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Abstract

A common metric for evaluating Automatic
Speech Recognition (ASR) is Word Error Rate
(WER) which solely takes into account dis-
crepancies at the word-level. Although use-
ful, WER is not guaranteed to correlate well
with human judgment or performance on down-
stream tasks that use ASR. Meaningful assess-
ment of ASR mistakes becomes even more im-
portant in high-stake scenarios such as health-
care. We propose 2 general measures to eval-
uate the severity of mistakes made by ASR
systems, one based on sentiment analysis and
another based on text embeddings. We evaluate
these measures on simulated patient-doctor con-
versations using 5 ASR systems. Results show
that these measures capture characteristics of
ASR errors that WER does not. Furthermore,
we train an ASR system incorporating severity
and demonstrate the potential for using severity
not only in the evaluation, but in the develop-
ment of ASR. Advantages and limitations of
this methodology are analyzed and discussed.

1 Introduction

Automatic Speech Recognition (ASR) is the task of
processing human speech into text, but no ASR is
perfect and certain types of errors can cause poten-
tial problems. ASR has drastically improved over
the past decade and has changed the way many peo-
ple interact with computers in applications such as
voice search, dictation, and virtual assistants (Yu
and Deng, 2016; Alharbi et al., 2021). It is com-
mon practice to evaluate ASR by calculating the
word error rate (WER) which can be calculated
by counting the number of words that need to be
substituted (S), deleted (D), and inserted (I) to go
from a ground-truth transcription to the output of
an ASR. This count is then divided the total num-
ber of words in the ground-truth transcription (N)
similar to Levenshtein et al. (1966), often written
as (S + I +D)/N . Essentially, WER treats each

Figure 1: WER calculations for the “I love you" ex-
ample. S, D, I represent the number of substitutions,
deletions, and insertions to go from the ground-truth
transcription to the output of an ASR. N represents the
total number of words in the ground-truth transcription.

discrepancy between the ground-truth transcription
and the ASR output equally.

However, not all ASR errors are equal. Previous
work studying ASR errors has shown that WER
is not always well correlated with human judge-
ment or performance in a given downstream task,
such as in information retrieval, natural language
understanding or named entity recognition (Garo-
folo, 1999; Galibert et al., 2016; Wang et al., 2003;
Riccardi and Gorin, 1998; Kim et al., 2021a,b). For
example, take the sentence “I love you,” and sup-
pose an ASR system produces “I loathe you.” This
results in a WER of 0.33. Now suppose another
ASR system predicts “I luv you.” This too results in
a WER of 0.33 (see example in Figure 1). Although
the WERs are equal, compared to the ground-truth
“I love you,” the mistake “luv” is less severe than
the mistake “loathe,” which gives off the opposite
meaning from the ground-truth sentence.

Being able to understand the severity of ASR
errors becomes even more critical in high-stake
scenarios such as healthcare where ASR has been
used since the 1970s (Johnson et al., 2014). In
healthcare research, transcriptions are used in a
wide variety of tasks such as in the automated de-
tection of dementia (Farzana et al., 2022), in es-
timating scores of standardized cognitive health
screening tests (Farzana and Parde, 2020), and in
in the prediction and explanation of diagnosis (Ngai
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and Rudzicz, 2022). However, these works operate
on the basis of having an intelligible and accurate
transcript. The purpose of this research is to de-
velop a method for systematically measuring and
understanding the quality of ASR systems, espe-
cially in high-stake settings like healthcare, going
beyond WER by looking at the difference in mean-
ing between the ground-truth and ASR output.

In this work, we propose two methods for the au-
tomatic rating of the severity of errors in ASR tran-
scriptions by using 1) the difference in sentiment
ratings and 2) cosine distances between text em-
beddings of the output of the ASR and the ground-
truth human transcription. We compare them with
human-labeled severity scores. Text embeddings
prove to be correlate better with human labels of
severity than WER. This work also shows senti-
ment ratings, text embeddings, and WER capture
different aspects of mistakes in transcriptions and
shows advantages and limitations of each method.
Lastly, we demonstrate the potential for severity to
be used in the development of ASR systems. We
conclude by discussing limitations and future areas
of research.

2 Related Work

To overcome the limitations of WER, other mea-
sures for ASR evaluation have been proposed such
the Match error rate (MER), and Word information
lost (WIL) (Morris et al., 2004). In the context of in-
formation retrieval, metrics based on named-entity
word error rate correlates higher with retrieval per-
formance than WER (Garofolo, 1999). However,
these methods are still based on the literal word
correctness and do not take into account semantics.

Kafle and Huenerfauth (2017) incorporate se-
mantics into a measure by including a weighted
distance between Word2Vec (Mikolov et al., 2013a)
vectors for misspelled words. They show that their
measure correlates better with the perception of
people who are Deaf or Hard of Hearing and men-
tion using sentiment analysis in future work. Kim
et al. (2021a,b), similar to this work, take into ac-
count semantics by running the ground-truth refer-
ence and ASR output through RoBERTa and obtain
an embedding for each by computing the mean of
all the output vectors of the RoBERTa model. The
ground-truth and ASR output are compared by us-
ing the cosine distance between their embeddings.
Roux et al. (2022) uses similar methods and look
at the POSER (the Part of Speech Error Rate) and

EmbER (Embedding Error Rate), a WER that is
weighted by the semantic similarity of incorrectly
transcribed words. Our work supports the results
of these works in a healthcare context as well as
explores the idea of using sentiment analysis. Fur-
thermore, our work is the first that we know of to
include some approximation of the semantic mean-
ing into the training regime of ASR.

3 Methods

When it comes to understanding and automatically
rating the seriousness of errors in ASR, one needs
to have a method for systematically analyzing the
difference in meaning between two phrases or sen-
tences. While philosophically what a body of text
truly means is a difficult question to answer, we can
capture some essence of the meaning of an utter-
ance using sentiment analysis and text embeddings.

Sentiment analysis is the task of detecting the at-
titude, emotions, or polarity of a given text. These
algorithms usually take in a string as input and out-
put a prediction from -1 to 1 based on how negative
or positive the text is. Because these algorithms
vary, we use 3 different sentiment analyzers from 3
different widely-used NLP libraries NLTK, FLAIR,
and TextBlob (TB) (Hutto and Gilbert, 2014; Ak-
bik et al., 2019; Loria et al., 2018). This is a naive
method of capturing the meaning of text because
two texts can have different meanings and both
have similar sentiment. Although overly simplis-
tic the purpose of using sentiment is to create and
test a baseline measure that captures aspects of text
besides discrepancies in spelling.

Another method for numerically capturing the
meaning of natural language is to use sentence-
level embeddings (phrases or sentences are con-
verted into n-dimensional vectors). There are a
variety of methods for embedding words that range
from simple rule-based methods to methods that
involve machine learning (Mikolov et al., 2013a;
Pennington et al., 2014; Peters et al., 2018). Simi-
larly, methods have been developed for embedding
more than just single words (Le and Mikolov, 2014;
Reimers and Gurevych, 2019). Whether for indi-
vidual words or phrases, with good embeddings,
the more semantically similar words or phrases
are, the closer they should be in the n-dimensional
vector-space (Mikolov et al., 2013a,b).

We use 4 readily available pre-trained mod-
els provided by SentenceTransformers1 to com-

1https://www.sbert.net/docs/pretrained_models.html
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pute text embeddings2: bert-base-nli-mean-tokens
(BertNLI), all-MiniLM-L6-v2 (MiniLM), all-
mpnet-base-v2 (MPNET), and all-distilroberta-v1
(DisRob) (Reimers and Gurevych, 2019; Wang
et al., 2020; Song et al., 2020; Sanh et al., 2019).
These models are selected due to their performance
in semantic similarity tasks. These models are able
to compute embeddings fast and are not too big,
ranging from 80 MB to 420 MB.

3.1 ASR Systems
We use 5 ASR systems for experimentation in order
to collect and obtain results from a variety of ar-
chitectures. We choose these architectures because
of their availability, performance and because they
can be run locally (which means one would not
have to deal with potential issues with sending sen-
sitive data over the internet to a cloud ASR system).
The five we use are Mozilla’s DeepSpeech based on
(Amodei et al., 2016) with the version 0.9.3 model
and scorer, Meta’s Wav2Vec2 (W2V2) (Baevski
et al., 2020), CMU’s Pocket Sphinx with the ’en-
us’ model and dictionary (Huggins-Daines et al.,
2006), Alpha Cephei’s Vosk using the vosk-model-
en-us-0.22 model, and OpenAI’s Whisper (Radford
et al., 2022). See Section A.1 for more details.

4 Data

For the purposes of experimenting in a healthcare
scenario, a dataset of simulated patient-physician
medical interviews is used (Fareez et al., 2022).
This dataset contains 272 audio files with tran-
scripts (about 7 to 20 minutes or from 800 to 2200
words). The conversations are categorized into
the following cases/subjects: respiratory, muscu-
loskeletal, cardiac, dermatological, and gastroin-
testinal diseases. The majority of simulations were
respiratory cases (78.7%).

The files are split into non-silent intervals us-
ing librosa3 setting the threshold of silence to 60
decibels. This results in over 39,600 non-silent
intervals, which we will call utterances. Of these,
we take a sample of 110 utterences and run them
through the ASR systems and get the ground-truth
transcription from the corresponding transcription
files. These were run through the ASR systems
to create a list of 550 pairs of strings, one string
being the ground-truth and the other coming from

2All these models compute sentence embeddings, not word
embeddings. We refer to these as text embeddings because
many of the utterances in the data are not full sentences.

3https://librosa.org/

an ASR. One of the audio files contained no speech
and was removed for a final total of 545 pairs. The
transcripts were normalized by removing speaker
identification notes “P:" and “D:" for patients and
doctors (found in the ground-truth), making all let-
ters lowercase, and by removing any special char-
acters and punctuation except for apostrophes (as
these could be important in distinguishing words
like “its" and “it’s".

150 of these pairs of transcripts were given to
3 medical school students who were asked to rate
each pair with either 0, 1, or 2 (2 being a severe
error, 1 being a not so severe error, and 0 being
a very minor error or perfect transcription). The
exact instruction given and a few examples of the
data are provided in Figure 4.

4.1 Data Validation: Do Raters Agree?

Previous work suggests that the severity of errors
in transcription is a difficult task where there is
not very good consensus among raters (Luzzati
et al., 2014). Prior to developing a measure that
rates errors in the same way a human would, it
first needs to be shown that humans do have some
methodology or consistency amongst each other
when it comes to rating the severity of errors.

Following the evaluation metrics used in Luzzati
et al. (2014), we use Cohen’s Kappa (Cohen, 1960)
and Fleiss’ Kappa (Fleiss, 1971), to measure at
inner-annotator agreement. However, these metrics
do not take in to account that the data is ordinal (i.e.
a discrepancy in ratings of values 0 and 1 is treated
the exact same as a discrepancy in values of 0 and
2 even though the latter discrepancy is greater than
the former (Falotico and Quatto, 2015)). Therefore,
since the nature of these ratings is ordinal, we also
look at the Kendall’s rank correlation coefficient
to measure the quality of the ordinal association
between two given raters (Kendall, 1938).

We calculate a Fleiss’ Kappa values of 0.452
and Cohen’s Kappa scores that range from 0.420 to
0.567, which shows moderate agreement between
raters (Table 1). The Kendall’s correlation coeffi-
cient between raters indicated a strong correlation
between rater ranging from 0.662 to 0.727 (Ta-
ble 1). Considering the subjectivity of the task, the
moderate Kappa values and high correlation values
suggest that there is reliable consistency among
raters. Having shown reliable consistency among
raters, the following sections describe the experi-
ments.
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Rater 1 Rater 2 Rater 3
Rater 1 - 0.416 0.567
Rater 2 0.727 - 0.440
Rater 3 0.718 0.662 -

Table 1: Inner-annotator agreement and correlation be-
tween raters measured by Cohen’s Kappa (upper right
quadrant) and Kendall’s correlation coefficient (lower
left quadrant).

5 Exp. 1: Testing Severity Scores

In this experiment, we test if sentiment analyzers
and/or text embeddings can rate errors similarly to
the way humans would in a healthcare setting. We
calculate the WER and various severity scores (de-
fined in Section 5.1) using the sentiment analyzers
and the language models for text embeddings. We
compare the severity scores by measuring the cor-
relation between the severity scores and the mode
human rating.

5.1 Severity Scores

Given a sentiment analyzer s(x) that outputs a
value between -1 and 1, we can take the absolute
value of the difference in sentiment and use this
as model to represent the difference in meaning or
severity. This can be expressed by the following:

Severity(x, y) = |s(x)− s(y)|

where x and y are a pair of ground-truth and
ASR output strings. This results in a rating on the
range [0, 2], where 0 would be two phrases that
have the exact same sentiment rating and a rating
of 2 would represent the most severe error possible,
having sentiments and polar extremes.

For text embeddings, knowing that similar em-
beddings should be semantically closer, we can
represent the difference in meaning as one minus
the cosine of their embeddings.

Severity(x, y) = 1− cosine(x, y)

This results in a rating on the range [-1, 1]. How-
ever, it is common practice to bound the vectors in
the positive space which would result in range of
[0, 1]. Because we are looking at the dissimilarity,
a value of 0 would represent two strings that are
the same and a value close to 1 would represent a
two strings that are very different semantically.

5.2 Experiment 1 Results

The correlations in Table 2 show WER has a corre-
lation with human ratings of severity of 0.43. All
the embedding scores correlated better with human
ratings, ranging from 0.53 to 0.59. In contrast, all
of the sentiment severity scores were less correlated
than WER, ranging from 0.29 to 0.34.

WER FLAIR MiniLM DisRob
0.43 0.34 0.55 0.59

Table 2: Correlation between human rating of severity
to WER, and severity based sentiment (FLAIR), and
severity based on text embeddings (MiniLM and Dis-
Rob). Severity scores based on text embedding correlate
the best with human ratings. For full table see Table 5
in the appendix.

This is shown graphically in Figure 2. Subplot 2c
(from DisRob) shows that embeddings do the best
job of clustering ASR errors with the same hu-
man rating together (i.e. with a similar cosine
distance). In contrast, the WERs and sentiment
scores shown in subplots 2a and 2b are more spread
out, having some severe errors with relatively low
WER/sentiment score and some non-severe errors
with a relatively high WER/sentiment score. These
correlations show that text embeddings can be bet-
ter suited for the automatic evaluation of severity in
ASR errors than WER and supports findings from
Kim et al. (2021b).

In this experiment, we only study the correlation
between the proposed severity scores and human
ratings. However, it is common for WER to be
averaged across all the utterances in a test dataset.
The average WER becomes a single value that is
used as a metric to gauge the overall performance
of ASR systems. Since the severity scores correlate
with human labels, we test these measures to see
if they can be used in a similar manner to average
WER to gauge the performance of ASR.

6 Exp. 2: Severity in ASR Evaluation

This experiment demonstrates the potential of using
the severity measures in metrics for the overall
evaluation and comparison of ASR systems. To test
this, we propose three metrics (Section 6.1). We
use the average WER and each metric to evaluate
the performance of the 5 ASR systems.

These metrics are compared with the average
WER and with each other across the ASR systems.
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(a) WER (b) Sentiment (Flair) (c) Embeddings (DisRob)

Figure 2: Graphs comparing human ratings of severity (x-axis) to WER, FLAIR and DisRob. DisRob (embeddings)
do the best job of clustering ASR errors with the same human rating together.

6.1 Metric 1: MAE of Difference in Sentiment

We propose the mean absolute error of the differ-
ences in sentiment (MAE-DS). Given a sentiment
analyzer s(x) that outputs a value between -1 and 1,
we can express the MAE-DS in the formula below:

1

n

∑

x,y∈C
|s(x)− s(y)|

where C is a corpus of pairs of ground-truth tran-
scriptions and ASR predictions and n is the number
pairs. x and y are a set of ground-truth and pre-
dicted utterances from C.

The output of this metric will range from 0 to
2, and will be simple to interpret. For example, a
MAE-DS of 0.5 indicates that, in terms of senti-
ment, the ASR’s output is, on average, 0.5 off of
the ground-truth.

6.2 Metric 2: MSE of Difference in Sentiment

The second metric we propose is the mean squared
error of the differences in sentiment (MSE-DS).
Similar to the first metric, given a sentiment ana-
lyzer s(x) we can write this in the formula below:

1

n

∑

x,y∈C
(s(x)− s(y))2

where, C is a corpus of pairs of ground-truth
transcriptions and ASR predictions and n is the
number pairs. x and y are a set of ground-truth and
predicted utterances from C.

The range of this metric is from 0 to 4. Because
sentiment scores are squared, this will penalize
more heavily the ASR errors that have a greater
distance in sentiment from the ground-truth.

6.3 Metric 3: Sentence Similarity using
Language Models

For the third metric, we propose using the mean of
the cosine distance. This can be written with the
following formula:

1

n

∑

x,y∈C
1− cosine(x, y)

where C is a corpus of pairs of ground-truth and
ASR output and n is the number pairs. x and y are
a set of embeddings of a given ground-truth and
ASR output from C.

6.4 Experiment 2 Results

The results are summarized in Table 3. For all the
metrics, the lower the value the better. Generally,
results are consistent, no matter which metric used,
the majority show that Whisper has the best per-
formance followed by Vosk. Following these in
performance are DeepSpeech2 (DS2), Wav2Vec2
(W2V2), and PocketShpinx (PS). We go into more
depth and show to what extent these metrics agree
and where the metrics disagree, in order to gain
insights about what information these metrics are
capturing.

From Vosk to Whisper there is decrease in WER
of about 0.034, and the average decrease in the co-
sine distance over the 4 language models is quite
small, around 0.009. In another example, the de-
crease in WER from DeepSpeech2 to Vosk is 0.175
while the average decrease cosine distance over the
4 language models is greater at 0.176. These dif-
ferences show that the rate of improvement in the
severity (cosine distance) is not necessarily related
to rate of improvement in WER (i.e. one metric
can improve greatly while the other not so much).

To further demonstrate the differences of these
metrics, we look at specific examples where WER
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Base Measure Metric DeepSpeech2 PockSphinx Vosk Whisper Wav2Vec2
WER Average WER 0.482 0.910 0.307 0.273 0.525

Sentiment
NLTK_mae 0.127 0.241 0.062 0.056 0.127
FLAIR_mae 0.620 0.700 0.324 0.322 0.516
TB_mae 0.111 0.181 0.050 0.029 0.120

Sentiment
NLTK_mse 0.057 0.141 0.022 0.020 0.048
FLAIR_mse 0.981 1.132 0.459 0.473 0.788
TB_mse 0.051 0.086 0.026 0.010 0.044

Cosine
Distance

MiniLM 0.361 0.649 0.171 0.153 0.403
BertNLI 0.188 0.398 0.079 0.093 0.181
MPNET 0.400 0.688 0.193 0.180 0.400
DisRob 0.388 0.676 0.189 0.172 0.406

Table 3: Results of Experiment 2. The top row shows each of the ASR systems. The following row shows the WER.
The labels in the first column that end in mae and mse are the mean absolute error and the mean squared error of the
difference in sentiment scores respectively. The last for rows are the average cosine distance.

and measures of severity disagree. We do this by
analyzing the most severe errors according to one
measure while another measure is kept relatively
low. We first look at the most severe according
to FLAIR sentiment scores while keeping WER
below 0.5 (examples of this are shown in the first 6
rows in Table 6, in the appendix). We then look at
the most severe according to cosine distance while
still keeping WER below 0.5 (shown in the middle
group of 6 in Table 6). Finally, we look at the most
severe according to WER while keeping the cosine
distance below 0.5 (the last 6 rows in Table 6).
These edge case examples show advantages and
limitations of WER, sentiment scores, and scores
based on text embeddings.

6.5 Advantages and Limitations
All of the examples mentioned in this section are
shown in Table 6 in the appendix.

WER has the main advantage of being simple
and consistent. Unlike sentiment or text embed-
dings, there are not multiple models. The main
limitation of WER is that, because it is not based
on any understanding or model of the language,
there are severe errors that have a relatively low
WER, and vice versa, there are non-severe errors
that have a high WER such as a multivitamin vs. a
multi vitamin.

Sentiment has strong limitations due to the fact
that these algorithms are designed to only mea-
sure how positive or negative a text is. Sentiment
proved to be sensitive to misses in disfluencies like
um or uh. This is highlighted in the example, uhm
it started last night vs and it started last night,

where there was a strong difference in sentiment
of 1.707. This can be an advantage or a limitation
depending on the scenario. Many ASR systems
overlook disfluencies, but, for example in human
robot interactions, spoken dialogue systems, or in
the prediction of dementia status, disfluencies can
be vital to understanding and performance (Bau-
mann et al., 2017; Clark and Tree, 2002; Farzana
et al., 2022; Lopez-de Ipiña et al., 2017; Mueller
et al., 2018).

There is the also a limitation on the accuracy of
the model. In the examples any previous surgeries
vs. any previous surgery or uh i smoke about a pack
a day vs. uh smoke about a pack of day, there is a
high difference in sentiment yet the only difference
is in missing the pronoun i or the plural of surgery,
which should not affect sentiment greatly.

Despite these limitations, sentiment is able to
catch some severe errors where the WER is rela-
tively low. In the example where crystal meth be-
comes crystal mud or where chest pain becoming
chatting the WER is 0.125 and 0.333 respectively,
but the difference in sentiment is very high at 1.858
and 1.889 respectively.

Text embeddings are limited by the performance
of the model, like sentiment, yet capture more than
just polarity of a given text. Knowing that many
of these models are trained in a self-supervised
manor using the context in the training text, we
can see how the embeddings in the example of my
parents and our friends would be similar. Both of
these phrases could occur in with similar surround-
ing text; they have the same grammatical structure
(a possessive adjective followed by a noun) and
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parents and friends are both human relationships.
Another limitation on these models is the amount

of text they can handle. Anything above the
model’s limit gets truncated, and consequently,
loses the meaning of truncated text. Although utter-
ances are commonly short in ASR training data, the
character limitation on these models could affect
performance on longer utterances.

Despite these limitations, text embeddings were
able to capture well the differences in meaning.
Text embeddings were able to give a high score to
the examples where crystal meth becomes for sun-
light and where chest pain becomes testing when
WER and sentiment scores were relatively low.
Text embeddings were also able to give low rat-
ings for different writings of the word okay and
numbers (ok vs. okay, or uh thirty eight degrees vs.
38 degrees) when WER were high.

7 Exp. 3: Using Severity to Improve ASR

Up to this point results show that 1) there is reli-
able consistency among human raters, 2) the cosine
distance of text embeddings correlates better with
human labels of severity than WER, and 3) using
sentiment or text embeddings in a metric for the
overall evaluation of ASR captures different infor-
mation than WER. With these results established,
the purpose of this experiment is to test if an au-
tomatic measure of severity can be used in more
than just the evaluation of ASR, but in the training
regime as well.

Previous work done in the study of ASR errors
involves approaches to automatically detect errors
using word and text embeddings (and even other
features such as acoustic/prosodic features), (Ghan-
nay et al., 2015, 2018, 2020) and to automatically
repair errors in specific cases (such as in certain
homophones in French) (Dufour and Estève, 2008).
However, instead of ASR error detection or repair
which happens post-prediction, our approach is to
include severity into the training of an ASR system
in an attempt to reduce the number of errors (mea-
sured by WER) and to reduce the overall severity
of the errors produced (measured by the average
cosine distance from Section 6.3). To do this, we
incorporate severity into the loss function during
training of an ASR.

7.1 Using Severity in the Loss Function

It is common for ASR systems that involve neural
networks to be trained using the Connectionist Tem-

poral Classification (CTC) loss function (Graves
et al., 2006). This algorithm allows one to work
with data where both inputs and outputs can vary
in length such as in handwriting recognition and
speech recognition. Taking advantage of dynamic
programming methods, given and input of audio X
and a ground-truth transcript Y , CTC can calculate
efficiently p(Y |X).

To incorporate severity into the loss function,
the cosine distance is used as a weight in the loss
function. To calculate this weight, w, the cosine
distance is limited in the range from a near-zero
number, 1.0× 10−7, to 1. This is shown in Equa-
tion 1, where w is the weight that represents the
severity between the ground-truth, Ytruth, and the
output of the ASR, Ypred. This weight is multi-
plied by the CTC loss value to get the final loss
(Equation 2).

This results in a function where the original CTC
loss is scaled down, along with the gradients dur-
ing training proportional to semantic similarity be-
tween the ground-truth and ASR output.

w = 1−max(1.0×10−7, cos(Ytruth, Ypred)) (1)

L = w ∗ CTC (2)

We will refer to this proposed loss function as a
CTC-by-Cosine loss function. For this experiment,
we use the all-MiniLM-L6-v (MiniLM) to gener-
ate the embeddings for the ground-truth and ASR
predictions.

7.2 Architecture

The system we implement is based on Deep-
Speech2 (Amodei et al., 2016), where the input is
spectrogram from audio files and the output is the
probability distribution of over a set of characters
at each time step. The set of characters consists of
all the letters of the English alphabet along with the
following characters: apostrophe, questions mark,
exclamation mark, and blank symbol.

The system starts with two 2D convolutional lay-
ers with kernels [11, 41] and [11, 21], both with 32
filters, batch normalization, and is passed through
a ReLU activation function after each layer. After
the convolutions, there are five bidirectional gated
recurrent layers (GRU) each with 512 units with a
dropout layer with a rate of 0.5 after each recurrent
layer except for the last one.
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Figure 3: Components of ASR System from Exp. 3.

After the last recurrent layer there are two dense
layers. The first one maintains the same size as the
recurrent layers and is passed through a ReLU layer
and a dropout layer (with a rate of 0.5). The second
dense layer is the output layer with softmax as the
activation function. Adam is used for optimization
with a learning rate of 1.0×10−4. Figure 3 depicts
the core components of this model.

This results in a system of about 26M param-
eters. This is relatively small compared to other
ASR systems. For example, DeepSpeech2 has 38M
parameters, the base version of Wav2Vec2 has 95M
parameters, and the base version of Whisper con-
tains 74M parameters. However, the purpose of
this experiment is not to achieve state of the art
performance with a novel architecture, it is to test
on a smaller scale the plausibility of using severity
in the development of ASR.

7.3 Data and Training Regime
Because the 109 utterances of the simulated patient
doctor conversation files is insufficient to train an
ASR system, for this experiment we use the LJ
Speech Dataset which consists of “13,100 short
audio clips of a single speaker reading passages
from 7 non-fiction book” (Ito and Johnson, 2017).

We train 2 systems on the first 90% percent of
the data, withholding the last 10% for validation.
The baseline system has the architecture described
above and uses only the CTC loss function. The
second system uses the exact same architecture and
training regime, but uses the CTC-by-Cosine loss
function for the last 5 epochs.

7.4 Experiment 3 Results
Results show improvements in both severity (aver-
age cosine distance) and WER when incorporating
severity into the loss function. From the baseline to
the CTC-by-Cos system, there is a relative decrease
of about 85% in severity and WER on the training

Model Base CTC-by-Cos
Train WER 0.058 0.008
Train COS 0.051 0.006
Val WER 0.268 0.219
Val COS 0.249 0.201

Table 4: Performance of base and CTC-by-Cos systems
on both training (Train) and validation (Val) datasets.
COS is the average cosine distance from Section 6.3.

dataset, from 0.058 WER and 0.051 average cosine
distance to a 0.008 WER and 0.006 average cosine
distance. For the validation data there was a rela-
tive decrease of about 18% in severity and WER on
the validation dataset, from 0.268 WER and 0.249
average cosine distance to a WER and average co-
sine distance of 0.219 and 0.201 respectively (see
Table 4). This improvement in performance sug-
gests that there is potential to use severity in the
development of ASR to decrease both the overall
severity and WER. To the best of our knowledge,
this is the first work demonstrates the value of using
semantics in the training of ASR, working towards
the areas of future work mentioned in Kim et al.
(2021a,b).

8 Conclusion

Automatic Speech Recognition (ASR) is becoming
an increasingly important tool from personal use
to the medical field. However, Word Error Rate
(WER), a common metric for evaluation, only takes
into account word discrepancies (i.e. Figure 1). In
this study we 1) compare WER and measures of
severity based on sentiment and text embeddings
to human labels of severity in a healthcare setting,
2) use these measures in metrics to evaluate the
overall quality of mistakes in transcriptions, and 3)
incorporate severity into the training of WER.

Results show that 1) cosine distance of text em-
bedding correlates better with human ratings than
WER, 2) these measures based on sentiment and
text embeddings capture different qualities in ASR
errors and can overcome limitations of WER, and
3) incorporating severity into the training of an
ASR system increased performance, lowering the
overall severity and WER significantly. In future
work, we will experiment with different architec-
tures, data, and methods for using semantics in the
training of ASR systems.
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Limitations

Aside from the limitations of these proposed mea-
sures mentioned in Section 6.5, we acknowledge
other limitations here. The conclusion drawn here
were based on a limited amount of raters and data.
While we believe the data to be fairly represen-
tative, the results are consistent with other work,
more raters from the medical field, more audio data,
and in a variety of contexts should be used to make
these empirical results more concrete.

We also acknowledged limitations of Experi-
ment 3 (Section 7). We only experiment with one
architecture and one dataset. While mathemati-
cally using severity as signal (in a way acting as
an adjustable learning rate) proportional to the se-
mantic distance seems reasonable, to make more
conclusive results on this methodology, a variety
of architectures, seeds, and audio data would make
results more conclusive.
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A Appendix

A.1 Summary of ASR Systems
Mozilla’s DeepSpeech2 (DS2) is an implemen-
tation of Amodei et al. (2016). In this architecture,
Recurrent Neural Networks take in spetrograms
from an audio file and are trained to output text4.

Meta’s Wav2Vec2 (W2V2) is a model proposed
by Baevski et al. (2020). Unlike DeepSpeech, this
architecture operates directly on the raw audio data
instead of spretrograms. The model is trained first
in a semi-supervised method on many hours of
unlabeled speech data and then is fine tuned on
labeled data. This model is made easily accessible
by HuggingFace 5.

CMU’S PocketSphinx (PS) is one of the lighter
ASRs we use (Huggins-Daines et al., 2006). PS is
a light-weight ASR that is a part of the open source
speech recognition tool kit called the CMUSphinx
Project. This model was trained on 1,600 utter-
ances from the RM-1 speaker-independent training
corpus. Unlike the previously mentioned models,
PS does not use neural networks and is instead
based on traditional methods of speech recognition
by using Hidden Markov Models, language models,
and phonetic dictionaries.6

Alpha Cephei’s Vosk (with the vosk-model-en-
us-0.22 model) is built using Kaldi (Povey et al.,
2011), and like PS, uses an acoustic model, lan-
guage model, and phonetic dictionary. However
unlike PS, Vosk uses a neural network for the acous-
tic model part of the system.7

OpenAI’s Whisper unlike Wave2Vec2, uses a
purely supervised method of training gathering
680K hours of transcribed content from the in-
ternet in 99 different languages (Radford et al.,
2022). Following other architectures such as Deep-
Speech2, this model takes spectrograms of audio
as input, but instead of Recurrent Neural Networks,

this models uses an encoder-decoder Transformer
architecture based on Vaswani et al. (2017) with
a variety of special tokens used to indicate which
task is being performed (ex. transcription or transla-

4https://deepspeech.readthedocs.io/en/latest/
index.html

5https://huggingface.co/docs/transformers/
model_doc/wav2vec2

6https://github.com/cmusphinx/
pocketsphinx-python

7https://alphacephei.com/vosk/
tion). For our experiments, we use the base model8

(consisting of 74 million parameters).

A.2 Rater Credentials
All three raters are currently enrolled in a doc-
toral program at the Idaho College of Osteopathic
Medicine (ICOM). Experience of the members in-
cludes medical research at locations such as the
Mayo Clinic and the University of Utah, work as
a Spanish-English interrupter in medical clinics,
work as an anesthesia technician, and holding po-
sitions such as student representative on ICOM’s
research committee.

A.3 Instructions given to Raters

Figure 4: Image showing the instructions given to raters
and a few example pairs of sentences with the correct
transcription on the left, the output of ASR in the middle
and the human rating of severity on the right.

8https://huggingface.co/openai/whisper-base
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WER NLTK FLAIR TextBlob MiniLM BertNLI MPNET DisRob
0.43 0.29 0.34 0.29 0.55 0.53 0.56 0.59

Table 5: Correlation between human rating of severity to WER, and severity based sentiment (NLTK, FLAIR, and
TextBlob), and severity based on text embeddings (MiniLM, BertNLI, MPNET, and DisRob). Severity scores based
on text embedding correlate the best with human ratings.

Ground-Truth
ASR output

FLAIR MiniLM WER ASR

uh i smoke about a pack a day
uh smoke about a pack of day

1.929 0.104 0.250 Whis.

and how often do you use crystal meth
and how often do you use crystal mud

1.858 0.371 0.125 Whis.

ok sounds like a a pretty stressful job
and like a pretty stressful job

1.850 0.298 0.375 DS2

uhm it started last night
and it started last night

1.707 0.138 0.200 W2V2

what they did for your heart attack
what they did for your herd attack

1.617 0.546 0.143 W2V2

any previous surgeries
any previous surgery

1.580 0.111 0.333 DS2

nothing has seemed to make it any...
dorthins seemed to make him any...

0.003 0.692 0.364 W2V2

what they did for your heart attack
what they did for your herd attack

1.617 0.546 0.143 W2V2

and how often do you use crystal meth
and how often do you use for sunlight

0.010 0.512 0.250 Vosk

that you’re experiencing some chest pain
that you’re experiencing some testing

0.049 0.469 0.333 Whis.

about the same ok and has it gotten...
the same moqe and has it gotten more...

0.028 0.461 0.200 W2V2

that you’re experiencing some chest pain
that you’re experiencing some chatting

1.889 0.456 0.333 Vosk

ok
okay

1.094 0.061 1.000 DS2

a multivitamin
a multi vitamin

0.000 0.150 1.000 DS2

my parents
our friends

0.005 0.370 1.00 PS

i’ve tried uh
i have tried add

1.733 0.451 1.000 Vosk

uh thirty eight degrees
38 degrees

0.161 0.177 0.750 Whis.

uh thirty eight degrees
the degrees

0.007 0.324 0.750 DS2

Table 6: Examples of severe errors. The first 6 and second groups of 6 are based on sentiment and text embeddings
respectively while WER is kept below 0.5. The last 6 are based on WER whie cosine distance of text embeddings is
kept below 0.5.
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