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Abstract

This paper presents our contribution to the
RadSum23 shared task organized as part of
the BioNLP 2023. We compared state-of-the-
art generative language models in generating
high-quality summaries from radiology reports.
A two-stage fine-tuning approach was intro-
duced for utilizing knowledge learnt from dif-
ferent datasets. We evaluated the performance
of our method using a variety of metrics, includ-
ing BLEU, ROUGE, Bertscore, CheXbert, and
RadGraph. Our results revealed the potentials
of different models in summarizing radiology
reports and demonstrated the effectiveness of
the two-stage fine-tuning approach. We also
discussed the limitations and future directions
of our work, highlighting the need for better
understanding the architecture design’s effect
and optimal way of fine-tuning accordingly in
automatic clinical summarizations.

1 Introduction

Summarization of radiology reports is a useful tool
for both doctors and patients. It allows doctors to
quickly prioritize and extract essential information
from long documents, saving time and improving
patient outcomes. This is especially beneficial in
medical settings, where time is often limited and
there may be a large volume of documents to re-
view.

The rapid development of natural language pro-
cessing (NLP) techniques, particularly large gener-
ative language models such as GPT (Radford et al.,
2018), have significantly advanced the field of au-
tomatic text summarization. However, there is still
much to explore when it comes to generating sum-
maries for specific domains or tasks. For example,
generating radiology reports is a challenging task
that requires specialized knowledge and language
expertise. Radiology reports are typically written
in a specific format and include complex medical
terminology, which makes it difficult for traditional

summarization techniques to produce accurate and
comprehensive summaries.

In the past, several methods have been proposed
for radiology report summarization. Chen et al.
(2018) developed a method for generating sum-
maries of radiology reports using an attention-
based neural network. Zhang et al. (2018) ex-
plored the problem using an augmented pointer-
generator model resulted in high overlap with
human-generated references. Based on this work,
MacAvaney et al. (2019) then built an ontology-
aware pointer-generator, which led to improved
summarization quality. Furthermore, Delbrouck
et al. (2022b) proposed ViLMedic, which is a repli-
cable pipeline that can reproduce the latest results
in various medical tasks using multimodal data re-
sources (images and texts) for generating radiology
reports.

This paper investigates transfer learning method-
ologies for adapting large generative language mod-
els to the specific domain of radiology report gener-
ation. Our main contribution involves a two-stage
fine-tuning procedure on a large corpus of radi-
ology reports to handle the specialized language
and structure of these reports. We conducted ex-
periments using two clinical datasets: MIMIC-III,
which includes various kinds of radiology reports,
and MIMIC-CXR, which includes only chest x-
ray radiology reports. The work and results are
presented as part of the RadSum23 shared task at
BioNLP 2023 (Delbrouck et al., 2023).

2 Task Description and Dataset

The goal of this research is to generate a summary
("Impression" section in Table 1) that highlights the
key observations and conclusions of the radiology
study. They are generally written by a radiologist
after analyzing medical images such as X-rays or
CT scans ("Findings" section in Table 1). Our
group focused on the textual data and work only
on the text-based radiology reports.
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Findings: the patient is status post intubation.
note is made of degenerative disc disease in-
volving multiple levels of c-spine, however,
there is no evidence of fracture of the cervical
spine. again note is made of multiple skull
base fractures, as noted on the prior head ct.
note is made of multiple hemorrhagic contu-
sions in posterior fossa, as noted in the prior
head ct. the lung apices are unremarkable.
note is made of small amount of deep tissue
emphysema posterior to the clavicles.
Impression: multiple skull fractures and hem-
orrhagic contusions as noted on the prior head
ct. no evidence of c-spine fractures. djd of the
c-spine. small amount of distal air posterior to
the clavicles. the information has been com-
municated with ed physicians in person.

Table 1: A radiology report sampled from MIMIC-III.

Two datasets are used in this challenge: the
MIMIC-III and MIMIC-CXR Radiology Report
Summarization datasets (Johnson et al., 2016,
2019). MIMIC-III radiology reports contains free-
text radiology reports from the Beth Israel Dea-
coness Medical Center. It contains radiology re-
ports from various modality-anatomy including
head, abdomen chest, etc. MIMIC-CXR radiology
reports, which is a subset of MIMIC-IV dataset,
that only contains chest radiology reports.

In terms of the evaluation, the test-sets has been
split into two by the organizers. The details of data
description can be found in Table 2.

Dataset Train Val Test

MIMIC-III 59,320 7,413 6,526
MIMIC-III(hidden) 6,531
MIMIC-CXR 125,417 991 1,624
MIMIC-CXR(hidden) 1,000

Table 2: Data description of RadSum23 shared task.

3 Methods

We applied pre-trained language models that are
specific for generative tasks. The models are fine-
tuned for the task of radiology report summariza-
tion. Specifically, we fine-tuned two different types
of pre-trained models - BART (Lewis et al., 2019)
and T5 (Raffel et al., 2020). By fine-tuning these
models on a large corpus of radiology reports, we

aim to generate high-quality summaries that cap-
ture the most important information in the reports.

The BART model, developed by Facebook
(Lewis et al., 2019), is a denoising auto-encoder
designed for pre-training sequence-to-sequence
(Seq2Seq) models. It combines the state-of-the-
art (SOTA) performance of both the BERT (Devlin
et al., 2018) and GPT (Radford et al., 2018) models,
inheriting the bidirectional encoder and left-to-right
decoder models’ benefits. Because it is constructed
on the Seq2Seq Transformers architecture, BART
is an excellent choice for abstractive summariza-
tion, as it can generate novel text and paraphrase
the input text. BART’s original pre-training in-
volved masked language modeling (MLM) with
six noises, an enhancement of the BERT model’s
single noise masking strategy, making it less likely
to learn biased information.

T5, short for Text-To-Text Transfer Transformer,
was proposed by Google and utilizes the standard
transformer architecture pre-trained on denoising,
where spans of text are replaced with a drop to-
ken. T5 was trained using a "text-to-text" approach,
which means it can perform a wide range of tasks
by converting input text into output text, such as
language translation, summarization, question an-
swering, and even programming tasks. T5 is also
known for its ability to perform well with few-shot
learning, meaning it can quickly adapt to new tasks
with just a few examples.

BART and T5 are both transformer-based ar-
chitectures with subtle differences in their layer
configurations. T5 is trained as a causal language
model (i.e., predicting next tokens), while BART is
trained on a masked language modeling objective.
Their performances vary depending on the specific
tasks.

To optimize the performance and generalizabil-
ity of our approach, we employed a two-stage
fine-tuning process using two different datasets -
MIMIC-III and MIMIC-CXR. In the first stage,
we fully fine-tuned the pre-trained model on the
MIMIC-III dataset using the typical fine-tuning ap-
proach. This involved training the model on the
dataset to adapt it to the specific task of radiology
report summarization. In the second stage, we per-
formed another round of fine-tuning on the MIMIC-
CXR dataset by freezing the last two layers in the
encoder and decoder. It is assumed that freezing
the last two layers can help prevent the model from
overfitting the training data. Lower layers tend to

536



learn more generalizable feature representations,
while higher layers may be more prone to overfit-
ting on the specific patterns of the training data. By
freezing the last two layers, we can limit the degree
of fitting to the training data, enabling the model to
generalize better on new, unseen data.

Overall, the two-stage fine-tuning process is a
key component of our approach, allowing us to
leverage the strengths of both datasets and opti-
mize the performance of the model on the task of
radiology report summarization.

3.1 Experiment Setup
For comparison, we fine-tuned BART base model1

and BioBART model 2(Yuan et al., 2022), T5 base
model3 and SciFive model 4(Phan et al., 2021).
BioBART is a generative language model that
adapts BART to the biomedical domain by pre-
training on large PubMed corpora. SciFive is a
domain-specific T5 model that pretrained on large
biomedical corpora.

We tuned the hyper-parameters during the train-
ing phase to optimize the performance of our ap-
proach. The initial learning rate is 2e-5. The maxi-
mum epochs used for training is set to 20 with batch
size of 16. The maximum length for input data is
1024. The maximum length for output is 128. The
beam size is set to 5, and no_repeat_ngram_size
is set to 2. Other hyper-parameters are set as their
default values.

3.2 Evaluation Metrics
According to the instructions, we consider five
evaluation metrics for this work, including BLEU,
Rouge, BERT score, CheXbert, and RadGraph (Pa-
pineni et al., 2002; Lin, 2004; Zhang et al., 2019;
Smit et al., 2020; Delbrouck et al., 2022a).

BLEU and Rouge scores measures the overlap
between the generated summary and references
based on n-grams (Papineni et al., 2002; Lin, 2004).
The main difference between Rouge and BLEU is
that Rouge emphasizes recall and BLEU focuses
on precision. This means that Rouge is more fo-
cused on capturing the important content of the
summary, while BLEU is more focused on ensuring
that the summary is grammatically correct and flu-
ent. BERT score measures the similarity between
the embeddings of the machine-generated text and

1https://huggingface.co/facebook/bart-base
2https://huggingface.co/GanjinZero/biobart-base
3https://huggingface.co/t5-base
4https://huggingface.co/razent/SciFive-base-Pubmed

the references based on the contextual embeddings
generated by the BERT model (Zhang et al., 2019).
CheXbert revised the BERT score by adding expert
annotations on Chest X-rays (Smit et al., 2020).
RadGraph is a metric used for evaluating radiology
report generation (Delbrouck et al., 2022a). It pro-
vides better domain-adjusted evaluation based on a
novel Information Retrieval(IE) method (i.e. enti-
ties and relationships) from MIMIC-CXR dataset.

4 Experiments and Results

Table 3 and Table 4 present the experimental results
obtained from the MIMIC-III and MIMIC-CXR
datasets. In the MIMIC-III experiments, we per-
formed fine-tuning on four models and evaluated
their performance on the two test sets: MIMIC-III
test set and the MIMIC-III hidden test set. The
BART model achieved the highest overall perfor-
mance on both test sets, while the BioBART model
achieved the highest Bertscore on the MIMIC-III
test set and the highest RadGraph score on the
MIMIC-III hidden test set.

For the MIMIC-CXR experiments, we per-
formed a second round of fine-tuning on the mod-
els that were previously fine-tuned on MIMIC-III.
The baseline model in Table 4 refers to the model
that underwent only one round of fine-tuning us-
ing the MIMIC-CXR data. To evaluate the perfor-
mance, we included the CheXbert F1 score as it
is commonly used for evaluating chest X-ray ra-
diology reports. Overall, the T5 model achieved
the best performance on the MIMIC-CXR test set,
while the BART and BART_freeze models had
higher RougeL and Bertscore. In terms of the
MIMIC-CXR hidden test set, T5 achieved the best
performance, while T5_freeze had the highest F1
CheXbert score. The results showed that our two-
stage fine-tuning approach yielded better perfor-
mance than the baseline model in both test sets.

In summary, our experimental results demon-
strated that BART and T5 models have differ-
ent strengths and may perform better on different
datasets or evaluation metrics. This may due to
various factors, such as the size and complexity of
the dataset, the quality of the training data, etc.

There is considerable potential for future im-
provements to our approach. Firstly, our results
suggest that freezing the last two layers of the mod-
els may yield some advantages, but this finding
requires further investigation to fully understand
the effects of this approach. Secondly, we acknowl-
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Models BLEU4 RougeL Bertscore F1-RadGraph

BART 13.86 32.22 54.61 32.49
BioBART 13.24 32.14 54.76 32.45
T5 13.40 31.48 54.27 31.74
scifive 12.59 31.99 54.49 32.42

BART(hidden) 13.69 32.12 55.65 33.22
BioBART(hidden) 13.23 32.02 55.64 33.39
T5(hidden) 13.27 31.49 55.03 32.06
scifive(hidden) 12.37 31.79 55.24 33.03

Table 3: MIMIC-III test results.

Models BLEU4 RougeL Bertscore F1-CheXbert F1-RadGraph

BART 22.92 46.53 63.85 74.56 47.98
BART_freeze 21.40 46.34 66.63 73.48 46.89
T5 22.97 46.15 63.43 75.14 48.04
T5_freeze 22.54 46.27 63.24 74.00 47.82
baseline 14.12 27.67 47.44 66.58 29.51

BART(hidden) 11.92 32.00 53.30 66.01 38.21
BART_freeze(hidden) 9.43 30.22 51.76 64.91 35.38
T5(hidden) 14.41 33.63 54.72 67.20 39.98
T5_freeze(hidden) 13.69 33.08 54.47 68.45 39.69
baseline 17.07 32.28 54.45 67.77 37.38

Table 4: MIMIC-CXR test results.

edge that there are limitations to our current train-
ing process, and we believe that improvements can
be made to further optimize the performance of our
models. Specifically, we plan to explore alterna-
tive training strategies and hyper-parameter tuning
methods to improve the performance of our mod-
els on the MIMIC-III and MIMIC-CXR datasets.
Additionally, we recognize the importance of test-
ing our models on larger datasets and expanding
the scope of our evaluations to include other nat-
ural language processing tasks. Finally, we will
continue to monitor developments in the field and
adapt our methods accordingly to ensure that we
remain at the forefront of natural language process-
ing research.

5 Conclusion

This paper presented our investigation into trans-
fer learning for the radiology report summarization
task. Specifically, we conducted a comprehensive
evaluation of different pre-trained language models
which were built by deploying encoder-decoder ar-
chitectures. We introduced a two-stage fine tuning

methodology which involved BART, T5, and their
variants in the biomedical domain, and compared
their performances on the summarization task.

We also evaluated the effectiveness of our ap-
proach using various metrics, such as BLEU,
ROUGE, Bertscore, CheXbert, and RadGraph, and
demonstrated that our method achieved high per-
formance on the summarization task. In fact, our
approach was ranked third on the leaderboard of the
RadSum23 MIMIC-CXR hidden test set, highlight-
ing the competitiveness of our approach compared
to other methods.
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Models BLEU4 RougeL Bertscore F1-RadGraph

shs-nlp 18.36 35.32 57.26 36.94
utsa-nlp 16.05 34.41 57.08 36.31
aimi 16.61 33.43 55.54 35.12
sinai 17.38 32.32 55.04 33.96
knowlab 13.23 32.02 55.64 33.39
nav-nlp 15.13 32.39 55.34 33.37
elirf 18.06 30.19 53.94 32.58

Table 5: Leaderboards for MIMIC-III hidden test-set (6531 sample)

Models BLEU4 RougeL Bertscore F1-RadGraph

utsa-nlp 15.99 34.07 56.30 35.25
shs-nlp 17.33 33.93 55.49 34.93
nav-nlp 15.31 32.33 54.49 32.68
sinai 17.12 31.62 54.33 32.65
knowlab 13.86 32.22 54.91 32.49
elirf 17.41 29.57 52.24 31.40
aimi 1.25 24.45 45.54 21.24

Table 6: Leaderboards for MIMIC-III test-set (6526 sample)

Models BLEU4 RougeL Bertscore F1-cheXbert F1-RadGraph

ku-dmis-msra 18.62 34.57 55.90 72.36 43.20
utsa-nlp 16.33 34.97 55.54 69.41 42.86
knowlab 14.41 33.63 54.72 67.20 39.98
shs-nlp 14.59 32.43 53.99 68.99 38.40
aimi 5.15 31.84 47.83 64.18 32.05
iuteam1 1.99 26.08 46.75 40.28 27.35
e-health csiro 4.12 21.58 43.86 53.46 23.86
nlpaueb 5.03 19.87 41.84 50.69 23.26

Table 7: Leaderboards for MIMIC-CXR hidden test-set (1000 sample)

Models BLEU4 RougeL Bertscore F1-cheXbert F1-RadGraph

utsa-nlp 25.87 47.86 64.74 77.93 51.84
ku-dmis-msra 25.58 47.75 64.80 76.29 50.96
shs-nlp 25.32 47.48 63.61 74.34 49.00
knowlab 22.97 46.15 63.43 75.14 48.04
e-health csiro 17.97 44.14 61.47 71.67 44.95
iuteam1 10.10 40.44 56.44 58.01 39.48
nlpaueb 11.69 36.80 55.50 59.53 36.92

Table 8: Leaderboards for MIMIC-CXR test-set (1624 sample)
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