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Abstract
The rapid growth of scientific publications,
particularly during the COVID-19 pandemic,
emphasizes the need for tools to help re-
searchers efficiently comprehend the latest ad-
vancements. One essential part of understand-
ing scientific literature is research aspect clas-
sification, which categorizes sentences in ab-
stracts to Background, Purpose, Method, and
Finding. In this study, we investigate the impact
of different datasets on model performance for
the crowd-annotated CODA-19 research aspect
classification task. Specifically, we explore
the potential benefits of using the large, auto-
matically curated PubMed 200K RCT dataset
and evaluate the effectiveness of large language
models (LLMs), such as LLaMA, GPT-3, Chat-
GPT, and GPT-4. Our results indicate that
using the PubMed 200K RCT dataset does
not improve performance for the CODA-19
task. We also observe that while GPT-4 per-
forms well, it does not outperform the SciB-
ERT model fine-tuned on the CODA-19 dataset,
emphasizing the importance of a dedicated
and task-aligned datasets dataset for the tar-
get task. Our code is available at https://
github.com/Crowd-AI-Lab/CODA-19-exp.

1 Introduction

The rapid growth of scientific publications, partic-
ularly during the COVID-19 pandemic, has made
it increasingly challenging to keep up with the
latest research advancements. To address this is-
sue, researchers have developed various systems,
such as search engines (Lahav et al., 2022; Zhang
et al., 2020), visualization tools (Hope et al., 2020;
Tu et al., 2020), claim verification systems (Wad-
den et al., 2020; Pradeep et al., 2021), question-
answering systems (Frisoni et al., 2022), and sum-
marization techniques (Meng et al., 2021). These
tools help efficiently comprehend publications by
organizing large amounts of information.

One critical aspect of understanding scientific
literature is the classification of sentences within

abstracts according to their research aspects, such
as Background, Purpose, Method, and Finding.
This is particularly crucial in the biomedical do-
main, where abstracts tend to be longer and more
complex. With the annotated aspects, readers can
quickly grasp the key aspects of a scientific paper.
For example, FacetSum (Meng et al., 2021) sum-
marizes papers in four aspects to quickly convey
the information. Several datasets have been pro-
posed for research aspect classification, including
PubMed 200K RCT (Dernoncourt and Lee, 2017),
PubMed-PICO-Detection (Jin and Szolovits, 2018),
CODA-19 (Huang et al., 2020), and more.

In this paper, we focus on the research as-
pect classification task using crowd-annotated
CODA-19 (Huang et al., 2020) and explore the
impact of different datasets on model performance.
Specifically, we investigate whether the auto-
matically curated large dataset (PubMed 200K
RCT (Dernoncourt and Lee, 2017)) can help the
target task despite its shifted data distribution from
the target task. Additionally, we examine whether
large language models (LLMs), trained on a mas-
sive general textual corpus, can solve the task
with limited or no task-specific data provided.
In particular, we evaluate six LLMs, including
three open-sourced models (LLaMA-65B (Tou-
vron et al., 2023), MPT (Team, 2023), and Dolly-
12B (Databricks, 2023)) and three closed models
(GPT-3 (Brown et al., 2020), ChatGPT (OpenAI,
2022), and GPT-4 (OpenAI, 2023)).

Our study suggests that using PubMed 200K
does not improve the performance of the CODA-
19 research aspect classification task, regardless
of the approach used. We experimented with
(i) training purely on PubMed data, (ii) simply-
mixing PubMed and CODA-19 data, (iii) upsam-
pling CODA-19 data and mixing it with PubMed
data to address the data imbalance issue, and (iv) us-
ing a two-staged training approach where the model
is trained on PubMed and CODA-19 sequentially.
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However, none of these approaches could improve
the performance of the target task. We hypothe-
size this is due to the use of the SciBERT (Belt-
agy et al., 2019), which has pre-trained on papers
from scientific domains and thus reduces the advan-
tage of incorporating PubMed 200K. Our results
also showed that although GPT-4 performed well
in both zero-shot and few-shot settings, it was not
able to outperform the SciBERT model fine-tuned
on the CODA-19 dataset. This finding suggests that
having a dedicated dataset that aligns well with the
target task is still important.

2 Related Work

Moradi et al. (2021) compared BioBERT and GPT-
3 in a few-shot learning setting for sentence classi-
fication tasks and found that neither model could
outperform fully fine-tuned models. For biomed-
ical information extraction tasks, Jimenez Gutier-
rez et al. (2022) observed that GPT-3 could not
outperform the fine-tuned RoBERTa-large model,
whereas Agrawal et al. (2022) reported promising
performance for GPT-3. Gururangan et al. (2020)
investigated whether adapting pre-trained models
to the domain of the target task could help, and
concluded that domain-adaptive pretraining is al-
ways helpful, highlighting the need for task-aligned
data and training strategies. In this paper, we fo-
cus on the aspect classification task on CODA-19
and examine whether slightly domain-shifted large
datasets and LLMs can improve performance.

3 Methodology

In this section, we describe models trained to ex-
plore the impact of different datasets and training
strategies on the CODA-19 research aspect classifi-
cation task. For detailed model training details such
as hyperparameters, please refer to Appendix B.

3.1 Good Data: CODA-19

We use CODA-19 (Huang et al., 2020) as our
Good Data. CODA-19 consists of clause-level
aspect annotations for abstracts from medical pa-
pers, including Background, Purpose, Method,
Finding/Contribution, and Other. It contains
137K/15K/15K samples for train/validation/test
sets. We fine-tune SciBERT (Beltagy et al., 2019)
on the original CODA-19 to create SciBERTCODA
and on the position-encoded CODA-19 to create
SciBERTCODA+Pos (see Section 3.4).

3.2 Large Data: PubMed

PubMed 200K (Dernoncourt and Lee, 2017) pro-
vides sentence-level research aspects based on
structured abstracts. It contains 2.2M/29K/29K
samples for the train/validation/test set. Despite
including a larger amount of data, the distri-
bution is slightly different from the CODA-19
task. We first create two models, SciBERTPubMed
and SciBERTPubMed+Pos, by fine-tuning SciBERT
on PubMed 200K. We also explore combin-
ing CODA-19 and PubMed with three strate-
gies: (i) simply-mixing the two datasets to cre-
ate SciBERTMix+Pos+S; (ii) upsampling CODA-19
ten times to balance the data size and mixing it
with PubMed to create SciBERTMix+Pos+U; and (iii)
two-staged training, where the model is fine-tuned
on PubMed and CODA-19 sequentially to create
SciBERTMix+Pos+T.

3.3 No Data: LLMs

In the No-Data setting, the goal is to classify
the research aspect of abstract sentences using
LLMs with limited or no task-specific training data.
LLMs are trained on a massive amount of web
data, which has a different distribution compared
to our target dataset. To explore the performance of
LLMs in this scenario, we use zero-shot and few-
shot classification with three open-sourced mod-
els: LLaMA-65B (Touvron et al., 2023), MPT-
7B (Team, 2023), and Dolly-12B (Databricks,
2023); and three closed models: GPT-3 (Brown
et al., 2020), ChatGPT (OpenAI, 2022), and GPT-
4 (OpenAI, 2023).

3.4 Position Encoding

To predict a research aspect for a sentence, the
position of the sentence within the whole abstract
is important. Prior work such as Dernoncourt and
Lee (2017) used CRF to model the relationship
between sentences. In this paper, we incorporate
position information by simply adding a position
encoding to the beginning of each sentence in the
form of “[POSITION=0.38]”, where the number
represents the normalized sentence position, i.e.,
sentence_id / #sentences_in_abstract. Examples of
position-encoded data can be found in Appendix A.

4 Experiments and Results

We conducted three experiments to (i) verify
whether our fine-tuned SciBERT model can outper-
form the model proposed in the original PubMed
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Setting Background Methods Objective Results Conclusions All

Support 2,663 9,751 2,377 10,276 4,426 29,493

Model FTR P R F1 P R F1 P R F1 P R F1 P R F1 ACC F1

SciBERT T .712 .734 .723 .935 .955 .945 .787 .655 .715 .918 .932 .925 .858 .848 .853 .887 .832
SciBERT T+P .742 .824 .781 .945 .970 .958 .796 .679 .733 .959 .940 .950 .946 .946 .946 .919 .873
bi-ANN+CRF T .707 .811 .756 .955 .965 .960 .771 .653 .707 .956 .948 .952 .946 .937 .942 .916 .863

Table 1: Performance on PubMed 200k (Dernoncourt and Lee, 2017), where best and second-best results are
highlighted. The FTR column shows the feature used for the model, where T and T+P stand for text-only and
position-encoded text. According to the overall accuracy and F1 score, our SciBERTPubMed+Pos performs the best.

Setting Background Purpose Method Finding Other ALL

Support 5,062 821 2,140 6,890 562 15,475

Data Model FTR P R F1 P R F1 P R F1 P R F1 P R F1 ACC F1

C SciBERT T .700 .808 .750 .656 .588 .620 .716 .635 .673 .802 .743 .772 .797 .867 .830 .746 .729
C SciBERT T+P .825 .794 .809 .638 .655 .647 .741 .665 .701 .823 .867 .845 .819 .843 .831 .803 .767

P SciBERT T .710 .433 .538 .415 .167 .238 .371 .757 .498 .678 .756 .715 - - - .592 .497
P SciBERT T+P .854 .415 .559 .233 .251 .241 .362 .720 .482 .750 .857 .800 - - - .630 .520

Mixs SciBERT T+P .762 .815 .788 .674 .446 .537 .677 .640 .658 .824 .843 .833 .808 .642 .716 .777 .706
Mixu SciBERT T+P .802 .822 .812 .669 .585 .624 .734 .636 .681 .826 .857 .841 .812 .820 .816 .799 .755
Mixt SciBERT T+P .816 .812 .814 .687 .574 .625 .736 .654 .693 .827 .870 .848 .807 .865 .835 .805 .763

C BERT T+P .846 .761 .801 .626 .646 .636 .702 .637 .668 .803 .879 .839 .803 .847 .824 .793 .754
Mixt BERT T+P .828 .775 .801 .663 .639 .651 .715 .639 .675 .808 .872 .839 .809 .854 .831 .795 .759

Table 2: Performance on CODA-19 (Huang et al., 2020), where best and second-best results are highlighted. The
Data column specifies the training data, C: CODA-19, P: PubMed 200K, Mixs: simply-mixing, Mixu: upsampling,
and Mixt: two-staged training. The FTR column shows the feature used for the model, T: text-only, and T+P:
position-encoded text. According to the overall performance, SciBERTCODA+Pos and SciBERTMix+Pos+T achieve the
best performance.

paper (Dernoncourt and Lee, 2017); (ii) compare
models trained on good data and large data, aiming
to examine whether a large automatically curated
dataset can enhance performance; (iii) benchmark
the performance of open-sourced and closed LLMs
for the CODA-19 aspect classification task and
compare them with the best-performing SciBERT
model.

4.1 Verifying the PubMed Model

In this experiment, we aim to assess the effective-
ness of our fine-tuned PubMed model by com-
paring it with the model reported in the original
PubMed paper (Dernoncourt and Lee, 2017).

Experimental Setup. We evaluate two PubMed
models in our study: SciBERTPubMed and
SciBERTPubMed+Pos. To compare with the reported
model, we apply them to PubMed 200K test set,
which contains 29,493 samples, to predict the
PubMed label set (Background, Methods, Objec-
tive, Results, and Conclusions). We report pre-
cision, recall, and F1 scores for each label and

calculate the accuracy and macro F1 as overall met-
rics. Note that the micro F1 score provided in the
original PubMed paper is equivalent to accuracy
since each instance is assigned with only one label.
To obtain the macro F1 score, we average the F1
scores across all labels.

Results. The results shown in Table 1 demon-
strate that our SciBERTPubMed+Pos model outper-
forms the bi-ANN+CRF model (Dernoncourt and
Lee, 2017) in both of accuracy (0.919 vs. 0.916)
and macro F1 score (0.873 vs. 0.863). These
findings suggest that, despite not considering a
whole abstract simultaneously, we can achieve
competitive performance by incorporating posi-
tion encoding. Based on these results, we use
SciBERTPubMed+Pos for further comparisons.

4.2 Good Data and Large Data

In this experiment, we aim to compare whether
using a dataset with a larger amount of samples
but a slight domain shift could help improve the
performance of the CODA-19 aspect classification
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Setting Background Purpose Method Finding Other ALL

Support 250 250 250 250 250 1,250

Data Model FTR P R F1 P R F1 P R F1 P R F1 P R F1 ACC F1

C SciBERT T+P .492 .784 .605 .879 .696 .777 .710 .684 .697 .669 .632 .650 .983 .696 .815 .698 .709
P SciBERT T+P .241 .080 .120 .633 .152 .245 .288 .836 .428 .441 .672 .532 - - - .348 .332

- LLaMA Zero .212 .160 .182 1.000 .012 .024 1.000 .004 .008 .700 .056 .104 .180 .748 .291 .196 .122
- Few .402 .556 .466 .800 .240 .369 .663 .228 .339 .484 .596 .534 .556 .968 .707 .518 .483
- MPT Zero .229 .960 .370 .000 .000 .000 .923 .048 .091 1.000 .004 .008 .746 .564 .642 .315 .222
- Few .230 .304 .262 1.000 .008 .016 .667 .008 .016 .289 .824 .428 .748 .604 .668 .350 .278
- Dolly Zero .208 .956 .342 .000 .000 .000 .000 .000 .000 .304 .096 .146 .522 .048 .088 .220 .115
- Few .462 .048 .087 .615 .032 .061 .000 .000 .000 .230 .904 .367 .652 .592 .621 .315 .227

- GPT-3 Zero .435 .628 .514 .838 .268 .406 .562 .580 .571 .770 .348 .479 .543 .952 .692 .555 .532
- Few .604 .408 .487 .691 .492 .575 .783 .404 .533 .623 .528 .571 .443 .996 .613 .566 .556
- ChatGPT Zero .409 .416 .413 .833 .200 .323 .661 .436 .525 .645 .392 .488 .401 .992 .571 .487 .464
- Few .446 .516 .479 .833 .200 .323 .663 .464 .546 .621 .472 .536 .461 .988 .628 .528 .502
- GPT-4 Zero .579 .560 .569 .749 .548 .633 .562 .692 .620 .800 .416 .547 .615 .952 .747 .634 .623
- Few .570 .588 .579 .888 .444 .592 .630 .668 .649 .679 .600 .637 .646 .984 .780 .657 .647

Table 3: Performance on a randomly sampled subset of CODA-19 (Huang et al., 2020). We highlight the best
and the second-best results. The Data column specifies the training data: C: CODA-19 and P: PubMed. The FTR
column shows the feature used for the model, T: text-only, T+P: position-encoded text, zero: zero-shot learning, and
few: few-shot learning. Even the best-performing LLM, GPT-4, does not outperform SciBERTCODA+Pos, showing
the need for task-aligned data. Open-sourced models (LLaMA, MPT, and Dolly) currently show lower performance
compared to closed models.

task.

Experimental Setup. We evaluate seven dif-
ferent models on CODA-19 test set, which
consists of 15,475 samples across five la-
bels: Background, Purpose, Method, Finding,
and Other. The models include two trained
on the CODA-19 dataset (SciBERTCODA and
SciBERTCODA+Pos), two trained on the PubMed
dataset (SciBERTPubMed and SciBERTPubMed+Pos),
and three trained on a mix of the CODA-
19 and PubMed datasets (SciBERTMix+Pos+S,
SciBERTMix+Pos+U, and SciBERTMix+Pos+T). For
the PubMed models, we map the predicted labels
to the corresponding CODA-19 label using a pre-
defined mapping function: Background to Back-
ground, Methods to Method, Objective to Purpose,
Results to Finding, and Conclusions to Finding.
Note that Other (unclear or confusing sentences)
in CODA-19 does not have a corresponding label
in PubMed. We report precision, recall, and F1
scores for each label and calculate the accuracy
and macro F1 as overall metrics. For the PubMed
models, the macro F1 score is averaged over the
four valid labels.

Results. The results of our experiment are pre-
sented in Table 2. We find that SciBERTCODA+Pos
and SciBERTMix+Pos+T achieve the highest accu-
racy (0.803 and 0.805) and macro F1 (0.767

and 0.763) scores, respectively, and outperform
the other models. The best performing PubMed
model (SciBERTPubMed+Pos) does not show any im-
provement over the performance on the CODA-19
test set (accuracy: 0.630 and macro F1: 0.520);
and is particularly weak in identifying the Pur-
pose label (Purpose F1: 0.241). When compar-
ing the different mixing strategies, the models
trained with simply-mixing and upsampling per-
form even worse (accuracy: 0.777/0.799 and macro
F1: 0.706/0.755). Although the two-staged mix-
ing strategy does not yield lower scores, it only
achieves the same results as SciBERTCODA+Pos.

Since SciBERT is pre-trained on a huge amount
of scientific papers, with 82% of the papers be-
longing to the biomedical domain (Beltagy et al.,
2019), we also compare the performance of two ap-
proaches, the two-staged mixing strategy, and pure
fine-tuning, using BERT (Devlin et al., 2019). This
allows us to eliminate the impact of SciBERT’s pre-
training. The results, shown in the last two rows of
Table 2, indicate that the two-staged mixing strat-
egy does not yield the expected improvement (with
overall F1 scores of 0.754 for BERTCODA+Pos and
0.759 for BERTMix+Pos+T). Despite this, the overall
score for SciBERT remains higher. We hypothe-
size that the two-staged mixing strategy with the
classification objective may not be the best way for
adapting the model to a specific domain. Therefore,
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when large-scale pretraining, such as training SciB-
ERT, is not available, having a dedicated dataset
that aligns well with the target task is still important
and will give the best performance.

4.3 Comparison of No-Data

We investigate whether recent advances in LLMs
can solve the CODA-19 aspect classification task.

Experimental Setup. Due to resource limita-
tions, we experiment on a subset of CODA-19 test
set, where 250 samples for each of the five labels
are randomly selected, resulting in 1,250 samples.

We first include both SciBERTCODA+Pos and
SciBERTPubMed+Pos for comparison and report
scores obtained by running on the evaluation set
specifically for this experiment. Additionally, we
include six LLMs for comparison, i.e., LLaMA-
65B, MPT-7B, Dolly-12B, GPT-3, ChatGPT, and
GPT-4, each in both the zero-shot and few-shot set-
tings. A total of 14 models are included. Note that
out of the six LLMs, LLaMA-65 is the only one
not trained with instruction-following tasks. We
use the crowd workers’ annotation guidelines from
CODA-19 (Huang et al., 2020) as our zero-shot
prompt (see Table 7 in Appendix C for the actual
prompt). For the few-shot setting, we assume a
scenario where users annotate a single abstract as
an example. Thus, we randomly select one ab-
stract from CODA-19 train set that contains four
primary labels (Background, Purpose, Method, and
Finding). To avoid LLMs incorrectly considering
the order of samples as information, we shuffle
the samples in the few-shot prompt (see Table 8
in Appendix C for the actual prompt). To query
each model, we use the parameters described in
Appendix B. Once we obtain the generated texts,
we use regex to parse the predicted label. When the
predicted label is not in the CODA-19 label sets
or is missing, we treat it as Other. We report the
per-label precision, recall, and F1 score, as well as
the overall accuracy and macro F1 score.

Results. The results of our experiment are pre-
sented in Table 3. SciBERTCODA+Pos remains the
best-performing model with an accuracy of 0.698
and a macro F1 score of 0.709. We observe that the
zero-shot setting of LLaMA-65B performs poorly,
possibly due to the model not being trained for
any instruction-following tasks. The majority of
its predictions are on Background and Other labels,
leading to very low recall for Purpose, Method,

and Finding labels (0.012, 0.004, and 0.056, re-
spectively). Such biased prediction issues also
happen for MPT and Dolly in both zero-shot and
few-shot settings even though they are trained
with instruction-following datasets, suggesting that
there is still a huge performance gap between open-
sourced models and closed models.

When comparing closed models, our results
show that ChatGPT performs worse than GPT-3,
possibly due to its optimization toward human-
favored conversation. On the other hand, GPT-4
outperforms GPT-3 by a large margin but is still
unable to outperform SciBERTCODA+Pos. While we
believe that LLMs have the potential to outperform
SciBERTCODA+Pos in the future, our current results
emphasize the importance of having a dedicated
dataset that aligns well with the target task.

5 Conclusion

In this paper, we investigate the impact of differ-
ent datasets and LLMs on the CODA-19 research
aspect classification task. Our findings show that
using a huge but slightly different dataset, PubMed
200K, does not help improve performance. LLMs,
trained with massive web corpus, are also unable
to outperform the SciBERT trained on the tar-
get dataset, emphasizing the importance of task-
aligned datasets. In the future, we will explore
methods for the model to consider the context and
predict all sentences within a single abstract at
once.
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Limitations

One important aspect of achieving optimal perfor-
mance when using LLMs is the design of a high-
quality prompt. In this study, we consider both
zero-shot and few-shot learning scenarios, which
assume no or very limited task-specific data. How-
ever, iteratively refining the prompt over time to
obtain the best-performing prompt may break the
zero-shot or few-shot scenario. Moreover, the fi-
nal prompt used in this study is specifically de-
signed to guide the crowd workers in the annotation
process of the CODA-19 dataset, with frequently
asked questions (FAQs) refined over time to address
workers’ confusion. In a real-world scenario, users
would not have access to such helpful FAQs when

107



working on a new task. Therefore, the performance
of LLMs may be lower in practice.

Also, LLMs are susceptible to a data leakage
problem due to their training with Internet data. For
example, ChatGPT is known to have been trained
on Internet data prior to September 2021. Consider-
ing that the CODA-19 dataset was released in July
2020, with its train, validation, and test sets made
publicly available, there is a possibility that some
closed models have seen the exact test instances,
leading to an unfair comparison. Since the training
data are not disclosed for the closed models, the im-
pact of this exposure on the models’ performance
remains unknown.

Ethics Statement

Deploying the model in this paper would likely
result in unknown false predictions. It requires
further research to actually put it into practice.

References
Monica Agrawal, Stefan Hegselmann, Hunter Lang,

Yoon Kim, and David Sontag. 2022. Large language
models are few-shot clinical information extractors.
In Proceedings of the 2022 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1998–2022, Abu Dhabi, United Arab Emirates. Asso-
ciation for Computational Linguistics.

Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scibert:
A pretrained language model for scientific text. In
EMNLP. Association for Computational Linguistics.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877–1901.

Databricks. 2023. Databricks’ dolly, a large
language model trained on the databricks ma-
chine learning platform. https://github.com/
databrickslabs/dolly.

Franck Dernoncourt and Ji Young Lee. 2017. Pubmed
200k rct: a dataset for sequential sentence clas-
sification in medical abstracts. arXiv preprint
arXiv:1710.06071.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Lianyuan Feng, Shiyong Yao, Hejiang Sun, Nan Jiang,
and Junjie Liu. 2015. Tr-piv measurement of exhaled
flow using a breathing thermal manikin. Building
and environment, 94:683–693.

Giacomo Frisoni, Miki Mizutani, Gianluca Moro, and
Lorenzo Valgimigli. 2022. BioReader: a retrieval-
enhanced text-to-text transformer for biomedical lit-
erature. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 5770–5793, Abu Dhabi, United Arab Emirates.
Association for Computational Linguistics.

Suchin Gururangan, Ana Marasović, Swabha
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Label Id Sentence

Background 0 [POSITION=0.00] Breathing is a high-risk behavior for spreading infectious diseases in enclosed envi-
ronments ,

Background 1 [POSITION=0.07] so it is important to investigate the characteristics of human exhalation flow and
dispersal of exhaled air to reduce the risk .

Background 2 [POSITION=0.14] This paper used two-dimensional time-resolved particle image velocimetry ( 2D
TR-PIV ) to measure the exhaled flow from a breathing the rmal manikin .

Method 3 [POSITION=0.21] Since the exhaled flow is transient and periodic ,
Method 4 [POSITION=0.29] the phase-averaged method was used to analyze the flow characteristics .,

Table 4: A sample of position-encoded CODA-19 data extracted from the paper ((Feng et al., 2015)). Here, Id
indicates the sentence index with respect to the abstract. Removing the position encoding (e.g., [POSITION=0.00]),
we could get the original CODA-19 data.

Label Id Sentence

Methods 3 [POSITION=0.38] The serum levels of follicle stimulating hormone (FSH), luteinizing hormone (LH),
and estradiol (E(2)) were detected before and after the treatment.

Results 4 [POSITION=0.50] After 12 weeks of treatment, HAMD scores in both groups decreased significantly
(p<0.05) with no significant difference between the groups (p>0.05).

Results 5 [POSITION=0.62] The levels of FSH decreased significantly and the level of E(2) increased significantly
in both groups, and they changed more in the control group.

Results 6 [POSITION=0.75] No side-effect of treatment was reported in either group during treatment.
Conclusions 7 [POSITION=0.88] The Chinese medicinal formula GNL showed promise in relieving perimenopausal

depression and merits further study.

Table 5: A sample of position-encoded PubMed data extracted from Paper ID: 19769482. Here, Id indicates the
sentence index with respect to the abstract. Removing the position encoding (e.g., [POSITION=0.38]), we could
get the original PubMed data.

A Sample Data

In this section, we show some sample data for
CODA-19 dataset (Table 4) and the PubMed
dataset (see Table 5). As shown in the table, [PO-
SITION=0.38] is the position encoding we added
to inject the positional information.

B Training and Testing Details

Here, we describe all the training details for the
models we build in this study. All the models are
trained using PyTorch (Paszke et al., 2019) and
HuggingFace (Wolf et al., 2019).

• SciBERTCODA. We fine-tune SciBERT using
the original CODA-19 training set using the hy-
perparameters listed in Table 6.

• SciBERTCODA+Pos. The position encoding is
first added to create the position-encoded CODA-
19 dataset. We then fine-tune SciBERT on the
created dataset using the hyperparameters listed
in Table 6.

• SciBERTPubMed. Similar to the above but on the
original PubMed dataset.

• SciBERTPubMed+Pos. Similar to the above but on
the position-encoded PubMed dataset.

• SciBERTMix+Pos+S. We first turn the position-
encoded PubMed’s label into the CODA-19 la-
bel space using the pre-defined mapping: Back-
ground to Background, Methods to Method, Ob-
jective to Purpose, Results to Finding, and Con-
clusions to Finding. Second, we simply mix the
position-encoded CODA-19 training set with the
position-encoded PubMed training set together
to create a simply-mixing dataset. We then fine-
tune SciBERT on the created dataset using the
hyperparameters listed in Table 6. Note that the
CODA-19 validation set is used to checkpoint
the best model.

• SciBERTMix+Pos+U. As the data sizes of CODA-
19 and PubMed differ a lot (137K vs. 2.2M in
the training set), we upsample position-encoded
CODA-19’s training set 10 times to create a
more balanced upsampling dataset. Before mix-
ing, PubMed’s label has been transferred to the
CODA-19 label space using the pre-defined map-
ping function. We then fine-tune SciBERT using
this dataset with the pre-defined hyperparameters
(Table 6). Again, the CODA-19 validation set is
used to checkpoint the best model.

• SciBERTMix+Pos+T. For the two-staged training
strategy using PubMed and CODA-19 dataset,
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Hyperparameter Value

Model scibert_scivocab_uncased
Batch Size 64
Learning Rate 1e-5
Epochs 20
Metric for Best Model Evaluation Accuracy
Max Sequence Length 128
Warmup Ratio 0.1
Early Stopping Patience 6

Table 6: General hyperparameters used for training the
models. We used HuggingFace’s Trainer for fine-tuning
all the models. Parameters not specified here remain the
default values.

we first fine-tune SciBERT on the position-
encoded PubMed dataset with the pre-defined hy-
perparameters (Table 6). Here, the PubMed vali-
dation set is used to checkpoint the best model. In
the second stage, we fine-tune the checkpointed
model on the position-encoded CODA-19 dataset
with the pre-defined hyperparameters (Table 6).

• LLaMA. We obtain LLaMA-65B from the offi-
cial Github1 and run the generation using Hug-
gingFace’s interface (Wolf et al., 2019). Temper-
ature sampling is used for text generation with
temperature = 0.1, num_beams = 1, top_p = 0.95,
repetition_penalty = 1.0, min_new_tokens = 1,
and max_new_tokens = 10.

• MPT. We use mosaicml/mpt-7b-instruct and
run the generation using HuggingFace’s inter-
face (Wolf et al., 2019) with the same parameters
described in LLaMA.

• Dolly. We use databricks/dolly-v2-12b and
run the generation using HuggingFace’s inter-
face (Wolf et al., 2019) with the same parameters
described in LLaMA.

• GPT-3. We use text-davinci-003 with the
parameters: temperature = 0.0, max_tokens =
10, top_p = 0.95, frequency_penalty = 0.0, and
presence_penalty = 0.0.

• ChatGPT. We use gpt-3.5-turbo with the
same parameters described in GPT-3. Note that
when calling ChatGPT, we simply put all the
prompts in a single user input.

• GPT-4. We use gpt-4 with the same parameters
described in GPT-3. Again, when calling GPT-4,
we simply put all the prompts in a single user
input.

1https://github.com/facebookresearch/llama

C Prompts

Table 7 and Table 8 show the zero-shot prompt and
the few-shot prompt we used for querying LLMs.
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Zero-shot Prompt
Classify the given text into one of the following labels.

[Background]: Text segments answer one or more of these questions: Why is this problem important?, What relevant works have
been created before?, What is still missing in the previous works?, What are the high-level research questions?, How might this
help other research or researchers?
[Purpose]: Text segments answer one or more of these questions: What specific things do the researchers want to do?, What
specific knowledge do the researchers want to gain?, What specific hypothesis do the researchers want to test?
[Method]: Text segments answer one or more of these questions: How did the researchers do the work or find what they sought?,
What are the procedures and steps of the research?
[Finding]: Text segments answer one or more of these questions: What did the researchers find out?, Did the proposed methods
work?, Did the thing behave as the researchers expected?
[Other]: Text fragments that do NOT fit into any of the four categories above. Text fragments that are NOT part of the article.
Text fragments that are NOT in English. Text fragments that contains ONLY reference marks (e.g., "[1,2,3,4,5") or ONLY dates
(e.g., "April 20, 2008"). Captions for figures and tables (e.g. "Figure 1: Experimental Result of ...", or "Table 1: The Typical
Symptoms of ...") Formatting errors. I really don’t know or I’m not sure.

FAQs
1. This text fragment has terms that I don’t understand. What should I do? Please use the context in the article to figure out the
focus. You can look up terms you don’t know if you feel like you need to understand them.
2. This text fragment is too short to mean anything. What should I do? If the text fragment is too short to have significant
meanings, you could consider the entire sentence and answer based on the entire sentence.
3. This text fragment is NOT in English. What should I do? If the whole fragment (or the majority of words in the fragment) is
in Non-English, please label it as "Other". If the majority of the words in this fragment are in English with a few non-English
words, please judge the label normally.
4. I’m not sure if this should be a "background" or a "finding." How do I tell? When a sentence occurs in the earlier part of an
article, and it is presented as a known fact or looks authoritative, it is often a "background" information.
5. Do "potential applications of the proposed work" count as "background" or "purpose"? It should be "background." The
"purpose" refers to specific things the paper wants to achieve.
6. If the article says it’s a "literature review" (e.g., "We reviewed the literature" / "In this article, we review.." etc), would
we classify those as finding/contribution or purpose? Most parts of a literature review paper should still be "background" or
"purpose", and only the "insight" drew from a set of prior works can be viewed as a "finding/contribution".
7. What should I do with the case study on a patient? Typically, it has a patient come in with a set of signs and symptoms in the
ER, and then the patient gets assessed and diagnosed. The patient is admitted to the hospital ICU and tests are done and they
may be diagnosed with something else. In such cases, please label the interventions done by the medical staff (e.g., CT scans,
X-rays, and medications given) as "Method", and the patient’s final result (e.g. the patient’s pneumonia resolved and he was
released from the hospital) as "Finding/Contribution".

Classify the following sentence into one of the label: Background, Purpose, Method, Finding, and Other.

Text: “‘{Target-Sentence}”’
The answer label for Text is [

Table 7: Zero-shot prompt used when calling LLMs (LLaMA, MPT, Dolly, GPT-3, ChatGPT, and GPT-4). The
{Target-Sentence} will be replaced by the sentence we would like to predict.
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Few-shot Prompt
Classify the given text into one of the following labels.

[Background]: Text segments answer one or more of these questions: Why is this problem important?, What relevant works have
· · ·
· · · (Same as the zero-shot prompt that describe the definition of the label and FAQs. Skip for space.)
· · ·
Classify the following sentence into one of the label: Background, Purpose, Method, Finding, and Other.

Text: “‘With the features of extremely high selectivity and efficiency in catalyzing almost all the chemical reactions in cells ,”’
Label: [Background]
Text: “‘enzymes play vitally important roles for the life of an organism and hence have become frequent targets for drug design
.”’
Label: [Background]
Text: “‘by which users can easily obtain their desired results .”’
Label: [Method]
Text: “‘An essential step in developing drugs by targeting enzymes is to identify drug-enzyme interactions in cells .”’
Label: [Background]
Text: “‘a user-friendly web server was established ,”’
Label: [Method]
Text: “‘called “ iEzy-Drug , ” in which each drug compound was formulated by a molecular fingerprint with 258 feature
components ,”’
Label: [Method]
Text: “‘and the prediction engine was operated by the fuzzy K-nearest neighbor algorithm .”’
Label: [Method]
Text: “‘Although some computational methods were developed in this regard based on the knowledge of the three-dimensional
structure of enzyme ,”’
Label: [Background]
Text: “‘Here , we reported a sequence-based predictor ,”’
Label: [Purpose]
Text: “‘Moreover , to maximize the convenience for the majority of experimental scientists ,”’
Label: [Method]
Text: “‘It is both time-consuming and costly to do this purely by means of experimental techniques alone .”’
Label: [Background]
Text: “‘The overall success rate achieved by iEzy-Drug via rigorous cross-validations was about 91 % .”’
Label: [Finding]
Text: “‘unfortunately their usage is quite limited because threedimensional structures of many enzymes are still unknown .”’
Label: [Background]
Text: “‘each enzyme by the Chou ’s pseudo amino acid composition generated via incorporating sequential evolution information
and physicochemical features derived from its sequence ,”’
Label: [Method]
Text: “‘{Target-Sentence}”’
The answer label for Text is [

Table 8: Few-shot prompt used when calling LLMs (LLaMA, MPT, Dolly, GPT-3, ChatGPT, and GPT-4). The
{Target-Sentence} will be replaced by the sentence we would like to predict. The skipped label description and
FAQs are the same as the zero-shot prompt (see Table 7). The few-shot samples are from one single abstract to
simulate the scenario where people annotate some data as a reference.
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