 labels to
each radiological observation. Example texts with
extracted radiological observations are shown in
Figure 1. Formally, our task falls under the in-
formation extraction category, as the goal of the
model is to detect spans corresponding to specific
radiological findings rather than detect a broader
set of entities. This was motivated by the fact,
that as shown in (Steinkamp et al., 2019) systems
that strictly perform named entity recognition-level
tasks are insufficient for answering clinical queries.
For example, in the sentence “No lesion observed,”
a NER-only system could (correctly) identify “le-
sion” as an entity, but cannot correctly answer the
intended question. Moreover, we decided to model
this task as sequence labeling rather than multi-
class sequence text classification, as not only more
informative to the end user by also previous work
has shown that token-level labeling can result in im-
proved accuracy (Lew et al., 2021). To the best of
our knowledge, this is the first model for informa-
tion extraction from radiology reports in the Polish

language.

2 Related work

2.1 Structured Reporting

Structured reporting in radiology has been a sub-
ject of debate in the last decade. Even though free
text is still the dominant report format, there have
been several approaches that received some atten-
tion. The most widely-spread form of structured
reporting are disease-specific templates, such as
BI-RADS (Liberman and Menell, 2002) and CO-
RADS (Prokop et al., 2020) schemes. Such tem-
plates provide a guideline with a list of features,
which presence or absence should e.g. indicate that
the disease has greater progression. An important
step towards SR was DICOM Structured Reporting
(DICOM SR) (Hussein et al., 2004). It is a standard
developed to store structured data and clinical ob-
servations along with the images. Medical images
are usually stored in a Digital Imaging and Commu-
nications in Medicine (DICOM) format. DICOM
format was created to enable the interoperability of
medical images. The standard was widely adopted
in any field of medicine where medical images play
a significant role. DICOM SR was developed to
link the clinical notes to the images within the same
format.

RadLex (Datta et al., 2020) is a radiology lexi-
con produced by the Radiological Society of North
America. It contains an ontology of radiology
terms for use in radiology reporting, decision sup-
port, data mining, data registries, education, and
research. It defines standard names and codes for
radiology findings.

The idea of unifying terminology and linking the
reports to the images was combined in the Anno-
tation and Image Markup (AIM) project (Channin
et al., 2010) of the National Institutes of Health
Cancer Biomedical Informatics Grid. AIM was cre-
ated to develop a uniform machine-readable format
for storing both the image and a radiology report. It
enables the description of an image using common
data elements and controlled terminologies, such
as RadLex. The usage of ontology enables easy
queries and retrieval of information. The annota-
tions and measurements made with AIM can be
serialized as XML or DICOM SR.

Another approach was the RSNA’s radreport.org
reporting templates. The templates for various clin-
ical scenarios provide a standardized radiology lex-
icon with the terms defined in Web Ontology Lan-

114



Figure 1: Sample of the annotated data. The report was stripped of the sentences without entities for visualization
purposes.

guage (Bechhofer et al., 2009).
Although there have been some important at-

tempts to make SR feasible, it is still at the early
stage of adoption.

2.2 Clinical IE and NER

(Solarte-Pabón et al., 2021) proposed an informa-
tion extraction model for Spanish radiology reports
using a multilingual BERT (Devlin et al., 2018)
model. The model’s role was to parametrize ul-
trasonography reports. The corpus was annotated
using ten different labels: Abbreviation, Anatomi-
cal Entity, Conditional Temporal, Degree, Finding,
Location, Measure, Negation, Type of measure,
and Uncertainty, and was split into a Training set
(175 reports), Development set (92 reports), Test
set (207 reports). Similar to our work the authors
have also used BIO annotation schema, however, in
our work, we focus solely on radiological findings
but use much more detailed annotations with 44
different possible findings.

The dataset development by Jain et al. (2021) in-
cludes annotations for 500 radiology reports taken
from the MIMIC-CXR dataset (Johnson et al.,
2019), which comprises 14,579 entities and 10,889
relations. Additionally, the test dataset consisted of
two independent sets of annotations for 100 radiol-
ogy reports, sourced from both the MIMIC-CXR
and the CheXpert dataset (Irvin et al., 2019). The

authors evaluated the performance of several clin-
ical language models, including BioBERT (Lee
et al., 2020), ClinicalBERT (Huang et al., 2019),
PubMedBERT (Gu et al., 2021), and BlueBERT
(Peng et al., 2019), on this dataset.

(Sugimoto et al., 2021) proposed an information
model comprising three groups of entities: observa-
tions, clinical findings entity, and modifiers entity.
The model was trained and evaluated using 540
in-house chest CT reports. The authors have tested
two types of models: BiLSTM-CRF and BERT
and different pretraining datasets: Wikipedia arti-
cles (12 million sentences) and CR reports (118
thousand sentences).

CNNs have also been used in NER for the med-
ical domain, for example in (Kong et al., 2021)
where authors use a multi-level CNN layer to cap-
ture the information of neighboring characters and
integrate them to generate a new embedding with
context information for each character. An interest-
ing approach can also be seen in (van de Kerkhof,
2016) where the authors use CNN for medical NER
in the context of computer vision where the net-
work is fed an image representing a medical docu-
ment and its goal is to extract bounding boxes of
the named entities. Zhang et al. (2022) use dilated
convolutional neural networks (Akbik et al., 2018)
to capture global information with fast computing
speed.
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Florez et al. (2018) use both character-based
and word-based LSTM for clinical NER. LSTM
layer is followed by a conditional random field
(CRF) (Lafferty et al., 2001) to predict the most
probable label sequence. Tang et al. (2019) also use
the BiLSTM-CRF network for the identification of
clinical texts that are modeled as a specific example
of NER task.

Mykowiecka et al. (2009) presented a rule-based
information extraction system developed for Pol-
ish medical texts, focusing on mammography re-
ports and hospital records of diabetic patients. The
system uses a special ontology and two separate
models represented as typed feature structure hier-
archies to extract data from documents. The system
also addresses linguistic issues such as ambiguous
keywords, negation, coordination, and anaphoric
expressions.

2.3 Medical language models

BioBERT (Bidirectional Encoder Representations
from Transformers for Biomedical Text Mining)
(Lee et al., 2020) was the first domain-specific lan-
guage model trained for the biomedical domain.
It shares the architecture of the original BERT
model and uses its weights as a starting point for
further pretraining. The model uses PubMed ab-
stracts PubMed Central and full text for further
pre-training and domain adaptation. BioBERT ob-
tained higher F1 scores in biomedical NER than the
SOTA models at the time, achieving much better
results than the standard BERT model.
ClinicalBERT (Huang et al., 2019) is a language
model designed for the analysis of clinical narra-
tives (e.g. physicians’ notes) that are known to
have differences in linguistic characteristics from
both general texts and non-clinical biomedical texts
(such as the ones used for training of BioBERT).
The model was trained on 2 million discharge sum-
maries and clinical notes and discharge summaries
from the MIMIC-III database (Johnson et al., 2016).
The authors showed that using clinical-specific
contextual embeddings improves both general do-
main results and BioBERT results across 2 well-
established clinical NER tasks and one medical
natural language inference task.
BlueBERT (Peng et al., 2019) is a benchmark for
evaluating medical language models based on 5
NLU tasks including Sentence Similarity, NER,
Relation Extraction, Document Multilabel Classi-
fication, and Inference. The total model score is

calculated as the macro-average of F1 scores and
Pearson scores. The authors also share a dataset
for pre-training medical language models based on
PubMed abstracts and MIMIC-III, as well as two
language models pre-trained on these datasets as
baselines – one based on BERT and the other based
on ELMo (Peters et al., 2018).

2.4 Polish Language Models

Unfortunately, at the time of writing this paper,
there are no dedicated Polish Language Models for
the medical domain. There are, however, several
general domain models available:

Polbert (Kłeczek, 2020) is a Polish BERT-based
language model trained on the Polish subset of
Open Subtitles, ParaCrawl, Polish Parliamentary
Corpus, and Polish Wikipedia with almost 2 billion
words in total;

Polish RoBERTa (Dadas et al., 2020a) is a
RoBERTa-based (Liu et al., 2019) language model
trained on the Polish subset of the Common Crawl
dataset;

PoLitBERT (Sopyła and Sawaniewski, 2021) is a
Polish Roberta model trained on Polish Wikipedia,
Polish literature and Oscar. The major assumption
is that high-quality text will give a high perfor-
mance model;

plT5 (Chrabrowa et al., 2022) is a set of T5-based
language models trained on Polish corpora. The
models were optimized for the original T5 denois-
ing target. plT5 was trained on six different corpora
available for the Polish language: CCNet Middle,
CCNet Head, National Corpus of Polish, Open
Subtitles, Wikipedia, Wolne Lektury;

papuGaPT2 (Wojczulis and Kłeczek, 2021) is a
Polish version of the GPT-2 model trained on the
Polish subset of multilingual Oscar corpus;

HerBERT (Mroczkowski et al., 2021) is a Polish
BERT based model trained on NKJP, Wikipedia,
and Wolne Lektury as well as CCNet and Open
Subtitles. The model weights were initialized us-
ing weights from the multilingual XLM-RoBERTa
model. The model was trained using only MLM ob-
jective with dynamic masking of whole words. The
authors also introduced the KLEJ benchmark for
evaluating Polish language models (Rybak et al.,
2020) on which HerBERT is at the time of writing
this work a state-of-the-art solution.
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Table 1: Overview of the dataset

Entity (PL) Entity (EN) Train Test
płyn w jamie opłucnowej pleural effusion 722 184
zmiany włókniste pulmonary fibrosis 631 165
zmiany w kościach bone lesions 619 156
zmiany zapalne/niedodmowo-zapalne pulmonary consolidation 543 143
matowa szyba ground-glass opacities 482 141
rozedma pulmonary emphysema 422 110
pojedyncze guzki single nodules 384 95
rurka intubacyjna/wkłucie endotracheal tube/venous line 254 71
rozstrzenie oskrzeli bronchiectasis 253 62
konsolidacje w płucach pulmonary consolidations 248 62
liczne guzki numerous nodules 223 57
niedodma atelectasis 202 57
adenopatia śródpiersia mediastinal lymphadenopathy 202 50
przepuklina rozworu przełykowego hiatal hernia 198 49
powiększenie serca cardiomegaly 197 47
płyn w worku osierdziowym pericardial effusion 175 41
zmiany o typie pączkującego drzewa tree-in-bud pattern 164 40
patologie opłucnej pleural disorders 162 39
odma opłucnowa pneumothorax 156 34
jamy opłucnowe pleural cavities 126 33
złamanie żeber broken ribs 117 29
zwapnienia w naczyniach wieńcowych coronary artery calcification 117 28
plaster miodu honeycombing 117 26
zmiany w tarczycy changes in the thyroid gland 94 20
pogrubienie ścian oskrzeli bronchial wall thickening 83 19
zmiany w tkankach miękkich soft tissue changes 81 19
poszerzenie pnia płucnego lub tt płucnych pulmonary trunk dilatation 74 18
odma podskórna subcutaneous emphysema 73 18
radiologiczne podejrzenie covid radiological findings of COVID-19 infection 71 17
zwapnienia w miąższu soft-tissue calcifications 68 17
wydzielina w oskrzelach bronchial secretions 67 17
patologie nadnerczy adrenal disorders 66 15
zmiany miażdżycowe aorty atherosclerosis of the aorta 65 15
urządzenia kardiologiczne cardiac devices 63 15
tętniak aorty poszerzenie aorty aortic aneurysm 56 10
zastój w krążeniu płucnym pulmonary congestion 46 9
adenopatia wnęk hilar lymphadenopathy 39 9
odma śródpiersia pneumomediastinum 35 9
kostka brukowa crazy paving 17 6
patologie przewodu pokarmowego gastrointestinal disorders 33 6
zatorowość płucna pulmonary embolism 13 1
rozwarstwienie aorty aortic dissection 11 1

3 Our Solution

3.1 Dataset

3.1.1 Collection and annotation
For our dataset, we used a real-life collection of
1200 randomly-selected radiological reports de-
scribing chest X-ray images. The data used was
obtained from historical radiology reports collected
at University Clinical Centre in Gdańsk, Poland.
The annotation was modeled as a sequence label-
ing task, where each annotator was tasked with
selecting spans in the report that corresponded to
the specific tag. The words were labeled as enti-
ties following the Inside–Outside–Beginning (IOB)

annotation schema (Ramshaw and Marcus, 1999)
where the first token of each entity is labeled with
the prefix "B-" standing for "Beginning" and each
consecutive token of the same entity is labeled with
the prefix "I-" standing for "Inside". The tokens not
belonging to any entity are labeled as "O" standing
for "Outside". The annotations were performed
using lighttag annotation tool.

The annotation guidelines for observation tags
were created out by radiologists, who selected 44
tags representing the most common radiological
observations in the chest x-ray. However, we em-
phasize keeping annotation classes as general as
possible so that the task of information extraction
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can be easily transferred to other clinical domains.
The dataset was annotated by 2 clinical experts
with each annotator being resposible for half of the
dataset.

The dataset and annotations guidelines are avail-
abe upon resanable request.

3.2 Models

3.2.1 Pre-processing
The reports were anonymized by replacing oc-
currences of patients and radiologists names with
empty strings. They were then split into sentences
and tokenized using the Stanza NLP tool (Qi et al.,
2020). This step was performed as the reports them-
selves were longer than the maximum number of
tokens allowed for model inputs.

3.2.2 Train/Test split
The sentences were then split into training and test
sets using the 80/20 ratio. The distribution of enti-
ties in the training and test set are shown in tables
1. From the initial dataset, 2 tags having fewer
than 8 occurrences ("krwiak śródścienny aorty"
and "zwężenie/koarktacja aorty") were removed
due to insufficient number examples to perform the
split.

In our implementation, we used 4 openly avail-
able Polish language models:

Polish-roberta-base-v2 – trained using Senten-
cepiece Unigram tokenization model and whole-
word masking objective instead of classic token
masking, the model also utilized the full context of
512 tokens and was retrained for 400k steps;

Polish-distilroberta – trained using knowledge
distillation with RoBERTa-v2 base as a teacher
model;

Polish-longformer – initialized with Polish
RoBERTa (v2) weights and then fine-tuned on a
corpus of long documents, ranging from 1024 to
4096 tokens.

All the models were pre-trained using a Pol-
ish subset of the Common Crawl corpus. The
model’s pre-training details are shown in (Dadas
et al., 2020b).

We also used HerBERT (Mroczkowski et al.,
2021).

In addition to Polish language models, we have
also tested the performance of mLUKE (Ri et al.,
2022) model. mLUKE is a multilingual version
of the LUKE (Yamada et al., 2020) model based
on XLM-RoBERTa that introduces improvement to

the original model by using cross-lingual alignment
information from Wikipedia entities.

In each case, the text was tokenized before be-
ing fed to the language model producing sub-word
tokens. The resulting contextualized token embed-
ding produced by the language model was then fed
to a fully connected layer, mapping the token em-
beddings to entities in the "BIO" format. Only the
first token of each word was used for predicting the
entity, for the other tokens of a given word we as-
signed a special "-100" label that served as a mask
in order not to count them in the loss function. This
architecture is shown in Figure 2.

Figure 2: Visualization of deep language model-based
approach

We also tested a baseline in form of forward
and backward Flair (Akbik et al., 2019) embed-
dings for the Polish language trained on the Polish
part of the Common Crawl dataset together with
static word GloVe embeddings as suggested by the
authors. The embedding layer was then followed
by a single BiLSTM layer with a hidden size of
256. This layer was succeeded by a fully-connected
layer mapping the hidden states of the BiLSTM
layer to the named entities. The model also used
Conditional Random Fields (CRF) for prediction,
with Viterbi decoding as the loss function. The
model was trained for 150 epochs with an initial
learning rate of 0.1 which was decreased during
training with the "anneal on the plateau" approach.

The models used categorical cross-entropy as the
loss function and Adam optimizer with a learning
rate of 1e-5 and linear warmup for 10% of steps.

4 Experiments and Results

The results for different models are presented in
Table 2.
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Table 2: Results of different language models

Model Precision Recall F1-score
HerBERT 0.718 0.798 0.745

Flair 0.749 0.759 0.751
distilroberta 0.752 0.807 0.768
longformer 0.767 0.809 0.778

roberta 0.768 0.811 0.780
mLUKE 0.791 0.826 0.809

These results show that solutions based on deep
language models perform better than the ones based
on shallower Flair embeddings. The best model
was mLUKE achieving an F1 score of 0.81. This
can possibly be attributed to the fact that LUKE
architecture involves entity-aware self-attention
mechanism pre-training schema based on masking
entities in large entity-annotated corpus retrieved
from Wikipedia, therefore, making it suitable for
the end task of sequence labeling. Another observa-
tion that can be made is that the best model based
on mLUKE is trained solely on Wikipedia texts
(as opposed to e.g. Common Crawl dataset used
in Roberta pre-training) that have the potential to
contain more domain-specific medical knowledge
than corpora with casual vocabulary.

After performing additional analysis of the best
model shown in Table 3, we observed that the accu-
racy seems to be the highest for tags with a larger
number of examples in the training dataset which
follows the standard trend associated with machine-
learning-based approaches. However, a few classes
(such as pulmonary embolism or aortic dissection)
scored lower than average despite being largely rep-
resented in the training set. This can be attributed
to the fact that those classes contain a lot of vari-
ations and clinical observations associated with
them can be formulated in a number of ambiguous
ways. Similarly, a few classes (such as emphyse-
matous lungs and pulmonary fibrosis) scored well
despite having only a few annotated examples. This
can also be explained by the fact that those classes
rarely appear in the reports and therefore contain
fewer possible synonyms.

5 Discussion

In this work, we presented a tool for the
parametrization of radiological reports for narra-
tive reports written in natural language. In the
interest of standardization and to help further re-
search in this area, we introduced a general anno-

tation scheme that was developed together with
clinical experts based on common radiological ob-
servations. The results show that general domain
language models can successfully be used in the ra-
diology domain, although there is still room for im-
provements that can possibly be filled with domain-
specific models. The detailed analysis of the results
shows that the model is able to better capture the
entities with fewer variations and higher represen-
tation in the training set. It can also be seen that
the model rarely confuses different entities, but has
some trouble with capturing the spans accurately.
However, the model still achieved satisfactory re-
sults and with proper verification could success-
fully be used in clinical practice.

Information extraction is especially challeng-
ing with medical terminology since there is some
interchangeability between the terms and the
structure of a phrase may influence the mean-
ing. For instance, "przepuklina przełykowa" or
"przepuklina przełyku" ("hiatal hernia" or "hia-
tus hernia") can also be phrased as "przepuk-
lina wślizgowa przełyku" ("sliding hiatus her-
nia"). The literal translation of (parenchymal)
pulmonary/lung consolidations is: "zgęszczenia
(miąższowe) płuc/płucne" but in reports it usually
comes in a phrase "zgęszczenia (miąższowe) w
płucu prawym” ("consolidations in the left lung").
Extracting information from a report is a difficult
task for the model but it is also non-trivial for a
referring physician. From a clinical perspective,
the automatic generation of structured reports from
free texts combines the benefits of both structured
reporting and free text, while limiting the draw-
backs of a rigidly structured format.

6 Future Work

The results generated by general domain language
models are satisfactory, but far from perfect. This
is likely motivated by the fact that the word distri-
bution in the general domain and medical corpora
is vastly different, which can result in an array of
problems in the NLP of clinical texts. In the future,
we are planning to train domain-specific language
models using a larger corpus of unlabeled reports
using methods such as masked language modeling.
Such an approach would most definitely improve
the model’s results.
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Table 3: Classification Report for the best model

Class Precision Recall F-score Support
adenopatia wnęk 0.36 0.44 0.4 9
adenopatia śródpiersia 0.57 0.68 0.62 50
jamy 0.5 0.61 0.55 33
konsolidacje w płucach 0.84 0.87 0.86 62
kostka brukowa 0.57 0.67 0.62 6
liczne guzki 0.77 0.77 0.77 57
matowa szyba 0.96 0.97 0.96 141
niedodma 0.76 0.71 0.74 63
odma opłucnowa 0.91 0.85 0.88 34
odma podskórna 0.84 0.89 0.86 18
odma śródpiersia 0.7 0.78 0.74 9
patologie nadnerczy 0.61 0.73 0.67 15
patologie opłucnej 0.85 0.85 0.85 39
patologie przewodu pokarmowego 0.33 0.57 0.42 7
plaster miodu 1.0 1.0 1.0 26
pogrubienie ścian oskrzeli 0.57 0.68 0.62 19
pojedyncze guzki 0.73 0.78 0.75 95
poszerzenie pnia płucnego lub tt płucnych 0.42 0.55 0.48 20
powiększenie serca 0.88 0.89 0.88 47
przepuklina rozworu przełykowego 0.62 0.63 0.63 49
płyn w jamie opłucnowej 0.82 0.85 0.83 187
płyn w worku osierdziowym 0.95 0.95 0.95 41
radiologiczne podejrzenie covid 0.74 0.82 0.78 17
rozedma 0.88 0.94 0.91 110
rozstrzenia oskrzeli 0.81 0.87 0.84 62
rozwarstwienie aorty 1.0 1.0 1.0 1
rurka intubacyjna/wkłucie 0.85 0.86 0.85 71
tętniak aorty poszerzenie aorty 0.53 0.8 0.64 10
urządzenia kardiologiczne 0.53 0.6 0.56 15
wydzielina w oskrzelach 0.56 0.59 0.57 17
zastój w krążeniu płucnym 0.67 0.67 0.67 9
zatorowość płucna 1.0 1.0 1.0 1
zmiany miażdżycowe aorty 0.77 0.67 0.71 15
zmiany o typie pączkującego drzewa 0.97 0.97 0.97 40
zmiany w kościach 0.83 0.79 0.81 160
zmiany w tarczycy 0.62 0.8 0.7 20
zmiany w tkankach miękkich 0.48 0.63 0.55 19
zmiany włókniste 0.85 0.92 0.88 165
zmiany zapalne/niedodmowo-zapalne 0.82 0.82 0.82 147
zwapnienia w miąższu 0.46 0.35 0.4 17
zwapnienia w naczyniach wieńcowych 0.93 0.96 0.95 28
złamanie żeber 0.96 0.83 0.89 30
micro avg 0.79 0.83 0.81 1981
macro avg 0.73 0.78 0.75 1981
avg 0.8 0.83 0.81 1981
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