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Abstract
We propose a distantly supervised pipeline
NER which executes entity span detection
and entity classification in sequence named
DISTANT (DIstantly Supervised enTity spAN
deTection and classification). The former en-
tity span detector extracts possible entity men-
tion spans by the distant supervision. Then
the later entity classifier assigns each entity
span to one of the positive entity types or none
by employing a positive and unlabeled (PU)
learning framework. Two models were built
based on the pre-trained SciBERT model and
fine-tuned with the silver corpus generated by
the distant supervision. Experimental results
on BC5CDR and NCBI-Disease datasets show
that our method outperforms the end-to-end
NER baselines without PU learning by a large
margin. In particular, it increases the recall
score effectively.

1 Introduction

The development of Named Entity Recognition
(NER) is often hindered by a lack of annotated
datasets. For example, medical and biological tasks
often differ in target entity types and their granu-
larity levels. In these scenarios, a domain-specific
dictionary is often used for distant supervision to
search for possible mention spans for the target
entity types.

So far, many distantly-supervised NER methods
have been proposed. However, the performance of
these methods often largely depends on the quality
of the domain dictionary. Therefore, it usually
necessitates tuning the matching threshold values
to account for such noisy and low-coverage labels
to obtain optimal results. In this setting, existing
end-to-end methods are often not flexible enough
to change their internal behaviors.

Hence, we propose a two-step pipeline frame-
work for this task to provide more control knobs to
adjust its internal behaviors regarding the quality
of the available domain dictionary at hand.

Our method extends span-based NER methods to
unsupervised ones (Sohrab and Miwa, 2018; Yong-
ming et al., 2022; Yu et al., 2022); which divides
the unsupervised NER task into two consecutive
tasks: entity span detection and entity classification.
The former extracts textual spans for the candidates
of entities from a sentence disregarding the types of
entities, then the latter classifies whether it belongs
to any predefined entity type or none of them.

Distantly supervised NER often faces a low re-
call score problem because of the noisy and low-
coverage domain dictionary. In addition, entity
names in the biological and medical domains have
a high cardinality because of synonymous diver-
sity. Hence we employ positive and unlabeled (PU)
learning (Liu et al., 2002) in the pipeline to cope
with the low recall score problem. Specifically,
we define the latter entity classification task as a
partially-supervised one by taking the entity spans
matched by the dictionary as positive and those not
matched as unlabeled samples. Then using a small
portion of the positive samples, named spy, we
probe the behavior of the unlabeled samples within
the entity classifier. The method is based on the PU
learning for binary classification proposed by Liu
et al. (2002) and extends it to multinomial classi-
fication tasks so that it can be used for NER tasks.
The contribution of this work can be summarized
as follows:

• We propose a novel distantly-supervised pipeline
NER which executes entity span detection and
entity classification in sequence by employing a
spy-based PU learning.

• Experimental results on BC5CDR and NCBI-
Disease datasets show 4.8 and 3.2 PP (percentage
points) improvement in the F1 scores compared
with the best end-to-end NER baseline without
PU learning.

171



2 Related Work

Span-based NER methods (Sohrab and Miwa,
2018; Yongming et al., 2022; Yu et al., 2022) first
detect entity spans followed by entity classification,
which allows extracting overlapping or nested enti-
ties that conventional sequential labeling methods
cannot easily handle. Nguyen et al. (2023) em-
ployed the information bottleneck principle to en-
hance span-based NER. Unlike these supervised ap-
proaches, our method applied a span-based method
to unsupervised NER tasks.

For distantly supervised NER, Shang et al.
(2018) proposed AutoNER with a “tie or break”
tagging scheme to make the model more amenable
to extracting false-negative examples that do not
match any dictionary items, coupled with span clas-
sification. Liang et al. (2020) proposed BOND,
which leverages a pre-trained language model with
a self-training. A similar method was proposed by
Meng et al. (2021).

Liu et al. (2002) proposed a PU learning method
to solve a partially-supervised binary classification
by sending known positive spy samples into un-
known samples. This allows reliably inferring the
behavior of unknown samples in a classification
task. Our method extends the method to multino-
mial classification tasks so that it can be applied to
general NER tasks.

PU learning for distantly supervised NER was
studied by Peng et al. (2019) based on risk mini-
mization loss defined for binary label classification,
which is different from our spy-based PU learning.

3 Proposed method

Our task is to extract mention spans that belong to
one of predefined entity types {ek|k = 1 . . .K},
where K is the number of entity types, from a
sentence x by using a domain-specific dictionary
{dk|k = 1 . . .K} for each entity type. Optionally,
we assume the existence of an auxiliary dictionary
daux without specific entity type information, al-
though we assume that each term of daux belongs
to one of the concepts of {ek}.

We define the union of these dictionaries as
d+ = {dk|k = 1 . . .K} ∪ {daux}.

3.1 Entity spans detection
We employ the SciBERT (Beltagy et al., 2019)
tokenizer to tokenize a sentence x into subwords.
Let {xi|i = 1..n} be the tokenized sentence of
length n. Entity spans are detected by sequential

tagging with binary labels yi ∈ {0, 1}. Entity spans
are defined as segments of continuous 1s.

To prepare the training dataset, we performed
uncased dictionary matching to search for spans
of x that match any item of d+. If multiple spans
overlap each other, we take the minimum span that
encloses all the overlapping spans.

Let h1:n = SciBERT(x1:n) be the contextual-
ized token embeddings of sentence x from the
BERT layers. We transform hi into a probabil-
ity ŷi ∈ R by applying a multilayer perceptron
(MLP) to hi with a sigmoid function. We use the
following binary cross-entropy Lspan to train the
model;

Lspan = − 1

n

n∑

i=1

yi log(ŷi)+(1−yi)∗log(1−ŷi),

(1)
where yi is a true span label.

3.2 Entity classification by PU learning

Each entity span detected by the span detector is
classified as whether it belongs to any predefined
entity type or NA (none of the entity types). Let
{s(j) = xpj :qj |1 ≤ pj < qj ≤ n, j = 1..J},
where J is the number of spans detected, be a set
of estimated entity spans from pj-th token to qj-th
token, we label each span with an entity type by
dictionary matching to build a silver training cor-
pus for entity classification. We use the snorkel 1 to
label each candidate span using the labeling func-
tion defined for each type of entity. Although any
labeling functions can be used here, we adopt the
exact matching to label {s(j)} using {dk}.

All candidate spans are labeled as positive (be-
longing to one of {ek}) or unlabeled. We use a
majority vote to determine the final label of each
span. Because we define only one labeling function
for each entity type, it is equivalent to a unanimous
vote with abstain. Hence a span is matched by none
or multiple labeling functions, the label is set to
unlabeled. The positively labeled and unlabeled
span data are used for PU learning as follows.

The overall framework of PU learning is illus-
trated in Figure 1, where P and U specify positive
and unlabeled span samples, respectively. We as-
sume U contains real negatives belonging to none
of the entity types and positives the dictionary
matching fails to extract. We want to classify each
sample of U , either positive or negative, using P .

1https://github.com/snorkel-team/snorkel

172



P

U δ PC

TN

P-Pspy

Positive Entity 
Types classifier

Train

Classify

Repeat N times

PC*

TN*

P

Positive Entity 
Types + Negative 

classifierTrain

1-δ

Pspy

θe2

θe1

Figure 1: PU learning of an entity classifier. The input is P (positive) and U (unlabeled) samples. P of the two
entity types are colored orange and blue. The middle part within the rounded box is repeated N times to generate
true negative (TN) and positive candidate (PC) samples for each round. The intersection of N sets of TN and PC
samples is appended to the original P. We use TN as negative and PC+P as positive samples to generate a silver
training dataset for the final entity classifier.

To achieve this goal, we use two steps. In the first
step, we randomly select a portion δ of P , denoted
as Pspy, and append them to U . We then train
an entity classifier using P − Pspy as the training
dataset to probe the behavior of each sample of U
and Pspy. The details are explained below.

We use SciBERT (different from the one em-
ployed in span detection) (Beltagy et al., 2019) to
get the contextualized embedding of sentence x
defined as h1:n. For the span s(j), we concatenate
the embeddings of the first and last tokens and the
average of embeddings corresponding to the span
tokens to define the span features defined as fol-
lows:

fspan

(
s(j)

)
=


hpj ;

1

qj − pj + 1

qj∑

i=pj

hi;hqj


 ,

(2)
where [; ] is a vector concatenation.

Then we employ an MLP with a ReLU function
to transform the span features fspan to logit vectors
of size K. We define a cross-entropy Lentity using
the predicted class probability ŷ(j) ∈ RK corre-
sponding to a span s(j) and the one hot class label
y(j) as follows:

Lentity =
1

J

J∑

j=1

CrossEntropy
(
ŷ(j), y(j)

)
(3)

The trained model classifies U and Pspy samples.
We use the distribution of k-class probabilities of
{P (i)

spy|s(i) ∈ ek}, denoted as ŷspy[k], to define a

threshold value to judge whether each sample of U
is a true negative (TN ) or positive candidate (PC).

Specifically, we used the percentile values
{θk|k = 1 . . .K} obtained from ŷspy[k] as the
threshold value for each type of entity. Assume
the maximum class probability of the ith sample of
U denoted as U (i) occurs in class k. If its probabil-
ity is larger than θk, the unlabeled sample U (i) is
registered as PC of entity class k; otherwise, it is
registered as TN . We repeat this PU learning N
times by randomly sampling different Pspy.

In the second step, we take the intersection of N
sets of PC and TN as additional training samples
in addition to the original P . We use P+PC as
positive and TN as negative samples to train the
final entity classifier. We employ the SciBERT-
based model as in the first step except for the output
dimension, which is K+1 over the total number of
positive entity types plus one negative type. During
inference, we use only the final entity classifier.

3.3 Details of Training

We used scispacy2 to tokenize sentences and em-
ployed uncased SciBERT as the base model. We
used Adam (Kingma and Ba, 2015) optimization
with an initial learning rate of 1e− 4 with a linear
decay scheduler with a warmup step of 1,000. We
set the batch size of 32 for both the training and
validation datasets with early stopping against the
validation dataset with maximum patience of 3. We
set the maximum epoch size at 50.

2https://allenai.github.io/scispacy/
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We applied a dropout layer to the input of MLPs
with a dropout rate of 0.3. We jointly finetuned the
weights of SciBERT and the header layers using
Lspan and Lentity for the entity span detector and
entity classifier, respectively. We set N of the PU
learning to 3.

4 Results

For experiments, we evaluate using BC5CDR (Wei
et al., 2016) and NCBI-Disease (Doğan et al., 2014)
datasets. BC5CDR dataset contains 1,500 docu-
ments with chemical and disease entity annotations.
The dataset is split into training, development, and
testing data, each with 500 documents; whereas
the NCBI-Disease dataset contains 592 training,
100 development, and 100 testing documents with
disease annotations. We used only the plain text
part of the training and development dataset to train
the DISTANT and baseline NERs. We utilized the
testing datasets with annotation to evaluate perfor-
mance.

For the domain dictionaries, we used the dictio-
nary used in AutoNER (Shang et al., 2018) for the
BC5CDR dataset, which can be downloaded from
the author’s GitHub site 3. The dictionary contains
entity items for Chemical and Disease types and
Others without entity type information. On the
other hand, for the NCBI-Disease dataset, we used
the CTD-disease dictionary 4 concatenated with the
disease dictionary used for the BC5CDR dataset.
Table 3 in Appendix A shows the number of items
included for each entity type.

For the baselines, we used naïve dictionary
matching, BOND (Liang et al., 2020) and Au-
toNER (Shang et al., 2018). We also compared
our model with the supervised model (SciBERT +
CRF) to verify the performance gap between the
distantly supervised and the supervised model. All
models are implemented by ourselves. We should
note that we did not use daux to train the BOND
model because the proposed method does not allow
us to use a dictionary without entity types.

Table 1 shows the micro averages of precision,
recall, and F1 scores of the NER results of our
DISTANT and the baselines for both the BC5CDR
and NCBI-Disease datasets. To ignore the perfor-
mance fluctuations due to the randomness of the
DISTANT method, we repeat the experiment three
times and average the scores.

3https://github.com/shangjingbo1226/AutoNER
4http://ctdbase.org/downloads

For the BC5CDR dataset, since we used prepro-
cessed domain dictionary, the F1 score of the naïve
Dictionary match achieved a score of nearly 64%,
although AutoNER and our DISTANT both out-
performed the naïve method. Compared to the Au-
toNER model, there was no significant difference in
precision. However, our recall score outperformed
AutoNER, which resulted in a 3.8 PP increase in
the F1 score. Although there is still a relatively
large gap between DISTANT and SciBERT+CRF,
our method outperformed the baselines.

The second to the last rows show the perfor-
mance of span detection of DISTANT. Because the
number of detectable positive entities is restricted
by the result of span detection, the recall score of
the span detection indicates the upper bound of the
recall score of DISTANT.

For the NCBI-Disease dataset, we had relatively
lower performances compared with the results from
the BC5CDR dataset. This is because of the poor
coverage of the domain dictionary, as indicated by
the results of the naïve Dictionary match. Even
though the preprocessed disease dictionary was
confirmed to cover much of the Disease entities in
the BC5CDR dataset, the same dictionary failed to
capture most of the Disease entities in the NCBI-
Diesase dataset, even if it was appended by the
CTD-disease dictionary.

Although the low performances, the results of
AutoNER and DISTANT outperformed the Dic-
tionary match result. We could not acknowledge
a large performance gain for BOND against the
Dictionary match. Compared with AutoNER, DIS-
TANT improves the recall by more than 10 PP,
which resulted in a 3.2 PP increase in the F1 score.

These results indicate that our proposed DIS-
TANT outperformed the baselines in two datasets
where we have or do not have a high-quality do-
main dictionary that covers most of the entities.
We should note that the performance of distantly-
supervised NER severely depends on the quality
of the domain dictionary, and even the naïve dic-
tionary match method with a high-quality domain
dictionary would work better than any sophisticated
methods if such a dictionary is unavailable.

5 Analysis

Table 2 shows the ablation results when we trained
DISTANT without using daux. The scores in the
rows ∆ are the comparisons with the original DIS-
TANT scores. From the results, this setting severely
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BC5CDR NCBI-Disease

Entity types Chemical, Disease Disease

Dictionary Processed Dict* Processed Dict* + CTD (disease)

Method Precision Recall F1(%) Precision Recall F1(%)

SciBERT+CRF† 83.5 86.4 84.9 83.0 85.7 84.3
Dictionary match 74.8 55.7 63.9 31.8 20.1 24.7
BOND 73.8 59.9 66.1 32.1 19.4 24.2
AutoNER 80.3 72.2 76.0 60.1 23.8 34.1
DISTANT (span detect) (79.6) (87.6) (83.4) (42.8) (33.9) (37.8)
DISTANT 79.7 81.9 80.8 42.2 33.5 37.3

Table 1: Results of the baselines and proposed model. SciBERT + CRF† is a supervised model. (*) We used the
preprocessed dictionary from MeSH and CTD prepared by Shang et al. (2018).

impacts the recall scores. We speculate that the
span detector trained with daux in addition to {dk}
produces more plausible candidate entity spans,
which would be treated as false negatives when it
is trained without daux, resulting in much higher
recall scores.

DISTANT*

Precision Recall F1 (%)
BC5CDR 84.3 62.6 71.5
∆ +3.7 -19.3 -9.2
NCBI-Disease 48.5 23.6 31.8
∆ +6.3 -9.9 -5.5

Table 2: Ablation results of DISTANT* without using
daux.

Figure 2 shows the changes in F1 scores of DIS-
TANT evaluated on BC5CDR with respect to three
different spy sampling ratios δ (0.05, 0.1, and 0.2)
for three different percentile threshold θ (1%, 2.5%,
and 5%). As the results illustrate, the F1 scores
largely changed from 78.0% to 81.2%, suggesting
that the result is sensitive to the threshold values.
The optimal combination of δ and θ was obtained
as 0.1 and 2.5%. We should note that, in any case,
the proposed method is better than AutoNER.

6 Conclusion

We propose a distantly-supervised pipeline NER
named DISTANT, which executes entity span de-
tection and entity classification in sequence. We
exploit PU learning to train our model. Our model
outperformed the end-to-end NER baselines with-
out PU learning by a large margin when the quality
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Figure 2: The plot of the F1 scores of DISTANT eval-
uated on BC5CDR due to the changes in spy samples
ratio δ and the percentile threshold θ.

of the domain dictionary is relatively high enough.
We also confirmed that our method outperformed
the dictionary match even if the coverage of the
domain dictionary is quite low.

Overall, our method effectively increased recall
scores without severely degrading precision scores.
The proposed method does not require laborious
human annotations and can be applied to any NER
task using a domain-specific dictionary.
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Limitations

The result of Dictionary match and AutoNER based
on our implementation is not comparable with

5https://www.amed.go.jp/en/
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the results shown in the original paper (Shang
et al., 2018). Because the performance of distantly-
supervised NER is severely dependent on the do-
main dictionary used, we can not simply compare
the performance of the methods if common domain
dictionaries are not used.
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A Details of domain dictionaries

Table 3 shows the number of items for each entity type included in the domain dictionaries. The BC5CDR
dictionary was prepared by Shang et al. (2018); whereas no processing was performed on the CTD
(disease) dictionary.

Processed Chemical Disease Others

BC5CDR* Yes 1,193 1,289 6,877
CTD (disease) No 13,261

Table 3: The number of items for each entity type included in the BC5CDR and CTD (disease) dictionaries. (*)
Preprocessed from MeSH and CTD (Shang et al., 2018).
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