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Abstract

Biomedical event extraction can be divided into
three main subtasks; (1) biomedical event trig-
ger detection, (2) biomedical argument identi-
fication and (3) event construction. This work
focuses in the two first subtasks. For the first
subtask we analyze a set of transformer lan-
guage models that are commonly used in the
biomedical domain to evaluate and compare
their capacity for event trigger detection. We
fine-tune the models using seven manually an-
notated corpora to assess their performance in
different biomedical subdomains. SciBERT
emerged as the highest performing model, pre-
senting a slight improvement compared to base-
line models. Then, for the second subtask we
construct a knowledge graph (KG) from the
biomedical corpora and integrate its KG em-
beddings to SciBERT to enrich its semantic
information. We demonstrate that adding the
KG embeddings to the model improves the ar-
gument identification performance by around
20 %, and by around 15 % compared to two
baseline models. Our results suggest that fine-
tuning a transformer model that is pretrained
from scratch with biomedical and general data
allows to detect event triggers and identify ar-
guments covering different biomedical subdo-
mains, and therefore improving its general-
ization. Furthermore, the integration of KG
embeddings into the model can significantly
improve the performance of biomedical event
argument identification, outperforming the re-
sults of baseline models.

1 Introduction

Biomedical event extraction is a complex informa-
tion extraction task that identifies key information
from large sets of textual data for further applica-
tions, such as the study of biomolecular mecha-
nisms or epigenetic changes. A biomedical event
is constructed from an event trigger and one or
more arguments that orbit around the trigger. Event
triggers generally refer to nouns or verbs that ex-
press an action, circumstance or eventuality, while

the arguments refer either to biomedical entities
or to other events, called nested events. Figure
1 ! shows the example of a sentence containing
two biomedical events, ‘-Reg’ (which stands for
‘Negative regulation’) and ‘Locl’ (which stands for
‘Localization’). The event constructed from the
trigger word ‘excretion’ of type ‘Locl’ (the event
is given the same type as the trigger) presents as
single argument the biomedical entity of type ‘D/C’
(which stands for ‘Drug or compound’), playing the
role of “Th’ (which stands for ‘Theme’). This role
allows answering the question ‘What is excreted?’.
On the other hand, the event constructed from the
trigger word ‘reduces’ of the type ‘-Reg’, presents
two arguments. The first argument is a biomedical
entity of the type ‘Drug or compound’, playing the
role of ‘Cause’. This role allows answering the
question ‘What causes the reduction?’. The second
argument is the nested event ‘Locl’ described be-
fore, playing the role of ‘Theme’, answering the
question ‘What is reduced?’.

Theme
C Th
Drug or compound ause D/C Locl

FIyd rochlorothiazide effectively reduces urinary calcium excretion

Figure 1: Example of event extraction; the ‘-Reg’ ('nega-
tive regulation) event has the ‘Locl’ (localization) nested
event as argument.

Event extraction is usually divided into three
main subtasks, event trigger detection, argument
identification and event construction. Event trigger
detection identifies and classifies the trigger words
into a set of predefined types of event triggers,
while argument identification identifies and classi-
fies the roles between the event triggers and their
respective arguments (Shen et al., 2019). Event
construction refers to the unmerging of the argu-
ments that correspond to the same event for its

'The visualization of the annotated sentence is done using
the visualization tool brat https://brat.nlplab.org/.
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construction (Bjorne and Salakoski, 2011).

Event trigger detection has a fundamental role
in the construction of events. Indeed, the triggers
are the targets that allow us to know that an event
may exist (Cui et al., 2020). This subtask is usually
considered as a classification problem, where each
word need to be classified into a predefined set of
trigger types. Difficulty for trigger detection comes
from the sensitivity to the domain or subdomain
(text can present specialized language), linguistic
forms (triggers can be single words, multi-words,
discontinuous markers) and ambiguity on the trig-
ger class (a trigger word can be given different
trigger classes) (Zerva and Ananiadou, 2015).

Argument identification can be also considered
as a multi-category classification problem, where
the directed relation between a trigger and an entity
or other event needs to be classified into a prede-
fined set of role types. When these arguments are
correctly identified, the event extracted has the po-
tential to provide a reliable means of improving
domain knowledge. One of the main complexities
in identifying arguments is that they can be part
of one or multiple events (one-to-one and one-to-
multiple relations), where they play the same or
different roles.

Following (Ramponi et al., 2020), event trig-
ger detection is the main source of errors in event
extraction, where around 31 % of the errors corre-
spond to non-detection of triggers and 28 % to over-
detection of triggers. Further, the non-detection of
arguments represents around 23 % of errors and
the over-detection of arguments around 7 %. Trans-
former language models have been widely adopted
to try to reduce errors in event extraction due to
their positive achievements in performance for solv-
ing different types of Natural Language Processing
tasks. BERT (Devlin et al., 2018), which stands for
Bidirectional Encoder Representations from Trans-
formers, is a language model designed to pretrain
bidirectional representations of words, taking into
account the semantics by considering both left and
right directions of the text. From this pretraining,
BERT can be fine-tuned by including additional lay-
ers on top of the model to solve new specific tasks.
Furthermore, a number of domain-specific BERT
variants have been developed by being trained on
large corpora with the same context, such as the
biomedical domain. However, since the learning
of the models is limited to the subdomain in which
they were trained, they present limitations in per-

formance when using them in different biomedical
subdomains

To improve the integration of domain knowl-
edge, knowledge graph (KG) models have been
implemented along with language models for dif-
ferent information tasks in the biomedical domain
(Huang et al., 2020; Yang et al., 2020; Dasgupta
et al., 2021; Roy and Pan, 2021; MiloSevi¢ and
Thielemann, 2023). Biomedical KGs are a resource
of integration of one or more sources of informa-
tion (often manually curated datasets) into a graph,
where biomedical entities can be represented by
nodes and the relations between them by edges
(Nicholson and Greene, 2020). KG models inte-
grate nodes and edges into a low-dimensional vec-
tor space, known as embeddings, preserving the
semantic information of the KG.

In this work, we first analyze the performance of
five previously trained transformer language mod-
els to identify whether they allow the identifica-
tion of triggers in different biomedical subdomains.
Then, we enrich the semantic information of the
best-performing model with KG embeddings to
assess whether integrating these embeddings im-
proves the model’s ability to identify biomedical
arguments and their roles. For this purpose, BERT,
BioBERT, SciBERT, PubMedBERT, and BioMe-
dRoBERTa are fine-tuned using two different clas-
sifiers, a linear layer and a Bidirectional Long Short
Term Memory (Bi-LSTM) layer, to detect biomedi-
cal event triggers. These BERT variants are chosen
for comparison since they share the same BERT
architecture but have previously been pretrained
with different data in the biomedical and/or general
domain, showing positive results in biomedical in-
formation extraction tasks (Lee et al., 2020; Beltagy
et al., 2019; Erdengasileng et al., 2022). Models
are learned using seven manually annotated data
sets merged together. These corpora were orig-
inally developed for the event extraction task in
different biomedical subdomains. Then, a KG is
constructed from the biomedical events contained
in the biomedical corpora and its KG embeddings
are computed. These embeddings are integrated
into the transformer language model to classify
the roles between the previously identified triggers
and the biomedical entities and/or other triggers, in
order to detect the event arguments.
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1.1 Contributions

Our main contributions include (1) evaluation and
comparison of five transformer language models
based on BERT for the detection of biomedical
event triggers, (2) proposal of a novel strategy to in-
tegrate KG embeddings into transformer language
models to identify biomedical event arguments, (3)
empirical analysis of the effectiveness of merging
annotated corpora to detect biomedical event trig-
gers and identify arguments on different biomedical
subdomains.

2 Related Work

(Rahul et al., 2017) use Recurrent Neural Networks
(RNN) to extract higher level features through the
hidden state of the network to identify biomedi-
cal event triggers. They also use the word and
the entity type embeddings as features, demonstrat-
ing positive results in the MLEE (Pyysalo et al.,
2012) corpus. (Duan et al., 2017) and (Zhao et al.,
2018) explore an augmentation of the semantic
information by integrating the full document repre-
sentation. Both propose the use of RNNSs to extract
cross-sentence features without the use of external
resources. (Nguyen and Grishman, 2018) present
a Graph Convolution Network (GCN) model to
exploit syntactic dependency relations. They use
dependency trees to link words to their informa-
tive context for event trigger detection. (Yan et al.,
2019) also propose a GCN model, integrating ag-
gregative attention to model and aggregate multi-
order syntactic representations of the sentences,
while in the case of (Cui et al., 2020), they ex-
tend the GCN by adding the relation aware con-
cept, which exploits the syntactic relation labels
and models the relation between words. Deep-
EventMine (Trieu et al., 2020) is an end-to-end
system for event extraction that consists in four
main modules that identify the event triggers and
the arguments. For each of the modules, BERT
is used as base model and a linear layer is added.
It has achieved the SOTA performance on seven
biomedical nested event extraction tasks. (Portelli
et al., 2021) compare BERT and five of its variants
for the identification of Adverse Drugs and Events
(ADESs). They show that span-based pretraining
from spanBERT provides an improvement in the
recognition of ADEs. Besides, the pretraining of
the models in the specific domain is useful in com-
parison to train the models from scratch. (Ramponi
et al., 2020) developed BEESL, a neural network

model based on a sequence labeling system for
the extraction of events. The system converts the
event structures into a format of sequence label-
ing, and uses BERT as language model. (Chen,
2021) propose the Multi-Source Transfer Learning-
based Trigger Recognizer system, which is an ex-
tension on transfer learning using multiple source
domains. Datasets from different domains are used
for jointly train the neural network, achieving a
higher recognition performance on the biomedical
domain, having a wide coverage of events.

KG models have recently been also used for in-
formation extraction tasks in the biomedical do-
main. (Sastre et al., 2020) proposes a model based
on a Bi-LSTM to extract drug information from
drug labels and integrate it into knowledge graph-
based embedding space to evaluate drug label accu-
racy. In (Huang et al., 2020) is proposed to detect
relations between entities in biomedical events us-
ing a question answering approach. They incorpo-
rate domain knowledge into a pretrained language
model using Graph Edge-Conditioned Attention
Networks (GEANet), showing improved capabili-
ties in inferring complex events. (Lai et al., 2021)
presents a GCN network with attention for biomed-
ical entity and relation extraction based on knowl-
edge graphs embeddings. They first construct a
KG by predicting the links between the biomedical
entities and then make the predictions by merging
the word entities and the embeddings. (Fei et al.,
2021) proposes BioKGLM, a system where a pre-
trained language model is enriched by integrating
large biomedical knowledge graphs. To effectively
encode knowledge, they explore different fusion
strategies to facilitate knowledge injection.

According to these works, transformer architec-
tures have achieved competitive performance for
extracting biomedical events, and the use of pre-
trained language models has shown an improve-
ment in the performance of this task. However, non-
detection, over-detection and misclassification of
triggers continues being the most important cause
of errors in event extraction (Ramponi et al., 2020).
Besides, most of these works have been developed
in a specific biomedical subdomain, not allowing
a generalization to different subdomains. This is
a limitation in the extraction of biomedical events
because the biomedical language in texts is usually
specialized and very specific.

We present an alternative approach to overpass
this limitation, combining corpora from different
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biomedical subdomains to train transformer lan-
guage models in a broader biomedical domain. Be-
sides, we enrich the context of the domain-specific
language model SciBERT using KG embeddings.
This strategy adds semantic knowledge about com-
plex links that allow inferences between biomedical
concepts that are not directly related. Our proposal
outperforms significantly two strong baselines iden-
tifying arguments in the biomedical Cancer Genet-
ics corpora.

3 Method

This work proposes the approach shown in Fig-
ure 2. The annotated data is given as input to the
pretrained transformer language models for fine-
tuning and then passed to a classification layer for
event trigger detection. At this stage, a Named
Entity Recognition (NER) task is performed to
identify and classify the triggers in the text. Si-
multaneously, a KG is built from the annotated
data and the KG embeddings are calculated. These
embeddings are later integrated to the transformer
language model and the fine-tuning is done to iden-
tify arguments. Here, a Relation Extraction (RE)
task is performed to identify and classify the roles
between the triggers and candidate arguments.

3.1 Transformer Language Models: BERT

BERT (Devlin et al., 2018) is the first and the ba-
sis of transformer language models. It is a con-
textualized word representation model based on
a masked language model pretrained with bidirec-
tional transformers. In BERT, the sequence of input
tokens (words or sub-words) is constituted with ini-
tial vectors that are the combination of the token
embeddings, the (token) position embeddings and
the segment embeddings (text segment to which
the token corresponds) through element-wise sum-
mation. The embeddings are then passed to a set of
layers of transformer modules. Each transformer
layer generates a contextual representation of every
token by summing the non-linear transformation of
the tokens’ representations from the previous layer.
This representation is weighted by the attentions
calculated using the representations of the previous
layer as query. The last layer generates the contex-
tual representations for all the tokens, where the
information of the whole text span is combined.
Following the BERT principle, other transformer
models have been pretrained with data from spe-
cific domains, e.g. biomedical data, present-

ing better adaptation for solving in-domain tasks.
BioBERT (Lee et al., 2020) and BioMedRoBERTa
(Gururangan et al., 2020) are some examples of
BERT variants pretrained in the biomedical do-
main.

3.2 Biomedical Trigger Detection using
Transformer Language Models

Various downstream text mining tasks can be per-
formed by making minimal modifications to the
BERT architecture, through a process of fine-
tuning. Here, the transformer models are fine-tuned
for NER, which aims to recognize domain-specific
nouns in a corpus by giving each word in a sentence
a predefined class. Since here NER is adapted to de-
tect triggers, it implies not only identifying nouns,
but also verbs and in some cases adjectives. For
this purpose, after obtaining the contextual repre-
sentation of the tokens in vectors, a classification
layer is added to classify these vectors into the
event trigger classes. Two different classification
layers are used separately for comparison, a lin-
ear layer and a Bi-LSTM layer. The output labels
are obtained following the IOB (Inside-Outside-
Beginning) tagging to classify the triggers into the
predefined trigger categories (in the case of the I
and B tags).

3.3 Biomedical Argument Identification using
Transformer Language Models and KG
Embeddings

Biomedical event argument identification refers to
finding the arguments that belong to an event and
the role they play in it. A strategy to identify the
arguments is RE, where the goal is to capture and
classify the relations between triggers and biomed-
ical entities and/or other triggers. Here, RE is ap-
plied by enriching with the KG embeddings of the
triggers, the roles and the arguments the semantic
information of transformer language model.

For this, a KG is first constructed from the gold
data, where the semantic types of the triggers and
biomedical entities are considered as the nodes,
and relations between them are considered as the
directed edges from the triggers to the arguments.
These relations represent the role that the argument
is playing with respect to the trigger. A KG is a
knowledge base presented in a graphical structure
format, composed by multiple types of relations be-
tween entities. KGs can be represented as a set of
facts in the form of triples (h, r, t), where h, r and ¢
represent the head, relation and tail, respectively. In
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Figure 2: Overview of the approach proposed to detect event triggers and identify arguments.

order to model and infer the relations in the triples,
KG embeddings are calculated, mapping the con-
tent of entities and relations to low-dimensional
continuous vectors to be later used for predicting
new relations (Wang et al., 2021). A scoring func-
tion is used to measure the reliability of the triples
based on the embeddings, where a higher score
means that the triple is more likely to be true.

KG models are evaluated by ranking all the
triples according to their scores and calculating the
standard evaluation metrics Mean Reciprocal Rank
(MRR) and Hits@z, where z € 1, 3, 10 (Kristiadi
etal., 2019; Islam et al., 2021). Both metrics scores
range [0,1], where the higher value demonstrates
the better ranking of positive test triples, which
means a better prediction performance. Here, the
KG embeddings were calculated using SimplE, a
model based on the tensor factorization approach,
canonical polyadic decomposition (Sorber et al.,
2013). It learns independent embedding vectors
for the entities in the head and the tail, even if they
are tied. SimplE encodes the embeddings of the
two entities  and ¢ into % and £, respectively, by
parameter sharing allowing to integrate the depen-
dence between them into a relation vector v, and
vr—1 for the inverse relation. These embeddings
are optimized by satisfying the scoring function of
Equation 1.

1, S, =
§(<h7UT7£>+<t7UT—17h>) (1)

Finally, the KG embeddings are integrated to
the embeddings of the transformer language model
and then passed to a linear classification layer to
identify the roles.

3.4 Incorporating KG Embeddings to
Transformer Language Models

To obtain the KG embeddings, the total triples rep-
resented as (trigger type, role, argument type), are
randomly split into 80 % to train and 20 % to test
the KG model and obtain the embeddings. These
embeddings are incorporated to the contextual rep-
resentation of the transformer language model fol-
lowing the three different strategies described be-
low. vy, and v, represent the embeddings of the
trigger and the argument from the transformer lan-
guage model, respectively, and &gy, kgar, kg, 1Ep-
resent the KG embeddings of the trigger, argument
and role, respectively.

KGt'r,ar = [Utr§ kgtﬂ Var; kgar] 2)

KG, = ['Utr; Var; kgr] 3)
KGtr,r,ar = ['Utr; kgir; Var; KGar; kgr] 4
4 Experimental Settings

4.1 Corpora

Table 1 presents the seven publicly available
datasets used for fine-tuning the transformer mod-
els. These data were manually or semi-manually
annotated by experts and released to be used in the
development and improvement of event extraction
models.

Cancer Genetics (CG) 2013 (Nédellec et al.,
2013) contains information of bio-processes in the
development and progression of cancer. Epigenet-
ics and Post-translational Modifications (EPI) 2011
(Ohta et al., 2011) focuses on proteins and DNA
modifications. GENIA 2011 (Kim et al., 2011) and
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Table 1: Statistics of the corpora used.

Dataset Ent types Trig Types Role Types No. Events Documents Train/Dev/Test
CG 2013 18 40 9 17,248 PubMed abstracts 300/100/200
EP12011 2 15 5 2,453 PubMed abstracts 600/200/400
GENIA 2011 2 9 6 13,560 MEDLINE abstracts ~ 908/259/347
GENIA 2013 3 13 6 6,016 PMC full-text 222/249/305
ID 2011 6 10 6 2,779 PMC full-text 152/46/118
PC 2013 4 24 8 8,121 PubMed abstracts 260/90/175
MLEE 16 26 9 6,677 PubMed abstracts 131/44/87

GENIA 2013 (Kim et al., 2013) present both in-
formation about the transcription factors in blood
cells, but this last updated with more recent articles.
Infectious Diseases (ID) 2011 (Pyysalo et al., 2011)
consists of data about biomolecular mechanisms of
infectious diseases, virulence and resistance. Path-
way Curation (PC) 2013 (Nédellec et al., 2013)
focuses on targets reactions relevant to the devel-
opment of biomolecular pathway models. Multi-
Level Event Extraction (MLEE) (Pyysalo et al.,
2012) presents different levels of biological organi-
zation ranging from the subcellular to the organism
level.

For the development of the experiments, the
training and development datasets of all the cor-
pora are initially merged into one single dataset
and split into sentences, obtaining a total of 24,819
sentences. The sentences are then split (following
the split of the KG training and test sets) to have
a set of 80 % to train and 20 % to test, containing
19,855 and 4,964 sentences, respectively. We do
not use the original test datasets for the experiments
since the annotations are not released. All the trig-
ger types from each dataset are considered for the
final trigger classification, presenting a final set of
58 trigger types (some types are overlap among the
different corpora).

4.2 Knowledge Graph Construction

The KG is constructed from the events contained at
the document level from the total dataset. The
nodes represent the biomedical entities and the
triggers, and the edges, which are directed from
the triggers to the arguments, represent the roles.
Nodes contain the information about the semantic
type of the biomedical entities or the triggers, while
edges contain the information about the role type
(e.g. (Locl, Th, D/C), from the event Locl in Fig.
1). All the types of triggers, biomedical entities
and roles from each dataset are considered for the

KG construction, presenting a final set of 81 types
of triggers and biomedical entities and 12 types
of roles (some types overlap among the different
corpora).

From this step, 3,387 graphs are constructed.
Then, the graphs are post-processed, keeping only
those that present at least two nodes and one edge,
reducing the total number of graphs to 2,721. All
KGs are finally merged into one single graph
through a disjoint union, containing 99,251 nodes
and 56,931 edges.

4.3 Transformer Language Models

We compare BERT (Devlin et al., 2018), and four
BERT variants pretrained in the biomedical do-
main, BioBERT (Lee et al., 2020), SciBERT (Belt-
agy et al., 2019), PubMedBERT (Gu et al., 2020),
and BioMedRoBERTa (Gururangan et al., 2020)
for the detection of event triggers. The models dif-
fer from each other by the corpora in which they
were pretrained (all in English), their type of pre-
training and the size of their vocabulary, as shown
in Table 2.

SciBERT and PubMedBERT were pretrained
from scratch using an unique vocabulary and in-
clude embeddings that are specific for in-domain
words. BioBERT and BioMedRoBERTa were pre-
trained starting from the BERT checkpoints, their
vocabularies are built with general-domain texts
(similar to BERT) as well as the initialization of
the embeddings.

4.4 Parameters Settings

Experiments are developed using NVIDIA
GeForce GTX 1080 Ti (11 GiB) GPU and GeForce
RTX 2080 Ti (11 GiB) GPU. The fine-tuning of
the transformer models are done with PyTorch,
using the Transformers package and the models
are taken from Hugging Face 2. The transformer

2https: //huggingface.co/
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Table 2: Pretrained language models based on transformers used for comparison.

Model Version Pretraining ~ Corpus Text size Vocab size
BERT base uncased from scratch  WikiPedia + BookCorpus 3.3B words 30,522
BioBERT base v1.1 from BERT PubMed 4.5B words 28,996
SciBERT scivocab cased from scratch PMC + Semantic scholar  3.2B words 31,116
PubMedBERT base uncased from scratch  PMC + PubMed 3.1B words 30,522
BioMedRoBERTa base from BERT  Semantic scholar 7.55B tokens 50,265

models are fine-tuned using the original parameters
from BERT, leaving the last layer unfrozen.The
training parameters of the classification layers,
both linear and Bi-LSTM, are set as follows; batch
size of training and test sets of 16, learning rate of
le-05 and max gradient norm of 10. The maximum
length of the sentences is set to 256. All the models
are trained during 10 epochs on the training set and
evaluated on the test set. The KG is constructed
with NetworkX (Hagberg et al., 2008) and the
model used to calculate the KG embeddings is
implemented with PyTorch, using the base code
from (Islam et al., 2021). It is trained using Adam
optimizer, with a learning rate of le™*, a weight
decay value of 0.01, pair as loss function and 4
as margin value. The training is conducted during
500 epochs, setting 768 as hidden size (embedding
dimension) to match with the hidden size of the
transformer language model.

5 Results and Discussion

We present a comparison of five different trans-
former language models for the detection of
biomedical trigger events using seven biomedical
corpora together. Also, we conduct different strate-
gies for the enrichment of a transformer language
model using KG embeddings for the identification
of biomedical arguments. We finally compare our
results using the test set of the CG dataset with two
baselines models from the state-of-the-art.

Table 3 compares the five transformer language
models used for the detection of event triggers. For
each model is shown the result of adding a linear
and a Bi-LSTM classifier. We observe that almost
all the models present a better performance when
a Bi-LSTM classifier is used, with the exception
of BERT, which presents an F1-score of about 2
% higher when using a linear classifier. The high-
est results are presented in bold, corresponding
to SciBERT-Bi-LSTM, a model pretrained from
scratch using biomedical and general data. Pub-
MedBERT, a model pretrained from scratch using

biomedical data, achieves the second best perfor-
mance when Bi-LSTM is used as classifier, being
below SciBERT by around 5 %.

Table 3: Macro-average performance of biomedical
event trigger detection (NER) evaluated on the test cor-
pora.

Model P R F1

BERT-linear 0.60 0.68 0.64
BERT-Bi-LSTM 0.67 0.58 0.62
BioBERT-linear 0.52 0.50 0.50
BioBERT-Bi-LSTM 0.60 0.56 0.58
SciBERT-linear 0.61 0.65 0.63
SciBERT-Bi-LSTM 0.71 0.73 0.72
PubMedBERT-linear 0.58 0.66 0.61
PubMedBERT-Bi-LSTM 0.66 0.69 0.67
BioMedRoBERTa-linear 0.52 0.52 0.51
BioMedRoBERTa-Bi-LSTM 0.60 0.57 0.58

These last three models, SciBERT, PubMed-
BERT and BERT, present similar characteristics.
They are all pretrained from scratch using very
comparable text sizes and have similar vocabu-
lary sizes. However, BERT is pretrained only in
the general domain, PubMedBERT in the biomedi-
cal domain, and SciBERT in both the general and
biomedical domains. The two models that present
the lowest performance are BioBERT and BioMe-
dRoBERTa. Both models are pretrained from the
BERT weights using biomedical and, biomedical
and general data, respectively, and present the
largest text sizes of all the models. There is an
improvement in both models of around 7 % using a
Bi-LSTM classifier compared to a linear classifier.
However, their F1-score is around 14 % lower than
the one obtained by SciBERT-Bi-LSTM.

Table 4 compares our model trained only on the
CG corpus with two baseline event extraction mod-
els, TEES-CNN (Bjorne and Salakoski, 2018) and
DeepEventMine (Trieu et al., 2020). TEES-CNN
is a pipeline model based on a CNN architecture
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for event extraction that sequentially applies event
trigger detection, argument identification and the
construction of events. DeepEventMine is a joint
model based on BERT for event extraction that
simultaneously detect event triggers, identify argu-
ments and construct the final events. Both models
presented state-of-the-art results in the CG task.
The results reveal that our proposal achieves better
F1-score than TEES-CNN by around 3 % and by
DeepEventMine by around 1 %.

Table 4: Comparison of results of biomedical event
trigger detection (NER) on the CG corpus.

Model P R F1
TEES-CNN 0.77 0.81 0.79
DeepEventMine 0.79 0.83 0.81

SciBERT-Bi-LSTM (ours) 0.78 0.85 0.82

After observing that SciBERT presents the best
performance in trigger detection, we enrich its se-
mantic information with the KG of the biomedical
corpora for argument identification. We first ob-
tain the KG embeddings of the KG constructed
from the seven biomedical corpora. Table 5 com-
pares five KG models used for the computation
of these embeddings, TransE (Bordes et al., 2013),
TransH (Wang et al., 2014), TransD (Ji et al., 2015),
DistMult (Yang et al., 2014), SimplE (Kazemi and
Poole, 2018). The highest results are presented in
bold, obtained with SimplE, which is the model
that we use to compute the KG embeddings that
are integrated to SciBERT.

Table 5: Results of the KG embeddings using the seman-
tic type information in the triples: (trigger type, role,
argument type).

Model MRR Hits@1l Hits@3 Hits@10
TransE 0.59 0.26 0.92 0.96
TransH 0.60 0.25 0.96 0.97
TransD 0.60 0.25 0.94 0.96
DistMult  0.86 0.81 0.89 0.96
SimplE 0.97 0.96 0.97 0.98

Table 6 compares the results of the different
strategies followed to integrate the KG embeddings
to SciBERT. SciBERT-K G/, ;- o, Which integrates
the KG embeddings of the trigger, the role and
the argument, presents the highest F1-score. This
strategy improves the Fl-score by around 18 %
compared to when KG embeddings are not inte-

grated. However, we observe that when we add the
KG embeddings of the trigger and the argument
in SciBERT-K G}, o, the performance improves
by only 1 %, while when we add the KG embed-
dings of the role in SciBERT-K G/, the improve-
ment is of 17 %. This reveals that integrating the
KG embeddings to SciBERT allows to improve
the performance in the identification of biomedical
arguments, especially when the KG embeddings of
the role are used.

Table 6: Macro-average performance of biomedical ar-
gument identification (RE) evaluated on the test corpora.

Model P R F1

SciBERT 0.77 0.70 0.73
SciBERT-KGyrqr  0.80 0.71 0.74
SciBERT-K G, 0.93 0.88 0.90
SciBERT-K Gy pqr 093 090 0.91

Table 7 compares our model with TEES-CNN
and DeepEventMine for the identification of argu-
ments on the CG corpus. The results reveal that
our proposal achieves a better F1 score than TEES-
CNN by around 16% and than DeepEventMine
by around 15%, which could be significant in re-
ducing event extraction errors related to argument
identification.

Table 7: Comparison of results of biomedical argument
identification (RE) on the CG corpus.

Model P R F1

TEES-CNN 0.65 0.63 0.64
DeepEventMine 0.63 0.67 0.65
SciBERT-K Gy qr (ours) 0.87 0.75  0.80

6 Conclusions

We analyze different transformer language models
for biomedical event trigger detection and argu-
ment identification using seven different corpora
and KG integration. By comparing the perfor-
mance of the models, we found that fine-tuning
SciBERT with a Bi-LSTM classifier is the best
strategy to detect events in different biomedical do-
mains. Furthermore, when SciBERT is enriched
with KG embeddings, especially those correspond-
ing to the roles of arguments in events, it signif-
icantly improves the identification of biomedical
arguments.
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Limitations

Our work follows a pipeline approach, where the
optimization of event trigger detection and argu-
ment identification are done separately. This causes
the event trigger detection errors to be passed to
the argument identification step. In the future we
plan to do the joint optimization of both steps to
reduce internally transmitted errors.

Ethics Statement

This work complies with the rules expressed in the
ACM Code of Ethics. The NLP application in this
work refers to information extraction in the biomed-
ical domain. All the NLP tools and datasets used
are mentioned and cited. We do not present a new
dataset. The datasets utilized are used as intended.
We do not use demographic or identity characteris-
tics information. Our experiments involve around
500 hours of compute time.
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