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Abstract

Recent transformer-based models have made
significant strides in generating radiology re-
ports from chest X-ray images. However, a
prominent challenge remains: these models
often lack prior knowledge, resulting in the
generation of synthetic reports that mistakenly
reference non-existent prior exams. This dis-
crepancy can be attributed to a knowledge
gap between radiologists and the generation
models. While radiologists possess patient-
specific prior information, the models solely
receive X-ray images at a specific time point.
To tackle this issue, we propose a novel ap-
proach that leverages a rule-based labeler to
extract comparison prior information from ra-
diology reports. This extracted comparison
prior is then seamlessly integrated into state-
of-the-art transformer-based models, enabling
them to produce more realistic and compre-
hensive reports. Our method is evaluated on
English report datasets, such as IU X-ray and
MIMIC-CXR. The results demonstrate that our
approach surpasses baseline models in terms
of natural language generation metrics. No-
tably, our model generates reports that are free
from false references to non-existent prior ex-
ams, setting it apart from previous models. By
addressing this limitation, our approach repre-
sents a significant step towards bridging the gap
between radiologists and generation models in
the domain of medical report generation.

1 Introduction

The analysis of radiology images and the subse-
quent writing of medical reports are crucial tasks
performed during the diagnostic process (Suetens,
2017; Krupinski, 2010). However, producing a
radiology report is a labor-intensive and time-
consuming task for radiologists, requiring years
of training to accurately identify and describe spe-
cific abnormalities in medical images (Brady, 2017;
Arenson and Dunnick, 2006). Inspired by the suc-
cess of image captioning models in deep learning,

numerous studies have emerged proposing various
models for automated radiology report generation,
specifically focusing on chest X-ray images (Yuan
et al., 2019; Li et al., 2019; Xue et al., 2018; Jing
et al., 2017; Liu et al., 2019a). The automated
generation of reports holds the potential to allevi-
ate the high workload of radiologists and expedite
the diagnostic process by providing preliminary re-
ports that include useful keywords or observations
(Johnson et al., 2019; Chen et al., 2020).

Despite the relative success of recent approaches
in generating radiology reports from chest X-ray
images (Endo et al., 2021; Johnson et al., 2019;
Chen et al., 2020; Miura et al., 2020; Ramirez-
Alonso et al., 2022; Nooralahzadeh et al., 2021),
a crucial challenge remains unaddressed in these
studies: the need to provide models with appropri-
ate prior knowledge, akin to what is available to
radiologists. Specifically, radiologists are equipped
with information about the existence of previous
reports and X-ray images, enabling them to com-
pare current exams with past ones, and assess the
patient’s progress, deterioration, or improvement
(Suetens, 2017; of Radiology , ESR). These med-
ical reports often incorporate specific words or
phrases for comparison, such as "compared to the
previous exam," "in the interval," "referring to the
prior X-ray," and so on. In this paper, we refer to
these words or phrases as prior expressions, which
are also present in general medical datasets such as
MIMIC-CXR (Johnson et al., 2019) and IU X-ray
(Demner-Fushman et al., 2016), widely utilized for
training and evaluating report generation tasks. The
inclusion of prior expressions in medical reports
is vital for accurate reporting. However, models
trained on medical report datasets often generate
reports with inappropriate or misused prior expres-
sions, leading to relatively lower performance met-
rics. The challenge lies in effectively incorporating
and utilizing prior expressions within the model’s
generation process, a crucial aspect yet to be fully

50



Ground Truth R2Gen (Chen et al., 2020) M2Tr (Cornia et al., 2020)
Heart size is normal. Aorta is tor-

tuous and ectatic. Cardiomediastinal

contours are normal. Lungs are clear

without evidence of fibrosis. Pleural

effusions or pneumothorax. Endplate

sclerotic changes are present in the tho-

racic spine.

There are diffuse increased interstitial

suggestive of pulmonary fibrosis in bi-

lateral lung xxxx. The fibrosis appears

to slightly increased xxxx compared
to previous in xxxx. The trachea is

midline. negative for pleural effusion.

the heart size is normal.

Both lungs are clear and expanded.

Heart and mediastinum normal.

Stable cardiomediastinal silhouette.

No focal pulmonary pleural effusion

or pneumothorax. No acute bony ab-

normality.

The heart is normal size. The me-

diastinum is unremarkable. There is

no pleural or focal airspace disease.

Mild chronic degenerative changes are

present in the spine.

Low lung volumes. Elevation of the

right hemidiaphragm. Patchy opacities

right base again noted. Left lung clear.

Heart size top normal. Aortic calcifi-

cation. Granulomas. No evidence of

pneumothorax. Blunting of the bilat-

eral costophrenic xxxx. Degenerative

changes of the thoracic spine .

Table 1: Ground truth report from IU X-ray (first column) and examples of reports generated by R2Gen and M2Tr
(second and third column). Prior expressions are emphasized in bold.

resolved.

In Table 1, we present a comparison between
ground truth reports and reports generated by two
recent models, R2Gen (Chen et al., 2020) and
M2Tr (Cornia et al., 2020), focusing on the pres-
ence of prior expressions. It is evident that the
synthetic reports contain inappropriate priors. For
instance, the synthetic report generated by R2Gen
in the first row includes a comparison with the
previous exam, despite the absence of any prior in-
formation in the ground truth report. Similarly, the
synthetic report produced by M2Tr in the second
row includes the phrase "again noted," indicating
the existence of a previous image, while the ground
truth report lacks any prior expression.

These falsely referenced reports, which include
prior expressions, tend to yield lower evaluation
metrics. In Figure 1, we utilize a rule-based labeler
(explained in Section 3.1) to classify synthetic re-
ports into two categories: negative and positive.
The negative class represents reports without prior
expressions, while the positive class comprises re-
ports with prior expressions. We then plot the dis-
tribution of BLEU-4 (Papineni et al., 2002) scores
for each class, along with their respective mean
and standard deviation. The results clearly demon-
strate that the positive reports achieve lower scores
compared to the negative reports. This observa-
tion suggests that the transformer-based models do
not effectively leverage the generated prior expres-
sions, underscoring the significance of properly

Figure 1: The distribution of BLEU-4 scores based on
the classification by our rule-based labeler into negative
and positive categories. The labeler evaluated synthetic
reports generated by R2Gen and M2Tr, both trained on
the IU X-ray dataset. The mean and standard deviation
are represented by black dots and lines, respectively.
The mean scores for negative and positive labels are
as follows: for R2Gen, it is (0.1455, 0.0698), and for
M2Tr, it is (0.1218, 0.0583).

incorporating prior information during the training
process.

Table 1 and Figure 1 highlight a critical issue
with state-of-the-art (SOTA) models in learning
and generating prior expressions, which can po-
tentially confuse radiologists when utilizing these
models for report writing. This issue stems from
the fundamental disparity between how radiologists
compose reports and how models generate them.
Radiologists have access to not only prior patient
information such as previous exams and medical
history, but also the current X-ray images. In con-
trast, report generation models are only provided
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with X-ray images at a specific moment. With lim-
ited prior information, it becomes challenging for
the models to generate comprehensive and insight-
ful reports comparable to those created by experts.

In our paper, we address this knowledge gap
between generation models and radiologists by in-
fusing prior information into existing models. Our
aim is to reduce the disparity and enable the im-
proved models to produce more informative and
practical reports. Since existing datasets such as
IU X-ray and MIMIC-CXR do not contain prior
information (previous X-ray images), we adopt a
data-driven approach by consulting experienced ra-
diologists. Inspired by the CheXpert labeler (Irvin
et al., 2019), we develop a rule-based labeler that
extracts prior information by identifying specific
patterns and keywords in radiology reports. No-
tably, the rule-based labeler focuses on comparison
phrases that indicate whether a medical report cor-
responds to the first or subsequent exams for each
patient.

The main contributions of our paper are as fol-
lows:

1. We collaborate with radiologists to develop a
rule-based labeler that identifies specific key-
words and patterns in medical reports related
to comparisons.

2. To incorporate prior information into the mod-
els, we propose an enhanced transformer-
based architecture. This approach is straight-
forward to implement and can be seamlessly
integrated as a plug-in method into modern
report generation models.

3. Through empirical evaluation on the IU X-ray
and MIMIC-CXR datasets, we demonstrate
that our model outperforms baseline models
in terms of performance metrics.

4. Furthermore, we conduct a comprehensive
analysis to confirm that our model no longer
generates false references, addressing a sig-
nificant limitation observed in previous ap-
proaches.

2 Related Work

Initial research (Bai and An, 2018; Liu et al.,
2019b) in radiology report generation employed
a basic encoder-decoder architecture, where an en-
coder extracted key features from medical images

and converted them into a latent vector, and a de-
coder generated the target text from the latent vec-
tor. Typically, CNN (LeCun et al., 2015) was used
as the encoder, and LSTM (Hochreiter and Schmid-
huber, 1997) was chosen as the decoder. Subse-
quently, visual attention mechanisms were intro-
duced to highlight specific image features and gen-
erate more interpretable reports (Zhang et al., 2017;
Jing et al., 2017; Wang et al., 2018; Yin et al., 2019;
Yuan et al., 2019). Recent studies (Lovelace and
Mortazavi, 2020; Chen et al., 2020; Nooralahzadeh
et al., 2021; Miura et al., 2020) have explored more
advanced architectures using transformers to pro-
duce more comprehensive and consistent medical
reports.

Alternatively, generating medical reports can be
approached as a retrieval task, as similar sentences
and a specific writing format are often repeated in
most reports. Reusing diagnostic text from visually
similar X-ray images may result in more consistent
and accurate reports compared to generating an
entire report from scratch. Li et al. (2019) demon-
strated the superiority of retrieval-based models,
outperforming many encoder-decoder-based mod-
els. More recently, Endo et al. (2021) intro-
duced a retrieval-based model called CXR-RePaiR,
which incorporated contrastive language image pre-
training (CLIP) (Radford et al., 2021) to calculate
the similarity between text and image embeddings.
CXR-RePaiR generates predictions by selecting
the most aligned report from a large report corpus
given a specific X-ray image. They achieved SOTA
performance on their newly developed metrics.

Previous approaches have primarily focused on
enhancing model performance through advance-
ments in model architecture, while paying rela-
tively less attention to the distinctive characteristics
of radiology reports, particularly those involving
comparisons. However, there are a few notable ex-
ceptions, such as the work by Ramesh et al. (2022),
which specifically explores the impact of prior ex-
pressions in reports. The authors of that study in-
troduced a novel dataset named MIMIC-PRO, in
which they identified and modified reports that con-
tained hallucinated references to non-existent prior
exams. The hallucinated references can be seen
as a concept analogous to the prior expressions
discussed in our paper. Ramesh et al. (2022) sug-
gested a BioBERT-based model that paraphrased or
removed sentences referring to previous reports or
images, arguing that these expressions confuse the
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Report Label
1. Cardiomegaly is noted and is stable com-
pared to prior examination from XXXX.

1

2. Ill-defined opacity is again noted in the

region of the lingula.

1

3. There are low lung volumes. The lungs

are otherwise clear.

0

4. The left lower lobe have cleared in the
interval.

1

Table 2: Output of the labeler given sampled reports
from the IU X-ray dataset. The bolded phrases represent
the prior expressions identified by our labeler.

Dataset Negative Positive Total
IU X-ray 3,426 529 3,955

MIMIC-CXR 106,628 99,935 206,563

Table 3: Number of studies classified as negative (0) or
positive (1) by our rule-based labeler.

model and result in falsely referenced sentences.
They collaborated with experts to create a "clean"
MIMIC-CXR test dataset and compared models
trained on MIMIC-CXR and MIMIC-PRO.

In contrast to Ramesh et al. (2022), we take a dif-
ferent approach to address the issue of comparison
priors: we include prior information in the model
and enable it to generate more comprehensive re-
ports in an end-to-end fashion, rather than entirely
removing comparison priors. Writing comparisons
using prior expressions in radiology reports is un-
avoidable in the real medical field, and construct-
ing a clean and accurate dataset from real reports
is also a laborious task. Thus, our work focused on
directly applying the comparison prior to existing
models such as R2Gen and M2Tr.

3 Method

As observed in Table 1, even the best models
to date struggle with unexpected prior expres-
sions. To address this problem, we propose a
two-step approach: (1) constructing a rule-based
labeler to differentiate reports with and without
prior expressions (Section 3.1), and (2) extending
the transformer-based architectures (R2Gen and
M2Tr) to incorporate the comparison prior as in-
put (Section 3.2). In the first step, we introduce a
rule-based labeler that detects specific comparison
prior expressions and categorizes each report as
either a first exam (negative) or a following exam
(positive), based on its detection. We draw inspira-

tion from the negation and classification principles
of the CheXpert labeler (Irvin et al., 2019) to de-
sign our novel labeler. In the subsequent stage,
we integrate our prior label as input into the state-
of-the-art architectures to generate more practical
and comprehensive reports, and we compare the
results with the baseline models. By providing our
novel model with the comparison prior, which is
typically communicated to radiologists in real diag-
nostic scenarios, we enable the generation of more
comprehensive and consistent medical reports.

3.1 Rule-based Labeler

Our rule-based labeler follows the fundamental
structure of the CheXpert labeler (Irvin et al., 2019),
which detects the presence of 14 observations in
radiology reports based on fixed rules devised by
experts. Consequently, our labeler consists of three
distinct stages: mention extraction, mention clas-
sification, and mention aggregation. The labeler
takes the Finding section of radiology reports as
input and generates a binary output (0 or 1). A
negative label (0) indicates a report without prior
expressions, while a positive label (1) signifies the
presence of prior expressions.

Mention extraction A mention is defined as a
specific keyword likely to be included in prior ex-
pressions, such as "previous", "prior", "preceding",
"previously", "again", "comparison", "interval",
"increase", "decrease", "enlarge", and so on. In
this stage, the labeler extracts mentions from each
report and marks them within each sentence. How-
ever, it is important to note that even if certain
sentences contain the designated keywords, the ex-
istence of a prior expression cannot be confirmed
at this step since those keywords might be used in
other contexts. For instance, the word "compari-
son" can be used in a sentence like "with no com-
parison studies," indicating the absence of prior
expressions.

Mention classification After extracting men-
tions in the first stage, our labeler determines
whether each mention corresponds to predefined
prior expressions. As similar expressions are fre-
quently employed in reports to denote a compar-
ison with previous exams, we can formalize the
patterns of these prior expressions into several key
phrases familiar to experienced radiologists. For
example, the phrase "compared / similar to {men-
tion}" confirms the presence of prior reports, where
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Figure 2: A conceptual diagram of our approach. The report generation models (R2Gen and M2 Tr) consist of a
Visual Extractor, Encoder, and Decoder. Our key idea is to infuse comparison priors generated by our rule-based
labeler into (1) Visual Embedding V and (2) Latent Representation L.

"{mention}" represents keywords such as "previ-
ous", "preceding", and "prior". Similarly, "{men-
tion} seen/identified/visualized/ ... /noted" consti-
tutes a prior expression when "{mention}" pertains
to keywords like "again" and "previously".

Mention aggregation In the final stage, the la-
beler combines the classified mentions and gener-
ates either a negative label (0) or a positive label
(1), with negative indicating a report without prior
expressions and positive denoting the presence of
prior expressions. Examples of the labeler’s out-
puts can be seen in Table 2, and the numbers of
negative and positive exams in the IU X-ray and
MIMIC-CXR datasets are shown in Table 3.

3.2 Extending Model

In this section, we describe how we integrate the
comparison prior into existing models, such as
R2Gen and M2Tr, to generate more informative
and comprehensive reports.

Generation Process The generation process of
R2Gen and M2Tr can be illustrated as shown in
Figure 2. It follows the following flow: input ra-
diology images X → visual embedding V → la-
tent representation L → output report Y . Initially,
chest X-ray images X are provided as inputs to the
visual extractor, where X consists of the frontal
image Xf and the lateral image Xl, represented
as X = {Xf , Xl}. The visual extractor gener-
ates the visual embedding V = {v1, v2, ..., vS},
which comprises patch features vs ∈ Rd, with
d being the size of the feature vectors. Subse-
quently, V undergoes multiple transformer layers

in the encoder to obtain the latent representation
L = {l1, l2, ..., lT }, where the latent feature vector
is denoted as lt ∈ Rf . Finally, the decoder utilizes
L to generate the final output report Y .

Infusing Comparison Prior The comparison
prior P ∈ R is generated from our rule-based
labeler and it denotes a negative (0) or positive
(1) label. We intend to incorporate the compari-
son prior into the existing data pipeline in such a
way that the addition of the prior does not change
the architecture or add any additional weights to
train. Otherwise, it will become hard to measure
the effect of comparison prior to the generative
models. As a result, we added prior P to both Vi-
sual Embedding V and Latent Representation L in
the generation models shown in Figure 2. The en-
coder should be given the prior information so that
it can generate an appropriate intermediate repre-
sentation. Furthermore, we also add P on L since
the knowledge of P could be weakened after deep
transformer layers in the encoder. The decoder
will generate the output report based on the latent
representation conditioned on P . This whole pro-
cess emulates the radiologists’ examination with
prior exams. Therefore, our new visual embedding
Vnew and new latent representation Lnew can be
calculated as follows:

Vnew = V ⊕ P, Lnew = L⊕ P (1)

where ⊕ indicates element-wise summation. The
strength of our method is that it is applicable to
most existing transformer-based models and does
not require an extra dataset or information.
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Dataset Model
NLG Metrics

BL-1 BL-2 BL-3 BL-4 CIDEr RG-L

IU X-Ray

R2Gen (Chen et al., 2020) 0.421 0.262 0.183 0.137 0.480 0.337
w/ prior (ours) 0.438 0.280 0.201 0.155 0.631 0.351

M2Tr (Cornia et al., 2020) 0.400 0.240 0.159 0.112 0.300 0.324
w/ prior (ours) 0.406 0.249 0.167 0.120 0.323 0.330

MIMIC-CXR

R2Gen (Chen et al., 2020) 0.335 0.206 0.138 0.100 0.148 0.278
w/ prior (ours) 0.342 0.222 0.152 0.110 0.166 0.301

M2Tr (Cornia et al., 2020) 0.353 0.211 0.137 0.094 0.089 0.262
w/ prior (ours) 0.357 0.224 0.151 0.108 0.101 0.293

Table 4: Training results of the baseline models and models infused with prior information. The results of our
approaches are shown in gray rows and the best metrics are bolded. All metrics are averaged over 3 runs. Full table
with standard deviation is available in Table 6

4 Experiment

Architecture To extract visual features, we uti-
lize pretrained Convolutional Neural Networks
(CNNs) such as DenseNet121 (Huang et al., 2017)
and ResNet121 (He et al., 2016). Through empir-
ical evaluation, we find that DenseNet performs
better for our generation task, and thus, we select it
as our base visual extractor. We adopt the structure
of Meshed-Memory Transformer (M2Tr) (Cornia
et al., 2020) and Relational Memory-driven Trans-
former (R2Gen) (Chen et al., 2020) to construct
our encoder and decoder.

Datasets We evaluate our proposed methods on
two widely-used English datasets for medical re-
port generation tasks: IU X-ray (Demner-Fushman
et al., 2016) and MIMIC-CXR (Johnson et al.,
2019). The IU X-ray dataset is a publicly avail-
able radiology dataset that consists of 7,470 chest
X-ray images and 3,955 radiology reports. Each
report is paired with one frontal view image and,
optionally, one lateral view image. MIMIC-CXR
is a large chest radiograph database comprising
473,057 chest X-ray images and 206,563 reports.
We train our model using intact data pairs, which
include two images (frontal and lateral) and one
report (Findings section). The datasets are divided
into train, validation, and test sets following the
data split described in Chen et al. (2020).

Training Details We first generate the compari-
son prior for each report using a rule-based labeler.
Then, we train our model with the two images and
the comparison prior as inputs, and the medical re-
port as the output. We employ the Adam optimizer
with an initial learning rate of 0.00005 for the vi-
sual extractor and 0.0001 for the encoder-decoder

model. The learning rate gradually decreases at
pre-defined steps. All experiments are conducted
with 3 different seeds and a batch size of 16 on an
"NVIDIA GeForce RTX 1080 Ti" GPU. Our code
implementation is based on the publicly available
codes from Chen et al. (2020) and Nooralahzadeh
et al. (2021).

Evaluation Metrics We report general natural
language generation (NLG) metrics, including
BLEU (Papineni et al., 2002), CIDEr (Vedantam
et al., 2015), and ROUGE-L (Lin, 2004). These
metrics are commonly used to evaluate the qual-
ity of generated text. BLEU measures the n-gram
overlap between the generated text and the refer-
ence text, while CIDEr is based on cosine similar-
ity between word embeddings and considers both
unigrams and multi-word phrases. ROUGE-L eval-
uates the longest common subsequence between
the generated text and the reference text. Includ-
ing these metrics enables a quantitative comparison
of the generated reports with the ground truth and
previous models, providing insights into the perfor-
mance of the proposed approach.

Results In Table 4, we present the results of our
proposed approach, which incorporates prior infor-
mation into state-of-the-art NLG models, on two
medical image report generation datasets: IU X-
Ray and MIMIC-CXR. Our approach consistently
outperforms the baselines across all NLG metrics,
demonstrating its effectiveness in improving the
quality of medical image reports generated by NLG
models.

On the IU X-Ray dataset, our approach achieves
an average improvement of 11.58% and 4.49% on
all NLG metrics for R2Gen and M2Tr models, re-
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spectively, compared to the baseline models. No-
tably, the CIDEr metric shows the highest improve-
ment, with an increase of 31.46% for R2Gen and
7.00% for M2Tr. This suggests that, as measured
by CIDEr, our approach generates more diverse
and contextually relevant captions, which align bet-
ter with human judgments of quality than other
metrics.

For the MIMIC-CXR dataset, our approach im-
proves the R2Gen and M2Tr models by 8.40%
and 9.62% on all NLG metrics, respectively, com-
pared to the previous models. The most significant
improvement is observed in ROUGE-L, with an in-
crease of 8.27% for R2Gen and 11.83% for M2Tr.
This indicates that our method produces more gram-
matically correct captions, which is particularly im-
portant in medical reports where language errors
can have serious consequences.

We find that the highest order n-grams (i.e., n=3,
4) show the most significant improvements. This
suggests that incorporating external prior informa-
tion is especially beneficial for generating fluent
and informative sentences that typically contain
longer phrases and more complex structures.

Overall, our findings demonstrate that integrat-
ing external prior information can enhance the per-
formance of existing NLG models for medical im-
age reporting tasks, resulting in more informative
and accurate medical reports. By incorporating ad-
ditional domain-specific knowledge into the mod-
els, we are able to generate more precise and in-
formative reports while minimizing computational
overhead and training data requirements.

5 Analysis

In this section, we compare the ground truths,
synthetic reports created by our proposed model,
and two previously published models, R2Gen and
M2Tr, to assess the effectiveness of our model in
generating concise and accurate reports without
irrelevant or false priors.

Table 5 in the Appendix provides examples of
synthetic reports generated by each model and the
corresponding ground truth for the same radiology
image. The first two rows compare reports gener-
ated by R2Gen and our model with prior infusion.
We observe that R2Gen generates false prior ex-
pressions, such as "compared to prior examination",
"unchanged from prior", and "again unchanged",
which refer to non-existent prior exams. In contrast,
our model generates more concise and accurate re-

ports without any prior expressions, resulting in
higher performance in NLG metrics.

Similarly, the last two rows of Table 5 in the Ap-
pendix compare reports generated by M2Tr and our
proposed model. M2Tr produces reports with false
prior expressions, such as "present on the previous
exam" and "again noted", while our model avoids
including any comparison phrases. Furthermore,
reports that include prior expressions tend to be
longer due to the additional explanations required
for comparison. However, the report generation
model does not actually have access to previous
exams for comparison, rendering the inclusion of
prior expressions irrelevant or misleading. As a re-
sult, our models can directly control these phrases
by conditioning the generation through priors.

Overall, the synthetic reports generated by our
proposed model are more concise and accurate
compared to those generated by R2Gen and M2Tr,
as evidenced by the higher performance in NLG
metrics. Our model achieves this by avoiding irrele-
vant or false prior expressions through a rule-based
labeler and generating reports that contain only rel-
evant and accurate information. These succinct
and precise reports generated by our model will
effectively assist radiologists in their practice.

6 Limitations and Ethical Considerations

Our proposed method has certain limitations and
ethical considerations that merit discussion. The
effectiveness of our approach heavily relies on the
rule-based labeler. However, it is important to ac-
knowledge that the labeler may not capture unseen
patterns or variations, potentially limiting improve-
ments in various evaluation metrics. Moreover, we
were unable to conduct a comprehensive human
evaluation of the rule-based labeler in this study
due to resource constraints. Therefore, future work
should include a detailed evaluation to assess its
performance and address any potential limitations.

Collaboration with three radiologists at Kyoto
University is a critical aspect of our work. The
regular expressions designed in the rule-based la-
belers were validated through mutual confirmation
by computer scientists and radiologists. However,
it is essential to note that the radiologists involved
in the collaboration primarily work in a Japanese
hospital setting. This may introduce potential bi-
ases or patterns that are specific to the local context.
Therefore, it is necessary to cross-check the perfor-
mance of the rule-based labeler with radiologists
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from different regions and healthcare systems to
ensure broader applicability and minimize any po-
tential bias.

Regarding the datasets used in our study, we ex-
clusively utilized publicly available datasets that
are properly anonymized and de-identified, address-
ing privacy concerns. However, it is crucial to em-
phasize that if datasets containing comparison ex-
ams become available in the future, additional pre-
cautions must be taken to ensure that no personally
identifiable information is inadvertently disclosed
or used in a manner that could identify individual
patients.

By acknowledging these limitations and ethi-
cal considerations, we aim to encourage future
research and discussions in the field, driving ad-
vancements in radiology report generation while
prioritizing patient privacy, accuracy, and fairness.
These considerations will contribute to the devel-
opment of robust and ethically sound approaches
in radiology report generation.

7 Conclusion

In this study, we present a novel approach to gener-
ate medical reports from chest X-ray images, aim-
ing to bridge the gap between radiologists’ knowl-
edge and the lack of prior information in gener-
ation models. To achieve this, we developed a
rule-based labeler capable of extracting compari-
son priors from radiology reports in the IU X-ray
and MIMIC-CXR datasets. These priors were sub-
sequently integrated into state-of-the-art models
for conditional report generation, allowing our ap-
proach to emulate the realistic diagnostic process
of radiologists who possess prior information about
patients.

Our experimental results demonstrate the superi-
ority of our method over previous state-of-the-art
models, as indicated by improved performance in
terms of NLG metrics and a significant reduction
in the occurrence of falsely referred prior exams.
Through our analysis, we show that the incorpora-
tion of comparison priors leads to the generation of
more accurate and concise reports, thereby holding
great potential to enhance the quality and efficiency
of medical report generation for chest X-ray im-
ages. Ultimately, this advancement benefits health-
care professionals and patients by providing more
reliable and informative reports.

Furthermore, our work highlights the future po-
tential of generating medical reports in an end-to-

end fashion if a dataset containing all previous ex-
ams becomes available. The ability to leverage
comprehensive prior information would further am-
plify the accuracy and effectiveness of medical
report generation, paving the way for improved
healthcare outcomes.
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Ground Truth R2Gen (Chen et al., 2020) R2Gen w/ prior (ours)
The cardiomediastinal silhouette is nor-

mal in size and contour. Low lung vol-

umes without focal pneumothorax or

large pleural effusion. Normal xxxx.

The trachea is midline. The cardio-

mediastinal silhouette is normal and

unchanged compared to prior exami-
nation. Densities overlying the heart

xxxx are xxxx coronary artery stents.

There are small round calcific densi-

ties in the bilateral lobes which are un-
changed from prior exam and xxxx

represent sequelae from old granulo-

matous disease.

The cardiomediastinal silhouette is

within normal limits for appearance.

The thoracic aorta is tortuous. No fo-

cal areas of pulmonary consolidation.

No pneumothorax. No large pleural

effusion. Mild degenerative changes

and osteopenia of the thoracic spine.

Cardiomediastinal silhouette is within

normal limits. No focal consolidation.

There is right lower lobe scarring. No

pneumothorax or large pleural effusion.

Granulomas present. No acute bony

abnormalities.

The trachea is midline. The cardio-

mediastinal silhouette is normal. The

superior thoracic spine is again un-
changed from prior. Lucent pul-

monary parenchyma is consistent ap-

pearance with emphysema and appears

unchanged from prior xxxx. No ev-

idence of pneumothorax. No focal

airspace disease or pleural effusion.

Vague density in the medial right lung

apex most xxxx is.

The cardiomediastinal silhouette is nor-

mal in size and contour. No focal

pneumothorax or large pleural effusion.

Negative for acute bone abnormality.

Ground Truth M2Tr (Cornia et al., 2020) M2Tr w/ prior (ours)
No change lung xxxx. xxxx opaci-

ties are present in the right lower lobe.

No focal infiltrates. Heart and medi-

astinum are unremarkable. Aorta nor-

mal.

Stable cardiomediastinal silhouette

with normal heart mediastinal calcifi-

cations suggest a previous granuloma-

tous process. Apical irregularities also

present on the previous exam sugges-

tive of scarring. No focal alveolar no

definite pleural effusion seen. No typi-

cal findings of pulmonary edema. No

pneumothorax.

The heart is normal in size and contour.

There is no mediastinal widening. The

lungs are hyperexpanded. Scattered

granuloma. No focal airspace disease.

No large pleural effusion or pneumoth-

orax. The xxxx are intact.

The trachea is midline. Negative for

pleural or focal airspace consolidation.

The heart size is normal.

The heart is top normal in size. The

mediastinum is unremarkable. The

lungs are hypoinflated but grossly clear.

Significant degenerative changes of the

xxxx are again noted bilaterally.

The heart is normal in size. The me-

diastinum is unremarkable. The lungs

are clear.

Table 5: Ground truth report from IU X-ray (first column), reports generated by R2Gen and M2Tr (second column),
and reports generated by our model. Prior expressions are written in bold.
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Model
NLG Metrics (IU X-Ray)

BL-1 BL-2 BL-3 BL-4 CIDEr RG-L
R2Gen 0.421±0.001 0.262±0.003 0.183±0.004 0.137±0.005 0.480±0.046 0.337±0.005

w/ prior (ours) 0.438±0.003 0.280±0.002 0.201±0.002 0.155±0.002 0.631±0.028 0.351±0.001

M2Tr 0.400±0.003 0.240±0.002 0.159±0.002 0.112±0.002 0.300±0.004 0.324±0.002

w/ prior (ours) 0.406±0.003 0.249±0.002 0.167±0.001 0.120±0.001 0.323±0.001 0.330±0.001

Model
NLG Metrics (MIMIC-CXR)

BL-1 BL-2 BL-3 BL-4 CIDEr RG-L
R2Gen 0.335±0.001 0.206±0.003 0.138±0.005 0.100±0.002 0.148±0.006 0.278±0.003

w/ prior (ours) 0.342±0.002 0.222±0.002 0.152±0.002 0.110±0.001 0.166±0.004 0.301±0.005

M2Tr 0.353±0.001 0.211±0.003 0.137±0.003 0.094±0.002 0.089±0.002 0.262±0.002

w/ prior (ours) 0.357±0.001 0.224±0.001 0.151±0.002 0.108±0.003 0.101±0.001 0.293±0.003

Table 6: Training results of the baseline models and models infused with prior information. Upper table is the
results from IU X-Ray and Lower table is the results from MIMIC-CXR. The results of our approaches are shown
in gray rows. All metrics are averaged over 3 runs (mean ± standard deviation).
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