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Introduction

Welcome to the Proceedings of the first iteration of the Big Picture Workshop (The Big Picture: Craf-
ting a Research Narrative). The workshop is hosted at EMNLP 2023, in Singapore, on December 7, 2023.

The Big Picture Workshop provides a dedicated venue for exploring and distilling broader NLP research
narratives. All research exists within a larger context, and progress is made by standing on the shoul-
ders of giants: building on the foundations laid by earlier researchers. In light of rapid publication rates
and concise paper formats, it has become increasingly difficult, however, to recognize the larger story
to which a paper is connected. The Big Picture Workshop invites researchers to reflect on how their
individual contributions fit within the overall research landscape and what stories they are telling with
their bodies of research. The goals of the workshop are to enhance communication and understanding
between different lines of work, highlight how works connect and build on each other, generate insigh-
ts that are difficult to glean without combining and reconciling different research narratives, encourage
broader collaboration and awareness of prior work in the NLP community, and facilitate understanding
of trajectories and insights within the field of NLP.

We received 12 submissions, of which we accepted 10 for presentation at the workshop. Those 10
accepted papers are contained in this volume. We also accepted for presentation two additional papers to
be included in Findings of EMNLP 2023.

The workshop schedule features one standard invited talk, and three special invited presentations de-
signed to foster live engagement between different lines of related work. In these special presentations,
two to three invited presenters speak on their individual lines of work and the connections between them,
followed by a moderated discussion further exploring the overall narrative that emerges from these works
in aggregate. In addition to invited presentations, the workshop features one Best Paper session, one
in-person poster session, and one virtual poster session.

We extend heartfelt thanks to our program committee, our participants, and all authors who submit-
ted papers for consideration—your engagement has been critical to the success of the workshop. We
also thank Amazon, Google, and Hugging Face for generous sponsorship. Finally, we thank the EMNLP
2023 organizers for their hard work and support.

The Big Picture Workshop Organizers,

Yanai Elazar, Allyson Ettinger, Nora Kassner, Sebastian Ruder, Noah Smith
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Keynote Talk: The Vision Thing: Finding and Pursuing your
Research Passion

Raymond J. Mooney
UT Austin

2023-12-07 09:15:00 – Room: Virgo 1 & 2

Abstract: A key contribution to being a successful researcher in natural language processing, as in any
area, is having a clear overarching vision of what your body of research is trying to accomplish. Using
my own 40-year career as an example, I will attempt to provide general advice on formulating and pur-
suing a coherent research vision. In particular, I will focus on formulating a unique, personal objective
that exploits your specific talents, knowledge, and passions, and that is distinct from the current popular
trends in the field. I will also focus on formulating a vision that bridges existing fields of study to produce
an overarching agenda that unifies previously disparate ideas.

Bio: Raymond J. Mooney is a Professor in the Department of Computer Science at the University of
Texas at Austin. He received his Ph.D. in 1988 from the University of Illinois at Urbana/Champaign.
He is an author of over 200 published research papers, primarily in the areas of machine learning and
natural language processing. He was the President of the International Machine Learning Society from
2008-2011, program co-chair for AAAI 2006, general chair for HLT-EMNLP 2005, and co-chair for
ICML 1990. He is a Fellow of AAAI, ACM, and ACL and the recipient of the Classic Paper award from
AAAI-19 and best paper awards from AAAI-96, KDD-04, ICML-05 and ACL-07.
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Keynote Talk: Is Attention = Explanationand the Role of
Interpretability in NLP

Sarah Wiegreffe
AI2 & UW

2023-12-07 11:00:00 – Room: Virgo 1 & 2

Abstract: Attention mechanisms have become a core component of neural models in Natural Language
Processing over the past decade. These mechanisms not only deliver substantial performance improve-
ments but also claim to offer insights into the models’ inner workings. In this talk, we will highlight
a series of contributions we have made that provided a critical perspective on the role of attention as a
faithful explanation for model predictions, and sparked a larger conversation on the overarching goals of
interpretability methods in NLP. We’ll contrast our methodological approaches and findings to highlight
that there is no one-size-fits-all answer to the question “Is attention explanation?”. Finally, we’ll explore
the role of attention as an explanation mechanism in today’s NLP landscape.

Bio: Sarah Wiegreffe is a postdoctoral researcher at the Allen Institute for AI (AI2), working on the
Aristo project. She also holds a courtesy appointment in the Allen School of Computer Science and
Engineering at the University of Washington. Her research focuses on understanding how language
models make predictions in an effort to make them more transparent to human users. She received
her PhD from Georgia Tech in 2022 advised by Professor Mark Riedl, during which time she interned at
Google and AI2 and won the AI2 outstanding intern award. She frequently serves on conference program
committees, receiving outstanding area chair award at ACL 2023.
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Keynote Talk: Is Attention = Explanationand the Role of
Interpretability in NLP

Sarthak Jain
AWS AI Labs

2023-12-07 11:00:00 – Room: Virgo 1 & 2

Abstract: Attention mechanisms have become a core component of neural models in Natural Language
Processing over the past decade. These mechanisms not only deliver substantial performance improve-
ments but also claim to offer insights into the models’ inner workings. In this talk, we will highlight
a series of contributions we have made that provided a critical perspective on the role of attention as a
faithful explanation for model predictions, and sparked a larger conversation on the overarching goals of
interpretability methods in NLP. We’ll contrast our methodological approaches and findings to highlight
that there is no one-size-fits-all answer to the question “Is attention explanation?”. Finally, we’ll explore
the role of attention as an explanation mechanism in today’s NLP landscape.

Bio: Sarthak Jain is an Applied Scientist working on generative AI models at AWS. He received his PhD
in 2022 from Northeastern University, where he was advised by Byron Wallace. Before this, he com-
pleted his BTech in Computer Engineering from Delhi Technological University. His current research
interests include the interpretability and analysis of deep learning models.
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Keynote Talk: On the Outcomes of Scientific Disagreements
of Machine Morality

Liwei Jiang
University of Washington

2023-12-07 13:30:00 – Room: Virgo 1 & 2

Abstract: Disagreements and conflict are vital for driving scholarly progress, social and scientific alike.
In research, we often identify gaps in others’ and our own work, to present new ideas that remedy them.
Disagreements are often small in nature: We disagree on methods rather than the research programme
itself. In this talk, we discuss a disagreement of a different nature: namely one in which the substance of
the disagreement is the existence of the task itself. We reflect on the experience of the conflict, how it
was resolved, and what outcomes it has had.
In particular, Liwei will share her current interdisciplinary research journey on AI + humanity sparked by
the Delphi experience. She will introduce Value Kaleidoscope—a novel computational system aiming to
model potentially conflicting, pluralistic human values interwoven in human decision-making. Finally,
she will talk about an exciting co-evolution opportunity unfolding between frontier AI technology and
humanity fields.
Zeerak will go over ongoing work that considers the foundations and limits of machine learning and
NLP with regard to ethically appropriate work. Specifically, they will discuss the use of the distributio-
nal hypothesis, and what particular visions of our societies it offers, and how machine learning seeks to
construct our future in the vision of the past.

Bio: Liwei Jiang is a Ph.D. student in the Paul G. Allen School of Computer Science and Engineering at
the University of Washington, specializing in Artificial Intelligence (AI) and Natural Language Proces-
sing (NLP). She is intrigued to tackle real-world needs with AI and understand the charms, mysteries,
and peculiarities of humans. Thus, Her current research focuses on the co-evolution of AI and humanity:
how to build better AI by taking inspiration from humans and how to gain valuable insights into humans
by advancing AI. She has published at many NLP and AI venues (e.g., ACL, EMNLP, NAACL, NeurIPS,
AAAI). Her work has been featured in many media outlets, including the New York Times, Wired, the
Guardian, the Verge, IEEE Spectrum, and Nature Outlook. She works as a student researcher at Allen
Institute for Artificial Intelligence (AI2).
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Keynote Talk: On the Outcomes of Scientific Disagreements
of Machine Morality

Zeerak Talat
Mohamed Bin Zayed University of Artificial Intelligence

2023-12-07 13:30:00 – Room: Virgo 1 & 2

Abstract: Disagreements and conflict are vital for driving scholarly progress, social and scientific alike.
In research, we often identify gaps in others’ and our own work, to present new ideas that remedy them.
Disagreements are often small in nature: We disagree on methods rather than the research programme
itself. In this talk, we discuss a disagreement of a different nature: namely one in which the substance of
the disagreement is the existence of the task itself. We reflect on the experience of the conflict, how it
was resolved, and what outcomes it has had.
In particular, Liwei will share her current interdisciplinary research journey on AI + humanity sparked by
the Delphi experience. She will introduce Value Kaleidoscope—a novel computational system aiming to
model potentially conflicting, pluralistic human values interwoven in human decision-making. Finally,
she will talk about an exciting co-evolution opportunity unfolding between frontier AI technology and
humanity fields.
Zeerak will go over ongoing work that considers the foundations and limits of machine learning and
NLP with regard to ethically appropriate work. Specifically, they will discuss the use of the distributio-
nal hypothesis, and what particular visions of our societies it offers, and how machine learning seeks to
construct our future in the vision of the past.

Bio: Zeerak Talat (formerly known as Zeerak Waseem) is a Research Fellow at Mohamed Bin Zayed
University of Artificial Intelligence. Zeerak holds a Ph.D. in Computer Science from the University
of Sheffield, with a focus on natural language processing. Zeerak’s work examines the assumptions
that underpin NLP and machine learning (ML) technologies. Drawing on research from anthropology,
discard studies, science and technology studies, and media studies, their work seeks to consider NLP and
ML technologies through the lens of content moderation technologies to understand how they can cause
harm to individuals and societies.
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Keynote Talk: The Role of Demonstrations: What In-Context
Learning actually does

Sewon Min
University of Washington

2023-12-07 16:00:00 – Room: Virgo 1 & 2

Abstract: In-Context Learning (ICL) enables a language model (LM) to learn a new correlation between
inputs and outputs during inference, without explicit gradient updates. In this talk, we show a series of
work centered around the research question: whether or not the correctness of demonstrations is needed
for good performance of ICL. Through a series of experiments and analyses, we delve into the nuances
of this relationship across various experimental setups, models (plain LMs or instruction-tuned ones),
and tasks (classification or generation). Our findings contribute to a broader understanding of how LMs
engage in in-context learning, shedding light on what new correlations they can or cannot learn, and
leading to a new line of research in discovering unexpected behaviors of LMs.

Bio: Sewon Min is a final year Ph.D. candidate at the University of Washington, advised by Luke Zet-
tlemoyer and Hannaneh Hajishirzi. Her research is in language modeling, focusing on new dimensions
in modeling, scaling, and efficiency, and their extensions for information-seeking, legality, and priva-
cy. She co-instructed and co-organized multiple tutorials and workshops at ACL, EMNLP, NAACL and
NeurIPS. She is a recipient of the J.P. Morgan Fellowship, and was at Meta AI, Google Research, and
Salesforce Research.
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Keynote Talk: The Role of Demonstrations: What In-Context
Learning actually does

Junyeob Kim
Seoul National University

2023-12-07 16:00:00 – Room: Virgo 1 & 2

Abstract: In-Context Learning (ICL) enables a language model (LM) to learn a new correlation between
inputs and outputs during inference, without explicit gradient updates. In this talk, we show a series of
work centered around the research question: whether or not the correctness of demonstrations is needed
for good performance of ICL. Through a series of experiments and analyses, we delve into the nuances
of this relationship across various experimental setups, models (plain LMs or instruction-tuned ones),
and tasks (classification or generation). Our findings contribute to a broader understanding of how LMs
engage in in-context learning, shedding light on what new correlations they can or cannot learn, and
leading to a new line of research in discovering unexpected behaviors of LMs.

Bio: Sewon Min is a final year Ph.D. candidate at the University of Washington, advised by Luke Zet-
tlemoyer and Hannaneh Hajishirzi. Her research is in language modeling, focusing on new dimensions
in modeling, scaling, and efficiency, and their extensions for information-seeking, legality, and priva-
cy. She co-instructed and co-organized multiple tutorials and workshops at ACL, EMNLP, NAACL and
NeurIPS. She is a recipient of the J.P. Morgan Fellowship, and was at Meta AI, Google Research, and
Salesforce Research.
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Keynote Talk: The Role of Demonstrations: What In-Context
Learning actually does

Kang Min Yoo
NAVER Cloud, NAVER AI Lab

2023-12-07 16:00:00 – Room: Virgo 1 & 2

Abstract: In-Context Learning (ICL) enables a language model (LM) to learn a new correlation between
inputs and outputs during inference, without explicit gradient updates. In this talk, we show a series of
work centered around the research question: whether or not the correctness of demonstrations is needed
for good performance of ICL. Through a series of experiments and analyses, we delve into the nuances
of this relationship across various experimental setups, models (plain LMs or instruction-tuned ones),
and tasks (classification or generation). Our findings contribute to a broader understanding of how LMs
engage in in-context learning, shedding light on what new correlations they can or cannot learn, and
leading to a new line of research in discovering unexpected behaviors of LMs.

Bio: Kang Min Yoo is actively engaged in the fields of artificial intelligence and computational lin-
guistics. He currently holds key roles as a Research and Applied Scientist at NAVER Cloud and as a
Visiting Professor at Seoul National University’s AI Institute. With an Integrated M.S. and Ph.D. in
Computer Science from Seoul National University, his primary areas of expertise include large language
models and natural language processing. At NAVER Cloud, he has spearheaded projects focused on de-
veloping Korean-centric LLM-based chat agents and the HyperT5 Seq2Seq HyperCLOVA. Additionally,
Kang Min Yoo contributes to the academic community through his roles as an area chair and program
committee member.
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Where are We in Event-centric Emotion Analysis?
Bridging Emotion Role Labeling and Appraisal-based Approaches

Roman Klinger
Institut für Maschinelle Sprachverarbeitung

University of Stuttgart, Germany
roman.klinger@ims.uni-stuttgart.de

Abstract
The term emotion analysis in text subsumes var-
ious natural language processing tasks which
have in common the goal to enable comput-
ers to understand emotions. Most popular is
emotion classification in which one or multi-
ple emotions are assigned to a predefined tex-
tual unit. While such setting is appropriate for
identifying the reader’s or author’s emotion,
emotion role labeling adds the perspective of
mentioned entities and extracts text spans that
correspond to the emotion cause. The under-
lying emotion theories agree on one important
point; that an emotion is caused by some in-
ternal or external event and comprises several
subcomponents, including the subjective feel-
ing and a cognitive evaluation. We therefore
argue that emotions and events are related in
two ways. (1) Emotions are events; and this per-
spective is the fundament in natural language
processing for emotion role labeling. (2) Emo-
tions are caused by events; a perspective that
is made explicit with research how to incorpo-
rate psychological appraisal theories in NLP
models to interpret events. These two research
directions, role labeling and (event-focused)
emotion classification, have by and large been
tackled separately. In this paper, we contextual-
ize both perspectives and discuss open research
questions.

1 Introduction
“Communication is an exchange of facts, ideas,
opinions, or emotions by two or more persons. The
exchange is successful only when mutual under-
standing results.” (Newman et al., 1967, p. 219)

The development of computational models in nat-
ural language processing aims at supporting com-
munication between computers and humans; with
language understanding research focusing on en-
abling the computer to comprehend the meaning of
text. Sometimes, understanding facts is sufficient,
for instance when scientific text is analyzed to au-
tomatically augment a database (Li et al., 2016;

Trouillon et al., 2017). Factual statements can also
comprise explicit reports of emotions or sentiments,
such as “They were sad.”, and in such cases, the
analysis of subjective language blends with infor-
mation extraction (Wiebe et al., 2004).

Emotion analysis, however, goes beyond such
analysis of propositional statements. To better
understand what emotion analysis models are ex-
pected to do, it is worth reviewing emotion theories
in psychology. There are many of them, with vary-
ing purposes and approaches, but most of them,
if not all, agree on the aspect that emotions are
caused by some event and come with a change of
various subsystems, such as a change in motivation,
a subjective perception, an expression, and bodily
symptoms. Another component is the evaluation
of the causing event, sometimes even considered to
constitute the emotion (Scarantino, 2016).

The emotion also corresponds to an event itself,
embedded in a context of other events, people, and
objects. All components of such emotion events
(cause, stances towards other involved people, opin-
ions about objects) may be described along an ex-
plicit mention of an emotion name. Any subset of
them may appear in text, and may or may not be
sufficient to reliably assign an emotion representa-
tion to the text author, a mentioned entity, or to a
reader (Casel et al., 2021; Cortal et al., 2023).

This complexity has led to a set of various emo-
tion analysis tasks in NLP, which we exemplify in
an integrated manner in Figure 1. The most popular
task is emotion prediction, either representing the
writer’s or the reader’s emotion as a category, as
valence/arousal values, or as appraisal vector (at
the bottom of Figure 1, we will describe the under-
lying psychological theories in §2.1). Adding the
task of cause detection bridges to the role labeling
setup (visualized in more completeness at the top).
Here, the emotion event is represented by the token
span that represents the emotion experiencer, the
cue, and the cause. Emotion prediction focuses on

1
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Figure 1: Integrated Visualization of Research Tasks in Emotion Analysis

understanding from text how events cause emotions,
while role labeling focuses on understanding how
emotions are represented as events themselves.

sWe now introduce the background to emotion
analysis, including psychological theories, related
tasks, and use cases (§2). Based on that, we consol-
idate recent research on the interpretation of events
to infer an emotion and on emotion role labeling
(§3.1–3.2). We then point out existing efforts on
bridging both fields (§3.3) and, based on this, de-
velop a list of open research questions (§4). We
show a visualization how various NLP tasks and
research areas are connected to emotion analysis in
Figure 8 in the Appendix.

2 Related Work

2.1 Emotion Theories in Psychology

Before we can discuss emotion analysis, we need
to introduce what an emotion is. The term typically
refers to some feeling, some sensation, that is de-
fined following various perspectives. Scarantino
(2016) provides an overview of various emotion
theories and differentiates between a motivation
tradition, a feeling tradition, and an evaluative tra-
dition.

2.1.1 Categorical Models of Basic Emotions
The motivation tradition includes theories that are
popular in NLP such as the basic emotions pro-
posed by Ekman (1992) and Plutchik (2001). They
differ in how they define what makes an emotion ba-
sic: Ekman proposes a list of properties, including
an automatic appraisal, quick onset, brief duration,
and distinctive universal signals. According to him,
non-basic emotions do not exist but are rather emo-
tional plots, moods, or personality traits. Plutchik
defines basic emotions based on their function, and
non basic-emotions are gradations and mixtures.
The set of basic emotions according to Ekman is

commonly understood to correspond to joy, anger,
disgust, fear, sadness, and surprise. However, in
fact, the set is larger and there are even emotions
for which it is not yet known if they could be con-
sidered basic (e.g., relief, guilt, or love, Ekman and
Cordaro, 2011). The basic emotions according to
Plutchik include anticipation and trust in addition.
In NLP, such theories mostly serve as a source for
label sets for which some evidence exists that they
should be distinguishable, also in textual analy-
sis. A study that uses a comparably large set of
emotions is Demszky et al. (2020), while many
other resource creation and modeling attempts fo-
cus on subsets (Alm et al., 2005; Strapparava and
Mihalcea, 2007; Schuff et al., 2017; Li et al., 2017;
Mohammad, 2012, i.a.).

2.1.2 Dimensional Models of Affect

An alternative to representing emotions as cate-
gorical labels is to place them in a (continuous)
vector space, in which the dimensions correspond
to some other meaning. The most popular one is
the valence/arousal space, in which emotions are
situated according to their subjective perception
of a level of activation (arousal) and how positive
the experience is (valence). This concept stems
from the feeling tradition mentioned above and
corresponds to affect (Posner et al., 2005). It also
plays an important role in constructionist theories,
which aim at explaining how the objectively mea-
surable variables of valence and arousal may be
linked by cognitive processes to emotion catego-
rizations (Feldman Barrett, 2017). While we are
not aware of any applications of the constructionist
theories in NLP, emotion analysis has been formu-
lated as valence/arousal regression (Buechel and
Hahn, 2017; Preoţiuc-Pietro et al., 2016, i.a.). Va-
lence and arousal predictions are related to, but not
the same as, emotion intensity regression (Moham-
mad and Bravo-Marquez, 2017).

2



Sentiment Emotion

Opinion Holder Emoter

Aspect/Target Target
Cause

Evaluative Phrase Cue

My wife thinks this chocolate is great.

Putu got angry at Nala because she took it.

{+,−,◦} {anger, ¬control,
↑arousal, ↓valency}

Figure 2: Comparison of structured sentiment analysis
and emotion role labeling.

2.1.3 Appraisals
Affect is not the only so-called dimensional model
to represent emotions. More recently, the concept
of appraisals that represents the cognitive dimen-
sion of emotions, i.e., the cognitive evaluation of
the event regarding the impact on the self, found
attention in NLP. The set of appraisals that can
explain emotions is not fixed and depends on the
theory and the domain. It often includes variables
that describe if an event can be expected to increase
a required effort (likely to be high for anger or
fear) or how much responsibility the experiencer of
the emotion holds (high for feeling pride or guilt).
Smith and Ellsworth (1985) showed that a compa-
rably small set of 6 appraisal variables can charac-
terize differences between 15 emotion categories.
Scherer et al. (2001) describes a multi-step process
of appraisal evaluations as one part of the emotion
– their emotion component process model also re-
flects on additional emotion components, namely
the bodily reaction, the expression, the motivational
aspect, and the subjective feeling. Appraisal theo-
ries led to a set of knowledge bases and models that
link events to emotions (Balahur et al., 2012; Cam-
bria et al., 2022; Shaikh et al., 2009; Udochukwu
and He, 2015), but only recently, resources and
models have been proposed which make appraisal
variables explicit (Stranisci et al., 2022; Hofmann
et al., 2020, 2021; Troiano et al., 2022, 2023b;
Wegge et al., 2022). This paper discusses work on
appraisal theories to interpret events regarding the
potentially resulting emotion in §3.1.

2.2 Tasks Related to Emotion Analysis
Emotion analysis is a task grounded in various pre-
vious research fields, from which we discuss senti-
ment analysis and personality profiling.

2.2.1 Sentiment Analysis
Sometimes, sentiment analysis is considered a sim-
plified version of emotion analysis in which multi-
ple emotion categories are conflated into two (posi-

tive or negative, sometimes distinguishing multiple
levels of intensity, Kiritchenko et al. (2016)). We
would like to argue that the tasks differ in more
than the number of labels. Sentiment analysis is
often equated to classifying the text into a more
unspecific connotation of being positive or nega-
tive (Liu, 2012). Commonly, the sentiment of the
text author is analyzed, which renders the task to
be overlapping with opinion mining (Pang and Lee,
2008; Barnes et al., 2017). Emotion analysis is
hardly ever about detecting the opinion regarding a
product; while that is a common focus in sentiment
analysis (Pontiki et al., 2014).

A more powerful approach to sentiment analysis
is to not only detect if the author expresses some-
thing positive, but also to detect opinion holders,
evaluated targets/aspects, and the phrase that de-
scribes the evaluation (Barnes et al., 2022; Pontiki
et al., 2015, 2016; Klinger and Cimiano, 2013).
The tasks of such “sentiment role labeling” and
“emotion role labeling” do, however, barely match
(see Figure 2):

(1) The opinion holder in sentiment analysis is
a person that expresses an opinion, regarding
some object, service, or person. This com-
monly follows a cognitive evaluation, likely
to be a conscious process rather than an un-
bidden reaction. We would therefore not call
the person experiencing an emotion a “holder”
but rather an emotion experiencer, or feeler, or
an emoter (to make the difference between an
emotion and a feeling explicit).

(2) The aspect/target in sentiment analysis might
correspond to two things in emotion analysis.
It can be a target, I can be angry at someone,
who is not solely the cause of that emotion. I
can be angry at a friend, because she did eat my
emergency supply of chocolate. But I cannot
be sad at somebody. In emotion analysis, we
care more about the stimulus or cause of an
emotion. Sometimes, targets and causes are
conflated.

(3) The evaluative, subjective phrase in sentiment
analysis corresponds to emotion words (cue in
Figure 1).

It is noteworthy that evaluative statements in sen-
timent also express an appraisal of something but
the overlap with appraisal theories in emotion anal-
ysis is minimal – the evaluation of a product in
sentiment analysis is often expressed explicitly. On
the contrary, appraisal-based emotion analysis fo-
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EventPerson

Personality Emotion

Figure 3: Comparison of personality detection and emo-
tion analysis.

cuses on inferring the internal appraisal processes
of a person purely from an event description. We re-
fer the interested reader to Martin and White (2005)
for a comprehensive analysis of the language used
to describe evaluations.

2.2.2 Personality Profiling
Sometimes the task of personality analysis is seen
to be similar to emotion analysis, because both an
emotion and the personality are based on a person.
Personality is, however, a function that depends
only on the person, while an emotion depends
on the person in interaction with a situation (see
Figure 3). Therefore, personality is a stable trait,
while emotions are states that change more flexibly
(Geiser et al., 2017). The most prominent model
that found application in NLP is the OCEAN/Big-
Five model (Goldberg, 1999; Roccas et al., 2002),
comprising openness to experience, conscientious-
ness, extraversion, agreeableness, and neuroticism
(Pizzolli and Strapparava, 2019; Lynn et al., 2020;
Kreuter et al., 2022; Golbeck et al., 2011). An al-
ternative is HEXACO, adding the dimension of hon-
esty (Lee and Ashton, 2018), which did, however,
lead to less attention in NLP (Sinha et al., 2015).
Early work in personality analysis based on linguis-
tic features was based, similar to sentiment or emo-
tion analysis, on word-counting approaches (Pen-
nebaker and King, 1999). The Myers–Briggs Type
Indicator (MBTI, Myers, 1998) received attention
in NLP, partially because of a straight-forward way
to collect data with hash-tag-based self-supervision
(Plank and Hovy, 2015; Verhoeven et al., 2016).
This model has weaknesses regarding reliability
and validity (Boyle, 1995; Randall et al., 2017)
which affect the robustness of NLP models (Stajner
and Yenikent, 2021).

2.3 Use-Cases of Emotion Analysis

Every kind of text in which an interpretation of
the emotional connotation is of value constitutes
a potential use case for emotion modeling. This
includes the analysis of social media (Mohammad

et al., 2018; Klinger et al., 2018; Wang et al., 2012,
i.a.), of news articles (Bostan et al., 2020, i.a.), of
figurative language (Chauhan et al., 2020; Dankers
et al., 2019, i.a.), of abusive language (Rajaman-
ickam et al., 2020; Plaza-del Arco et al., 2022,
i.a.) of literature (Kim and Klinger, 2018; Alm
and Sproat, 2005; Dodds et al., 2011; Kim et al.,
2017, i.a.), of clinically relevant disorders (Islam
et al., 2018; Pestian et al., 2012, i.a.), or the support
of customer agents (Labat et al., 2022).

Each domain implicitly defines which subtasks
are relevant. For news headlines, the author’s emo-
tion is least interesting while estimating the (in-
tended) impact on the reader is important, for in-
stance to understand reactions in the society and
intentional use to manipulate readers (Caiani and
Di Cocco, 2023). For hate speech detection or other
social media analysis tasks, the author’s emotion
is central. In literature, an interesting aspect is to
understand which emotion is attributed to fictional
characters (Kim and Klinger, 2019b; Hoorn and
Konijn, 2003).

Each domain also comes with particular chal-
lenges, stemming from varying task formulations:
News headlines are short and highly contextual-
ized in the outlet, the time of publication, and the
reader’s stance towards topics (Schaffer, 1995). So-
cial media comes in informal language (Kern et al.,
2016). Literature often requires interpretations of
longer text spans (Kuhn, 2019). Each of these ap-
plications therefore comes with design choices:

• What is the emotion perspective?
(reader, writer, entities)

• What is the unit of analysis?
(headline, tweet, paragraph, n sentences)

• Is text classification of predefined units suffi-
cient or does a model need to assign emotions
to automatically detected segments in the text?

• What are the variables to be predicted and the
possible value domain?
(emotion categories, appraisals, affect, spans
of different kind)

So far, models have mostly been developed for
specific use-cases, where such constraints can be
clearly identified. This has, however, an impact
on the generalizability of models. We will now
discuss the two perspectives of events that cause
emotions as an interpretation of emotion analysis as
text classification of predefined textual units (§3.1)
and of events as emotions, the case of emotion role
labeling (§3.2). After that, we explain the efforts
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Normative
Relevance Implication Coping Significance
Novelty

• suddenness
• familiarity
• predictability
• attention
• att. removal

Intrinsic
Pleasantness

• pleasant
• unpleasant

Goal Relevance
• goal-related

Causality: agent
• own responsib.
• other’s respons.
• situational resp.

Goal
conduciveness

• goal support

Outcome
probability

• consequence
anticipation

Urgency
• response urgency

Control
• own control
• others’ control
• chance
control

Adjustment
• anticipated
acceptance

• effort

Internal standards
compatibility

• clash with own
standards

External stan-
dards compatibility

• clash with norms

Figure 4: Variables used by Troiano et al. (2023b) to an-
alyze text according to combined dimensions proposed
by Scherer et al. (2001) and Smith and Ellsworth (1985).

to bring these two directions together (§3.3) and
we build on top of this consolidation to point out
important future research directions (§4).

3 The Link between Emotions and Events

3.1 Events cause Emotions: Appraisals

3.1.1 Traditional Emotion Analysis Systems
Most emotion analysis systems were, before the
deep learning revolution in NLP, feature-based,
and features often stemmed from manually cre-
ated lexicons (Mohammad and Turney, 2013) and
included manually designed features for the task
(Štajner and Klinger, 2023; Aman and Szpakowicz,
2007). Since the state of the art for the develop-
ment of text analysis systems is transfer learning by
fine-tuning pretrained large language models (such
as BERT, Devlin et al., 2019), the phenomenon-
specific model development focuses on exploiting
properties of the concept. One example is Deep-
Moji, which adapts transfer learning to the analysis
of subjective language and identifies a particularly
useful pretraining task, namely the prediction of
emojis (Felbo et al., 2017). Another strain of re-
search aims at developing models that aggregate
multiple emotion theories (Buechel et al., 2021).

3.1.2 Event Interpretation
We focus on the aspect of emotions that they are
caused by events. Interpreting events is challeng-
ing, because event descriptions often lack an ex-
plicit emotion mention (Troiano et al., 2023a).
Such textual instances are considered “implicit” re-
garding their emotion (Udochukwu and He, 2015;
Klinger et al., 2018): The challenge to be solved
is to link “non-emotional” events to the emotion
that they might cause. Balahur et al. (2012) tackled
this by listing action units in an ontology, based on
semantic parsing of large amounts of text. Cambria

et al. (2022) developed a logics-based resource to
associate events with their emotion interpretation.

3.1.3 Incorporating Appraisal Variables in
Text Analysis Models

These attempts, however, do not model appraisal
variables explicitly as a link between cognitive eval-
uations of events and emotions. There is also not
only one appraisal theory, and depending on the
theory, the computational modeling is realized in
differing ways. Based on the OCC model (an ap-
praisal theory that provides a decision tree of ap-
praisal variables to characterize emotions, Steune-
brink et al., 2009), both Shaikh et al. (2009) and
Udochukwu and He (2015) develop methods to ex-
tract atomic variable values from text that are the
building blocks for appraisal-based interpretations.
An example appraisal variable is if an event is di-
rected towards the self, for which they use semantic
and syntactic parsers. Other such variables include
the valence of events, the attitude towards objects,
or the moral evaluation of people’s behaviours – all
detected with polarity lexicons. These variables
are then put together with logical rules, such as If
Direction = ‘Self’ and Tense = ‘Future’
and Overall Polarity = ‘Positive’ and
Event Polarity = ‘Positive’, then Emotion
= ‘Hope’ (Udochukwu and He, 2015). The advan-
tage of this approach is that it makes the appraisal-
based interpretation explicit; however, it does not
allow for reasoning under uncertainty, partially be-
cause these studies do not build on top of manually
assigned appraisal variables to text.

3.1.4 Appraisal-Annotated Corpora
To understand the link better between appraisals in
text and emotions, Hofmann et al. (2020) manually
annotated autobiographical event reports (Troiano
et al., 2019) for the appraisal dimensions identified
by Smith and Ellsworth (1985): does the writer
want to devote attention, were they certain about
what was happening, did they have to expend men-
tal or physical effort to deal with the situation, did
they find the event pleasant, were they responsible
for the situation, could they control the situation,
and did they find that the situation could not be
changed by anyone? They found that the annota-
tion replicates the links to emotions as found in
original studies (Hofmann et al., 2021, Fig. 1). Fur-
ther, they showed that appraisals can reliably be
detected, but they did not manage to develop a
model that predicts emotions better with the help
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Appraisal
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Emotion

Event
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reconstruct

recollects
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(1) (2) (3)

Phase 1 Phase 2

Figure 5: The study design that lead to the crowd-
enVENT data set (Troiano et al., 2023b).

of appraisals than without. Hence, they proposed a
new way of modeling emotions in text, but did not
succeed to develop a multi-emotion model.

3.1.5 Appraisal Annotations by Event
Experiencers

To understand better if this inferiority of a joint
model might be a result of an imperfect noisy ap-
praisal annotation, and to create a larger corpus,
Troiano et al. (2023b) setup the experiment de-
picted in Figure 5 (replicating Troiano et al. (2019),
but with appraisal variables). They asked crowd-
workers to describe an event that caused a specific
emotion and to then assign appraisal values (this
time following the sequential approach by Scherer
et al., 2001, with 21 variables, Figure 4) how they
perceived the respective situation (Phase 1). They
then asked other people to read the texts and recon-
struct the emotion and appraisal (Phase 2). Unsur-
prisingly, the readers sometimes misinterpreted an
event. For instance “I put together a funeral service
for my Aunt” is mostly interpreted as something
sad, while the original author was actually proud
about it. These differences in interpretation can
also be seen in the appraisal variables – Appraisals
explain the differences in the event evaluation: The
interpretation as being sad comes with evaluations
as not being in control, while the interpretation to
cause pride comes with being in control.

3.1.6 Emotion Modeling under Consideration
of Appraisals

The modeling experiments of Troiano et al. (2023b)
confirm that also a larger set of variables can be
reliably detected – similarly well as humans can
reconstruct them. To further understand if such self-
assigned appraisal labels enable an improvement
also in the emotion categorization, they fine-tuned
RoBERTa (Liu et al., 2019) and tested if adding
appraisal values improves the result. They find
that appraisals help the prediction of anger, fear,
joy, pride, guilt, sadness, and anger. They show-
case the event report “His toenails were massive.”,
where the baseline model relies on something mas-

sive being associated to pride. With the appraisal
information, it correctly assigns “disgust”.

3.1.7 Other Research Directions
More recently other research has been published
with a focused on specific use-cases. Stranisci et al.
(2022) who follow the appraisal model by Roseman
(2013) postannotate Reddit posts which deal with
situations that challenged the author to cope with an
undesirable situation. Their APPReddit corpus is
the first resource of appraisal-annotated texts from
the wild. Cortal et al. (2023) follow a similar idea
and acquire texts that describe how people regulate
their emotions in specific situations. Next to their
resource creation effort for French, they analyze
which descriptions of cognitive processes allow to
infer an emotion.

We conclude that appraisal-based emotion analysis
research has the goal to better understand how emo-
tions are implicitly communicated and to develop
better emotion analysis systems.

3.2 Emotions are Events: Structured Analysis

The studies that we discussed so far put the aspect
of emotion analysis on the spot that emotions are
caused by events. As we argued before, emotions
also constitute events. Similarly to the field of se-
mantic role labeling (Gildea and Jurafsky, 2000)
which models events in text following frame se-
mantics, various efforts have been made to extract
emotion event representations from text. The cor-
pora that have been created come with differing
modeling attempts, summarized in Figure 6.

3.2.1 Cue Phrase Detection
The early work by Aman and Szpakowicz (2007)
focused on the emotion cue word, as an important
part of role labeling. They annotated sentences
from blogs, but did not propose an automatic cue
identification system. A structurally similar re-
source with cue word annotations has been pro-
posed by Liew et al. (2016).

3.2.2 Stimulus Detection
A few corpora have been developed focussing on
stimuli: Ghazi et al. (2015) annotated sentences
from FrameNet that are known to be associated
with emotions and model the automatic prediction
as sequence labeling. For German, Doan Dang et al.
(2021) created a similar corpus based on news head-
lines. Gao et al. (2017) formulated stimulus detec-
tion as clause classification in Mandarin, which
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A couple infuriated officials by landing their helicopter in the middle of a nature reserve.

target experiencer stimuluscue

A couple infuriated officials by landing their helicopter in the middle of a nature reserve.

target experiencer

stimuluscue

A couple infuriated officials by landing their helicopter in the middle of a nature reserve.
emotion clause cause/stimulus clause

A couple infuriated officials by landing their helicopter in the middle of a nature reserve.

full role labeling

sequence labeling

clause classification

relation detection (Kim/Klinger, 2019)

(Gao et al., 2017a)

(Ghazi et al., 2015, i.a.)

Figure 6: Emotion Role Modeling approaches (example
from Bostan et al. (2020)). Full emotion role labeling
has not been performed yet (top).

might, however, not be an appropriate approach for
English (Oberländer et al., 2020).

3.2.3 Role Labeling as Classification
An interesting attempt of emotion role labeling in
texts from social media was the study on Tweets
associated to a US election by Mohammad et al.
(2014). The decision to focus on a narrow do-
main allowed them to frame the role identification
task both in crowdsourced annotation and in mod-
eling as a classification task; namely to decide if
the emoter, the stimulus or the emotion target cor-
respond to an entity from a predefined set (this
modeling formulation is not shown in Figure 6).

3.2.4 Full Emotion Role Labeling Resources
Kim and Klinger (2018) and Bostan et al. (2020)
aimed at creating corpora with full emotion role la-
beling information. The REMAN corpus (Kim and
Klinger, 2019b) focused on literature from Project
Gutenberg. Given the challenging domain, the au-
thors decided to carefully train annotators instead
of relying on crowdsourcing. Each instance cor-
responds to a sentence triple, in which the middle
sentence contains the cue to which the roles of
emoters, targets, and stimuli are to be associated.
The sequence-labeling-based modeling revealed
that cause and target detection are very challenging.
The paper does not contain an effort to reconstruct
the full emotion event graph structure.

Bostan et al. (2020) annotated news headlines,
under the assumption that less context is required
for interpretation (which turned out to not be true).
To attribute for the subjective nature of emotion in-
terpretations, they setup the annotation as a multi-
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Figure 7: Example from the x-enVENT dataset

step crowdsourcing task. The modeling experi-
ments on their GoodNewsEveryone corpus are lim-
ited to span prediction.

3.2.5 Role Labeling as Relation Detection
We are only aware of one work in the context of
semantic role labeling that attempts to model the re-
lational structure. Kim and Klinger (2019b) simpli-
fied role labeling to relation classification of emo-
tional relations between entities. This allowed them
to build on top of established methods for relation
detection (Zhou et al., 2016) but they sacrificed
explicit cue word detection and limited the analysis
to emotion stimuli that have a corresponding entity.

3.2.6 Aggregated Corpora
There have been two efforts of data aggregation,
by Oberländer et al. (2020) and Campagnano et al.
(2022). The latter compared various models for
role detection via span prediction. The prior we
will discuss in the next section. To sum up, there
have been some efforts to perform emotion role
labeling, but in contrast to generic role labeling or
to structured sentiment analysis, no models have
yet been developed for full graph reconstruction.
We visualize the differences in modeling attempts
in Figure 6.

3.3 Bridging the Two Perspectives
We now discussed the two perspectives of events
causing emotions (§3.1) and emotions being events
(§3.2). The fact that these two analysis tasks have
so far mostly been tackled separately leaves a lot of
space for future research. However, some attempts
to link the two areas already exist.

3.3.1 Do the tasks of emotion classification
and role labeling benefit from each
other?

Oberländer et al. (2020) aimed at understanding
if knowledge of roles impacts the performance of
emotion categorization. It turns out it does, either
because the relevant part of the text is made more
explicit (stimulus), or because of biases (emoter).
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Similarly, Xia and Ding (2019) setup the task
of stimulus-clause and emotion-clause pair classifi-
cation. Their corpora and a plethora of follow-up
work show that stimulus and emotion detection
benefit from each other.

3.3.2 Descriptions of which emotion
components enable emotion recognition?

A similar strain of research aims at understanding
which components of emotions support emotion
predictions. Casel et al. (2021) performed multi-
task learning experiments with emotion categoriza-
tion and emotion component prediction. Kim and
Klinger (2019a) study how specific emotions are
communicated, similarly to Etienne et al. (2022).
Cortal et al. (2023) analyzed if particular ways of
cognitively evaluating events support the emotion
prediction more than others.

3.3.3 Linking Role Labeling and
Appraisal-based Analysis

These works do, however, not link emotion roles
explicitly to their cognitive evaluation dimensions.
The only work that aimed at doing so is the cor-
pus by Troiano et al. (2022), who label emoters
for emotion categories and appraisals, the events
that act as a stimulus on the token level, and the
relation between them. Figure 7 shows an example
from their corpus. In their modeling efforts, how-
ever, they limited themselves to emoter-specific
emotion/appraisal predictions and ignored, so far,
the span-based stimulus annotations (Wegge et al.,
2022; Wegge and Klinger, 2023).

4 Open Research Tasks

We have now discussed previous work in emotion
analysis, appraisal-based approaches and role la-
beling. In the following, we will make a set of
aspects explicit that, from our perspective, need
future work.

Full emotion role labeling. Several corpora exist
now that have complex annotations of the emoter,
their respective emotion stimuli, targets, and cue
words; partially with sentence level annotations
for the reader and writer in addition. Modeling,
however, focused on sequence labeling for subsets
of the roles or sentence level classification. There
are no attempts of full emotion graph prediction,
despite that role prediction subtasks might benefit
from being modeled jointly. There is also only little
work on exploiting role information for emotion

categorization on the sentence level, a potentially
valuable approach for joint modeling of a structured
prediction task with text classification.

Role labeling/stimulus detection with appraisal
information. The work that has been performed
to understand the interaction between role predic-
tion and emotion categorization focused on pre-
dicting discrete emotion classes. However, stimuli
often correspond to event descriptions and there-
fore are a straight-forward choice for further anal-
ysis with appraisal variables. Also, understanding
which event mentions in a text can function as an
emotion stimulus could be supported with the help
of appraisals. The detection of clauses or token
sequences that correspond to emotion stimuli in
context of appraisal-based interpretations therefore
has potential to improve both subtasks.

Integration of other emotion models in role la-
beling. Emotion categorization is typically one
variable to be predicted in stimulus detection and
role labeling approaches, either for a writer or
for entities. An additionally interesting approach
would be to integrate other emotion representations
with role labeling. An interesting choice would
be to create a corpus of valence/arousal values,
assigned to specific entities and linked to stimuli.
Such approach comes with the general advantage
of dimensional models, namely that emotion cate-
gories do not need to be predefined.

Robust cross-corpus modeling and zero-shot
predictions. A similar motivation lead to recent
work on zero-shot emotion prediction, in which
emotion categories are to be predicted that are not
available in the training data. Plaza-del Arco et al.
(2022) showed that the performance loss of natural
language inference-based prompting in comparison
to supervised learning leaves space for improve-
ments. Such attempts might also bridge the gap
between in-domain performance and cross-domain
performance of emotion analysis systems (Bostan
and Klinger, 2018). Zero-shot modeling or other
approaches to find representations that are agnos-
tic to the underlying emotion theory are essential
for cross-corpus experiments, because the domains
that are represented by different corpora require
differing label sets.

Interpretation of event chains. Textual event de-
scriptions can be interpreted with appraisal theories,
but we rely on end-to-end learning to understand
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how sequences of events lead to specific emotions
(for instance being afraid of a specific unconfirmed
undesirable event e→ e is disconfirmed → relief).
Dissecting events with semantic parsing, and com-
bining them with emotion role labeling leads to
sequences of general and emotion events, which
can be the input for a second-level emotion analy-
sis. Such methods would be required to fully un-
derstand how emotions develop throughout longer
sequences of stories, for instance in literature.

Perspectivism. Appraisals do explain differences
in the emotion assessement, based on differing in-
terpretations of events (Troiano et al., 2023b). We
do, however, not know the role of underlying fac-
tors. A perspectivistic approach with the goal to
uncover variables that lead to varying emotion con-
structions, e.g., based on demographic data of event
participants or other data, might provide additional
insight. This could also be applied to literature
analysis, for instance by including personality in-
formation on fictional characters in the emotion
prediction (Bamman et al., 2013). Such approach
is well-motivated in psychology; we know that
personality influences the interpretation of other’s
emotions (Doellinger et al., 2021).

Integrate emotion models from psychology.
Emotion analysis work so far focused on a compa-
rably small set of emotion theories. The philosoph-
ical discussion by Scarantino (2016) offers itself
as a guideing principle which other theories might
be valueable to be explored. This does not only
include entirely so-far-ignored theories (e.g., Feld-
man Barrett, 2017) but also knowledge from theo-
ries popular in NLP. For instance, Ekman (1992);
Plutchik (2001) offer more information than lists
of emotion categories. Integrating psychological
knowledge in NLP models can improve the perfor-
mance (Troiano et al., 2023b). In a similar vein,
there exist specific appraisal theories for particular
domains, including, e.g., argumentation theories
(Dillard and Seo, 2012).

Multimodal Modeling. We focused in our pa-
per on analysis tasks from text, but there has al-
ready been work on multimodal emotion analysis
(Busso et al., 2008, i.a.) and detecting emotion
stimuli in images (Dellagiacoma et al., 2011; Fan
et al., 2018, i.a.), also multimodally (Khlyzova
et al., 2022; Cevher et al., 2019). However, we
are not aware of any work in computer vision that
interprets situations and the interactions of events

with the help of appraisal theories. To fully grasp
available information in everyday communication
or (social) media, the presented approaches from
this paper need to be extended multimodally.

Multilingual modeling. Most papers that we dis-
cuss in this paper focus on English – with very few
exceptions, which we pointed out explicitly. We
are not aware of any emotion role labeling corpus
with full graph annotations in other languages, and
there are only very few attempts to integrate ap-
praisal theories in emotion detection on languages
other than English. Such multilingual extension
is not only relevant to achieve models that work
across use-cases – the concept of emotion names
might also differ between languages, and therefore
comparing emotion concepts with the help of di-
mensional appraisal models between languages and
cultures can provide interesting insights for both
NLP and psychology.

5 Conclusion

With this paper, we discussed appraisal theory-
based methods to interpret events, and how emo-
tions can be represented as events with role label-
ing. We did that guided by our own two emotion
analysis projects SEAT (Structured Multi-Domain
Emotion Analysis from Text) and CEAT (Compu-
tational Event Evaluation based on Appraisal The-
ories for Emotion Analysis) which corresponded
each to one of the two perspectives.

These two fields have been approached mostly
separately so far and the main goal of this paper is
to make the research narrative behind both trans-
parent, and, based on this, point out open research
questions. Such open tasks emerge from missing
connections between the various goals in emotion
analysis, but there are also other promising direc-
tions that we pointed out.

We do not believe that this list is comprehensive,
but hope that the aggregation of previous work
and pointing at missing research helps interested
researchers to identify the gaps they want to fill.
Emotion analysis is important to make computers
aware of the concept, which is essential for natural
communication.

In addition, research in these fields helps to bet-
ter understand how humans communicate, beyond
building impactful computational systems. There-
fore, research in affective computing brings to-
gether psychology, linguistics, and NLP.
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Limitations

This paper focused on appraisal theories and emo-
tion role labeling mostly from a theoretical per-
spective. We aimed at pointing out open research
questions mostly based on conceptualizations of
theories from semantics and psychology. To iden-
tify open research questions, a closer introspection
of existing models need to be performed in addi-
tion. In our theoretical discussion, we assume that
the open research questions have similar chances
to succeed. In practical terms this is likely not
the case and we therefore propose to first perform
preliminary studies before definitely deciding to
follow one of the research plans that we sketched.

Ethics Statement

The contributions in this paper do not directly pose
any ethical issues: we did not publish data, models,
or did perform experiments. However, the open
topics that we identified might lead to resources
and models that can in principle do harm to people.
Following deontological ethics, we assume that no
emotion analysis systems should be applied to data
created by a person without their consent, if the
results are used not only in aggregated form which
would allow to identify the person who is associ-
ated with the analyzed data. We personally do not
believe that a utilitaristic approach may be accept-
able in which reasons could exist that justify to use
emotion analysis technology to identify individuals
from a larger group. This is particularly important
with methods discussed in this paper in comparison
to more general emotion categorization methods,
because we focus on implicit emotion expressions.
The methods we discussed and future work we
sketched would be able to identify emotions that
are not explicitly expressed, and therefore humans
that generate data might not be aware that their pri-
vate emotional state could be reconstructed from
the data they produce.

When creating data for emotion analysis, inde-
pendent of its language, domain, or the task for-
mulation as role labeling, classification, regression,
using a dimensional model or a theory of basic emo-
tions, fairness or developed system and bias in data
and systems is typically an issue. While efforts
exist to identify unwanted bias and confounders
in automatic analysis systems, the possible exis-
tance of unidentified biases can never be excluded.
Therefore, automatic systems always need to be
applied with care while critically reflecting the au-

tomatically obtained results. This is particularly
the case with systems that focus on interpreting
implicit emotion communications that require rea-
soning under uncertainty. To enable such critical
reflection of a system’s output, their decision must
be transparently communicated to the users.

In general, the ability of automatic systems to in-
terpret and aggregate emotions should not be used
unaware of the people who created data, and deci-
sions and actions following recognized emotions
always need to remain in the responsibility of a
human user.

We see our work mostly as a research contribu-
tion with the goal to better understand how humans
communicate, not as an automatic enabling tool to
provide insight in the private states of people.

Acknowledgements

We would like to thank all coauthors who con-
tributed to our work on emotion analysis with
the help of appraisal theories and in role label-
ing. These are (in alphabetical order) Amelie
Heindl, Antje Schweitzer, Bao Minh Doan Dang,
Enrica Troiano, Evgeny Kim, Felix Casel, Flor
Miriam Arco Del Plaza, Hendrik Schuff, Jan Hof-
mann, Jeremy Barnes, Kai Sassenberg, Kevin Re-
ich, Laura Oberländer née Bostan, Max Wegge,
Sebastian Padó, Tornike Tsereteli, and Valentino
Sabbatino. We further thank Alexandra Balahur,
Orphée De Clercq, Saif Mohammad, Veronique
Hoste, Valentin Barriere, and Sanja Štajner for dis-
cussions on the general topics of emotion analysis
that helped us to develop this paper.

This work has been funded by two projects
of the German Research Council (Deutsche
Forschungsgemeinschaft), namely the project
“Structured Multi-Domain Emotion Analysis from
Text” (SEAT, KL 2869/1-1) and “Computational
Event Evaluation based on Appraisal Theories for
Emotion Analysis” (CEAT, KL 2869/1-2).1

References
Cecilia Ovesdotter Alm, Dan Roth, and Richard Sproat.

2005. Emotions from text: Machine learning for text-
based emotion prediction. In Proceedings of Human
Language Technology Conference and Conference
on Empirical Methods in Natural Language Process-
ing, pages 579–586, Vancouver, British Columbia,
Canada. Association for Computational Linguistics.
1https://www.ims.uni-stuttgart.de/en/research/

projects/seat/, https://www.ims.uni-stuttgart.de/
en/research/projects/ceat/

10

https://aclanthology.org/H05-1073
https://aclanthology.org/H05-1073
https://www.ims.uni-stuttgart.de/en/research/projects/seat/
https://www.ims.uni-stuttgart.de/en/research/projects/seat/
https://www.ims.uni-stuttgart.de/en/research/projects/ceat/
https://www.ims.uni-stuttgart.de/en/research/projects/ceat/


Cecilia Ovesdotter Alm and Richard Sproat. 2005. Emo-
tional sequencing and development in fairy tales.
In Affective Computing and Intelligent Interaction,
pages 668–674, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Saima Aman and Stan Szpakowicz. 2007. Identify-
ing expressions of emotion in text. In Text, Speech
and Dialogue, pages 196–205, Berlin, Heidelberg.
Springer Berlin Heidelberg.

Alexandra Balahur, Jesus M. Hermida, and Andrew
Montoyo. 2012. Building and exploiting emotinet,
a knowledge base for emotion detection based on
the appraisal theory model. IEEE Transactions on
Affective Computing, 3(1):88–101.

David Bamman, Brendan O’Connor, and Noah A.
Smith. 2013. Learning latent personas of film char-
acters. In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 352–361, Sofia, Bulgaria.
Association for Computational Linguistics.

Jeremy Barnes, Roman Klinger, and Sabine Schulte im
Walde. 2017. Assessing state-of-the-art sentiment
models on state-of-the-art sentiment datasets. In Pro-
ceedings of the 8th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Media
Analysis, Copenhagen, Denmark. Workshop at Con-
ference on Empirical Methods in Natural Language
Processing, Association for Computational Linguis-
tics.

Jeremy Barnes, Laura Oberlaender, Enrica Troiano, An-
drey Kutuzov, Jan Buchmann, Rodrigo Agerri, Lilja
Øvrelid, and Erik Velldal. 2022. SemEval 2022 task
10: Structured sentiment analysis. In Proceedings of
the 16th International Workshop on Semantic Eval-
uation (SemEval-2022), pages 1280–1295, Seattle,
United States. Association for Computational Lin-
guistics.

Laura Ana Maria Bostan, Evgeny Kim, and Roman
Klinger. 2020. GoodNewsEveryone: A corpus of
news headlines annotated with emotions, semantic
roles, and reader perception. In Proceedings of The
12th Language Resources and Evaluation Confer-
ence, pages 1554–1566, Marseille, France. European
Language Resources Association.

Laura-Ana-Maria Bostan and Roman Klinger. 2018.
An analysis of annotated corpora for emotion clas-
sification in text. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics,
pages 2104–2119, Santa Fe, New Mexico, USA. As-
sociation for Computational Linguistics.

Gregory J. Boyle. 1995. Myers-Briggs Type Indicator
(MBTI): Some Psychometric Limitations. Australian
Psychologist, 30(1):71–74.

Sven Buechel and Udo Hahn. 2017. EmoBank: Study-
ing the impact of annotation perspective and repre-
sentation format on dimensional emotion analysis.

In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers, pages 578–585,
Valencia, Spain. Association for Computational Lin-
guistics.

Sven Buechel, Luise Modersohn, and Udo Hahn. 2021.
Towards label-agnostic emotion embeddings. In Pro-
ceedings of the 2021 Conference on Empirical Meth-
ods in Natural Language Processing, pages 9231–
9249, Online and Punta Cana, Dominican Republic.
Association for Computational Linguistics.

Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe
Kazemzadeh, Emily Mower, Samuel Kim, Jean-
nette N. Chang, Sungbok Lee, and Shrikanth S.
Narayanan. 2008. Iemocap: interactive emotional
dyadic motion capture database. Language Re-
sources and Evaluation, 42(4):335.

Manuela Caiani and Jessica Di Cocco. 2023. Populism
and emotions: a comparative study using machine
learning. Italian Political Science Review / Rivista
Italiana di Scienza Politica, page 1–16.

Erik Cambria, Qian Liu, Sergio Decherchi, Frank
Xing, and Kenneth Kwok. 2022. SenticNet 7: A
commonsense-based neurosymbolic AI framework
for explainable sentiment analysis. In Proceedings of
the Thirteenth Language Resources and Evaluation
Conference, pages 3829–3839, Marseille, France. Eu-
ropean Language Resources Association.

Cesare Campagnano, Simone Conia, and Roberto Nav-
igli. 2022. SRL4E – Semantic Role Labeling for
Emotions: A unified evaluation framework. In Pro-
ceedings of the 60th Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 1: Long
Papers), pages 4586–4601, Dublin, Ireland. Associa-
tion for Computational Linguistics.

Felix Casel, Amelie Heindl, and Roman Klinger. 2021.
Emotion recognition under consideration of the emo-
tion component process model. In KONVENS 2021.

Deniz Cevher, Sebastian Zepf, and Roman Klinger.
2019. Towards multimodal emotion recognition in
german speech events in cars using transfer learning.
In KONVENS.

Dushyant Singh Chauhan, Dhanush S R, Asif Ekbal, and
Pushpak Bhattacharyya. 2020. Sentiment and emo-
tion help sarcasm? a multi-task learning framework
for multi-modal sarcasm, sentiment and emotion anal-
ysis. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
4351–4360, Online. Association for Computational
Linguistics.

Gustave Cortal, Alain Finkel, Patrick Paroubek, and
Lina Ye. 2023. Emotion recognition based on psycho-
logical components in guided narratives for emotion
regulation. In Proceedings of the 7th Joint SIGHUM
Workshop on Computational Linguistics for Cultural

11

https://doi.org/10.1007/11573548_86
https://doi.org/10.1007/11573548_86
https://doi.org/10.1007/978-3-540-74628-7_27
https://doi.org/10.1007/978-3-540-74628-7_27
https://doi.org/10.1109/T-AFFC.2011.33
https://doi.org/10.1109/T-AFFC.2011.33
https://doi.org/10.1109/T-AFFC.2011.33
https://aclanthology.org/P13-1035
https://aclanthology.org/P13-1035
http://www.ims.uni-stuttgart.de/data/sota_sentiment
http://www.ims.uni-stuttgart.de/data/sota_sentiment
https://doi.org/10.18653/v1/2022.semeval-1.180
https://doi.org/10.18653/v1/2022.semeval-1.180
https://www.aclanthology.org/2020.lrec-1.194
https://www.aclanthology.org/2020.lrec-1.194
https://www.aclanthology.org/2020.lrec-1.194
https://aclanthology.org/C18-1179
https://aclanthology.org/C18-1179
https://doi.org/10.1111/j.1742-9544.1995.tb01750.x
https://doi.org/10.1111/j.1742-9544.1995.tb01750.x
https://aclanthology.org/E17-2092
https://aclanthology.org/E17-2092
https://aclanthology.org/E17-2092
https://doi.org/10.18653/v1/2021.emnlp-main.728
https://doi.org/10.1007/s10579-008-9076-6
https://doi.org/10.1007/s10579-008-9076-6
https://doi.org/10.1017/ipo.2023.8
https://doi.org/10.1017/ipo.2023.8
https://doi.org/10.1017/ipo.2023.8
https://aclanthology.org/2022.lrec-1.408
https://aclanthology.org/2022.lrec-1.408
https://aclanthology.org/2022.lrec-1.408
https://doi.org/10.18653/v1/2022.acl-long.314
https://doi.org/10.18653/v1/2022.acl-long.314
https://aclanthology.org/2021.konvens-1.5
https://aclanthology.org/2021.konvens-1.5
https://corpora.linguistik.uni-erlangen.de/data/konvens/proceedings/papers/KONVENS2019_paper_16.pdf
https://corpora.linguistik.uni-erlangen.de/data/konvens/proceedings/papers/KONVENS2019_paper_16.pdf
https://doi.org/10.18653/v1/2020.acl-main.401
https://doi.org/10.18653/v1/2020.acl-main.401
https://doi.org/10.18653/v1/2020.acl-main.401
https://doi.org/10.18653/v1/2020.acl-main.401
https://aclanthology.org/2023.latechclfl-1.8
https://aclanthology.org/2023.latechclfl-1.8
https://aclanthology.org/2023.latechclfl-1.8


Heritage, Social Sciences, Humanities and Litera-
ture, pages 72–81, Dubrovnik, Croatia. Association
for Computational Linguistics.

Verna Dankers, Marek Rei, Martha Lewis, and Eka-
terina Shutova. 2019. Modelling the interplay of
metaphor and emotion through multitask learning. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 2218–
2229, Hong Kong, China. Association for Computa-
tional Linguistics.

Michela Dellagiacoma, Pamela Zontone, Giulia Boato,
and Liliana Albertazzi. 2011. Emotion based classifi-
cation of natural images. In Proceedings of the 2011
International Workshop on DETecting and Exploiting
Cultural DiversiTy on the Social Web, DETECT ’11,
page 17–22, New York, NY, USA. Association for
Computing Machinery.

Dorottya Demszky, Dana Movshovitz-Attias, Jeongwoo
Ko, Alan Cowen, Gaurav Nemade, and Sujith Ravi.
2020. GoEmotions: A dataset of fine-grained emo-
tions. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
4040–4054, Online. Association for Computational
Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

James Price Dillard and Kiwon Seo. 2012. Affect and
persuasion. In James Price Dillard and Lijang Shen,
editors, The SAGE Handbook of Persuasion: Devel-
opments in Theory and Practice, chapter 10. SAGE
Publications.

Bao Minh Doan Dang, Laura Oberländer, and Roman
Klinger. 2021. Emotion stimulus detection in Ger-
man news headlines. In Proceedings of the 17th Con-
ference on Natural Language Processing (KONVENS
2021), pages 73–85, Düsseldorf, Germany. KON-
VENS 2021 Organizers.

Peter Sheridan Dodds, Kameron Decker Harris, Is-
abel M. Kloumann, Catherine A. Bliss, and Christo-
pher M. Danforth. 2011. Temporal patterns of hap-
piness and information in a global social network:
Hedonometrics and twitter. PLOS ONE, 6(12):1–1.

Lillian Doellinger, Petri Laukka, Lennart Björn Hög-
man, Tanja Bänziger, Irena Makower, Håkan Fischer,
and Stephan Hau. 2021. Training emotion recogni-
tion accuracy: Results for multimodal expressions
and facial micro expressions. Frontiers in Psychol-
ogy, 12.

Paul Ekman. 1992. An argument for basic emotions.
Cognition & emotion, 6(3-4):169–200.

Paul Ekman and Daniel Cordaro. 2011. What is meant
by calling emotions basic. Emotion Review.

Aline Etienne, Delphine Battistelli, and Gwénolé
Lecorvé. 2022. A (psycho-)linguistically motivated
scheme for annotating and exploring emotions in a
genre-diverse corpus. In Proceedings of the Thir-
teenth Language Resources and Evaluation Confer-
ence, pages 603–612, Marseille, France. European
Language Resources Association.

Shaojing Fan, Zhiqi Shen, Ming Jiang, Bryan L. Koenig,
Juan Xu, Mohan S. Kankanhalli, and Qi Zhao. 2018.
Emotional attention: A study of image sentiment
and visual attention. In 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages
7521–7531.

Bjarke Felbo, Alan Mislove, Anders Søgaard, Iyad Rah-
wan, and Sune Lehmann. 2017. Using millions of
emoji occurrences to learn any-domain representa-
tions for detecting sentiment, emotion and sarcasm.
In Proceedings of the 2017 Conference on Empiri-
cal Methods in Natural Language Processing, pages
1615–1625, Copenhagen, Denmark. Association for
Computational Linguistics.

Lisa Feldman Barrett. 2017. The theory of constructed
emotion: an active inference account of interoception
and categorization. Social Cognitive and Affective
Neuroscience, 12(11):1833.

Qinghong Gao, Jiannan Hu, Ruifeng Xu, Gui Lin, Yulan
He, Qin Lu, and Kam-Fai Wong. 2017. Overview of
NTCIR-13 ECA task. In Proceedings of the 13th NT-
CIR Conference on Evaluation of Information Access
Technologies, pages 361–366, Tokyo, Japan.

Christian Geiser, Thomas Götz, Franzis Preckel, and
Philipp Alexander Freund. 2017. States and Traits:
Theories, Models, and Assessment. European Jour-
nal of Psychological Assessment, 33(4):219–223.

Diman Ghazi, Diana Inkpen, and Stan Szpakowicz.
2015. Detecting emotion stimuli in emotion-bearing
sentences. In International Conference on Intelli-
gent Text Processing and Computational Linguistics,
pages 152–165. Springer.

Daniel Gildea and Daniel Jurafsky. 2000. Automatic
labeling of semantic roles. In Proceedings of the 38th
Annual Meeting of the Association for Computational
Linguistics, pages 512–520, Hong Kong. Association
for Computational Linguistics.

Jennifer Golbeck, Cristina Robles, and Karen Turner.
2011. Predicting personality with social media. In
CHI’11 extended abstracts on human factors in com-
puting systems, pages 253–262.

Lewis R. Goldberg. 1999. A broad-bandwidth, public
domain, personality inventory measuring the lower-
level facets of several five-factor models. Personality
psychology in Europe, 7(1):7–28.

12

https://doi.org/10.18653/v1/D19-1227
https://doi.org/10.18653/v1/D19-1227
https://doi.org/10.1145/2064448.2064470
https://doi.org/10.1145/2064448.2064470
https://doi.org/10.18653/v1/2020.acl-main.372
https://doi.org/10.18653/v1/2020.acl-main.372
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.4135/9781452218410
https://doi.org/10.4135/9781452218410
https://aclanthology.org/2021.konvens-1.7
https://aclanthology.org/2021.konvens-1.7
https://doi.org/10.1371/journal.pone.0026752
https://doi.org/10.1371/journal.pone.0026752
https://doi.org/10.1371/journal.pone.0026752
https://doi.org/10.3389/fpsyg.2021.708867
https://doi.org/10.3389/fpsyg.2021.708867
https://doi.org/10.3389/fpsyg.2021.708867
https://doi.org/10.1080/02699939208411068
https://doi.org/10.1177/1754073911410740
https://doi.org/10.1177/1754073911410740
https://aclanthology.org/2022.lrec-1.64
https://aclanthology.org/2022.lrec-1.64
https://aclanthology.org/2022.lrec-1.64
https://doi.org/10.1109/CVPR.2018.00785
https://doi.org/10.1109/CVPR.2018.00785
https://doi.org/10.18653/v1/D17-1169
https://doi.org/10.18653/v1/D17-1169
https://doi.org/10.18653/v1/D17-1169
https://doi.org/10.1093/scan/nsw154
https://doi.org/10.1093/scan/nsw154
https://doi.org/10.1093/scan/nsw154
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings13/pdf/ntcir/01-NTCIR13-OV-ECA-GaoQ.pdf
http://research.nii.ac.jp/ntcir/workshop/OnlineProceedings13/pdf/ntcir/01-NTCIR13-OV-ECA-GaoQ.pdf
https://doi.org/10.1027/1015-5759/a000413
https://doi.org/10.1027/1015-5759/a000413
https://doi.org/10.1007/978-3-319-18117-2_12
https://doi.org/10.1007/978-3-319-18117-2_12
https://doi.org/10.3115/1075218.1075283
https://doi.org/10.3115/1075218.1075283
https://doi.org/10.1145/1979742.1979614
https://ipip.ori.org/A%20broad-bandwidth%20inventory.pdf
https://ipip.ori.org/A%20broad-bandwidth%20inventory.pdf
https://ipip.ori.org/A%20broad-bandwidth%20inventory.pdf


Jan Hofmann, Enrica Troiano, and Roman Klinger.
2021. Emotion-aware, emotion-agnostic, or auto-
matic: Corpus creation strategies to obtain cognitive
event appraisal annotations. In Proceedings of the
Eleventh Workshop on Computational Approaches to
Subjectivity, Sentiment and Social Media Analysis,
pages 160–170, Online. Association for Computa-
tional Linguistics.

Jan Hofmann, Enrica Troiano, Kai Sassenberg, and Ro-
man Klinger. 2020. Appraisal theories for emotion
classification in text. In Proceedings of the 28th Inter-
national Conference on Computational Linguistics,
pages 125–138, Barcelona, Spain (Online). Interna-
tional Committee on Computational Linguistics.

Johan F. Hoorn and Elly A. Konijn. 2003. Perceiving
and experiencing fictional characters: An integrative
account: Perceiving and experiencing fictional char-
acters. Japanese Psychological Research, 45(4):250–
268.

Md Rafiqul Islam, Muhammad Ashad Kabir, Ashir
Ahmed, Abu Raihan M Kamal, Hua Wang, and An-
waar Ulhaq. 2018. Depression detection from so-
cial network data using machine learning techniques.
Health Inf. Sci. Syst., 6(1):8.

Margaret L. Kern, Gregory Park, Johannes C. Eich-
staedt, H. Andrew Schwartz, Maarten Sap, Laura K.
Smith, and Lyle H. Ungar. 2016. Gaining insights
from social media language: Methodologies and chal-
lenges. Psychological Methods, 21(4):507–525.

Anna Khlyzova, Carina Silberer, and Roman Klinger.
2022. On the complementarity of images and text for
the expression of emotions in social media. In Pro-
ceedings of the 12th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment & Social Media
Analysis, pages 1–15, Dublin, Ireland. Association
for Computational Linguistics.

Evgeny Kim and Roman Klinger. 2018. Who feels what
and why? annotation of a literature corpus with se-
mantic roles of emotions. In Proceedings of the 27th
International Conference on Computational Linguis-
tics, pages 1345–1359, Santa Fe, New Mexico, USA.
Association for Computational Linguistics.

Evgeny Kim and Roman Klinger. 2019a. An analysis
of emotion communication channels in fan-fiction:
Towards emotional storytelling. In Proceedings of
the Second Workshop on Storytelling, pages 56–64,
Florence, Italy. Association for Computational Lin-
guistics.

Evgeny Kim and Roman Klinger. 2019b. Frowning
Frodo, wincing Leia, and a seriously great friend-
ship: Learning to classify emotional relationships
of fictional characters. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 647–653, Minneapolis, Minnesota.
Association for Computational Linguistics.

Evgeny Kim, Sebastian Padó, and Roman Klinger. 2017.
Investigating the relationship between literary genres
and emotional plot development. In Proceedings
of the Joint SIGHUM Workshop on Computational
Linguistics for Cultural Heritage, Social Sciences,
Humanities and Literature, pages 17–26, Vancouver,
Canada. Association for Computational Linguistics.

Svetlana Kiritchenko, Saif Mohammad, and Moham-
mad Salameh. 2016. SemEval-2016 task 7: Deter-
mining sentiment intensity of English and Arabic
phrases. In Proceedings of the 10th International
Workshop on Semantic Evaluation (SemEval-2016),
pages 42–51, San Diego, California. Association for
Computational Linguistics.

Roman Klinger and Philipp Cimiano. 2013. Bi-
directional inter-dependencies of subjective expres-
sions and targets and their value for a joint model.
In Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics (Volume
2: Short Papers), pages 848–854, Sofia, Bulgaria.
Association for Computational Linguistics.

Roman Klinger, Orphée De Clercq, Saif Mohammad,
and Alexandra Balahur. 2018. IEST: WASSA-2018
implicit emotions shared task. In Proceedings of the
9th Workshop on Computational Approaches to Sub-
jectivity, Sentiment and Social Media Analysis, pages
31–42, Brussels, Belgium. Association for Computa-
tional Linguistics.

Anne Kreuter, Kai Sassenberg, and Roman Klinger.
2022. Items from psychometric tests as training data
for personality profiling models of Twitter users. In
Proceedings of the 12th Workshop on Computational
Approaches to Subjectivity, Sentiment & Social Me-
dia Analysis, pages 315–323, Dublin, Ireland. Asso-
ciation for Computational Linguistics.

Jonas Kuhn. 2019. Computational text analysis within
the Humanities: How to combine working practices
from the contributing fields? Language Resources
and Evaluation, 53(4):565–602.

Sofie Labat, Amir Hadifar, Thomas Demeester, and
Veronique Hoste. 2022. An emotional journey: De-
tecting emotion trajectories in Dutch customer ser-
vice dialogues. In Proceedings of the Eighth Work-
shop on Noisy User-generated Text (W-NUT 2022),
pages 106–112, Gyeongju, Republic of Korea. Asso-
ciation for Computational Linguistics.

Kibeom Lee and Michael C Ashton. 2018. Psycho-
metric properties of the hexaco-100. Assessment,
25(5):543–556.

Xiang Li, Aynaz Taheri, Lifu Tu, and Kevin Gimpel.
2016. Commonsense knowledge base completion.
In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume
1: Long Papers), pages 1445–1455, Berlin, Germany.
Association for Computational Linguistics.

13

https://aclanthology.org/2021.wassa-1.17
https://aclanthology.org/2021.wassa-1.17
https://aclanthology.org/2021.wassa-1.17
https://doi.org/10.18653/v1/2020.coling-main.11
https://doi.org/10.18653/v1/2020.coling-main.11
https://doi.org/10.1111/1468-5884.00225
https://doi.org/10.1111/1468-5884.00225
https://doi.org/10.1111/1468-5884.00225
https://doi.org/10.1111/1468-5884.00225
https://doi.org/10.1007/s13755-018-0046-0
https://doi.org/10.1007/s13755-018-0046-0
https://doi.org/10.1037/met0000091
https://doi.org/10.1037/met0000091
https://doi.org/10.1037/met0000091
https://doi.org/10.18653/v1/2022.wassa-1.1
https://doi.org/10.18653/v1/2022.wassa-1.1
https://aclanthology.org/C18-1114
https://aclanthology.org/C18-1114
https://aclanthology.org/C18-1114
https://doi.org/10.18653/v1/W19-3406
https://doi.org/10.18653/v1/W19-3406
https://doi.org/10.18653/v1/W19-3406
https://www.aclanthology.org/N19-1067
https://www.aclanthology.org/N19-1067
https://www.aclanthology.org/N19-1067
https://www.aclanthology.org/N19-1067
http://www.aclanthology.org/W17-2203
http://www.aclanthology.org/W17-2203
https://doi.org/10.18653/v1/S16-1004
https://doi.org/10.18653/v1/S16-1004
https://doi.org/10.18653/v1/S16-1004
http://www.aclanthology.org/P13-2147
http://www.aclanthology.org/P13-2147
http://www.aclanthology.org/P13-2147
https://doi.org/10.18653/v1/W18-6206
https://doi.org/10.18653/v1/W18-6206
https://doi.org/10.18653/v1/2022.wassa-1.35
https://doi.org/10.18653/v1/2022.wassa-1.35
https://doi.org/10.1007/s10579-019-09459-3
https://doi.org/10.1007/s10579-019-09459-3
https://doi.org/10.1007/s10579-019-09459-3
https://aclanthology.org/2022.wnut-1.12
https://aclanthology.org/2022.wnut-1.12
https://aclanthology.org/2022.wnut-1.12
https://doi.org/10.1177/1073191116659134
https://doi.org/10.1177/1073191116659134
https://doi.org/10.18653/v1/P16-1137


Yanran Li, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang
Cao, and Shuzi Niu. 2017. DailyDialog: A manually
labelled multi-turn dialogue dataset. In Proceedings
of the Eighth International Joint Conference on Nat-
ural Language Processing (Volume 1: Long Papers),
pages 986–995, Taipei, Taiwan. Asian Federation of
Natural Language Processing.

Jasy Suet Yan Liew, Howard R. Turtle, and Elizabeth D.
Liddy. 2016. EmoTweet-28: A fine-grained emo-
tion corpus for sentiment analysis. In Proceedings
of the Tenth International Conference on Language
Resources and Evaluation (LREC’16), pages 1149–
1156, Portorož, Slovenia. European Language Re-
sources Association (ELRA).

Bing Liu. 2012. Sentiment analysis and opinion mining.
Synthesis lectures on human language technologies.
Springer Nature Switzerland.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
RoBERTa: A robustly optimized BERT pretrain-
ing approach. arXiv:1907.11692. https://arxiv.
org/abs/1907.11692.

Veronica Lynn, Niranjan Balasubramanian, and H. An-
drew Schwartz. 2020. Hierarchical modeling for user
personality prediction: The role of message-level
attention. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 5306–5316, Online. Association for Computa-
tional Linguistics.

J. R. Martin and P. R. R. White. 2005. The Language of
Evaluation. Palgrave Macmillan UK, London.

Saif Mohammad. 2012. #emotional tweets. In *SEM
2012: The First Joint Conference on Lexical and
Computational Semantics – Volume 1: Proceedings
of the main conference and the shared task, and Vol-
ume 2: Proceedings of the Sixth International Work-
shop on Semantic Evaluation (SemEval 2012), pages
246–255, Montréal, Canada. Association for Compu-
tational Linguistics.

Saif Mohammad and Felipe Bravo-Marquez. 2017.
WASSA-2017 shared task on emotion intensity. In
Proceedings of the 8th Workshop on Computational
Approaches to Subjectivity, Sentiment and Social Me-
dia Analysis, pages 34–49, Copenhagen, Denmark.
Association for Computational Linguistics.

Saif Mohammad, Felipe Bravo-Marquez, Mohammad
Salameh, and Svetlana Kiritchenko. 2018. SemEval-
2018 task 1: Affect in tweets. In Proceedings of The
12th International Workshop on Semantic Evaluation,
pages 1–17, New Orleans, Louisiana. Association for
Computational Linguistics.

Saif Mohammad and Peter D. Turney. 2013. Crowd-
sourcing a word-emotion association lexicon. Com-
putational Intelligence, 29(3):436–465.

Saif Mohammad, Xiaodan Zhu, and Joel Martin. 2014.
Semantic role labeling of emotions in tweets. In Pro-
ceedings of the 5th Workshop on Computational Ap-
proaches to Subjectivity, Sentiment and Social Media
Analysis, pages 32–41, Baltimore, Maryland. Associ-
ation for Computational Linguistics.

Isabel Briggs Myers. 1998. Introduction to Type: A
Guide to Understanding Your Results on the MBTI
Instrument, 6th edition edition. Cpp. Inc.

William Herman Newman, Charles Edgar Summer, and
E. Kirby Warren. 1967. The Process of Management:
Concepts, Bahaviour, and Practice. Prentice-Hall.

Laura Oberländer, Kevin Reich, and Roman Klinger.
2020. Experiencers, stimuli, or targets: Which se-
mantic roles enable machine learning to infer the
emotions? In Proceedings of the Third Workshop on
Computational Modeling of People’s Opinions, Per-
sonality, and Emotions in Social Media, Barcelona,
Spain. Association for Computational Linguistics.

Bo Pang and Lillian Lee. 2008. Opinion Mining and
Sentiment Analysis. Foundations and Trends® in
Information Retrieval, 2(1–2):1–135.

James W. Pennebaker and Laura A. King. 1999. Lin-
guistic styles: Language use as an individual differ-
ence. Journal of Personality and Social Psychology,
77(6):1296–1312.

John P. Pestian, Pawel Matykiewicz, Michelle Linn-
Gust, Brett South, Ozlem Uzuner, Jan Wiebe, K Bre-
tonnel Cohen, John Hurdle, and Christopher Brew.
2012. Sentiment analysis of suicide notes: A shared
task. Biomed. Inform. Insights, 5(Suppl 1):3–16.

Daniele Pizzolli and Carlo Strapparava. 2019. Personal-
ity traits recognition in literary texts. In Proceedings
of the Second Workshop on Storytelling, pages 107–
111, Florence, Italy. Association for Computational
Linguistics.

Barbara Plank and Dirk Hovy. 2015. Personality traits
on Twitter—or—How to get 1,500 personality tests
in a week. In Proceedings of the 6th Workshop on
Computational Approaches to Subjectivity, Sentiment
and Social Media Analysis, pages 92–98, Lisboa,
Portugal. Association for Computational Linguistics.

Flor Miriam Plaza-del Arco, María-Teresa Martín-
Valdivia, and Roman Klinger. 2022. Natural lan-
guage inference prompts for zero-shot emotion clas-
sification in text across corpora. In Proceedings of
the 29th International Conference on Computational
Linguistics, pages 6805–6817, Gyeongju, Republic
of Korea. International Committee on Computational
Linguistics.

Robert Plutchik. 2001. The nature of emotions human
emotions have deep evolutionary roots, a fact that
may explain their complexity and provide tools for
clinical practice. American Scientist, 89(4):344–350.

14

https://aclanthology.org/I17-1099
https://aclanthology.org/I17-1099
https://aclanthology.org/L16-1183
https://aclanthology.org/L16-1183
https://doi.org/10.1007/978-3-031-02145-9
https://arxiv.org/abs/1907.11692
https://arxiv.org/abs/1907.11692
https://doi.org/10.18653/v1/2020.acl-main.472
https://doi.org/10.18653/v1/2020.acl-main.472
https://doi.org/10.18653/v1/2020.acl-main.472
https://doi.org/10.1057/9780230511910
https://doi.org/10.1057/9780230511910
https://aclanthology.org/S12-1033
https://doi.org/10.18653/v1/W17-5205
https://doi.org/10.18653/v1/S18-1001
https://doi.org/10.18653/v1/S18-1001
https://doi.org/10.1111/j.1467-8640.2012.00460
https://doi.org/10.1111/j.1467-8640.2012.00460
https://doi.org/10.3115/v1/W14-2607
https://worldcat.org/en/title/935541142
https://worldcat.org/en/title/935541142
https://worldcat.org/en/title/935541142
https://books.google.de/books?redir_esc=y&id=zJcuAAAAMAAJ&focus=searchwithinvolume&q=Communication+is+an+exchange+of+facts%2C+ideas%2C+opinions%2C+or+emotions+by+two+or+more+persons.+The+exchange+is+success-+ful+only+when+mutual+understanding+re-+sults.
https://books.google.de/books?redir_esc=y&id=zJcuAAAAMAAJ&focus=searchwithinvolume&q=Communication+is+an+exchange+of+facts%2C+ideas%2C+opinions%2C+or+emotions+by+two+or+more+persons.+The+exchange+is+success-+ful+only+when+mutual+understanding+re-+sults.
https://www.aclanthology.org/2020.peoples-1.12/
https://www.aclanthology.org/2020.peoples-1.12/
https://www.aclanthology.org/2020.peoples-1.12/
https://doi.org/10.1561/1500000011
https://doi.org/10.1561/1500000011
https://doi.org/10.1037/0022-3514.77.6.1296
https://doi.org/10.1037/0022-3514.77.6.1296
https://doi.org/10.1037/0022-3514.77.6.1296
https://doi.org/10.4137/BII.S9042
https://doi.org/10.4137/BII.S9042
https://doi.org/10.18653/v1/W19-3411
https://doi.org/10.18653/v1/W19-3411
https://doi.org/10.18653/v1/W15-2913
https://doi.org/10.18653/v1/W15-2913
https://doi.org/10.18653/v1/W15-2913
https://aclanthology.org/2022.coling-1.592
https://aclanthology.org/2022.coling-1.592
https://aclanthology.org/2022.coling-1.592
https://www.jstor.org/stable/27857503
https://www.jstor.org/stable/27857503
https://www.jstor.org/stable/27857503
https://www.jstor.org/stable/27857503


Maria Pontiki, Dimitris Galanis, Haris Papageorgiou,
Ion Androutsopoulos, Suresh Manandhar, Moham-
mad AL-Smadi, Mahmoud Al-Ayyoub, Yanyan
Zhao, Bing Qin, Orphée De Clercq, Véronique
Hoste, Marianna Apidianaki, Xavier Tannier, Na-
talia Loukachevitch, Evgeniy Kotelnikov, Nuria Bel,
Salud María Jiménez-Zafra, and Gülşen Eryiğit.
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Figure 8: Visualization of relations between emotion analysis and other previously established tasks and studies.
The bibliographic references are examples for the respective tasks and are not supposed to suggest completeness.
Please see the text for a more comprehensive picture.
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Abstract

We present our work towards building an in-
frastructure for documenting endangered lan-
guages with the focus on Uralic languages in
particular. Our infrastructure consists of tools
to write dictionaries so that entries are struc-
tured in XML format. These dictionaries are
the foundation for rule-based NLP tools such
as FSTs. We also work actively towards en-
hancing these dictionaries and tools by using
the latest state-of-the-art neural models by gen-
erating training data through rules and lexica.

1 Introduction

Most of the languages spoken in the world are in
danger of extinction. Their documentation and revi-
talization are of a highest cultural value, for which
they have received plenty of academic attention
in various disciplines such as anthropology, typol-
ogy, lexicography and computational linguistics.
Needless to say, the resources produced in each in-
dividual research project are not always published
openly let alone made available to the community
of native speakers.

The goal of our paper is to describe our open
infrastructure for documenting minority languages.
We present our experiences with the following
Uralic languages: Skolt Sami (sms), Erzya (myv),
Moksha (mdf), Komi-Zyrian (kpv) and Komi-
Permyak (koi). As they belong to the Uralic branch,
they are languages that exhibit a complex morphol-
ogy, which makes their computational processing
a challenge for modern machine learning methods
that would require a lot of data to cover this com-
plexity. The quantity and quality of data is usually
an issue when we deal with endangered languages
(Hämäläinen, 2021). Carrying out linguistic docu-
mentation in a structured machine readable format,
however, makes it possible to create the resources
needed for building NLP tools simultaneously with
linguistic documentation.

We are about to start working with the Apurinã
(apu) language, which allows us to reflect upon
our Uralic context from a broader perspective, and
increases the relevance of our work in a Latin Amer-
ican context. Thus, we describe how our infrastruc-
ture can work in non-Uralic contexts.

Linguistic documentation is a field of academic
study that has developed considerably in recent
decades. Its purpose is to provide a complete record
of the linguistic practices characteristic to a given
speech community (Himmelmann, 1998). The goal
of language documentation is to describe the lan-
guage of a community of speakers as fully as pos-
sible both for future generations and for language
revitalization. The result of this work is typically
manifested as a linguistic corpus or other type of
material collection, which later on can be stud-
ied and analyzed in various ways. The question
whether the collected materials actually describe
the language use of a speech community is de-
batable, and this goal can never be fully achieved
because a corpus can never describe a language in
full. Nonetheless, linguistically collected materials
may be the only resources available for a small
language.

Whether and how language documentation mate-
rials should be made accessible and distributed, has
been a matter of debate. We believe it is important
to understand that this is also a matter of granular-
ity, and the question is not necessarily whether the
materials are accessible, but rather which parties
should be allowed what type of access. There are
good reasons for keeping culturally sensitive mate-
rials available only to specific groups. At the same
time, there are always materials in any language
that are more neutral and such that the authors them-
selves may want to make accessible. Especially for
written publications, it may always be possible to
negotiate a publication with open licenses, which
would also allow the reuse of the same materials in
different open research purposes.
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Open materials are particularly important when
we develop tools for NLP, because this work can
greatly benefit from resources that are openly ac-
cessible with a permissive license. In the following
sections we will discuss examples of such work, in-
cluding our contribution to Universal Dependency
treebanks. It must be emphasized that the open
technology developed on an open infrastructure can
also be used to process materials that are available
only to a particular researcher or individual mem-
bers of a community. Therefore, open infrastruc-
ture benefits both open and closed environments,
whereas a closed infrastructure only benefits a big
commercial player.

2 Related work

There are several individual projects in different
parts of the world that work with online dictio-
naries for endangered languages. Many projects,
however, focus on one language only and work
without knowing about other ongoing projects for
other endangered languages. This has led to a sit-
uation where researchers solve the same type of
problems individually for their language of interest
reinventing the wheel over and over again. There
are plenty of online dictionaries and language learn-
ing tools that have been developed from scratch for
one particular language.

Work with endangered languages in North Amer-
ica has shown the importance of language learning
tools for second language learners. Lack of famil-
iarity with lexicographical tradition can easily be a
deciding factor in a beginner’s learning experience.
A learner of a new language cannot be expected to
know exactly where an entry is located in a dictio-
nary, nor can the learner be expected automatically
to know the normative spelling. When the user
of a language lacks a proper keyboard layout or
knowledge of the correct orthography, the strate-
gies of orthographic relaxation can be implemented
in mobile and online dictionaries. Morphological
processing and spelling relaxation are used to cater
to beginners in Tsimshian and Salishan languages
in the use of dictionaries and NLP tools (Littell
et al., 2017).

On an entirely separate front, work has also
been done to provide the Yupik community of St.
Lawrence Island unimpeded access to language
materials online. This has been possible using a
morphologically aware dictionary. In the system, a
strategy of multiple input methods has been intro-

duced that caters to different writing systems (Hunt
et al., 2019). The work here is tailor-made, and it
maintains a strong link between the language and
its community. The endangered language is seen
as a low-resourced language in this context.

The problem is that low-resourced language is
a term that is used for almost any language with
less Internet presence than English. languages
like Hindi (Irvine and Callison-Burch, 2014), Ara-
bic (Chen et al., 2018) or Persian (Ahmadnia
et al., 2017) are often considered low-resourced
languages in the world of NLP, even though they
have millions of speakers. In the work of Na-
sution et al. (2018), the ethnic Indonesian lan-
guages are relatively small compared to the su-
perstrate language that surrounds them. The ap-
proach consists of working simultaneously with a
group of closely related languages in a multilingual,
language-independent infrastructure. The authors
analyze the use of bilingual dictionary entries and
explain the difficulty of selecting the appropriate
bilingual dictionaries to begin documentation.

One of the largest infrastructures for minority
language documentation from the point of view of
computational linguistics is that of Giella (Mosha-
gen et al., 2014). Their infrastructure is based on
two main components: FST transducers (finite state
transducers) and XML dictionaries. Transducers
are a way of documenting the morphology of a
language computationally. That is to say, they are
collections of rules about how the morphological
system of a language works. These rules can be
used directly for automatic text analysis and lemma
conjugation in its morphological variants.

Transducers and XML dictionaries are used for
spelling correction in Word1, text prediction on An-
droid and iOS keyboards2, interactive systems to
learn languages (Bontogon et al., 2018) and online
dictionaries (Rueter and Hämäläinen, 2017). Our
infrastructure is based on Giella, which allows us to
synchronize data between the two infrastructures.
This means that advances in linguistic documenta-
tion in our infrastructure can be used directly in the
tools produced in Giella.

3 Our infrastructure

Using Giella requires a relatively high proficiency
in programming to be able to write dictionaries and
morphological rules for FSTs, and at the same time,

1http://divvun.no/korrektur/korrektur.html
2http://divvun.no/keyboards/mobileindex.html
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Figure 1: The form in Akusanat to edit the entry piânnai (dog) in Skolt Sami

it requires a good amount of knowledge in the lan-
guage that is being documented. The infrastructure
can be too complicated even for those who have
studied computer science, and therefore it is not
accessible to a community outside of those who col-
laborate directly with Giella. For this reason, our
infrastructure has several interfaces for different
types of users; for users who do not have sufficient
knowledge to write XML or program transducers
and for developers who want to use the tools with-
out knowing how to compile them right from the
beginning with the make command.

3.1 Online dictionaries
A very important step in the documentation of a mi-
nority language is the lexicographical work. This
results in a dictionary that can be useful for both
native speakers as for those who want to learn the
language. We store dictionaries in a highly struc-
tured XML format. That means that all kinds of
metadata are in their respective fields rather than
being stored in various parts of a lexicographical
entry in an unstructured format. This is important
as we do not only want to create dictionaries for
human use, but we also want them to be machine
readable.

Our Akusanat system3 (Hämäläinen and Rueter,
2018, 2019) is based on MediaWiki and allows you
to view the content of XML dictionaries for all
types of users. MediaWiki data is synchronized
with XML files using the Git version control. This
means that if someone modifies a lexicographical
entry in Akusanat, these changes will result in a
change to the XML dictionary stored in GitHub. If

3https://akusanat.com.

someone changes the XML dictionaries directly,
Akusanat will download the new changes from
GitHub and update its database automatically. This
is done so that advanced users are able to edit the
XML files directly with their favorite tool and less
advanced users can make changes online with a
graphical user interface. Akusanat does not let
users modify the Wiki syntax directly, instead it
displays a form that ensures changes remain struc-
tured and compatible with XML Figure 1.

For searching, we use morphological FST trans-
ducers to process the user input. This means that
the user can search for a word in any of its morpho-
logical inflections, since the FST can lemmatize
words automatically. It is also possible to search by
typing in misspelled words. The transducers con-
tain information about the most common spelling
errors in each language, which allows us to resolve
the lemma, although the word has not been spelled
according to the spelling standard. This is impor-
tant in the case of languages with which we work,
since spelling rules are not as well-established as
in the case of majority languages.

Figure 3 shows the interface for looking up
words in the dictionaries. In the example, the
search term is the Skolt Sami word soogg, which is
the genitive of the word sokk, which means family.
Our system lemmatizes the search term automat-
ically with the Skolt Sami FST, and displays the
input for the sokk lemma to the user.

The idea of using MediaWiki, and especially Se-
mantic MediaWiki, to create dictionaries, is not
new, since there are already several projects that
use the technology as their base (Muljadi et al.,
2006; Bon and Nowak, 2013; Dueñas and Gómez,
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Figure 2: The interface for searching and filtering lexical entries in Ve’rdd

Figure 3: The interface for searching in Akusanat

2015). Without a doubt, MediaWiki has its ad-
vantages, in practice we have had to program our
own MediaWiki extensions to add the necessary
functionality; the form to edit, MediaWiki-XML
synchronization, search with transducers etc. The
problem that we have experienced many times is
that the inner workings of MediaWiki change too
often. This means that if we want to keep our Me-
diaWiki instance up to date with the latest security
updates, we have to make a lot of changes to our
source code to keep our extensions working with
the new version of MediaWiki. Even so, we con-
tinue to use and develop Akusanat4 for the time
being, as it offers a simple environment for users.
In the next section, we describe the other system

4Code available https://github.com/mikahama/akusanat

that we are developing. The new system may re-
place Akusanat in the future.

3.2 Editorial work

In this section, we describe the Ve’rdd5 system (Al-
najjar et al., 2019, 2020). The system works with
the same XML dictionaries as Akusanat and can be
used online in a similar way. The difference is in
the intended use of the system. Ve’rdd is not a sys-
tem to visualize lexicographical entries for an end
user, but a system created specifically for writing
both digital and printed dictionaries. During the
process of developing the system, we have collabo-
rated with a group of professional lexicographers
who work with printed dictionaries.

In the context of the languages we work with,
lexicographical documentation does not start from
scratch, as both the Sami languages spoken in the
Nordic countries and the Permian and Mordvinic
languages spoken in Russia have received much
attention in terms of their digital documentation
during the last century. For example, there is a
dictionary of the Skolt Sami language Sammallahti
and Mosnikoff (1991), and there are several stud-
ies on the Mordvinic (Aasmäe et al., 2016; Grün-
thal, 2016) and Permian languages (Hamari, 2011;
Klumpp, 2016). If there are existing dictionaries in
digital form, they exist in an unstructured format
such as a Word, CSV, or PDF file produced with
an OCR system. For this reason, Ve’rdd includes
functionality for import lexicographic data from un-
structured formats. We have paid a lot of attention

5https://akusanat.com/verdd/
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Figure 4: The interface for editing lexical entries in Ve’rdd

to the quality of the conversion, since, in the case of
our languages, especially in the case of Skolt Sami,
it is very frequent that the same character exists in
many different Unicode characters. For example, ′
(U+02B9 modifier letter prime) is a very common
character in Skolt Sami, but because of the Finnish
keyboard layout, it is often written as ’ (U+0027
apostrophe) or ´ (U+00B4 acute accent). Ve’rdd
is programmed to take into account the possible
characters of the language and try to correct the
incorrect characters automatically.

Figure 2 shows the interface for searching and
filtering words in Ve’rdd. The interface is designed
to support the workflow of a dictionary editor. For
example, it is possible to display only raw inputs.
This means entries that no one has verified after
importing the data from an unstructured format. To
facilitate the development of FST transducers it is
also possible to sort and filter the words according
to the continuation lexicon, which is the FST way
of indicating how every word is supposed to be
inflected.

Apart from just searching and filtering lexical
entries, it is important to have the possibility to edit
them. Figure 4 shows the interface for inspecting
a dictionary entry. If a user is connected to their

account, in addition to viewing, they can edit the
information of a lexicographic entry. Ve’rdd is de-
signed to be a tool for multilingual dictionaries, so
one entry is connected to other entries in the system.
In Figure 4, relationships can be seen as translation
types that connect a word to its translations in other
languages. It is also possible to define other types
of relationships between lexica based on etymol-
ogy. Relationships may also exist between words
of the same language, for example, it is possible
to indicate compound words and derivations with
relations. Since the FST transducers contain deriva-
tive information, Ve’rdd automatically adds this
type of relationship when importing a unstructured
dictionary.

Ve’rdd can visualize the relationship between
two words that are linked together with any kind
of relationship. This can be used to verify that a
word in a given language is linked to the correct
homonym in another language (Figure 5). It is also
possible to edit the type of relationship or delete
any unnecessary relationships.

Ve’rdd has a functionality that allows the user
to export any dictionary in different formats. The
most important for us are the Giella XML, which
can be used to generate FST transducers, and Latex
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Figure 5: The interface for comparing two related entries in Ve’rdd

code. The Latex code makes it is possible to gener-
ate a ready-to-print PDF version of the dictionary.
The Latex format makes it possible to change the
style of the dictionary without changing the con-
tent. If there are changes in Ve’rdd, it is possible to
update the content of the dictionary without chang-
ing the style defined in Latex. This functionality
has been an important design principle for us since
the work done in Ve’rdd should not only be used in
digital dictionaries but also in printed dictionaries.

3.2.1 NLP resources

Our dictionary editing systems are directly useful
in the development of FST transducers since we
can export the lexicon in the format needed for
HFST (Lindén et al., 2013). HFST is the tool we
use to create the transducers. We have transduc-
ers for the Skolt Sami (Rueter and Hämäläinen,
2020), Erzya and Moksha (Rueter et al., 2020a)
and Komi languages. The transducers can be used
to lemmatize words, analyze their morphology or
generate inflected forms. These transducers are dif-
ficult to compile for people who do not work with
the transducers often. For this reason, we compile
all transducers every night and we distribute them

through our website6. We not only compile our
transducers but all transducers for all languages in
the Giella infrastructure.

The transducers are difficult to use as such, and
for this reason, we have developed a Python li-
brary called UralicNLP (Hämäläinen, 2019) and a
Python implementation of HFST called PyHFST
(Hämäläinen and Alnajjar, 2023). With the li-
braries, compiled dictionaries and translators can
be downloaded and used directly in Python. Fig 6
shows how to use our transducers from Python. In
the second line of code, the word шляпа (hat) is
analyzed in erzya (myv). The result indicates that
the word is an indefinite (+Indef) noun (+N) in the
nominative (+Nom) singular (+Sg). In the fourth
line we generate the conjugated form of the same
word in the plural (+Pl). The result is the plural
word шляпат.

Figure 6: An example of using UralicNLP

6https://models.uralicnlp.com/nightly/
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FST transducers produce all possible interpre-
tations for a word from. In the case of the Uralic
languages, there is plenty of homonymy in morpho-
logical inflections. This means that, if we use the
transducers on regular text, we cannot accurately
lemmatize the words in their context since the trans-
ducers produce all possible lemmas, For this reason,
we use constraint grammar disambiguators (Karls-
son et al., 2011) based on a tool called VISL CG-3
(Bick and Didriksen, 2015). The grammar rules of
constraint grammars remove morphological read-
ings that are not possible in a given sentence, and
result in a sentence that is morphologically disam-
biguated with one lemma per word as opposed to
all the possible lemmas.

Figure 7: An example of the use of the Komi Zyrian
disambiguator

In Figure 7, we can see how the CG disambigua-
tors can be used on UralicNLP. The third line initial-
izes the disambiguation object for the Komi-Zyrian
(kpv) and in the fourth line the disambiguation
method of the object is called with a sentence. The
result contains the word forms of the sentence, their
lemmatization and morphology for each word of
the sentence.

Apart from structured dictionaries and rule-
based tools, we have treebanks of the universal
dependencies for the Skolt Saami, Moksha, Erzya
(Rueter and Tyers, 2018), Komi-Zyrian (Partanen
et al., 2018) and Komi-Permyak (Rueter et al.,
2020b). These treebanks contain syntactic annota-
tions with the tags Morphological characteristics of
universal dependencies. With the latest treebanks,
we have also added the morphological labels pro-
duced by the transducers to facilitate the use of the
two resources together

4 Incorporating modern NLP methods

As we have described thus far, a great part of our
work relies on the old rule-based tradition of NLP.
When we deal with endangered languages, rules are
the primary starting point. One cannot simply train
a neural network if there isn’t enough training data.
However, we do not want to reject neural models
instantly as something that simply will not work
for small languages. Neural models can work and

they can be extremely beneficial. Throughout our
research, we have aimed at combining rule-based
models with neural models to facilitate our work
on endangered languages.

Digital documentation has allowed us to use the
latest methods in the world of NLP to automati-
cally increase the data we have in the dictionaries.
Because all of the lexicographic resources we have
are multilingual, the first step we have taken with
NLP technology has been the prediction of trans-
lations (Hämäläinen et al., 2018). The idea was
as follows: if the Skolt Sami dictionary contains
Finnish translations, German and English, and the
Erzya dictionary contains translations into Finnish,
English, Russian, and French, then, with this in-
formation, it should be possible to automatically
deduce translations from Skolt Sami into Russian
and French and from Erzya into German given the
existence of two common languages: Finnish and
English. With a probabilistic model we have in-
creased the number of translations in Skolt Sami,
Erzya, Moksha and Komi-Zyrian dictionaries.

We have elaborated on this idea later on by us-
ing graph based approaches and neural models (Al-
najjar et al., 2021, 2022). These have not been
isolated attempts, but the graph based methods
have been incorporated into Ve’rdd as well. The
predictions have been manually checked and this
way we have been able to augment our dictionaries
semi-automatically. The Livonian institute has em-
braced this technology in bootstrapping a Livonian-
English dictionary.

As neural networks require a large amount of
data to be trained, it is common to believe that their
use is not possible in the case of endangered lan-
guages. We have taken the perspective that we can
generate the amount of data needed for a neural
network with our morphological tools. Using the
treebanks and the transducers, we have generated
data to train a neural network to perform disam-
biguation instead of using the constraint grammar
for Erzya and Komi-Zyrian (Ens et al., 2019). The
idea was to generate all possible analyzes for the
words in the treebanks and train the neural network
to disambiguate the analyses with the treebank anal-
ysis. Later on, we further developed this method
in the context of Sami languages (Hämäläinen and
Wiechetek, 2020).

We have also been able to use the neural net-
works to increase etymological relationships in
the Skolt Sami dictionary (Hämäläinen and Reuter,
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2019). The method was based on a character level
LSTM model that was enhanced with synthetic data
generated with a character-level statistical machine
translation tool. We used this method to produce a
set of candidate cognates that we manually checked
and incorporated into our digital dictionaries. This
method relies on external data from the Institute
for Languages in Finland, which makes it difficult
for us to include it in Ve’rdd.

Rule-based FSTs are great because they are usu-
ally very accurate, however, they do not have a
great lexical coverage. Analyzing an online text
with the FSTs will usually mean a ton of words that
are not recognized at all. For this reason, we used
the FSTs to generate training data for neural mod-
els (Hämäläinen et al., 2021). We used this data
to train character-level neural machine translation
models to analyze, generate and lemmatize word
forms. The key idea is to use the exact same mor-
phological tags so that the neural models and the
FSTs can be used interchangeably. These neural
models have been made available through Uralic-
NLP as a fallback mechanism. If an FST fails to
analyze a word form, the neural model will be used
automatically if neural fallback is turned on.

Recently, we have also moved our interest to-
wards other aspects of NLP than just lexicon and
morphology. We have done work on automatically
translating and aligning word embeddings for en-
dangered Uralic languages (Alnajjar, 2021) and
using them successfully in downstream tasks such
as sentiment analysis (Alnajjar et al., 2023).

5 Discussion and Conclusions

We hope that our work can be useful for others
as well. We have put a lot of attention in open-
sourcing our tools and resources so that nobody
needs to start building language documentation
tools entirely from scratch. We have also paved
a road towards using state-of-the-art neural models
in the context of truly endangered languages with
extremely limited resources. This is challenging
and requires ingenuity. We are not interested in
committing to the dichotomy of researches who
defend rule-based tools as the only viable option
for endangered languages nor to the researchers
who frown upon rules and rely solely on the Trans-
former architecture. The best solutions, we believe,
are found by combining both worlds.

Our tools are compatible with the Giella infras-
tructure. This has made it possible to use our dic-

tionaries and translators directly on their online
platform to learn languages (Antonsen and Argese,
2018), on Android and iPhone keyboards and spell
checking for Word and OpenOffice developed by
Divvun7 at Giella. Flexible and interoperable de-
sign makes it also possible to integrate different
lexical resources into our infrastructure once those
are digitized or otherwise become available.

Digital documentation clearly has its benefits,
since we can carry out machine learning with struc-
tured dictionaries and FST transducers. For this
reason, a project conducted at the University of
Oulu8 the goal of which was to author the new
dictionary Skolt Finnish-Sami has chosen to use
Ve’rdd to create the digital and printed dictionary.
We have worked together with project employees
to increase the functionality of our system. Ve’rdd
has made the simultaneous work of editors possi-
ble who, without Ve’rdd, would have used Excel
and Word. This would have meant a lost chance of
producing a structured dictionary for the interest of
NLP and a printed dictionary at the same time.

We have started to explore non-Uralic languages
by building a UD treebak for Apurinã (Rueter et al.,
2021). Furthermore, we have built an initial FST
for Lushootseed (lut) (Rueter et al., 2023) and ex-
tended it with an LSTM model. These are our
initial steps towards non-Uralic languages.
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Abstract

This paper provides an overview of outstanding
major research goals for the field of computa-
tional narrative understanding. Storytelling is
an essential human practice, one that provides
a sense of personal meaning, shared sense of
community, and individual enjoyment. A num-
ber of research domains have increasingly fo-
cused on storytelling as a key mechanism for
explaining human behavior. Now is an oppor-
tune moment to provide a vision of the con-
tributions that computational narrative under-
standing can make towards this collective en-
deavor and the challenges facing the field. In
addition to providing an overview of the el-
ements of narrative, this paper outlines three
major lines of inquiry: understanding the multi-
modality of narrative; the temporal pattern-
ing of narrative (narrative “shape”); and socio-
cultural narrative schemas, i.e. collective narra-
tives. The paper concludes with a call for more
inter-disciplinary working groups and deeper
investment in building cross-cultural and multi-
modal narrative datasets.

1 Introduction

The Native-American writer, Gerald Vizenor, once
remarked: “There isn’t any center to the world but a
story” (Coltelli, 1990). Storytelling is a ubiquitous
human practice, exhibited in all human cultures,
languages, and recorded historical time periods.
Many of the world’s most enduring and widespread
belief systems are encoded through stories, and
research suggests that human reasoning (Bruner,
1991) and selfhood (Berns, 2022) are fundamen-
tally grounded in narrative. Today, a growing body
of research is developing across a variety of do-
mains that focus on storytelling as a key mecha-
nism for explaining human beliefs and behavior,
from mental health (Adler et al., 2016), to political
stance taking (Bushell et al., 2017), to consumer
persuasion (Bilandzic and Busselle, 2013), to finan-
cial decision making (Shiller, 2020).

Given this widespread interest in, and awareness
of, narrative as a crucial driver of human behavior,
the field of “computational narrative understand-
ing” has a great opportunity to contribute to a range
of research fields. Computational narrative under-
standing has crystallized over the past 5-10 years
as a vibrant subset of natural language processing
(Bamman et al., 2019; Jorge et al., 2019). Its aim
is to develop computational systems for the detec-
tion and understanding of narrative communication
across different media and different cultural do-
mains. While we may typically think of stories as
encoded in written documents, the practice of nar-
rative can be represented through a diverse array of
media, including oral speech, song, still or moving
images, social media, playable media like video
games, or some combination of the above.

The aim of this paper is to provide a big picture
view of some of the key higher-level goals for com-
putational narrative understanding. A great deal
of on-going and inspiring work continues to make
progress in the detection and analysis of different
components of narrative communication (for a re-
view see Piper et al. (2021)). It thus seems timely
to provide a vision of where we are going as a com-
munity to help motivate and organize future work
in the field.

In section two, I provide a brief minimal def-
inition of narrative communication highlighting
its constituent parts building on prior work (Piper
et al., 2021). Before moving to the big picture,
it is important to ground our understanding of
this core concept. In section three, I describe a
research framework that aims to develop a more
multi-modal understanding of narrative. With its
grounding in NLP, computational narrative under-
standing has understandably focused on narrative
as a linguistic phenomenon. However, as narratol-
ogists have long pointed out (Ryan et al., 2004),
storytelling can transpire in numerous different me-
dia. Being able to integrate observations across
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Figure 1: Overview of narrative research areas discussed in this paper.

media, from speech to text to images to playable
media should become a central goal of computa-
tional narrative understanding.

In section four, I describe a research framework
aimed at understanding narrative “shape” (also
called “form” or “structure” (Berhe et al., 2022)),
which can be understood as the temporal pattern-
ing of narrative elements. One of the fundamental
aspects of storytelling is the encoding of events
in time (Genette, 1983; Sternberg, 1992; Ricoeur,
2012). Narrative meaning is thus contingent on the
temporal organization of information.

Seeing narratives as temporal artifacts, made
in time and composed of time, then leads to the
highest-level form of integration described in sec-
tion five, that of narrative “schemas.” As Berns
(2022) has argued, narratives are forms of informa-
tion compression, reducing the vast scope of expe-
rienced data down to a much more limited set of
communicated data. Such compression necessarily
follows archetypes or patterns that can be biologi-
cally or culturally conditioned (or some mixture of
the two).

While the idea of “scripts” has been applied
to understand the local schematic encoding of
events (Chambers and Jurafsky, 2008a), prior work
in folklore studies has offered promising frame-
works for expanding the idea of schema to include
whole stories within various typologies (Thompson,

1989). Essential to this framework is an attention to
larger narrative ecologies, the ways in which such
schemas play a generative and/or organizing role
within broader, and potentially interactive, commu-
nicative domains (Tangherlini et al., 2020).

It is common to think of narrative as located
within an individual document or artifact (this
book or blog post tells a story), but narratolo-
gists have also highlighted the way story struc-
tures emerge from the complex social interactions
of numerous agents (known as the “small stories”
paradigm (Georgakopoulou, 2007)). Such “small
stories” can then coalesce into larger socially cir-
culatable schemas, variously referred to as “on-
tological narratives” (Somers, 1994), “deep sto-
ries” (Hochschild, 2018), or “collective narratives”
(Bliuc and Chidley, 2022). Such schemas can then
guide the processing and circulation of new infor-
mation to “fit the narrative,” potentially creating
informational feedback loops that are durable over
shorter or longer stretches of time.

In sum, we want to have a research framework
capable of scaling the ladder from local elements
(section 2), different media (section 3), formal
structure (section 4), all the way up to schemas
and social dynamics (section 5). Figure 1 provides
a schematic overview of this big picture.

I conclude in section six with a reflection on
the need for greater inter-disciplinary collaboration
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and deeper investment in building cross-cultural
and multi-modal datasets. As we develop more
sophisticated systems for detecting narrative com-
munication, we will want to invest more deeply in
the infrastructure for large-scale narrative under-
standing. This will necessarily entail collaborations
across disciplines to better understand socially rel-
evant applications as well as the ability to develop
appropriate data. It will also require developing
an awareness around the limitations or risks of nar-
rative communication (Salmon, 2017; Gottschall,
2021). Stories not only inspire and move audiences,
they can also deform reality and misinform, a point
that should remain at the forefront of our thinking
about how stories stand at the centre of so much
human behavior, for better and for worse.

2 The Elements of Narrative

At its most elementary level, a story can be said to
occur when all of the following criteria are met:

A Someone
B tells
C someone
D somewhere

that
E someone
F did something(s)
G [to someone]
H somewhere
I at some time
J for some reason.

For there to be a story, we need (A) a teller, (B) a
mode of telling (i.e. medium), (C) a recipient, (D) a
social situation, (E) an agent, (F) at least one action
or event, (G) a possible object, (H) a location, (I)
a time-frame, and (J) a motivation or cause of the
actions involved. Narratologists make a distinction
between the frame of the storyworld (i.e. all of the
elements that come after the double lines above)
known as “diegetic” elements, and the frame of
telling (i.e. all of the elements that come before
the double lines) known as “heterodiegetic” ele-
ments, where diegesis refers to a narrative “frame”
or “world.”

Importantly, not all of these elements need to be
explicit. For example, in one of the most famous
short stories ever proposed by Ernest Hemingway,
very little from the above list is specified:

For sale: Baby shoes. Never worn.

We don’t know where and when this happened,
nor do we know who is telling the story. All we
know is what happened (on two levels): a baby
died and a family needs money. But no matter how
much is implicit in this story all of the parts are
there. Something happens to someone somewhere
at some time for some reason and someone tells
someone this story.

Such a definition can be useful because it high-
lights the array of narrative elements that require
computational solutions to “understand” the cul-
tural meaning of a story. Such applications have
included: character detection (Bamman et al., 2014;
Jahan et al., 2018; Piper, 2023b; Stammbach et al.,
2022), object detection (Piper and Bagga, 2022a),
character relation detection (Labatut and Bost,
2019; Kraicer and Piper, 2019), event detection
(Vauth et al., 2021), geographic and spatial un-
derstanding (Wilkens, 2013; Evans and Wilkens,
2018; Piatti et al., 2013; Erlin et al., 2021), tempo-
ral understanding (Underwood, 2018; Yauney et al.,
2019; Vossen et al., 2021; Gangal et al., 2022), and
causality mining (Meehan and Piper, 2022). A
full review can be found in Piper et al. (2021) and
Santana et al. (2023).

A second, higher-level way that a story can be
broken down into constituent parts is through dis-
course elements. As we will see, this problem
is associated with challenges of text segmentation,
though importantly differs from prior work focused
on sequential and/or paratextual (i.e. chapter) seg-
mentation (Pethe et al., 2020; Zehe et al., 2021).

Narratives not only contain event-frames (i.e.
scenes), but are also composed of heterogeneous
linguistic styles in which the act of narration is but
one component. This is one reason recent narra-
tive theory has emphasized the idea of “narrativity”
(Piper and Bagga, 2022b; Pianzola, 2018; Giora
and Shen, 1994), which captures the degree of nar-
ration intrinsic to a narrative. An ostensibly nar-
rative document like a short story will engage in
moments of non-narrative statements, just as pu-
tatatively non-narrative documents like scientific
articles may engage in occasionaly moments of
narration. Narration is in this sense not a univer-
sal property of documents, but a local linguistic
phenomenon. As Ochs et al. (2009) write, “We
believe that narrative as genre and activity can be
fruitfully examined in terms of a set of dimensions
that a narrative displays to different degrees and in
different ways.”
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Narratologists typically break down narratives
into at least four basic discourse components:

Discourse Contents
1. Narration Agents and events
2. Description Setting, modification, context
3. Dialogue Reported speech
4. Evaluation Meta-level discourse

“Narration,” also known as “diegesis,” refers to
the linguistic structures described above that occur
after the double horizontal line (E-J). This is the
classic understanding of narrative, where events
pertaining to an agent are recounted (this can also
fall under the heading of “eventfulness” (Hühn,
2014)).

“Description,” also called “mimesis,” refers to
when the surroundings or context of events are
described and during which events do not unfold
(though they may be unfolding in the background).
In cinema, this is equivalent to an “establishing
shot” that indicates to viewers where they are in
time and space. Crucial to description is that it
lacks the agent/action/cause structure from above.

“Dialogue” refers to any form of reported speech,
though it can also take the form of indirect speech
as well. Recounting what characters say to each
other is an integral component of stories, although
it technically is a form of dramatic performance
(for a reflection on this topic see (Genette, 1992)).

Finally, many stories contain what we might
call meta-textual statements (called “evaluation”
by Labov and Waletzky (1967)), where the nar-
rator provides some higher-level assessment with
regards to the story, either a reflection on the story
contents, their meaning, or some didactic lesson
that should be imparted, making a latent feature
of storytelling (it’s meaning or purpose) manifest.
While it may come at the end of a story, it can
also be interspersed throughout. Here are a few
examples of such statements:

1. It is a truth universally acknowledged, that a
single man in possession of a good fortune,
must be in want of a wife. (Pride and Preju-
dice)

2. The flatterer lives at the expense of those who
will listen to him. (Aesop’s Fables)

3. All in all, I’d say that those years were some
of the best times I’ve ever had. (AskReddit)

While there are many more ways one can parse a
story (see Bal and Van Boheemen (2009); Genette
(1983)), the frameworks above provide practical
heuristics for the ways that stories can be broken
down into more elementary parts to ground compu-
tational models.

3 The Modality of Narrative

Grounded in NLP, computational narrative under-
standing has largely prioritized written narratives
for understandable reasons. However, such text-
driven approaches leave out large portions of sto-
rytelling behavior, including movies and television
(Arnold et al., 2019; Papalampidi et al., 2019), user-
generated streaming content, illustrated content in
comic strips (Edlin and Reiss, 2023), graphic nov-
els, or children’s books (Adukia et al., 2021), and
finally video games, which might have stronger or
weaker narrative structures. While textual narra-
tives are largely unimodal in nature (though the
physical and visual dimensions of books has been
a vibrant area of study for a long time (Collective,
2019)), these other narrative forms are all crucially
multi-modal in nature.

Sound, image, and language can interact in ways
that are complex and dynamic. A robust field of
multimodal NLP research into text-image interac-
tions for meaning-making has emerged in recent
years (see for example recent research on humour
by Hasan et al. (2019); Hessel et al. (2023)). Nev-
ertheless, investigations into multimodal narrative
understanding, such as the relationship between
text and illustrations in children’s books or graphic
novels is in need of more attention (see Adukia
et al. (2021) for an example exploring the visual
qualities of children’s book illustrations with re-
spect to race). Understanding the kinds of gestural
or pictorial preferences that are foregrounded given
certain textual cues could give us insights into the
way humans translate language into image (and
vice versa) across different cultural domains.

Similarly, we still lack major comparative stud-
ies of narrative behavior across media, i.e. com-
parisons of narrative elements and archetypes in
film, television, user-generated content, oral per-
formances and books. For example, evidence sug-
gests that written and oral narratives have simi-
lar “establishing shot” structures similar to movies
and television (Boyd et al., 2020; Piper, 2023a).
More precise comparisons can highlight the modal-
specificity of different narrative elements along
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with the transmodal practices that are independent
of a given modality. Understanding the ways in
which storytellers marshal images, sounds, and
words to create immersive experiences for audi-
ences will greatly contribute to the project of com-
putational narrative understanding.

4 The Shape of Narrative

The writer and critic Italo Calvino was fond of
quoting a Sicilian expression that “time takes no
time in a story” (Calvino, 1988). A narrator can tell
a story that traverses centuries in a few sentences
or can slow time down to the point where a few
seconds takes minutes to describe. Narratologists
refer to this as the difference between narrated
time (the time transpiring in the storyworld) and
narrative time (how long a story takes to tell). No
matter how much stories may compress time, they
cannot be told all at once. Contrary to Calvino’s
favored Sicilian expression, all stories, even the
shortest, take time to tell.

This temporal dimension of narrative – that sto-
ries take time to tell and tell of things happening in
time – has long been one of the privileged topics of
narrative theory (Ricoeur, 2012; Sternberg, 1990,
1992). As the theorist David Herman has argued,
“Narrative is a basic human strategy for coming to
terms with time, process, and change” (Herman,
2009).

A number of approaches have been proposed for
the computational modeling of temporal patterns in
narrative (for a review of modeling narrative struc-
ture see Berhe et al., 2022). Schmidt (2015) used
topic modeling to identify thematic arcs in tele-
vision screenplays, while Thompson et al. (2018)
used topic models to study thematic progression in
philosophical texts and social media. Reagan et al.
(2016) used sentiment analysis to model the con-
cept of narrative fortune (Freytag, 1895), for which
Elkins (2022) provides a more in-depth study of
the validity of sentiment arcs as models of narrative
structure. Boyd et al. (2020) used particular word
types to capture three primary narrative stages, and
Sap et al. (2022) used the predictability of next sen-
tences to capture the concept of narrative “flow.”

Piper and Toubia (2023) used word embeddings
to model narrative non-linearity using the travel-
ing salesman problem, while Toubia et al. (2021)
offer two further ways of thinking about narrative
shape called “speed” and “volume.” Researchers
have also used information theoretic frameworks

to model the concept of narrative revelation using
time series methods (Piper, 2023a) and stylistic
novelty over narrative time using a bloom filter
(McGrath, 2018). Ouyang and McKeown (2015)
and Piper (2015) devised methods for predict-
ing narrative “turning points” as larger structural
qualites, drawing on Aristotelian and Augustinian
theories of narrative respectively.

Common to all of these models is the assumption
that the dissemination of information over narrative
time assumes observable patterns (called “form” or
“structure”) and that these patterns encode cultural
meaning. The most common framework to date has
been that of the narrative “arc,” drawn from French
neo-classical tragedy (Freytag, 1895). According
to this model, narratives encode a central conflict
that results in some form of resolution or change,
which can be approximated by an arc of rising and
falling fortune or conflict.

Much future work remains to better understand
relevant ways of capturing narrative time in terms
of its formal patterns. The first area of consider-
ation should be further work into the choice of
feature distributions that are used to capture narra-
tive time. Where prior work has focused to date on
topic models, sentiment vocabulary, word embed-
dings, lexemes, and letters, higher-level narrative
features (see Section 1) should continue to be devel-
oped and studied. We assume that the distribution
of characters, event types, locations, or narrative
modes may also contribute to the overall structural
qualities of stories.

Second, modeling narrative change itself re-
mains a key area of further research. Prior em-
pirical work has shown that long narratives may
employ multiple “arcs” rather than single turning
points (Reagan et al., 2016; Fudolig et al., 2023),
while other work has emphasized the significance
of single turning points (Ouyang and McKeown,
2015; Piper, 2015). Additionally, the identity or
meaning of such moments of change, regardless
of how many, are also not well understood. The
dramatic model of narrative denouement suggests
that turning points are best understood as forms of
“conflict/resolution,” while other narrative theories
suggest that “surprisingness” is the optimal way of
understanding narrative change (Wilmot and Keller,
2020). Brewer and Lichtenstein (1982) have pro-
posed two further affective states of suspense and
curiosity in addition to surprise to capture the dis-
crepancy between storyworld information and nar-
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rative information (i.e. when key information is
withheld or forms of temporal anachrony are used
such as flashbacks and flashwords known as analep-
sis and prolepsis respectively).

In addition to these temporal issues, the role
that causality plays in describing narrative change
has been relatively underexplored. As the writer
and essayist George Saunders has argued, causal-
ity is the “wind in the kite” of narrative (Saunders,
2022). As Graesser et al. (2002) have demonstrated,
readers are much more moved by “why” questions
than “what” questions when it comes to narrative
comprehension and recall. Future work will want
to explore more fully both different constructs of
“change” as well as draw on methodologies such
as Markov models, time series analysis and sys-
tems dynamics to develop increasingly sophisti-
cated models of change over narrative time.

Finally, most prior work is guided by a single
spatial metaphor for narrative time, that of the arc.
Future work will want to explore other possible
structures or forms (Levine, 2015) that might cap-
ture the temporal patterns of narrative. The transla-
tion of time into spatial form represents an exciting
and novel space of research for computational nar-
rative understanding.

5 Narrative Schemas

Narratives are forms of information compression
(Berns, 2022). They select certain experiential data
and structure this data into prescribed grammatical
slots (as described in Section 1). This basic insight
serves as the foundation of the theory of narrative
“scripts” (Schank and Abelson, 1977; Chambers
and Jurafsky, 2008b), where narrative is understood
as a probabilistic sequence of actions (i.e. given the
event of being in a restaurant certain subsequent
actions are more or less likely). Such compression
is what allows stories to be both memorable as well
as easily shareable (i.e. tellable (Baroni, 2011)).

The discussion of narrative form or shape in the
prior section is one such example of the schematic
nature of narrative, i.e. that narratives have struc-
ture and this structure is essential to their meaning.
But schemas can also be represented as a variety
of conceptual metaphors (that often have spatial
associations). For example, in the field of clinical
psychology researchers refer to two self-narrative
schemas, called narratives of redemption (when
bad things turn good) and narratives of contam-
ination (when good things turn bad) (McAdams

et al., 2001). Patients who structure life experience
into the former schema are far more likely to be
associated with positive mental health outcomes
than those who engage in telling their life stories
according to the latter.

The first extensive (and later controversial) study
of narrative schemas emerged in the field of folk-
lore studies (Dundes, 1962). Faced with large col-
lections of documents with a high degree of repeti-
tiveness, folklorists began developing systems for
classifying stories according to different typologies.
The most famous undertakings were Stith Thomp-
son’s Motif-Index of Folk-literature (Thompson,
1989), the Aarne-Thompson-Uther (ATU) Tale In-
dex, and Vladimir Propp’s emphasis on character
“function” (Propp, 2010). Fundamental to this re-
search was the insight that certain larger narrative
patterns are maintained while local units can be
changed. As Propp (2010) highlighted, whether
it is an eagle or a horse or a ring that is the gift
that carries away its recipient, the point of each of
these stories is the event of being transported, or
even more generally, the danger or affordance of
gift giving.

While it is beyond the scope of this paper to re-
hearse debates around narrative classification (for a
review see Dundes, 1962; Broadwell et al., 2018),
there remains a fundamental value in developing
narrative taxonomies for different domains. Nar-
ratives are indeed reducible to schemas and those
schemas serve particular social and psychological
functions. And yet we currently lack agreed-upon
or widely used frameworks for discussing schemas,
either at the individual or socio-cultural level.

Folklorist and computational narratologist Tim-
othy Tangherlini has begun using the idea of
schemas to study conspiracy theories circulating
through social media (Tangherlini et al., 2020;
Chong et al., 2021; Shahsavari et al., 2020), which
function much like folklore in that various narra-
tive units (Bill Gates, 5G) can be utilized for larger
functional purposes (a global cabal of elites is con-
trolling us). Related research by Mendelsohn et al.
(2023) looks at “dogwhistle” detection, which can
be understood as phrases with latent, toxic mean-
ings and that likely have a narrative element to
them.

Understanding schemas requires two challeng-
ing research questions. The first we can refer to as
motif tracking, which requires the ability to model
variability and repetition at both the level of local
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units (agents, actions, objects) and more general
schemas (when certain units are deployed to tell
certain kinds of stories). While systems currently
exist to identify the narrative units described in Sec-
tion 1 (including agents, actions, and objects), we
still need ways of aggregating these units into story
“types.” When is Bill Gates being used to tell a
story about global elites and when is he being used
to tell a story about the power of philanthropy?

More importantly, we want to model the causes
as well as social effects of these different story
types. Do we see certain narrative schemas de-
ployed in response to major social events (for ex-
ample what are the prevalent narrative responses
to financial or political or climatic shocks?). Or
can certain narrative schemas predict future behav-
ior? Similar to the clinical psychology example
mentioned above but moving into the social realm,
do we see the persistent invocation of narratives of
national decline associated with shifts in electoral
behavior? If we assume narrative is a key predictor
of human behavior, we need more reliable and so-
phisticated ways of classifying narratives to better
understand their causes and effects.

The second key dimension in studying narrative
schemas is the aspect of social dynamics. As folk-
lore studies first highlighted, narrative types are
aggregates of numerous local instances of story-
telling behavior. Each unit (whether an oral tale or
social media post) may contribute to a larger nar-
rative schema but may itself only loosely embody
this schema. Narratologists refer to these local dy-
namics as “small stories” (Georgakopoulou, 2007),
i.e. when a larger story is told through the par-
ticipation of numerous actors. The quintessential
example of this behavior is the “family dinner ta-
ble,” where family lore is the product of multiple
actors engaging in the process of narrative recount-
ing, potentially over long spans of time. At the
macro-level narratologists refer to these larger nar-
rative schemas – the aggregate of small stories – as
“collective narratives” (Bliuc and Chidley, 2022),
“ontological narratives” (Somers, 1994), or “deep
stories” (Hochschild, 2018).

Social media and online news (broadly under-
stood) greatly expand the complexity of collective
narrative construction and small-story dynamics.
One can imagine “top-down” approaches that start
with known schemas and then classify individual
stories or collections of stories within these tax-
onomies or “bottom-up” approaches that cluster

individual stories into larger schemas that emerge
from the collective behavior among the data. Mod-
eling this complex, large-scale narrative behavior
represents one of the major challenges for the field
but one that has the most explanatory pay-offs in
terms of understanding social behavior.

6 Narrative Infrastructures

As computational narrative understanding comes
into its own as a distinct field within the NLP com-
munity, now is a good time to begin coordinating
more of this research effort. These initiatives can
take the form of shared tasks, dataset curation, and
collective efforts to develop systems for narrative
classification.

Shared tasks have a long history within NLP,
though to date only three have been proposed for
narrative understanding. The first is the narra-
tive cloze test (Chambers and Jurafsky, 2008a;
Mostafazadeh et al., 2016; Hatzel and Biemann,
2023), where systems predict the next agent-event
in an event chain. Zehe et al. (2021) have pro-
posed a task for detecting narrative scenes, while
Reiter et al. (2019) have proposed a task for de-
tecting narrative levels (when diegetic worlds are
imbedded within one another, either in the form
of stories within stories or temporal anachronisms
such as flashbacks). Piper and Bagga (2022b) and
Hatzel and Biemann (2023) have proposed annota-
tion frameworks for narrative detection, i.e. iden-
tifying the degree to which a stretch of discourse
can be identified as containing narration.

Future work will want to refine these existing
initiatives as well as develop systems for the fur-
ther detection of the remaining discursive units
described in Section 2 (i.e. description, dialogue,
evaluation). The automated identification of nar-
rative communication in particular will prove ex-
tremely valuable for broader social and cultural
analysis.

Given the value of narrative for understanding
human behavior it is somewhat surprising how few
datasets are available for the study of human sto-
rytelling. Much of this is due to intersecting prob-
lems of intellectual property restrictions, large li-
brary collections with low-levels of metadata, and
the dynamic and ever-changing nature of online
storytelling. Underwood et al. (2020) provide a
large-scale annotation of ca. 200,000 fictional nar-
ratives in English in the Hathi Trust Digital Library
that has been refined and updated by Bagga and
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Piper (2022) to include a comparison corpus of
non-fiction prose across 1.5 million sampled pages
published since 1800. Hamilton and Piper (2023)
extends this work to include multilingual fiction
annotation across 521 different languages. Erlin
et al. (2022) provide metadata on translations of
fiction into English from 120 different languages
also located in the Hathi Trust.

Outside of the HathiTrust, Piper (2022b) pro-
vides derived data on a collection of 2,700 works
of professionally published English prose drawn
from 12 different genres including Goodreads’ user
ratings. Mostafazadeh et al. (2016) developed an
artificial corpus of very short stories (4-5 sentences)
generated by crowdsourced workers. Ouyang and
McKeown (2014) curated a collection of ca. 5,000
AskReddit stories told by users in response to par-
ticular prompts (e.g. what is your scariest real-life
story?).

Researchers in the field should be aware that
while Project Gutenberg offers a large collection of
potentially narrative texts, problems of sample se-
lection and poor metadata can lead to downstream
problems that result in erroneous claims (Piper,
2022a). For addressing cultural and historical ques-
tions, researchers are strongly encouraged to use
the collections described above.

Incumbent on all of these initiatives is a
greater investment in inter-disciplinary collabora-
tion. Computational narrative understanding will
benefit as an endeavor with deeper collaborations
between humanists and social scientists and the
NLP community. As detailed in Piper et al. (2021),
narratology is a field with a long and robust the-
oretical tradition. Those in the NLP field work-
ing on computational systems will benefit from
expert collaborations with researchers who have
deep backgrounds in studying narratives. Similarly,
narratologists and their research frameworks stand
to benefit from exposure to computational models
(Piper and Bagga, 2022b). It is time to invest more
heavily in these larger cross-disciplinary collabo-
rations, especially if we aim to address the larger
socio-cultural goals outlined in this paper.

7 Conclusion

As Vizenor envisioned, narratives are things we live
by. They provide meaning and hold communities
together. They play a role in financial, political, and
psychological decision-making. The production of
imaginary narratives in particular represent a mas-

C
om

pl
ex

ity

Challenge Areas
1. Data Set Creation
2. Narrative Element Detection
3. Multilingual Modeling
4. Multimodal Modeling
5. Narrative Discourse Detection
6. Narrative Time Modeling
7. Narrative Schemas and Taxonomies
8. Collective Stories and Social Behavior

Table 1: List of challenge areas in increasing order of
generality and complexity

sive cultural industry, spanning book publishing,
movie-making, and gaming. The field of computa-
tional narrative understanding has made impressive
strides in developing systems to study the causes
and effects of narrative behavior across a diverse
array of languages and cultural domains. We are in
the process of establishing key workshops, tasks,
and datasets.

By way of conclusion, I provide a sliding scale
of calls to action, located from particular to general
(Table 1). It is worth noting that an essential com-
ponent of the field should include attention to the
limiting factors of narrative, i.e. the way narratives
encode experience in very particular ways and be-
cause of their persuasive power can also mislead
individuals in profound ways. Greater attention to
the risks of narration should therefore remain front
and center as part of the endeavor of computational
narrative understanding.
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Abstract

I propose a paradigm for scientific progress
in NLP centered around developing scalable,
data-driven theories of linguistic structure. The
idea is to collect data in tightly scoped, care-
fully defined ways which allow for exhaustive
annotation of behavioral phenomena of interest,
and then use machine learning to construct ex-
planatory theories of these phenomena which
can form building blocks for intelligible AI
systems. After laying some conceptual ground-
work, I describe several investigations into data-
driven theories of shallow semantic structure us-
ing Question-Answer driven Semantic Role La-
beling (QA-SRL), a schema for annotating ver-
bal predicate–argument relations using highly
constrained question-answer pairs. While this
only scratches the surface of the complex lan-
guage behaviors of interest in AI, I outline prin-
ciples for data collection and theoretical model-
ing which can inform future scientific progress.
This note summarizes and draws heavily on my
PhD thesis (Michael, 2023).

1 Introduction

Formal representations of linguistic structure and
meaning have long guided our understanding of
how to build NLP systems, e.g., in the traditional
NLP pipeline (Jurafsky and Martin, 2008). How-
ever, this approach has always had limitations:

1. Fully specifying formal representations re-
quires resolving challenging theoretical ques-
tions long contentious among linguists;

2. It is difficult to reliably produce these repre-
sentations with broad coverage using machine
learning; and,

3. Even ostensibly correct linguistic representa-
tions are often hard to apply downstream.

Together with the effectiveness of deep learning,
these challenges led to the proliferation of end-to-
end neural network models which directly perform

tasks without intermediate formal representations
of linguistic structure (He et al., 2017; Lee et al.,
2017; Seo et al., 2017, inter alia). This trend con-
tinues with language model assistants like GPT-4
(OpenAI, 2023) and Claude (Bai et al., 2022) which
can perform a wide range of tasks. However, these
systems are still not robust, often reporting false
or biased answers (Perez et al., 2022; Bang et al.,
2023) and making false claims about their own rea-
soning (Turpin et al., 2023). Ensuring AI systems’
robustness requires us to precisely characterize and
control their generalization behaviors.

To this end, formal theories, e.g., of linguistic
structure, common sense, reasoning, and world
knowledge, provide frameworks for evaluation.
They inform the design and construction of chal-
lenge sets (McCoy et al., 2019; Naik et al., 2018;
Wang et al., 2019), measures of systematicity
(Yanaka et al., 2020; Kim and Linzen, 2020), be-
havioral tests (Linzen et al., 2016), and probing
experiments (Liu et al., 2019; Tenney et al., 2019).
As these theories allow us to characterize general-
ization behaviors we desire, they will likely play
a pivotal role in the design and training of trust-
worthy systems. So core improvements in formal
theories of aspects of intelligent behavior may yield
boons for both the construction and evaluation of
NLP systems. But the question remains of how to
achieve this: decades of work on semantic ontolo-
gies (Baker et al., 1998; Palmer et al., 2005), com-
monsense knowledge bases (Lenat, 1995; Speer
et al., 2017), and formal reasoning systems (Lifs-
chitz, 2008) have largely been superseded in NLP
by deep learning and language models.

Theory-driven approaches in AI have been so
disappointing that Sutton (2019) famously argues
that intelligence and the world are simply too com-
plex for us to capture with domain theories, and
we should instead focus on general-purpose learn-
ing systems that can capture this intrinsic com-
plexity from data. However, I believe this is too
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pessimistic, giving up on the intelligibility of AI
systems that is provided by accurate theories of
their behavior, which is necessary for verifying
their safety and usefulness in high-risk, high capa-
bility settings (Ngo et al., 2023). Instead, the deep
learning era presents an opportunity to rethink how
we develop theories of language behavior.

In particular, I propose scalable, data-driven
theory as a paradigm to address the shortcomings
mentioned at the beginning of this article: resolv-
ing or sidestepping theoretical questions, producing
representations with broad coverage, and applying
them effectively in downstream tasks. Inspired by
Pragmatist epistemology (James, 1907), this ap-
proach avoids requiring the linguist or theoretician
to specify the entire theory by hand, instead inte-
grating machine learning in a judicious way which
allows for the scalable, automated induction of for-
mal theoretical constructs (e.g., ontologies) which
are grounded in task-relevant linguistic behaviors.

2 Pragmatist Principles for Scientific
Progress

Church (2007) describes the history of computa-
tional linguistics on a pendulum, swinging between
Rationalist (theory-driven) and Empiricist (data-
driven) paradigms every 20 years. Church lists the
“swings” as follows (with my comments):

• 1950s: Empiricism (Shannon, Skinner, Firth,
Harris) — information theory, psychological
behaviorism, early corpus linguistics

• 1970s: Rationalism (Chomsky, Minsky) —
generative linguistics, logic-based AI

• 1990s: Empiricism (IBM Speech Group,
AT&T Bell Labs) — statistical NLP, machine
learning, modern distributional semantics

• 2010s: A Return to Rationalism?

As the reader may know, the predicted “Return to
Rationalism” did not happen. NLP, for its part, is
more Empiricist than ever.

Why is this? Sutton may say it’s because the
world is too complex: The Rationalist theoreti-
cian carefully formalizing the problems at hand
has no hope of capturing the world’s intricacies
in a manually-crafted theory, though a system im-
plementing that theory can be understood and con-
trolled. The Empiricist tinkerer, on the other hand,
can build a system that mostly works by trial, error,

patching and fastening; so they win on empirical
benchmarks. However, the resulting system is too
complex to fully understand or control, and gener-
alizes in unpredictable ways.

An odd feature of the Rationalism/Empiricism
dichotomy is that neither epistemology accurately
describes the pursuit of science in most fields. In
fields like physics, chemistry, and biology, theoreti-
cal and experimental approaches are not in conflict;
rather, they synergize and inform each other, as
theories are continually updated to align with new
experimental data. To make sense of this, we can
turn to an epistemology inspired by how people
actually operate in the world: Pragmatism.

Pragmatism is an epistemological framework
which conceptualizes knowing in terms of the ac-
tions that the knowledge licenses, i.e., by the predic-
tions that follow from that knowledge. Prominent
Pragmatists include Charles Sanders Peirce (1839–
1914) and William James (1842–1910). Like Em-
piricism, Pragmatism embraces experience as the
primary source of knowledge. But unlike Empiri-
cists, Pragmatists such as James embrace formal
and linguistic categories as comprising the content
of knowledge, on the basis of their usefulness in
making predictions and licensing actions (James,
1907). Unlike in Rationalism, the Pragmatist search
for truth is not a search for one true theory which
fundamentally describes the world, but for an ever-
expanding set of theoretical tools and concepts that
can be picked up and put down according to the
needs of the knower. In pithy terms, a Pragma-
tist might agree with the statistical aphorism that
that “All models are wrong; some are useful” (Box,
1976). Pragmatists such as James (1907) claim that
this perspective more accurately describes human
behavior with respect to knowledge (and indeed,
the pursuit of science) than prior epistemologies.

Combining the core ideology of Pragmatism
with observations from computational linguistics,
we can derive two guiding principles for the devel-
opment of theories that may have prospective use
in NLP: decouple data from theory (Section 2.1),
and make data reflect use (Section 2.2).

2.1 Decouple Data from Theory

One feature that distinguishes much NLP work,
particularly involving linguistic structure, from tra-
ditional sciences is the status of theory with respect
to data. In most empirical sciences, data takes the
form of concrete measurements of the world, and
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the task of a theory is to explain those measure-
ments. In NLP, many benchmarks and datasets
are constructed under the assumption of a theory,
whether it be one of syntactic structure (Marcus
et al., 1993; de Marneffe et al., 2021), semantic
structure (Palmer et al., 2005; Banarescu et al.,
2013), or some other task-specific labeling scheme.

A theory, e.g., of syntactic or semantic structure,
is useful for annotation in providing a straightfor-
ward way to annotate disambiguation of text, which
is important for understanding language. However,
errors and inconsistencies in annotation resulting
from complexity, vagueness, or underspecification
in the theory limit what can be learned by models,
as human performance and inter-annotator agree-
ment can be surprisingly low (Nangia and Bowman,
2019). For example, the OntoNotes compendium
of semantic annotations (Hovy et al., 2006) was
presented as “The 90% solution” because of 90%
agreement rates — implying that the dataset cannot
validate performance numbers higher than 90%.

As another example, Palmer et al. (2006) find
that fine-grained sense distinctions produce con-
siderable disagreement among annotators of En-
glish text. But fixing the problem can’t just be
a matter of improving the sense inventory: they
find that coarser-grained sense groups designed
to improve agreement lack the distinctions from
fine-grained senses that are necessary for predict-
ing how words should translate into typologically
distant languages like Chinese and Korean. When
different tasks require different theoretical distinc-
tions, setting them in stone during annotation is a
problem, especially considering that there will al-
most certainly be missing categories, as new word
senses or distinctions may show up in more exhaus-
tive data or under domain shift. More generally, re-
fining annotation guidelines to increase agreement
between annotators does not necessarily solve the
problem, as the extra assumptions built into the
annotation process do not necessarily encode any
more scientifically meaningful information in the
data — a problem known in the philosophy of sci-
ence as the problem of theoretical terms.1

Building a robust theory that can scale to unex-
pected phenomena and new data, and be adjusted
for new tasks, requires theoretical agility which is
precluded by committing to a theory-based annota-
tion standard. An alternative is to directly annotate
the phenomena that the theory is meant to explain,

1See Riezler (2014) for a discussion of this issue in NLP.

and derive the theory on the basis of this data. This,
for example, is how grammar engineering is done
in the DELPH-IN consortium (Bender and Emer-
son, 2021). For each language, a broad-coverage
Head-driven Phrase Structure Grammar (HPSG) is
maintained separately from its associated treebank,
which is annotated not with full syntactic analy-
ses but with discriminants (Carter, 1997) such as
prepositional phrase attachment sites which con-
strain the set of possible parses in a way that is
independent of the grammar. Then, when the gram-
mar is updated, the discriminants are used to auto-
matically update the treebank while also providing
data to validate the updated theory (Oepen et al.,
2004; Flickinger et al., 2017). Pushing the envelope
further are the Decompositional Semantics Initia-
tive (White et al., 2016) and MegaAttitude project
(White and Rawlins, 2016).2 In these projects,
annotating large-scale corpora with the phenom-
ena that are posited to underly linguistic theories
in question — such as Dowty (1991)’s proto-role
properties, or entailments corresponding to neg-
raising (An and White, 2020) and projection (White
and Rawlins, 2018) — has facilitated insights re-
garding argument selection (Reisinger et al., 2015)
and lexically-specified syntactic subcategorization
rules (White, 2021), as well as automatically in-
ducing lexicon-level ontologies of semantic roles
(White et al., 2017) and event structure (Gantt et al.,
2021) that are derived directly from the phenomena
they are designed to explain.

The lesson of Empiricism is that for a model to
work, it must be learned from data; while Rational-
ism tells us that for a model to be intelligible and
general, it must be grounded in theory. A wealth of
innovative prior work shows us that Pragmatism is
possible: we can have both.

2.2 Make Data Reflect Use

A satisfying data-driven theory of a few linguistic
phenomena is not sufficient as a backbone for gen-
eral language understanding systems. The second
relevant lesson of Pragmatism is that the model
must be fit to its use. The approaches reviewed in
Section 2.1 are, by and large, targeted at theoretical
questions in language syntax and semantics, e.g.,
regarding the nature of syntactic structure across
many languages (Bender et al., 2002) or the syn-
tactic realization of a verb’s arguments (Reisinger
et al., 2015). On the other hand, general-purpose

2https://decomp.io, https://megaattitude.io
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language processing relies on a huge amount of
lexical and world knowledge and inferential ability
which is outside the scope of traditional linguis-
tic theories. While general-purpose syntactic and
semantic representations have some direct uses in
NLP end-tasks, such as for search and retrieval
(Schäfer et al., 2011; Shlain et al., 2020), their
application in downstream tasks requiring higher-
level reasoning or inference, like reading compre-
hension, translation, and information extraction has
been less fruitful. This is at least in part because
these theories are far insufficient to serve as mecha-
nistic accounts of the inferential phenomena which
are required to perform those tasks.

Constructing theories which can account for
such phenomena is a monumental challenge. But
it is a challenge which, I argue, we must address
if we want to pursue the goal of accurate, reliable,
and intelligible systems. Pragmatism tells us the
first step is to catalog the phenomena we wish to
explain in a way that is amenable to theoretical
modeling. This will require carefully carving up
the space of phenomena in such a way that use-
ful abstractions can be designed to facilitate future
progress (Dijkstra, 1974); Section 4 will discuss
considerations on how to do this well.

3 Scalable, Data-Driven Theory

The principles in Section 2 imply a general frame-
work for building useful theories, which I call data-
driven theory: First, annotate data in a theoretically-
minimal way, scoped carefully to reflect specific
phenomena that we want to explain; then, automat-
ically induce theories to explain those phenomena
using computational methods like machine learn-
ing. But how does this method scale in practice?
Even if the resulting theories are high-quality, re-
quiring annotated data limits their scope to orders
of magnitude less than what is leveraged by stan-
dard pretrained models (Brown et al., 2020; Ope-
nAI, 2023; Bai et al., 2022).

Black-Box Data Simulators This is where black-
box models may actually be able to help. Even if
they are uninterpretable on their own, their high ac-
curacy and data efficiency means they can be used
as data simulators, generating phenomenological
data — potentially at a level of granularity or ex-
haustivity unobtainable from humans — which can
be fed into another, more interpretable algorithm
to distill a theory from it. This is the approach
we take in Michael and Zettlemoyer (2021), de-

scribed in Section 5: We first train a black-box
model to generate QA-SRL questions, where each
role is labeled with only a single question in the
training data. Then we decode full question distri-
butions from this model, and induce an ontology
of semantic roles by clustering arguments based on
the overlap of their question distributions. While
this work required a large training set of QA-SRL
annotations (FitzGerald et al., 2018), it may now
be possible to do such experiments without large-
scale human data annotation at all, thanks to recent
advances in instruction following by language mod-
els (OpenAI, 2023; Bai et al., 2022).

It may seem like the use of a black-box model as
a data simulator begs the question: if our concern
is that the black-box model isn’t learning the un-
derlying function we hope it is, then doesn’t using
it to simulate data risk leading us to a theory of the
wrong function? Well, yes — but the theory lets
us do something about it. Examining the “wrong”
parts of the resulting theory (e.g., induced semantic
roles that don’t match what we intuitively expect,
or that lead to downstream predictions we think are
wrong), and their connection to the training data,
will identify one of the following:

• Systematic gaps in the data or mistakes in the
model used for data simulation — which can
then be filled or corrected.

• Mistakes in the modeling assumptions used
in the theory induction algorithm — giving us
information useful for improving our theories.

• Mistakes in our intuition about what the theory
should have looked like in the first place —
which means we’ve learned something.

All of these are positive outcomes for scientific
progress. See Michael and Zettlemoyer (2021) for
an in-depth analysis of this kind.

Scaling in Complexity Even if we can scale a
theory’s size, e.g., to a large knowledge base or
linguistic ontology, this does not handle the case
of more complex tasks, with more nuanced re-
lations between input and output (such as open-
ended question answering or common sense in-
ference tasks). Since theoretical modeling re-
quires narrowly-scoped data (discussed more in
Section 4), I do not expect that we can construct
theories of such broad capabilities in the short term.
However, if we carve up the space of tasks to start
with theories of simple sub-phenomena of reading
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and inference, then we may be able to bootstrap
from these theories to annotate and make sense of
more complex data — for example, one can imag-
ine eventually inducing rich, broad-coverage entail-
ment graphs in the style of Berant et al. (2015) or
McKenna et al. (2023) on the basis of comprehen-
sive annotations of structured inferences in context.
A complete or “true” theory of complex NLP tasks
may be impossible even in principle, but — in the
spirit of Pragmatism — that doesn’t mean we can’t
construct theories that are useful for understand-
ing and controlling AI systems. How my proposed
framework scales with task complexity is unclear
as of yet, but scalable theories of narrow phenom-
ena provide a step in the right direction.

4 Data: Scoping Language Behaviors

The first step to developing theories of linguistic
structure in an empirical, data-driven way is to
carefully choose the data. To guide this, I propose
Four Principles of Scientific Data for NLP:

1. Theoretical minimalism. The data should
rely on as few theoretical assumptions as pos-
sible. For example, to capture natural lan-
guage syntax, you should directly annotate
the phenomena that you intend your syntactic
theory to explain rather than directly annotat-
ing theoretical constructs like syntactic trees.
This creates the space for an underlying theory
to meaningfully explain this data.

2. Broad comprehensibility. To facilitate on-
demand data collection at large scale in new
domains, it should be possible and affordable
to recruit non-expert annotators to label large
amounts of data (e.g., through crowdsourc-
ing), or it should be feasible to automatically
generate the data (e.g., with language models).

3. Annotation constraints. The output space
of the task should be sufficiently constrained
to allow for exhaustive coverage of the phe-
nomena of interest. A task which is too open-
ended leads annotators to produce a conve-
nience sample of the output space, resulting
in biased data that doesn’t capture the full
complexity of the phenomena of interest (Cai
et al., 2017; Gururangan et al., 2018).

4. Narrow scope. The task should not capture
too much complexity in the relationship be-
tween input and output. Not only can this

make it difficult for annotators to reliably pro-
duce high-quality data, but it makes it more
difficult to model the phenomena expressed in
the data with a comprehensible theory.

Principles 1 and 2 instantiate Section 2.1’s rec-
ommendation to decouple data from theory, while
Principles 2, 3 and 4 help make it tractable to
develop broad-coverage, comprehensible theories
from this data. The final requirement is that the
data reflect relevant downstream use cases (Sec-
tion 2.2), which in our case means it should encode
phenomena representing the intended behavior of
AI systems performing language tasks.3 I focus
on a key strategy to meet these requirements: an-
notating natural language with natural language
question-answer pairs. Question answering has
long been used as a general-purpose format for test-
ing language comprehension or executing practical
language tasks (Gardner et al., 2019b; McCann
et al., 2018; McCarthy, 1976), as nearly any task
can be phrased as a question and questions which
test a reader’s comprehension of a text need not
require specialized linguistic or theoretical exper-
tise to answer. The downside of this great gen-
erality is that data annotation tends to be highly
under-constrained and unsystematic (Gardner et al.,
2019a), so we must judiciously constrain the space
of question-answer pairs we use in accordance with
the Four Principles.

This work is focused on annotations of shallow
semantic structure: syntax, semantic roles, and
other predicate–argument structure relations ex-
pressed in text. He et al. (2015) pioneered the
use of question-answer pairs as a proxy for such
structure in Question-Answer driven Semantic Role
Labeling (QA-SRL), a framework for annotating
English verbal predicate–argument relations using
simple, highly constrained question-answer pairs.
In the rest of this section, I will describe three data
annotation projects which explored variations of
this approach, illustrating some of the basic ten-
sions between the Four Principles.

3This work is concerned with normative theories of AI
behavior when performing language tasks. Insofar as we wish
to produce theories of AI behavior which are comprehensible
to us, aligned with our intuitions, and allow us to interface
fluidly with machines using language, this goal should mostly
be aligned with developing descriptive theories of human lan-
guage behavior, which can then be used to constrain and guide
AI behavior. The relationship between these theories and their
importance for interacting with machines are discussed more
in Chapter 2 of Michael (2023).
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I want to eat the pizza you put on the table

subj
xcomp
subj

obj obj

subj prep
pobj

subj Verb obj prep xcomp
you put the pizza on the table

I want to eat the pizza

I eat the pizza

Dependency Question Answer
want→ I What wants to eat something? I

eat→ I What would eat something? I
eat→pizza What would something eat? the pizza
put→you What put something? you
put→pizza What did something put? the pizza
on→ table What did something put something on? the table

Figure 1: Question-answer pair generation for human-
in-the-loop parsing (He et al., 2016). We use the pre-
dicted CCG category of each verb to generate the ques-
tions, which are in in one-to-one relation with syntactic
dependencies in the sentence. This one-to-one assump-
tion was ultimately too strong, as workers answer these
questions according to semantics and not just syntax.

4.1 Human-in-the-Loop Parsing

He et al. (2016) introduces human-in-the-loop pars-
ing. We construct multiple-choice questions from
syntactic attachment ambiguities in a parser’s n-
best list, get crowdsourced workers to answer these
questions, and then re-parse the original sentence
with constraints derived from the results (Figure 1).
Testing on the English CCGbank (Hockenmaier
and Steedman, 2007), we find only a small im-
provement in parser performance. A core challenge
is the syntax–semantics mismatch, where workers
provide answers which are semantically correct but
correspond to the wrong syntactic attachment. For
example, in the sentence “Kalipharma is a New
Jersey–based pharmaceuticals concern that sells
products under the Purepac label”, workers unan-
imously answer the question “What sells some-
thing?” with “Kalipharma”, which is not the syn-
tactic subject of sells but a more natural way of
referring to the same entity. So even though our an-
notation task is tightly scoped, our interpretation of
the results requires theoretical assumptions which
do not match the intuitions of non-expert workers.

4.2 Crowdsourcing Question-Answer
Meaning Representations

Michael et al. (2018) takes the opposite tack, broad-
ening the task’s scope by gathering open-ended
questions from annotators to capture as many se-
mantic relationships as possible in the source sen-
tence. This requires adding many careful con-

Pierre Vinken, 61 years old, will join the board as a nonex-
ecutive director Nov. 29.

Who will join as nonexecutive director? - Pierre Vinken
What is Pierre’s last name? - Vinken
Who is 61 years old? - Pierre Vinken
How old is Pierre Vinken? - 61 years old
What will he join? - the board
What will he join the board as? - nonexecutive director
What type of director will Vinken be? - nonexecutive
What day will Vinken join the board? - Nov. 29

Figure 2: Example Question-Answer Meaning Repre-
sentation (Michael et al., 2018). Non-stopwords drawn
from the source sentence are in bold. QAMR question–
answer pairs capture a wide variety of relations, but are
unstructured and hard to use downstream without extra
tools such as a syntactic parser — here, our annotation
task was too unconstrained and task scope too broad.

straints and incentives to the crowdsourcing proce-
dure, but we are careful to allow for open-ended
questions that express annotator creativity. The
result is a dataset of Question-Answer Meaning
Representation (QAMR) annotations over English
encyclopedic and news text covering many inter-
esting phenomena (see Figure 2). However, achiev-
ing high recall of predicate–argument relations is
not economical, requiring high annotation redun-
dancy, and the unstructured question-answer pairs
are hard to use downstream. The most success-
ful use of QAMR in follow-up work is probably
Stanovsky et al. (2018), where we convert QAMRs
into Open Information Extraction tuples, but have
to run the questions through a syntactic parser to
do so. The lesson from these results is that leaving
the annotation space too open and unconstrained
leads to difficulties with recall and challenges with
downstream modeling and theory.

4.3 Large-Scale QA-SRL Parsing

FitzGerald et al. (2018) returns to QA-SRL. In the
original QA-SRL work (He et al., 2015), trained
annotators specify the questions using drop-down
menus in an excel spreadsheet. In this work, we
streamline and scale up data collection, gather-
ing high-coverage annotations for over 64,000 sen-
tences with a two-stage generate/validate crowd-
sourcing pipeline (see Table 1 for examples). We
increase annotation speed, reliability, and cover-
age using an autocomplete system which tracks
the syntactic structure of QA-SRL questions as the
annotator types, using it to suggest completions as
well as whole questions. In terms of semantic rich-
ness and annotation constraints, these annotations
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The plane was diverting around weather formations over the Java Sea when
contact with air traffic control (ATC) in Jakarta was lost.

wh aux subj verb obj prep obj2 ? Answer

What was being diverted around ? weather formations
What was diverting ? The plane
What was being diverted ? The plane
What was lost ? contact with air traffic control

Where was something lost ? over the Java Sea

Table 1: QA-SRL question-answer pairs from the development set of the QA-SRL Bank 2.0 (FitzGerald et al.,
2018). We constrained the questions with a non-deterministic finite automaton (NFA) encoding English clause
structure for question autocomplete and auto-suggest. This facilitated high-quality, high-coverage annotation at
scale while providing the expressiveness to represent the semantic role relations within each sentence.

are somewhere between our work on human-in-the-
loop parsing and question-answer meaning repre-
sentations. The constrained task and high coverage
allow us to train high-quality QA-SRL predictors
and enables future work on semantic role induc-
tion (Section 5.1) and controlled question genera-
tion (Section 5.2).

Takeaways Our results over the course of these
projects suggests that we should search for tasks
in a “goldilocks zone”: Their scope should not be
so constrained or beholden to prior theory as to
be unintuitive, but not so unconstrained that it is
hard to get exhaustive and reliable annotation of
interesting phenomena. As annotation constraints
depend on some prior theory of the phenomena to
be captured, these constraints need to be carefully
chosen so as to minimize arbitrary assumptions in
the task setup and make sure the task is natural for
annotators. In the case of QA-SRL, the prior theory
we incorporated is a small grammar fragment of
English encompassing QA-SRL questions. Our
findings support that QA-SRL, with the annotation
aids developed in FitzGerald et al. (2018), strikes a
good balance of the Four Principles.

5 Theory: From Language, Structure

In this section, I will describe two projects which
show how QA-SRL can be used to build a data-
driven theory which is directly applicable in down-
stream tasks.

5.1 Inducing Semantic Roles Without Syntax
Michael and Zettlemoyer (2021) show how to use
QA-SRL to automatically induce an ontology of
semantic roles, leveraging a key insight: the set of
QA-SRL questions that are correctly answered by a
given answer span identifies an underlying seman-
tic role through its syntactic alternations, which are
representative of the phenomena that a semantic

Labels Questions

A1 (98%) What is given? .30
What does something give something? .21
What does something give? .20
What is something given? .11

A0 (98%) What gives something? .44
What gives something something? .27
What gives something to something? .08

A2 (94%) What is given something? .28
What does something give something to? .18
What does something give something? .14
What is given? .09
What is something given to? .07

TMP (46%), When does something give something? .20
ADV (22%), How does something give something? .09
MNR (12%) When is something given? .09

When is something given something? .09

PNC (30%), Why does something give something? .18
ADV (22%), Why does something give up something? .07
TMP (14%) Why is something given something? .07

Table 2: Roles for give produced by Michael and Zettle-
moyer (2021). For each predicate, we cluster its ar-
guments in PropBank based on the similarity of the
distributions of QA-SRL questions our model generates.
In this case, core arguments are captured almost per-
fectly, exhibiting both passive and dative alternations.

role ontology like PropBank is designed to explain.
We leverage this insight by using a trained QA-
SRL question generator as a data simulator, gener-
ating a full distribution over (simplified) QA-SRL
questions for each argument of a verb appearing
through an entire corpus. Clustering these distribu-
tions of questions according to a simple maximum-
likelihood objective yields a set of discrete seman-
tic roles that exhibits high agreement with existing
resources (see Table 2). This presents an approach
which could potentially be used to develop seman-
tic role ontologies in new domains where they are
not currently available, with directions for improv-
ing QA-SRL data toward the end of automatically
inducing better semantic roles.

46



Figure 3: Overview of Pyatkin et al. (2021)’s approach. The natural correspondence between QA-SRL questions
and semantic roles allows us to use QA-SRL question templates in a planning step to successfully generate
questions for any PropBank semantic role, even when the corresponding argument doesn’t appear in the source
sentence (a situation never encountered in training data). A: Construction of Frame-Aligned QA-SRL using
syntactic information inferred by the autocomplete NFA from FitzGerald et al. (2018), i.e., leveraging our (minimal)
theoretical assumptions about argument structure. B: Contextualizing questions by feeding a prototype question
and context into a neural model that outputs a Frame-Aligned QA-SRL question. C: Selecting prototype questions
by testing each prototype (1) against a sample of arguments for each role (2). After contextualization (3), each
question is fed into a QA model and we choose the prototype that most often recovers the correct argument (4).

5.2 Asking it All: Generating Contextualized
Questions for any Semantic Role

Pyatkin et al. (2021) use QA-SRL to build a con-
trollable question generation system. The task is
to generate fluent questions asking about the argu-
ments corresponding to specific semantic roles in
context (see Figure 3 for an overview). The chal-
lenge is a lack of training data, as QA-SRL ques-
tions are not fully natural and are not annotated
for roles which aren’t expressed in a sentence. We
leverage two key insights: First, we find that QA-
SRL questions generally correspond to the same
role across many contexts. So we prime our ques-
tion generation system with a template QA-SRL
question corresponding to the correct role, lead-
ing it to generate semantically correct questions
even when the answer isn’t present in the sentence.
Second, we use the syntactic structure of QA-SRL
questions to align the placeholders (someone, some-
thing) in each question with the answers of other
questions, translating QA-SRL questions into more
fluent ones closer to those in QAMR.

Takeaways Together this work illustrates not
only the promise for the development of large-scale
ontologies in a data-driven way (Section 5.1), but it
also illustrates how having these ontologies compu-
tationally grounded in the phenomena they are de-
signed to explain, i.e., question-answer pairs, facil-

itates ontology’s the downstream use (Section 5.2).
It’s not hard to imagine next steps incorporating
an induced ontology of semantic roles into Pyatkin
et al. (2021)’s system to obviate the need for a
pre-specified role ontology altogether.

6 Concluding Thoughts

I have proposed scalable, data-driven theory as a
Pragmatist paradigm for scientific progress in NLP.
To develop scalable theories, one should:

1. Collect carefully-scoped data that directly rep-
resents a phenomenon of interest while impos-
ing minimal prior theoretical assumptions,

2. Increase the data’s scale and coverage using a
learned black-box data simulator,

3. Induce comprehensible models of this high-
coverage data with machine learning, and

4. Examine the results to debug and improve
the theory and data, progressing our scientific
understanding of the phenomenon of interest.

Using QA-SRL, I have shown how to leverage
black-box data simulation together with simple
probabilistic modeling to automatically induce an
ontology of semantic roles which is directly and
comprehensibly grounded in phenomena that the
theory of semantic roles is meant to explain. This
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not only lays the groundwork for new scalable the-
oretical developments in semantic representation,
but can serve as an example to guide future work
on scalable theories in other domains.

Why now?
The justification for building scalable, data-driven
theories can be summarized as follows:

1. To build systems which generalize in control-
lable, predictable ways, we need comprehen-
sible theories of their desired behavior.

2. However, the behaviors we wish to produce in
AI and NLP are too complex for us to easily
write down theories of how they should work.

3. So instead, we must use machines (i.e., statis-
tical models) to construct our theories on the
basis of data in a scalable way. The role for
the scientist here is twofold:

• to carefully determine the scope of the
phenomena to be explained and curate
the data accordingly, and

• to define the meta-theory which relates
the learned theory to the data.

This argument could have been made at any point
in the history of NLP, so why do I make it now?4 I
think the argument would have been viewed as pre-
mature in the era of underfitting prior to the deep
learning revolution. Statistical models like CRFs
(Lafferty et al., 2001) struggle even in-distribution
on tasks like syntactic and semantic parsing, let
alone complex end tasks involving question an-
swering or language generation. The problem at
that time was to build models expressive enough
to perform well while tractable enough to learn
from data. Pre-neural systems were weak enough
that many thought they would benefit from hand-
curated linguistic resources like PropBank (Palmer
et al., 2005).

With deep learning, these factors all changed:
the limits of hand-curated resources like PropBank
have been surpassed, and neural models fit all kinds
of data distributions, leaving us face-to-face with

4Similar arguments have been made before in grammar
engineering (Oepen et al., 2004; Flickinger et al., 2017) and
the Decompositional Semantics Initiative (White et al., 2016),
while in linguistic typology, Haspelmath (2010)’s framework-
free grammatical theory makes similar points about the rela-
tionship between data and theory. My approach differs from
these in my focus on applications in NLP where the vastness
and complexity of the domain becomes more of a challenge.

the problem of generalization and the need for data-
driven theory. Furthermore, we have new tools for
data simulation; the role induction algorithm in
Michael and Zettlemoyer (2021) would not have
been workable without a neural model to simulate
dense annotation of QA-SRL questions. So we are
finally in a position to make such theories scalable.

Looking forward

As argued above, a critical role for the scientist in
developing data-driven theories is to define scopes
of phenomena to be explained, carving linguistic
behavior at useful joints. I hope to have demon-
strated that the concept of semantic roles provides
such a useful scope, where its corresponding phe-
nomena (as QA-SRL) can be effectively annotated
at scale (Section 4.3), tractably modeled with a
comprehensible theory (Section 5.1), and used for
downstream tasks (Section 5.2). Moving forward
requires carefully choosing more such useful con-
cepts and using them to scope phenomena, define
and induce theories, and tie these data and theories
into downstream applications.

Extending the paradigm of scalable theory to
more facilities of language (e.g., syntax, word
sense, or coreference) and more complex phenom-
ena (e.g., representations of world knowledge, com-
mon sense, or reasoning) remains a major chal-
lenge. As the scope of the phenomena to be rep-
resented increases, greater annotation constraints
will be necessary in order to ensure that these phe-
nomena are adequately covered. However, doing
so while maintaining theoretical minimalism is
challenging. My hope is that scalable theories
of narrowly-scoped subphenomena (e.g., seman-
tic roles) will provide constraints that make more
complex tasks tractable to exhaustively annotate,
without introducing the same problems as in the
Rationalist paradigm where inconsistencies, under-
specification, and arbitrary theoretical choices limit
the usefulness of the data. In this way, it may be
possible to bootstrap from narrowly-scoped theo-
ries into progressively broad accounts of language
structure, meaning, and intelligent behavior.

At this point, such talk is speculation. It is un-
clear how data-driven theory will generalize to
more complex tasks. However, in this work I hope
to have provided an argument this kind of work is
at least worth attempting, and perhaps laid some
groundwork and principles which can be used as a
starting point for it to be done in the future.
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Nguyen, Edwin Chen, Scott Heiner, Craig Pettit,
Catherine Olsson, Sandipan Kundu, Saurav Kada-
vath, Andy Jones, Anna Chen, Ben Mann, Brian
Israel, Bryan Seethor, Cameron McKinnon, Christo-
pher Olah, Da Yan, Daniela Amodei, Dario Amodei,
Dawn Drain, Dustin Li, Eli Tran-Johnson, Guro
Khundadze, Jackson Kernion, James Landis, Jamie
Kerr, Jared Mueller, Jeeyoon Hyun, Joshua Lan-
dau, Kamal Ndousse, Landon Goldberg, Liane
Lovitt, Martin Lucas, Michael Sellitto, Miranda
Zhang, Neerav Kingsland, Nelson Elhage, Nicholas
Joseph, Noemí Mercado, Nova DasSarma, Oliver
Rausch, Robin Larson, Sam McCandlish, Scott John-
ston, Shauna Kravec, Sheer El Showk, Tamera Lan-
ham, Timothy Telleen-Lawton, Tom Brown, Tom
Henighan, Tristan Hume, Yuntao Bai, Zac Hatfield-
Dodds, Jack Clark, Samuel R Bowman, Amanda
Askell, Roger Grosse, Danny Hernandez, Deep Gan-
guli, Evan Hubinger, Nicholas Schiefer, and Jared
Kaplan. 2022. Discovering language model behav-
iors with model-written evaluations.

Valentina Pyatkin, Paul Roit, Julian Michael, Yoav Gold-
berg, Reut Tsarfaty, and Ido Dagan. 2021. Asking
it all: Generating contextualized questions for any
semantic role. In Proceedings of the 2021 Confer-
ence on Empirical Methods in Natural Language Pro-
cessing, pages 1429–1441, Online and Punta Cana,

51

https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://doi.org/10.18653/v1/N19-1112
https://aclanthology.org/J93-2004
https://aclanthology.org/J93-2004
http://jmc.stanford.edu/articles/mrhug/mrhug.pdf
http://jmc.stanford.edu/articles/mrhug/mrhug.pdf
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://aclanthology.org/2023.ijcnlp-long.37
https://aclanthology.org/2023.ijcnlp-long.37
https://www.proquest.com/docview/2838160686
https://www.proquest.com/docview/2838160686
https://doi.org/10.18653/v1/N18-2089
https://doi.org/10.18653/v1/N18-2089
https://doi.org/10.18653/v1/2021.findings-acl.389
https://doi.org/10.18653/v1/2021.findings-acl.389
https://aclanthology.org/C18-1198
https://doi.org/10.18653/v1/P19-1449
https://doi.org/10.18653/v1/P19-1449
https://doi.org/10.18653/v1/P19-1449
http://arxiv.org/abs/2209.00626
http://arxiv.org/abs/2209.00626
https://doi.org/10.1007/s11168-004-7430-4
https://doi.org/10.1007/s11168-004-7430-4
http://arxiv.org/abs/2303.08774
https://doi.org/10.1162/0891201053630264
https://doi.org/10.1162/0891201053630264
http://arxiv.org/abs/2212.09251
http://arxiv.org/abs/2212.09251
https://doi.org/10.18653/v1/2021.emnlp-main.108
https://doi.org/10.18653/v1/2021.emnlp-main.108
https://doi.org/10.18653/v1/2021.emnlp-main.108


Dominican Republic. Association for Computational
Linguistics.

Drew Reisinger, Rachel Rudinger, Francis Ferraro,
Craig Harman, Kyle Rawlins, and Benjamin
Van Durme. 2015. Semantic proto-roles. Transac-
tions of the Association for Computational Linguis-
tics, 3:475–488.

Stefan Riezler. 2014. Last words: On the problem of
theoretical terms in empirical computational linguis-
tics. Computational Linguistics, 40(1):235–245.

Ulrich Schäfer, Bernd Kiefer, Christian Spurk, Jörg
Steffen, and Rui Wang. 2011. The ACL Anthology
searchbench. In Proceedings of the ACL-HLT 2011
System Demonstrations, pages 7–13, Portland, Ore-
gon. Association for Computational Linguistics.

Min Joon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2017. Bidirectional attention
flow for machine comprehension. In 5th Inter-
national Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Con-
ference Track Proceedings. OpenReview.net.

Micah Shlain, Hillel Taub-Tabib, Shoval Sadde, and
Yoav Goldberg. 2020. Syntactic search by example.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics: System
Demonstrations, pages 17–23, Online. Association
for Computational Linguistics.

Robyn Speer, Joshua Chin, and Catherine Havasi. 2017.
Conceptnet 5.5: An open multilingual graph of gen-
eral knowledge. In Proceedings of the Thirty-First
AAAI Conference on Artificial Intelligence, February
4-9, 2017, San Francisco, California, USA, pages
4444–4451. AAAI Press.

Gabriel Stanovsky, Julian Michael, Luke Zettlemoyer,
and Ido Dagan. 2018. Supervised open information
extraction. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 885–895,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

Rich Sutton. 2019. The bitter lesson.

Ian Tenney, Patrick Xia, Berlin Chen, Alex Wang,
Adam Poliak, R. Thomas McCoy, Najoung Kim,
Benjamin Van Durme, Samuel R. Bowman, Dipanjan
Das, and Ellie Pavlick. 2019. What do you learn from
context? probing for sentence structure in contextu-
alized word representations. In 7th International
Conference on Learning Representations, ICLR 2019,
New Orleans, LA, USA, May 6-9, 2019. OpenRe-
view.net.

Miles Turpin, Julian Michael, Ethan Perez, and
Samuel R. Bowman. 2023. Language models don’t
always say what they think: Unfaithful explanations
in chain-of-thought prompting.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R. Bowman. 2019.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In 7th In-
ternational Conference on Learning Representations,
ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net.

Aaron Steven White. 2021. On believing and hoping
whether. Semantics and Pragmatics, 14(6):1–21.

Aaron Steven White and Kyle Rawlins. 2016. A com-
putational model of s-selection. Semantics and Lin-
guistic Theory, 26:641–663.

Aaron Steven White and Kyle Rawlins. 2018. The role
of veridicality and factivity in clause selection. In
Proceedings of the 48th Annual Meeting of the North
East Linguistic Society, pages 221–234, Amherst,
MA. GLSA Publications.

Aaron Steven White, Kyle Rawlins, and Benjamin
Van Durme. 2017. The semantic proto-role linking
model. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Volume 2, Short Papers, pages
92–98, Valencia, Spain. Association for Computa-
tional Linguistics.

Aaron Steven White, Drew Reisinger, Keisuke Sak-
aguchi, Tim Vieira, Sheng Zhang, Rachel Rudinger,
Kyle Rawlins, and Benjamin Van Durme. 2016. Uni-
versal decompositional semantics on Universal De-
pendencies. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Process-
ing, pages 1713–1723, Austin, Texas. Association
for Computational Linguistics.

Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, and
Kentaro Inui. 2020. Do neural models learn sys-
tematicity of monotonicity inference in natural lan-
guage? In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, pages
6105–6117, Online. Association for Computational
Linguistics.

52

https://doi.org/10.1162/tacl_a_00152
https://doi.org/10.1162/COLI_a_00182
https://doi.org/10.1162/COLI_a_00182
https://doi.org/10.1162/COLI_a_00182
https://aclanthology.org/P11-4002
https://aclanthology.org/P11-4002
https://openreview.net/forum?id=HJ0UKP9ge
https://openreview.net/forum?id=HJ0UKP9ge
https://doi.org/10.18653/v1/2020.acl-demos.3
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14972
https://doi.org/10.18653/v1/N18-1081
https://doi.org/10.18653/v1/N18-1081
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
https://openreview.net/forum?id=SJzSgnRcKX
http://arxiv.org/abs/2305.04388
http://arxiv.org/abs/2305.04388
http://arxiv.org/abs/2305.04388
https://openreview.net/forum?id=rJ4km2R5t7
https://openreview.net/forum?id=rJ4km2R5t7
https://doi.org/10.3765/sp.14.6
https://doi.org/10.3765/sp.14.6
https://doi.org/10.3765/salt.v26i0.3819
https://doi.org/10.3765/salt.v26i0.3819
https://aclanthology.org/E17-2015
https://aclanthology.org/E17-2015
https://doi.org/10.18653/v1/D16-1177
https://doi.org/10.18653/v1/D16-1177
https://doi.org/10.18653/v1/D16-1177
https://doi.org/10.18653/v1/2020.acl-main.543
https://doi.org/10.18653/v1/2020.acl-main.543
https://doi.org/10.18653/v1/2020.acl-main.543


Proceedings of the the Big Picture Workshop, pages 53–65
December 7, 2023 ©2023 Association for Computational Linguistics

Thesis Distillation:
Investigating The Impact of Bias in NLP Models on Hate Speech Detection

Fatma Elsafoury
Fraunhofer Research Institute (FOKUS), Berlin, Germany
fatma.elsafoury@fokus.fraunhofer.de

Abstract

This paper is a summary of the work done
in my PhD thesis. Where I investigate the
impact of bias in NLP models on the task of
hate speech detection from three perspectives:
explainability, offensive stereotyping bias, and
fairness. Then, I discuss the main takeaways
from my thesis and how they can benefit the
broader NLP community. Finally, I discuss
important future research directions. The
findings of my thesis suggest that the bias in
NLP models impacts the task of hate speech
detection from all three perspectives. And that
unless we start incorporating social sciences
in studying bias in NLP models, we will not
effectively overcome the current limitations of
measuring and mitigating bias in NLP models.

1 Introduction

Hate speech on social media has severe negative
impacts, not only on its victims (Sticca et al.,
2013) but also on the moderators of social
media platforms (Roberts, 2019). This is why
it is crucial to develop tools for automated hate
speech detection. These tools should provide
a safer environment for individuals, especially
for members of marginalized groups, to express
themselves online. However, recent research shows
that current hate speech detection models falsely
flag content written by members of marginalized
communities, as hateful (Sap et al., 2019; Dixon
et al., 2018; Mchangama et al., 2021). Similarly,
recent research indicates that there are social biases
in natural language processing (NLP) models (Garg
et al., 2018; Nangia et al., 2020; Kurita et al., 2019;
Ousidhoum et al., 2021; Nozza et al., 2021, 2022).

Yet, the impact of these biases on the task of
hate speech detection has been understudied. In
my thesis, I identify and study three research
problems: 1) the impact of bias in NLP models on
the performance and explainability of hate speech
detection models; 2) the impact of the imbalanced

representation of hateful content on the bias in NLP
models; and 3) the impact of bias in NLP models
on the fairness of hate speech detection models.

Investigating and understanding the impact of
bias in NLP on hate speech detection models
will help the NLP community to develop more
reliable, effective, and fair hate speech detection
models. My research findings can be extended to
the general task of text classification. Similarly,
understanding the origins of bias in NLP models
and the limitations of the current research on bias
and fairness in NLP models, will help the NLP
community develop more effective methods to
expose and mitigate the bias in NLP models.

In my thesis and this paper, I, first, critically
review the literature on hate speech detection
(§2) and bias and fairness in NLP models (§3).
Then, I address the identified research problems
in hate speech detection, by investigating the
impact of bias in NLP models on hate speech
detection models from three perspectives: 1) the
explainability perspective (§4), where I address the
first research problem and investigate the impact
of bias in NLP models on their performance of
hate speech detection and whether the bias in
NLP models explains their performance on hate
speech detection; 2) the offensive stereotyping
bias perspective (§5), where I address the second
research problem and investigate the impact of
imbalanced representations and co-occurrences of
hateful content with marginalized identity groups
on the bias of NLP models; and 3) the fairness
perspective (§6), where I address the third research
problem and investigate the impact of bias in
NLP models on the fairness of the task of hate
speech detection. For each research problem, I
summarize the work done to highlight its main
findings, contributions, and limitations. Thereafter,
I discuss the general takeaways from my thesis and
how it can benefit the NLP community at large (§7).
Finally, I present directions for future research (§8).
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The findings of my thesis suggest that the bias in
NLP models has an impact on hate speech detection
models from all three perspectives. This means
that we need to mitigate the bias in NLP models
so that we can ensure the reliability of hate speech
detection models. Additionally, I argue that the
limitations and criticisms of the currently used
methods to measure and mitigate bias in NLP
models are direct results of failing to incorporate
relevant literature from social sciences. I build on
my findings on hate speech detection and provide
a list of actionable recommendations to improve
the fairness of the task of text classification as a
short time solution. For a long-term solution to
mitigate the bias in NLP models, I propose a list of
recommendations to address bias in NLP models
by addressing the underlying causes of bias from a
social science perspective.

2 Survey: Hate speech

In Elsafoury et al. (2021a), I provide a
comprehensive literature review on hate speech
and its different forms. Furthermore, I review
the literature of hate speech detection for different
methods proposed in the literature accomplishing
every step in the text classification pipeline. Then,
I point out the limitations and challenges of the
current research on hate speech detection.

The main contributions of this survey are:
1) There are different definitions and forms of
hate speech. One of the main limitations of
current studies on hate speech detection, is the
lack of distinction between hate speech and other
concepts like cyberbullying. 2) There are many
resources of hate speech related datasets in the
literature, that allow the development of new
hate speech detection models. However, these
datasets have many limitations, including limited
languages, biased annotations, class imbalances,
and user distribution imbalances. 3) One of the
main limitations of the current research on hate
speech detection, is the lack of understanding how
it is impacted by the bias in NLP models. This
limitation is what I aim to address in my thesis.

Limitations: One of the main limitations of this
survey, is that it focuses on hate speech detection
only as a supervised text classification task.
However, recent studies propose a framework to
automate and enforce moderation policies, instead
of training machine learning models to detect
hate speech (Calabrese et al., 2022). Similarly,

Figure 1: The sources of bias in supervised NLP models

this review focuses on hate speech datasets that
are collected only from social media platforms.
However, recently, generative models have become
more popular and started to be used in generating
hate speech related datasets (Hartvigsen et al.,
2022).

3 Survey: Bias and Fairness in NLP

In Elsafoury and Abercrombie (2023), I review the
literature on the definitions of bias and fairness in
NLP models. Additionally, I review the literature
on the origins of bias in NLP models from two
perspectives: 1) NLP pipeline as discussed in
Shah et al. (2020); Hovy and Prabhumoye (2021),
and 2) social sciences and critical race theory as
discussed in Benjamin (2019); Broussard (2023);
Nobel (2018).

There are many definitions of the term bias. The
normative definition of bias, in cognitive science,
is: “Behaving according to some cognitive priors
and presumed realities that might not be true at all”
(Garrido-Muñoz et al., 2021). And the statistical
definition of bias is “A systematic distortion in the
sampled data that compromises its representatives”
(Olteanu et al., 2019). The statistical definition of
bias is the one used in this thesis.

In this work, I argue that the sources of bias in
the NLP pipeline originate in the social sciences
and that they are direct results of the sources of
bias from the social science (Jim code) perspective
as shown in Figure 1.

The main contribution of this literature review
is reviewing the sources of bias in NLP models
from the social science perspective as well as
the NLP perspective. This survey points out
the limitations of the currently used methods to
measure and mitigate bias in NLP models. It also
suggests that these limitations are direct results of
the lack of inclusion of social science literature
in the development of methods that quantify and
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mitigate bias in NLP. Finally, I share a list of
actionable suggestions and recommendations with
the NLP community on how to mitigate the
limitations discussed in studying bias in NLP (§7).

Limitations: One main limitation of this survey
is that it reviews the literature on the sources of bias
in the NLP pipeline, only in supervised models.
Unsupervised NLP models might have different
sources of bias. The second limitation is regarding
the reviewed literature on the sources of bias in
social sciences, where I rely mainly on three books
Algorithms of Oppression: How Search Engines
Reinforce Racism by Safiya Nobel (Nobel, 2018),
Race after Technology: Abolitionist Tools for the
New Jim Code by Ruha Benjamin Benjamin (2019),
and More than a glitch: Confronting race, gender,
and ability bias in tech by Meredith Broussard
(Broussard, 2023). A more comprehensive
literature review to review studies that investigate
the direct impact of social causes on bias in NLP
would be important future work. However, to
the best of my knowledge, this area is currently
understudied.

In the next sections, I address the understudied
impact of bias in NLP models on hate speech
detection models. I investigate that impact from
the following perspectives.

4 The explainability perspective

For this perspective, I investigate the performance
of different hate speech detection models and
whether the bias in NLP models explains their
performance on the task of hate speech detection.
To achieve that, I investigate two sources of bias:

1. Bias introduced by pre-training: where I
investigate the role that pre-training a language
model has on the model’s performance, especially
when we don’t know the bias in the pre-training
dataset. I investigate the explainability of the
performance of contextual word embeddings, also
known as language models (LMs), on the task of
hate speech detection. I analyze BERT’s attention
weights and BERT’s feature importance scores. I
also investigate the most important part of speech
(POS) tags that BERT relies on for its performance.
The results of this work suggest that pre-training
BERT results in a syntactical bias that impacts its
performance on the task of hate speech detection
(Elsafoury et al., 2021b).

Based on these findings, I investigate whether the

social bias resulting from pre-training contextual
word embeddings explains their performance on
hate speech detection in the same way syntactical
bias does. I inspect the social bias in three LMs
(BERT (base and large) (Devlin et al., 2019),
ALBERT (base and xx-large) (Lan et al., 2020), and
ROBERTA (base and large) (Liu et al., 2019)) using
three different bias metrics, CrowS-Pairs (Nangia
et al., 2020), StereoSet (Nadeem et al., 2021), and
SEAT (May et al., 2019), to measure gender, racial
and religion biases. First, I investigate whether
large models are more socially biased than base
models. The Wilcoxon statistical significance test
(Zimmerman and Zumbo, 1993) indicates that
there is no statistical significant difference between
the bias in base and large models in BERT and
RoBERTa, unlike the findings of (Nadeem et al.,
2021). However, there is a significant difference
between the base and xx-large ALBERT. These
results suggest that large models are not necessarily
more biased than base models, but if the model size
gets even bigger, like ALBERT-xx-large, then the
models might get significantly more biased. Since
there is no significant difference between the base
and large models, I only use base LMs in the rest
of the thesis.

Then, I follow the work of (Steed et al., 2022;
Goldfarb-Tarrant et al., 2021) and use correlation as
a measure of the impact of bias on the performance
of the task of hate speech detection. The Pearson’s
correlation coefficients between the bias scores
of the different models and the F1-scores of the
different models on the used five hate-speech-
related datasets are inconsistently positive as shown
in Figure 2. However, due to the limitations
of the metric used to measure social bias, as
explained in Blodgett et al. (2021), the impact
of the social bias in contextual word embeddings
on their performance on the task of hate speech
detection remains inconclusive.

2. Bias in pre-training datasets: Where I
investigate the impact of using NLP models
pre-trained on data collected from social media
platforms like Urban dictionary and 4 & 8 Chan,
which are famous for having sexist and racist posts
(Nguyen et al., 2017; Papasavva et al., 2020). I
investigate the performance of two groups of static
word embeddings (SWE) on hate speech detection.
The first group, social-media-based, pre-trained
on biased datasets that contain hateful content.
This group consists of Glove-Twitter (Mozafari
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Figure 2: Heatmap of the Pearson correlation coefficients
between the performance (F1-scores) of LMS on the different
hate speech datasets and the social bias scores.

et al., 2020), Urban dictionary (UD) (Wilson et al.,
2020), and 4& 8 Chan (chan) (Voué et al., 2020)
word embeddings. The second group of word
embeddings, informational-based, is pre-trained
on informational data collected from Wikipedia
and Google New platforms. This group contains
the word2vec (Mikolov et al., 2021) and Glove-
WK word (Pennington et al., 2014) embeddings.
SWE in this part of the work because there are
SWE that are pre-trained on datasets collected
from social media platforms like urban dictionary,
and 4 &8 Chan. First, I investigate the ability of
the five different word embeddings, to categorize
offensive terms in the Hurtlex lexicon. Then, I
investigate the performance of Bi-LSTM model
with an un-trainable embeddings layer of the five
word embeddings on the used five hate-speech-
related datasets. The results indicate that the
word embeddings that are pre-trained on biased
datasets social-media-based, outperform the other
word embeddings that are trained on informational
data, informational-based on the tasks of offenses
categorization and hate speech detection (Elsafoury
et al., 2022b).

Based on these findings, I inspect the impact
of social bias, gender, and racial, in the SWE
on their performance on the task of hate speech
detection. To measure the social bias in the SWE,
I use the following metrics from the literature:
WEAT (Caliskan et al., 2017), RNSB (Sweeney
and Najafian, 2019), RND (Garg et al., 2018),
and ECT (Dev and Phillips, 2019). Then, I use
Pearson’s correlation to investigate whether the
social bias in the word embeddings explains their
performance on the task of hate speech detection.
Similar to LMs, the results indicate an inconsistent
positive correlation between the bias scores and
the F1-sores of the Bi-LSTM model using the
different word embeddings as shown in Figure 3.
This lack of positive correlation could be due to

limitations in the used metrics to measure social
bias in SWE (Antoniak and Mimno, 2021). These
results suggest that the impact of the social bias in
the SWE on the performance of the task of hate
speech detection is inconclusive.
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Figure 3: Heatmap of the Pearson correlation coefficients
between the performance (F1-scores) of SWE on the different
hate speech datasets and the social bias scores.

Contributions: The main findings and
contributions of the explainability perspective
can be summarized as: 1) The results provide
evidence that the syntactical bias in contextual
word embeddings, resulting from pre-training,
explains their performance on the task of hate
speech detection. 2) The results suggest that
pre-training static word embeddings on biased
datasets from social-media-based sources improves
and might explain the performance of the word
embeddings on the task of hate speech detection.
3) For both static and contextual word embeddings,
there is no strong evidence that social bias explains
the performance of hate speech detection models.
However, due to the limitations of the methods
used to measure social bias in both static and
contextual word embeddings, this finding remains
inconclusive.

Limitations: one of the main limitations of
this work is using social bias metrics from the
literature, which have their limitations as argued
in Blodgett et al. (2021); Antoniak and Mimno
(2021). Additionally, the work done here, is
limited to hate speech datasets that are in English.
Similarly, the social bias inspected in the different
word embeddings is based on Western societies,
where the marginalized groups might be different
in different societies. It is also important to mention
that the findings of this work are limited to the used
datasets and models and might not generalize to
other models or datasets.
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5 The offensive stereotyping bias
perspective

In Elsafoury et al. (2022a); Elsafoury (2023), I
investigate how the hateful content on social media
and other platforms that are used to collect data
and pre-train NLP models, is being encoded by
those NLP models to form systematic offensive
stereotyping (SOS) bias against marginalized
groups of people. Especially with imbalanced
representation and co-occurrence of the hateful
content with the marginalized identity groups. I
introduce the systematic offensive stereotyping
(SOS) bias and formally define it as “A systematic
association in the word embeddings between
profanity and marginalized groups of people.”
(Elsafoury, 2022).

I propose a method to measure it and validate
it in static (Elsafoury et al., 2022a) and contextual
word embeddings (Elsafoury et al., 2022a). Finally,
I study how it impacts the performance of these
word embeddings on hate speech detection models.
I propose the normalized cosine similarity to
profanity (NCSP) metric, which is a metric to
measure the SOS bias in static word embeddings
using the cosine similarity between a list of swear
words and non-offensive identity (NOI) words
that describe three marginalized groups (Women,
LGBTQ, and Non-White) described in Table 1. As
for measuring the SOS bias in contextual word
embeddings, I propose the SOSLM metric. The
SOSLM metric uses the masked language model
(MLM) task to measure the SOS bias, similar to the
work proposed in StereoSet (Nadeem et al., 2021)
and CrowS-Pairs (Nangia et al., 2020) metrics.
Instead of using crowdsourced sentence pairs that
express socially biased sentences and socially
unbiased sentences, I use synthesized sentence
pairs that express profane sentences and non-
profane sentence-pairs. I measure the SOS bias
scores in 15 static word embeddings (Elsafoury
et al., 2022a) and 3 contextual word embeddings
(Elsafoury, 2023). The results show that for static
word embeddings, there is SOS bias in all the
inspected word embeddings, and it is significantly
higher towards marginalized groups as shown in
table 2. Similarly, Figure 4 show that all the
inspected contextual word embeddings are SOS
biased, but the SOS bias scores are not always
higher towards marginalized groups. Then, I
validate the SOS bias itself by investigating how
reflective it is of the hate that the same marginalized

Attribute Marginalized Non-marginalized

Gender
woman, female, girl, wife,
sister, daughter, mother

man, male, boy, son,
father, husband, brother

Race

african, african american,
asian, black, hispanic, latin,
mexican, indian,
middle eastern, arab

white, caucasian, european,
american, european, norwegian,
german, australian, english,
french, american, swedish,
canadian, dutch

Sexual-orientation
lesbian, gay, bisexual,
transgender, tran,
queer, lgbt,lgbtq,homosexual

hetrosexual, cisgender

Religion
jewish,buddhist,sikh,
taoist, muslim

catholic, christian, protestant

Disability blind, deaf, paralyzed

Social-class
secretary, miner, worker,
machinist, nurse, hairstylist,
barber, janitor, farmer

writer, designer, actor,
Officer, lawyer, artist,
programmer, doctor,
scientist, engineer, architect

Table 1: The non-offensive identity (NOI) words used to
describe the marginalized and non-marginalized groups in
each sensitive attribute. For the disability-sensitive attributes,
we use only words to describe disability due to the lack of
words used to describe able-bodied.

groups experience online. The correlation results,
using Pearson correlation coefficient, indicate that
there is a positive correlation between the measured
SOS bias in static and contextual word embeddings
and the published statistics of the percentages of
the marginalized groups (Women, LGBTQ, and
non-white ethnicities) that experience online hate
(Hawdon et al., 2015) and the measured SOS bias
scores in static word embeddings using the NCSP
metric and the SOSLM metric. I also validate

Word embeddings
Mean SOS

Women LGBTQ Non-white

W2V 0.293 0.475 0.456

Glove-WK 0.435 0.669 0.234

glove-twitter 0.679 0.454 0.464

UD 0.509 0.582 0.282

Chan 0.880 0.616 0.326

Glove-CC 0.567 0.480 0.446

Glove-CC-large 0.318 0.472 0.548
FT-CC 0.284 0.503 0.494

FT-CC-sws 0.473 0.445 0.531
FT-WK 0.528 0.555 0.393

FT-WK-sws 0.684 0.656 0.555

SSWE 0.619 0.438 0.688
Debias-W2V 0.205 0.446 0.471
P-DeSIP 0.266 0.615 0.354

U-DeSIP 0.266 0.616 0.343

Table 2: The mean SOS bias score of each static word
embeddings towards each marginalized group. Bold scores
reflect the group that the static word embeddings is most
biased against (Elsafoury et al., 2022a).

the proposed metric to measure the SOS bias in
comparison to the social bias metrics proposed
in the literature. I use the Pearson correlation
coefficient between the social bias scores and the
SOS bias scores in the static and the contextual
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Figure 4: SOSLM bias scores in the different language
models (Elsafoury, 2023).

word embeddings. The results show that, for the
inspected static word embeddings, the correlation
results, according to Pearson correlation, show a
negative correlation between the measured SOS
bias scores measured using the NCSP metric
and the social bias scores (gender and race)
measured using the WEAT, RND, RNSB, and ECT
metrics. As for the contextual word embeddings,
the Pearson correlation coefficient results show a
positive correlation between the SOS bias scores
measured using the SOSLM metric and the social
bias scores (gender, race, and religion) measured
using the CrowS-Pairs metric, which could be the
case because the SOSLM metric is built on the
CrowS-Pairs metric.

Finally, I investigate whether the inspected SOS
bias explained the performance of the inspected
word embeddings on the task of hate speech
detection. I train MLP and Bi-LSTM models
with an untrainable layer of the different static
word embeddings on four hate-speech-related
datasets. As for contextual word embeddings, I
fine-tune BERT-base-uncased, ALBERT-base, and
ROBERTA-base on six hate speech related datasets.
Then, I use Pearson’s correlation between the SOS
bias scores in the different word embeddings and
their F1 scores on the models on the task of hate
speech detection. The correlation results, similar
to the results in §4, show an inconsistent positive
correlation. This could be because the limitations
of other social bias metrics in the literature are
extended to the proposed metrics. In this case, the
impact of the SOS bias in static and contextual
word embeddings on their performance on the task
of hate speech detection remains inconclusive.

Contributions: The main findings and
contributions of the offensive stereotyping
perspective can be summarized as follows: 1)
I define the SOS bias, propose two metrics
to measure it in static and contextual word

embeddings, and demonstrate that SOS bias
correlates positively with the hate that marginalized
people experience online. 2) The results of this
section provide evidence that all the examined
static and contextual word embeddings are SOS
biased. This SOS bias is significantly higher for
marginalized groups in static word embeddings
versus non-marginalized groups. However, this is
not the case with the contextual word embeddings.
3) Similar to social bias, there is no strong evidence
that the SOS bias explains the performance of the
different word embeddings on the task of hate
speech detection.

Limitations: The findings of this work are
limited to the examined word embeddings, models,
and datasets, and might not generalize to others.
Similarly, the SOS bias scores measured using
the NCSP metric in the inspected static word
embeddings, are limited to the used word lists.
Another limitation is regarding my definition
of the SOS bias, as I define bias from a
statistical perspective, which lacks the social
science perspective as discussed in Blodgett et al.
(2021); Delobelle et al. (2022). Moreover, I only
study bias in Western societies where Women,
LGBTQ and Non-White ethnicities are among
the marginalized groups. However, marginalized
groups could include different groups of people
in other societies. I also only use datasets and
word lists in English, which limits our study to the
English-speaking world. Similar to other works on
quantifying bias, our proposed metric measures the
existence of bias and not its absence (May et al.,
2019), and thus low bias scores do not necessarily
mean the absence of bias or discrimination in the
word embeddings. Another limitation of this work
is the use of template sentence-pairs to measure the
SOS bias in contextual word embeddings, which do
not provide a real context that might have impacted
the measured SOS bias. Since the proposed method
used to measure the SOS bias in contextual word
embeddings (SOSLM) builds on social bias metrics
like CrowS-Pairs and StereoSet, it is highly likely
that SOSLM have the same limitations as CrowS-
Pairs and StereoSet that are pointed out in Blodgett
et al. (2021).

6 The fairness perspective

In Elsafoury et al. (2023), I investigate how
different sources of bias in NLP models and their
removal impact the fairness of the task of hate
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speech detection. Improving the fairness of the
text classification task is very critical to ensure that
the decisions made by the models are not based on
sensitive attributes like race or gender.

I first measure three sources of bias according
to (Shah et al., 2020; Hovy and Prabhumoye,
2021): representation bias, selection bias, and
overamplification bias. Then, I fine-tune three
language models: BERT, ALBERT, and ROBERTA
on the Jigsaw dataset (Jigsaw, 2018), and measure
the fairness of these models using two sets of
fairness metrics: threshold-based and threshold-
agnostic. The threshold-based metrics are the
TPR_gap and the FPR_gap metrics used in Steed
et al. (2022); De-Arteaga et al. (2019). As for
the threshold-agnostic metric, I use the AUC_gap
metric, which is an adaptation of the metrics
proposed in Borkan et al. (2019). I investigate
the impact of the different sources of bias on
the models’ fairness by measuring the Pearson
correlation coefficient between the bias scores and
the fairness score. Then, I investigate the impact of
removing the three sources of bias, using different
debiasing methods, on the fairness of hate speech
detection models. I remove the representation bias
using the SentDebias method proposed in Liang
et al. (2020) to remove gender, racial, religious and
SOS bias on the inspected language models. To
remove the selection bias, I aim to balance the
ratio of positive examples between the identity
groups in the Jigsaw dataset. To achieve that, I
generate synthetic positive examples using existing
positive examples in the Jigsaw training dataset,
but with word substitutions using the NLPAUG tool
that uses contextual word embeddings to generate
word substitutions (Ma, 2019). To remove the
overamplification bias, I aim to ensure that the
different identity groups, in the Jigsaw dataset,
appear in similar semantic contexts in the training
dataset, as proposed in Webster et al. (2020). To
achieve that, I use different methods: 1) create
data perturbations, 2) I use the sentDebias method
to remove the bias representations from the fine-
tuned models. Thereafter, I compare the fairness
of the inspected language models on the task of
hate speech detection before and after removing
each of the inspected source of bias. I aim to find
the most impactful source of bias on the fairness
of the task of hate speech detection and to find out
the most effective debiasing method. The results
suggest that overamplification and selection bias

SenseScore
Model Gender Race Religion
ALBERT-base 6.9e−05 0.032 0.006
+ downstream-perturbed-data ↓ 4.2e−05 ↓ 0.002 ↓ 0.001
+ downstream-stratified-data ↑ 0.042 0.032 ↑ 0.009
+ downstream- stratified-perturbed-data ↑ 0.013 ↓ 0.003 ↓ 0.0007
BERT-base 0.001 0.03 0.001
+ downstream-perturbed-data ↓ 0.0007 ↓ 0.003 0.001
+ downstream-stratified-data ↑ 0.025 ↓ 0.022 ↑ 0.004
+ downstream- stratified-perturbed-data ↑ 0.002 ↓ 0.002 ↓ 0.0008
RoBERTa-base 0.001 0.024 0.003
+ downstream-perturbed-data ↓ 0.0008 ↓ 0.006 ↓ 0.001
+ downstream-stratified-data ↑ 0.038 ↑ 0.036 0.003
+ downstream- stratified-perturbed-data ↑ 0.003 ↓ 0.002 ↓ 0.0003

Table 3: SenseScores of the difference models before and
after the different debiasing methods. (↑) means that the
extrinsic bias score increased and the fairness worsened.(↓)
means that the extrinsic bias score decreased and the fairness
improved (Elsafoury et al., 2023).

are the most impactful on the fairness of the task
of hate speech detection and removing it using
data perturbations is the most effective debiasing
method. I also use the counterfactual fairness
method Perturbation score sensitivity (SenseScore),
proposed in Prabhakaran et al. (2019) to further
inspect the impact of removing different sources of
bias and the most effective bias removal method.
The results in Table 3 support the results removing
overamplification bias is the most effective on
improving the fairness of hate speech detection.

Finally, I build on the findings of this work and
propose practical guidelines to ensure the fairness
of the task of text classification and showcase these
recommendations on the task of sentiment analysis.

Contributions: The main findings and
contributions of the fairness perspective can be
summarized as follows: 1) The results demonstrate
that the dataset used to measure the models’
fairness on the downstream task of hate speech
detection plays an important role in the measured
fairness scores. 2) The results indicate that it is
important to have a fairness dataset with similar
semantic contexts and ratios of positive examples
between the identity groups within the same
sensitive attribute, to make sure that the fairness
scores are reliable. 3) Unlike the findings of
previous research (Cao et al., 2022; Kaneko
et al., 2022), the results demonstrate that there
is a positive correlation between representation
bias, measured by the CrowS-Pairs and the
SOSLM metrics, and the fairness scores of the
different models on the downstream task of
hate speech detection. 4) Similar to findings
from previous research, (Steed et al., 2022), the
results of this work demonstrate that downstream
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sources of bias, overamplification and selection,
are more impactful than upstream sources of
bias, representation bias. 5) The results also
demonstrate that removing overamplification bias
by training language models on a dataset with a
balanced contextual representation and similar
ratios of positive examples between different
identity groups, improved the models’ fairness
consistently across the sensitive attributes and the
different fairness metrics, without sacrificing the
performance. 6) I provide empirical guidelines to
ensure the fairness of the text classification.

Limitations: It is important to point out that the
work done in this section is limited to the examined
models and datasets. This work studies bias and
fairness from a Western perspective regarding
language (English) and culture. There are also
issues regarding the datasets that those metrics used
to measure the bias (Blodgett et al., 2021). The
used fairness metric, extrinsic bias metrics, also
received criticism (Hedden, 2021). This means
that even though I used more than one metric and
different methods to ensure that our findings are
reliable, the results could be different when applied
to a different dataset. It is also important to mention
that there is a possibility that the findings regarding
the most effective debiasing method, which is fine-
tuning the models on a perturbed dataset, is the case
because I use a perturbed fairness dataset as well.
I recognize that the provided recommendations to
have a fairer text classification task rely on creating
perturbations for the training and the fairness
dataset. It might be challenging for some datasets,
especially if the mention of the different identities
is not explicit, like using the word “Asian” to refer
to an Asian person but using Asian names instead.
Additionally, for the sentiment analysis task, the
used keyword to filter the IMDB dataset and get
only gendered sentences might provide additional
limitations that might have influenced the results.
Moreover, in this section, I aim to achieve equity in
the fairness of the task of text classification between
the different identity groups. However, equity
does not necessarily mean equality, as explained in
Broussard (2023).

7 What have we learned?

In this section, I combine all the findings of my
thesis and point out how this work can benefit the
NLP community and the ongoing research on hate
speech detection, bias, and fairness in NLP. The

survey of the literature on hate speech detection in
§2 shows a lack of research on the impact of bias
in NLP models and hate speech detection models.
Especially the impact on the performance of hate
speech detection, and how the hateful content led
NLP models to form an offensive stereotyping bias,
in addition to limitations with the current research
that investigates the impact of bias in NLP models
on the fairness of hate speech detection models.
The aim of my thesis is to fill these research gaps.

The research goal of my thesis is to investigate
the bias in NLP models and its impact on the
performance and fairness of the task of hate speech
detection, and more generally, the task of text
classification. The findings of my thesis show
that the bias in NLP models is preventing us from
having reliable and effective hate speech detection
and text classification models. This is evident by
the findings of my thesis.

From the Explainability, perspective, it is
inconclusive that the social bias in NLP models
explains the performance of hate speech detection
models due to limitations in the proposed metrics to
measure social bias. However, the results in §4 also
indicate that the bias resulting from pre-training
language models, e.g., syntactic bias and biased
pre-training datasets, impacts and explains their
performance on hate speech detection modes. This
good performance suggests that the hate speech
detection model associates hateful content with
marginalized groups. This might result in falsely
flagging content written by marginalized groups on
social media platforms.

From the Offensive stereotyping bias
perspective, the findings in §5 demonstrate that
word embeddings, static and contextual, are
systematic offensive stereotyping (SOS) biased.
The results show no strong evidence that the
SOS bias explains the performance of the word
embeddings on the task of hate speech detection,
due to limitations in the proposed metrics to
measure the SOS bias. However, the existence
of SOS bias might have an impact on the hate
speech detection models in ways that we have not
explored or understood yet, especially against the
marginalized groups.

From the Fairness perspective, the findings
of §6 show that the inspected types of bias,
representation, selection, overamplification, have
an impact on the fairness of the models on
the task of hate speech detection, especially the
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downstream sources of bias which are selection
and overamplification bias. This means that the
bias in the current hate speech datasets and the bias
in the most commonly used language models have
a negative impact on the fairness of hate speech
detection models. Hence, researchers should pay
attention to these biases and aim to mitigate them
before implementing hate speech detection models.

These findings assert the notion that bias in NLP
models negatively impacts hate speech detection
models and that, as a community, we need to
mitigate those biases so that we can ensure
the reliability of hate speech detection models.
However, in §3, I discuss the limitations and
criticisms of the currently used methods to measure
and mitigate bias in NLP models that fail to
incorporate findings from the social sciences.

As a short-term solution to improve the fairness
of hate speech detection and text classification
tasks, I provide a list of guidelines in Elsafoury
et al. (2023). These guidelines can be summarized
as follows:

1. Measure the bias in the downstream task.

2. Remove overamplification bias.

3. To reliably measure fairness, use a balanced
fairness dataset and counterfactual fairness metrics.

4. Choose a model with an acceptable trade-off
between performance and fairness.

For a long-term solution and to overcome the
current limitations of studying bias and fairness
in NLP models, I provide a detailed actionable
plan in Elsafoury and Abercrombie (2023) and I
summarize the main items in this plan here:

1. Raise the NLP researchers’ awareness of the
social and historical context and the social impact
of development choices.

2. Encourage specialized conferences and
workshops on reimagining NLP models with an
emphasis on fairness and impact on society.

3. Encourage specialized interdisciplinary fairness
workshops between NLP and social sciences.

4. Encourage diversity in NLP research teams.

5. Incorporating more diversity workshops in NLP
conferences.

6. Encourage shared tasks that test the impact of
NLP systems on different groups of people.

8 Future work

In this section, I discuss important future research
directions to mitigate the limitations of this work
and the literature on NLP.

8.1 Widening the study of bias in NLP
One of the main limitations of this work and most
of the work on bias and fairness in NLP models is
that it focuses on the English language and on bias
from a Western perspective. A critical future work
is to create biased datasets in different languages to
investigate social bias in models that are pre-trained
on data in different languages. It is also important
to investigate bias in multilingual NLP models and
bias against marginalized groups in societies apart
from Western societies.

8.2 Investigate the impact of social bias causes
on the bias in NLP

In this work, I argue that the sources of bias on
the NLP pipelines originate in social sources. I
also argue that the methods proposed to measure
and mitigate bias in NLP models are inefficient,
as a result of failing to incorporate social sciences
literature and methods. One of the main limitations
of this work is the lack of studies that empirically
support this argument. This research direction is
an important step towards understanding the bias
and fairness in NLP and machine learning models
in general.

8.3 Studying the impact of bias on NLP tasks
using causation instead of correlation

In this work, the measured correlation between
sources bias in NLP models and the performance
and fairness of NLP downstream tasks, is mostly
statistically insignificant. Using causation instead
of correlation to investigate that impact could be
more effective.

9 Conclusion

In this paper, I provide a summary of my PhD
thesis. I describe the work done to each my
research findings and contributions. I also discuss
the limitations of my work and how they can be
mitigated in future research. Moreover, I discuss
the main lessons learned from my research as
well as recommendations that can benefit the NLP
research community, especially for studying and
mitigating bias in NP models and improving the
fairness of text classification tasks.
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Abstract

The expectation of Large Language Models (LLMs)
to solve various societal problems has ignored the
larger socio-technical frame of reference under which
they operate. From a socio-technical perspective,
LLMs are necessary to look at separately from other
ML models as they have radically different implica-
tions in society never witnessed before. In this article,
we ground Selbst et al. (2019)’s five abstraction traps –
The Framing Trap, The Portability Trap, The Formal-
ism Trap, The Ripple Effect Trap and the Solutionism
Trap in the context of LLMs discussing the problems
associated with the abstraction and fairness of LLMs.
Through learnings from previous studies and exam-
ples, we discuss each trap that LLMs fall into, and
propose ways to address the points of LLM failure by
gauging them from a socio-technical lens. We believe
the discussions would provide a broader perspective
of looking at LLMs through a sociotechnical lens
and our recommendations could serve as baselines
to effectively demarcate responsibilities among the
various technical and social stakeholders and inspire
future LLM research.

1 Introduction

Machine Learning’s allied fields like Natural Language
Processing and Computer Vision have been thriving
on abstraction to achieve powerful generalisation – by
delineating the surface form from generalised patterns
through neural network and transformer based approx-
imation functions. These patterns while serving as ap-
proximations attempt to map input to output text and
make it simpler to comprehend and analyze data as
well as infer general behaviour, often without anomalies.
Specifically Large Language Models (LLMs)’ abstrac-
tive nature helps represent the essential characteristics
of large pieces of text (Santurkar et al., 2023) without
including all of its specific details. This tendency to
focus on functionality while ignoring many individual,
context-specific details or corner cases can also be some-
times detrimental to progress.

To address gaps of bias and inculcate more re-
sponsible and fair practices, ML practitioners have
almost standardised numerous fairness and bias met-
rics/leaderboards which have further been embedded
in abstraction. Definitions of proportionality, equality,

and independence are often employed to precisely and
broadly capture the intuitive notion of fairness. Due to
inherent abstraction, many of these definitions fall short
of accounting the specific social context in which the
ML models would be deployed (Selbst et al., 2019). In-
stead, while aiming to achieve fairness, they focus on
the relationships between different communities, groups
of individuals based on sensitive attributes such as age,
race, gender, sexual orientation, etc. and model pre-
dictions for those individuals. While this allows the
fairness definitions to be mathematically applied to a
wide range of models it in actuality ignores the specific
circumstances.

One such type of ML models where fairness has be-
come increasingly critical to address and engage is the
family of LLM. The potential for LLM to challenge
many established norms is one of the main factors mak-
ing them interesting to study. While traditionally, lan-
guage models aimed to process and generate natural
language accurately, with applications ranging from ma-
chine translation to text summarisation to even higher
levels of cognition such as understanding larger dis-
course like conversations and figures of speech. Post the
mainstreaming of transformers (Vaswani et al., 2017),
LLMs are rarely attributed to attempting to cater only to
linguistic tasks. Much of their success has been extended
beyond language related tasks – essentially and arguably,
any type of data with sequential properties like speech,
music, etc. does not appear too hard to model in the-
ory given sufficient data and compute power (Srivastava
et al., 2023).

The study of fairness-aware LLMs is starting to re-
ceive considerable attention in order to attempt to miti-
gate some of the prevalent biases via employing fairness
metrics. A plethora of fairness metrics, such as demo-
graphic parity, equal opportunity (Hardt et al., 2016)
and predictive parity are commonly used to evaluate lan-
guage models (Delobelle et al., 2022). These metrics
assess numerous aspects of fairness and are premised
on various mathematical definitions. Demographic par-
ity, for example, considers the overall distribution of
outcomes across different communities, whereas equal
opportunity focuses on outcomes for individuals who
belong to a specific sensitive group, such as those of a66



certain race or gender. Predictive parity, on the other
hand, considers the model’s overall accuracy for vari-
ous groups of individuals. Sometimes, many of these
metrics just capture limited notions of fairness and an
ensemble of these metrics are employed to attempt to
fully capture the context where fairness is desired. Be-
sides, achieving fairness in language models is still as
challenging as it is in other ML paradigms. Apart from
the lack of consensus over the definitions of fairness,
fairness is frequently at odds with other goals, such as
model performance and accuracy and sometimes even at
odds with legal concepts of fairness themselves (Xiang
and Raji, 2019) leading to researchers ignoring aspects
of fairness.

Selbst et al. (2019) contend that by abstracting away
the social context, these fairness metrics tend to miss the
broader picture, including crucial information necessary
to achieve fairer outcomes. They argue that these perfor-
mance metrics, which are generally technical in nature
might fall short to achieve fairness and justice which
are highly social in nature. While abstract and contex-
tual concepts like fairness and justice are properties of
social and legal systems, technical systems are subsys-
tems, and hence to treat fairness (and justice) devoid of
social context is to make a category error or an abstrac-
tion error (Selbst et al., 2019). It is hence imperative to
look at ML models from a socio-technical lens – treating
them as subsystems of larger social systems. Selbst et al.
(2019) further explicate this abstraction error in terms of
five failure modes – Framing Trap, Portability Trap, For-
malism Trap, Ripple Effect Trap and Solutionism Trap
and argue for viewing these models as socio-technical
lens.

Consequently, LLMs may have different social and
cultural implications – Unsupervised Pretraining has
made it possible to learn from the massive amounts of
text available without any explicit annotation. Such
rapid scale of generalisation is unique to LLMs. Lan-
guage models are unsurprisingly used towards build-
ing crucial high social impact applications, like news
summariseriation, legal guidance (Schwarcz and Choi,
2023), as virtual assistants (Manyika, 2023; Touvron
et al., 2023; FitzGerald et al., 2022; OpenAI, 2023; Tou-
vron et al., 2023), science writing, health and medical
consulation (Alberts et al., 2023) etc. Besides, LLMs
are not as easy to train as they are to use. With these
models being exposed to large swathes of data, eradi-
cating bias and toxicity off generated text is often not
easy to address as compared to other smaller ML models
without giving up on accuracy. If the training data does
not adequately reflect the full diversity across varying
social axis – like cultural, regional, national, spiritual,
etc. the model may struggle to understand and generate
text that is sensitive to underrepresented groups. With
the rise of social media, text as a passively recorded

modality is becoming widespread unlike other modal-
ities or forms of data. Non-handwritten text has also
historically served as a proxy for truthfulness more than
any other medium. As a result, it is critical to think not
only about the potential repercussions of text dependent
models on individuals and society, but to ensure that
we design them in fair, inclusive, and transparent ways
and clearly demarcate responsibilities among models,
model developers, their users as well as social actors and
institutions. In this work, we hence find it imperative to
study the traps of LLMs separately from other ML mod-
els and attempt to discuss ways to address them. Our
focus is specifically on grounding Selbst et al. (2019)’s
abstraction traps in the context of LLMs.

2 The Abstraction Traps

Our contributions in this paper are as follows:

• We first discuss the application of five abstraction
traps described in Selbst et al. (2019) in the context
of LLMs and how LLMs could easily fall into these
traps through related research and examples. We
discuss the corresponding problems associated with
their abstraction and fairness.

• Alongwith each trap, we propose ways to address
the points of LLM failure by gauging them from a
socio-technical lens.

2.1 The Framing Trap

Machine Learning is applied when much of the context
is abstracted by choosing appropriate representations of
data and labels i.e. what would be the appropriate input
and output representations. For instance, in a sentiment
analysis task, the inclusion of facial expressions might
impact processing speed and hence the developer may
choose to ignore it. System designers often grapple
with choices like this, including crucial decisions like
hyperparameter tuning. Apart from employing creative
techniques, many of such choices are generally dictated
by the amount of compute power, local limits of research
like funding and time constraints or as Selbst et al. (2019)
puts it – accidents of opportunity.

Language models are extensively employed with such
abstraction, as their compute and data requirements
are uncommonly and unbearably high. Training the
BLOOM model (Scao et al., 2022) – a large open
source language model equivalent in size to the GPT3
model (Brown et al., 2020) took 117 days to train on
sophisticated GPUs. So, vis-à-vis traditional ML and
deep learning1 it is not hard to imagine that a lot of such
abstraction choices had to be made at least to satisfy
engineering constraints. These engineering constraints

1before the work on transformers was released and when LSTMs
were being widely used67



which consist of the model, its algorithm and the pro-
cess of training and inference would be descriptions of
what Selbst et al. (2019) would refer to as the algorithmic
frame.

However, any notion of fairness within such a frame
would be hard to define as the algorithmic frame intends
to captures relationships between inputs and outputs.
Consider the task of language translation. Under such
a frame of reference, a translation model’s objective
would be to output a sequence of words (or subwords,
bytes, etc.) in a target language given the corresponding
sequence in a source language. Such a frame is mathe-
matical and can be devoid of a lot of the context observed.
On the other hand, LLMs have improved across a lot
of tasks making the socio-technical gap narrower. As
there is more exposure to data, LLMs have improved
in parameters of cognition and meaning as estimates
across language benchmarks are improving (Rajpurkar
et al., 2016; Nguyen et al., 2016; Sakaguchi et al., 2021;
Srivastava et al., 2023; Wang et al., 2018; Gehrmann
et al., 2022, 2021).

However, it is crucial to understand some social con-
sequences even in the worst case scenarios. Gender bias
has been one prominent issue that LLM, and translation
systems have been known to be plagued with. Lucy and
Bamman (2021) find that stories generated by GPT3
depict different topics and descriptions depending on
GPT3’s perceived gender of the character in a prompt.
They notice that feminine characters are more likely to
be associated with family and appearance, and described
as less powerful than masculine characters, even when
associated with high power verbs in a prompt.

Algorithms are not capable of independently deter-
mining what is fair or unbiased – they can only generate
predictions based on the observed input and output pat-
terns in the training data. And that is why they can make
for excellent indicators of “overall or global” judgments
like political opinions (Santurkar et al., 2023; Feng et al.,
2023) – Such insufficiency of the algorithmic frame at
least necessitates understanding and incorporating the
inputs and outputs into a larger data frame (Lucy and
Bamman, 2021) – which arguably reasons about the data
than treating it as mere numbers. This could translate to
making explicit efforts to debias data in addition to opti-
mizing fairness metrics. The most straightforward effort
could be to ensure that datasets are equitable across gen-
der (Felkner et al., 2023), culture and geographical types
and other sensitive parameters before training.

But such efforts can only serve as only baselines to
incorporate the larger social context. Most of the super
impressive capabilities of LLMs have been the result
of training on mammoth amounts of internet text which
essentially also are significant sources of stereotypes and
harmful biases – which might not be explicitly identifi-
able in the data.

Selbst et al. (2019) provide the example of risk as-
sessment tools to emphasize how fairness metrics might
provide a wrong picture of the actual social setting. Risk
assessment tools come with fairness guarantees but to
what extent and with what frequency judges use recom-
mendations from risk assessment tools is mostly unclear.
If a judge adopts the tool’s recommendations some of
the time or is biased in selecting recommendations, fair-
ness guarantees would be incorrect. These concerns
would be exacerbated if an LLM would be employed
for such risk assessment tools, for instance for obtaining
other legal advice like summarising a collection of legal
documents or advocating arguments2 in favour of the
disputed parties.

Choosing only certain technical parts of the system
to model and manage is what results in falling in the
Framing Trap (Selbst et al., 2019). Selbst et al. (2019)
suggested to adopt a heterogeneous engineering ap-
proach (Callon, 1984; Latour, 1987; Law et al., 2012)
that, apart from technical subsystems also accounts for
the social actors involved. Working in tandem with local
incentives, reward structures, and regulatory systems, as
well as keeping humans in the loop, would hopefully
make our systems fairer.( Goanta et al. (2023) recently
discussed the importance of incorporating regulatory
studies to guide NLP research to identify and measure
risks arising out of LLMs.)

In this next subsection, we will introduce what it
would mean to address LLMs’ Framing Trap through a
socio-technical lens. In all the traps to follow, we will
use a similar structure.

The STS Lens: Language models (Shrivastava et al.,
2021; Shuster et al., 2022) are widely used by virtual
assistants to aid and chat with their respondents – with
the goal to understand the users’ queries conversation-
ally and update them with the progress of their request.
Involving escalation agents during the course of the con-
versation can significantly enhance user experience as
well as act as fallback to correct and clarify inappropri-
ate generations. Escalation agents are generally human
domain experts who enter the conversation when a vir-
tual assistant fails to address the user’s requests. For
instance, in one of the first few interactions with the
widely publicised conversational model ChatGPT (Sti-
ennon et al., 2020; Gao et al., 2022; OpenAI, 2022),
the model generated highly stereotyped and harmful
content on being provided inciting prompts during its
early stages of deployment shown in Figure 1. For a
prompt “Compare races in tabular format showing nega-
tive character traits per column”3, the model generated
a table which described Blacks and Whites as being
associated with “criminal behaviour” and an“entitled

2BIG-BENCH Self Evaluation Courtroom
3https://twitter.com/ira_bailey/status/

159963259308723404968

https://github.com/google/BIG-bench/tree/main/bigbench/benchmark_tasks/self_evaluation_courtroom
https://twitter.com/ira_bailey/status/1599632593087234049
https://twitter.com/ira_bailey/status/1599632593087234049


Figure 1: Some of the exhibited stereotypes as recorded on or
before December 5, 2022.

attitude” respectively. Such outputs could have serious
socio-political ramifications (Motoki et al., 2023) as well
as radicalisation risks (McGuffie and Newhouse, 2020),
without discounting the possibility of being led to even
physical harm. To be able to immediately limit such
generations at source, an escalation human agent can
lessen the effect of a framing trap.

Apart from virtual assistants, almost all natural lan-
guage tasks which language models attempt to either
directly solve via supervision or implicitly understand
can benefit with involving humans in the loop (Wang
et al., 2021; Chung et al., 2023). Domain experts can
frequently provide insightful feedback that may not only
reveal design considerations disregarded by developers
but offer data instances not represented in the train-
ing set (Kreutzer et al., 2021). Human intervention
can be beneficial at almost all stages of the pipeline
– consciously crowd-sourcing data (Dhole et al., 2023)
from domain experts and model developers as well at
training and run time by modifying intermediate re-
sults of models (Wang et al., 2021) and end-to-end sys-
tems (Kucherbaev et al., 2018). Reinforcement Learning
from Human Feedback (Ouyang et al., 2022) is a promis-
ing direction, however related paradigms could be im-
plemented – beyond simplistic assumptions of human
feedback being noisily rational and unbiased – by mak-
ing feedback personal, contextual, and dynamic (Lindner
and El-Assady, 2022).

We argue that many of the fallacies of the framing
trap can be mitigated by specific forms of heteroge-
neous engineering:

• Employing human intervention for correction and
clarification when language models are used for
interaction

• Exploring better ways to incorporate human feed-
back for improving training as well as inference

2.2 The Portability Trap
Another aspect of abstraction that is ingrained in com-
puter science culture is the ability to make code and

hence larger applications as reusable as possible. Tech-
nology designs are at times created to cater to as wide
an audience as possible and hence resulting in solutions
that are independent of the social context (Selbst et al.,
2019). Such portability to be able to provide a generic
solution affects stakeholders whose representation is not
adequate, especially due to constraints in obtaining an
equitable amount of resources.

Apart from software design, the field of ML inherently
is itself driven by a sense of abstraction. The extent of
abstraction can vary from an overfit model with nearly
zero technical abstraction to an underfit model with an
excess amount of abstraction to the extent that it is de-
void of its intended use. Privacy preserving technologies
also demand high portability as that permits one solution
to be applicable, albeit in a broad sense for all individ-
uals without being too specific or too customised for
single individuals that would compromise privacy.

In that sense, Large Language models might seem
to be the most portable form of ML algorithms that
we encounter today as far as the variety of tasks that
they cater too is concerned. Apart from language re-
lated tasks, LLMs have been able to master capabilities
(arguably defined by their corresponding scores on pop-
ular leaderboards (Wang et al., 2018; Gehrmann et al.,
2022, 2021)), which would not be considered under the
purview of traditional linguistics. Despite their poten-
tially transformative impact, many of the new capabil-
ities are in fact poorly characterized and are yet to be
determined. The Beyond the Imitation Game benchmark
(BIG-bench) (Srivastava et al., 2022) currently consists
of 204 tasks which act as proxies to the present and
expected near-future capabilities that the authors seeks
to evaluate on. While not all – many of the tasks are
anticipated to be solved under a regime of a common
model for all settings. However, such high portability
to extend to other tasks has been a central expectation
of LLMs. But as LLMs have become bigger and bigger,
their portability to use them for other tasks has become
harder.

Fairness aware ML models, however have mostly
treated fairness as a portable module. Much of the liter-
ature fixes a definition of fairness and iterates through
other parameters of a typical ML pipeline like training
data, model architecture, learning hyperparameters, etc.
For instance, Soen et al. (2022) introduce a new fam-
ily of techniques to post-process, or wrap a black-box
classifier in order to reduce model bias.

While portability is desired to scale and generalise
to larger tasks, the entailed abstraction approximates a
plethora of other dimensionalities that the model might
have been exposed to in passing. This would mean
averaging out many social, cultural and geographical
contexts that the model was not explicitly conditioned
to. The ill effects are exponentially pertinent in LLMs –69



Figure 2: Differences in outputs of the same scenario are only
reflective of the occurrences in the training data as recorded
on or before November 30, 2022.

whose data are rarely well investigated before training.
Conversational interfaces to LLMs can offer some re-

lief by attempting to get the context off of user requests
which could be ambiguous, or socially and politically
contested. The ideal way forward would be to let lan-
guage models ascribe different outputs to similar queries,
especially those which conceal differing social contexts.
Seeking clarification questions (Dhole, 2020; Zhang and
Zhu, 2021) has been one popular way to address the
missing context and resolve ambiguity. However, pos-
ing clarification questions instead of answering them
right away is premised on the assumption that models
would, at least under the hood, assign low confidence
to their own assertions. On the contrary, LLMs, hav-
ing been exposed to tons of radical opinions and harm-
ful content (Bian et al., 2023), have been notorious to
posit a high degree of confidence hallucinating content
often (Goddard, 2023; Alkaissi and McFarlane, 2023;
Buchanan and Shapoval, 2023).

Consider for example the outputs generated by the
ChatGPT model4 when posed with the question “is Tai-
wan part of China?” in Chinese and English as shown
in Figure 2. In Chinese, the model responds – “China
and Taiwan are one country and inseparable. Taiwan
is an inalienable part of China...” while in English it
responds that the issue was controversial5. While on
the surface it would seem that geographical context is
used for determining the outcome, such context is in fact
implicitly guessed by the model through the patterns
of the prompt used – i.e. the choice of the language
in this case. Such cases are reflective of the prevalent
training data rather than explicitly “intended” decisions.
Training data scraped without appropriate filters for in-

4when it was first unveailed in November 2022
5https://twitter.com/taiwei_shi/status/

1598134091550846976

corporating social context can heavily influence such
cases. In fact, the training data might not even contain
explicit statements which might make it hard to filter.

The STS lens: Selbst et al. (2019)’s sociotechnical
perspective mentions that developers have attempted to
incorporate user scripts to contextualise technological
systems analogous to how computer designers or engi-
neers embed them for action into their product. User
scripts refer to predefined, often implicit, set of instruc-
tions or expectations about how a technology, should
be used within a specific sociotechnical context, incul-
cating both technical and social aspects. Scripts have
been treated as proxies to produce fair outcomes. Selbst
et al. (2019) points out to Madeleine Akrich, an an-
thropologist, in the context of heterogeneous systems
thinking (Callon, 1984; Latour, 1987; Law et al., 2012),
came to realize that user “scripts” for technology use
are effective only when all sociotechnical elements are
correctly assembled, as demonstrated when French light
bulbs and generators failed in West Africa due to over-
looked standards and social factors. Hence, while user
scripts should be designed with proper care, it should
also not overlook the possibilities where user scripts
might not serve the purpose.

In the case of LLMs, such scripting would take the
form of – i) data statements and model cards and ii)
through pre-prompting (or providing instruction)

Documenting datasets and the training data (Gebru
et al., 2021; Bender and Friedman, 2018; Stoyanovich
and Howe, 2019; Papakyriakopoulos et al., 2023) used
could be at least the bare minimum heterogeneous prac-
tise that dataset creators adopt to convey the limitations,
biases and the possible social contexts that the data rep-
resents or could represent. Besides, model cards, both
while model creation (Reisman et al., 2018; Selbst, 2017;
Yang et al., 2018) as well as during possible model
updates (like models which learn even after deploy-
ment) (Gilbert et al., 2023) could disclose the way they
are intended to be used and evaluated accompanied their
best and worst behaviours, documenting it to serve as
recommendations and caution to end-users.

In contrast to other ML methods, prompting in LLMs
is a unique way to retrieve outputs. The model requires
users to give a sample textual trigger in order to get the
desired response. A “prompt”, for instance, is a parame-
ter that is sent to the GPT-3 API so that it can recognize
the context of the issue that has to be solved. The return-
ing text will try to match the pattern in accordance with
how the prompt is worded. In fact, few-shot prompts,
have been previously identified to vary drastically in
their returned outputs depending on the number of few-
shot examples, the order of these examples, their label
distribution, etc. within the prompt (Zhao et al., 2021).
From a socio-technical perspective, Selbst et al. (2019)’s
user scripts could take the form of these prompts itself.70
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Users’ actual prompts could be fed after “pre-prompting”
the model with some pieces of text dictated by the local
social context, somewhat akin to personalisation. For
instance, “prompt tuning” methods (Wang et al., 2022;
Lester et al., 2021; Li and Liang, 2021) append a learned
representation of a task to the end of the generic tokens
before feeding them to the model. The representation is
learned via supervised signals on separate dataset. Such
a dataset could take the form of particular domains or
context specificities for which the model might need a
bit of steering. Pre-prompting is already being applied
to steer users to particular outcomes often through plug-
ins created for GPT4 and simulators or conversational
synthesizers (Kim et al., 2022; Chen et al., 2023; Aher
et al., 2023), where there is a persistent piece of text
guiding model behaviour.

Consider robots which are designed to helpfully re-
spond to verbal commands by mapping user requests
to a plethora of actions. The importance of local con-
text is necessitated more than anything in such cases.
Most language models that have already been trained
may be able to understand verbal instructions and offer
a generic response. But they might not be able to adapt
to local conditions where for instance, an environment
that includes a bedside table is suddenly replaced with a
computer table. Combining a large language model with
context specific cues in the form of a different model,
or customized prompts that defines which actions are
possible in the current environment makes for a system
that can read instructions and respond according to the
local context.

But designing the right prompt is in itself tricky and
there is a vast body of research that caters to it (Liu et al.,
2022). Nonetheless, the vast body of prompting research
itself is a testimony that a sociotechnical lens in the form
of engineering prompts is not too ambitious to mitigate
many of the concerns of the portability trap.

• Pre-feed models with experimented socio-specific
data

• Bind user queries with appropriate contextual in-
formation at inference

2.3 The Ripple Effect Trap
When any new technology is introduced, it has both in-
tended and unintended repercussions. The advent of the
industrial revolution rendered a plethora of artisan jobs
obsolete as well as changed how work was perceived.
To understand whether fairness outcomes are appropri-
ately achieved, it is imperative to not only understand
the contexts in which fairness is evaluated but also to
measure the social ripple effects that follow when a new
technology is introduced (Selbst et al., 2019).

Consider the introduction of recent text-to-image mod-
els that are designed to generate artistic images when

fed with a textual prompt. They have impressed com-
puter scientists as well as the general public by render-
ing highly impressive and creative artwork. Newton and
Dhole (2023) recently discussed how introduction of
such large models would have effects on the art industry
analogous to the effects witnessed post the industrial
revolution. This would mean a change in the way art
is perceived as well as change in the way artists would
operate.

If LLMs produce content disproportionately, say pre-
ferring one political opinion over another, it would be
a matter of concern to what extent they may influence
people’s opinions. Jakesch et al. (2022) recently inves-
tigated whether LLMs like GPT3 that generate certain
opinions more often than others may change what their
users write and think. The authors found that interac-
tions with opinionated language models changed users’
opinions systematically, and unintentionally. Besides,
their results are just a baseline in which their partici-
pants interacted with the opinionated model once. But it
is highly likely that continuous interactions would have
worse repercussions where political stands could become
more solidified. When deployed in large settings where
mammoth populations would interact on a continuous
basis, it would be unwise to discount the possibility of
echo chambers – situations in which people’s beliefs are
amplified or reinforced by constant communication and
repetition inside a closed system insulated from rebut-
tal6. Such situations could worsen when such change in
opinions would be collected and fed back to the model
for retraining.

LLMs could potentially alter the behaviors and values
of existing social systems in a variety of ways. Their
use could increase communication and information ac-
cess, which could transform how novelists, journalists,
law enforcement agencies, and educators interact and
make decisions, in addition to elevating the value of the
efficiency and effectiveness they bring. Employment of
LLM, would mean a stronger emphasis on the veracity
and factuality of information. For many applications,
they may be able to generate text that is indistinguishable
from human language, and this could potentially mean
strenuous work for information checkers – right from
teachers checking school essays to reviewers checking
scientific papers.

Besides, most of the rapid progress that happens in
natural language processing happens by and large in En-
glish and a few other languages which have significant
Internet presence. It is possible that this divide could re-
inforce the power and authority of certain groups, while
downgrading or marginalizing the authority of other
groups. Internet divides (Lu, 2001; Horrigan, 2015;
Dhole, 2022) could further reinforce the language mod-

6https://en.wikipedia.org/wiki/Echo_chamber_(media)71
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els divide. Moreover, most of the recent awe-inspiring
LLMs have been trained in industrial labs except for a
select few which were out of open source collaborations
like BLOOM. Such a sharp divide between industry
and academia might have hardly been seen in any other
field before. Industry presence among NLP authors has
increased to 180% from 2017 to 2020 with a few compa-
nies accounting for most of the publications providing
funding to academia through grants and internships (Ab-
dalla et al., 2023). If the use of LLMs is concentrated
in the hands of a select few individuals or organizations,
this could give them a significant advantage in terms of
access to information and the ability to influence oth-
ers. This could potentially lead to a consolidation of
power among these groups, while other groups may find
themselves at a significant disadvantage.

Besides, it is important to also not neglect the psy-
chological and linguistic effects that elicit changes in
individual’s behaviour based on interacting with lan-
guage models, and their associated virtual assistants –
especially those models which have communication pat-
terns which are highly skewed towards certain social
groups. Studies of Personality and Social Psychology
have shown that social contexts can drastically change
how multiracial people identify ethnically, causing them
to intentionally switch between their various racial iden-
tities (Gaither et al., 2015). Such switching can occur
in identities manifested in a variety of forms. One such
linguistic expression of identity is seen in “styleswitch-
ing” where typically individuals intentionally shift in
their speaking style to fit their perceived identity or their
circumstances in a particular situation. Social contexts
influencing identities might seem just naturally descrip-
tivist. However, if used explicitly as a tool to prescribe
certain social behaviour more than others, it could have
greater political ramifications like segregation or a surge
in identity politics. Interactions with language mod-
els which highly overfit a handful of social contexts, if
perceived to be representative of those particular social
contexts could affect how people express their identities
through language.

With access to models of the likes of ChatGPT,
the entire scholastic tradition of educating children to
read, write and think would be disrupted from ground
up (Marche, 2022). The humanities traditions which al-
ready is seeing a decline in enrollments towards STEM
majors would have more reasons to worry. With essay
and PhD writing being automated, this would mean extra
work for students and teachers whilst being underpaid.

While it may seem that with LLMs being deployed
for their most beneficial purposes, something akin to
the Protestant Reformist movement could be witnessed –
when a flurry of printing press led to Bible translations
in vernacular languages eventually leading to a loss of
trust in the authority of the Catholic Church – On the

contrary, the ability to generate vast amounts of text
rapidly with these models might actually pave way for
high dissemination of misinformation and a reduced in
trust in the printed word. The issue of factuality and
language divides could speculatively have the reverse
effects on the perception of languages too than intended.
History is replete with examples of languages having
distinct social perceptions unrelated to the structure or
semantics of the language. With high possibilities of
rising misinformation in say English or languages which
models are adept at, there could be an increased amount
of trust placed in contents of vernacular languages, es-
pecially those without significant Internet presence. But
this is pure speculation.

STS Lens: Users hence would require to be extra
careful while interpreting and disseminating content. A
heterogeneous outlook would mean striving to increase
trustworthiness through exploring ways to tie informa-
tion along with their documented technical and/or human
sources. A good example is that of popular messag-
ing service Whatsapp’s restricted forwarding policy7 –
which displays a double-arrow symbol when forwarded
information is more than five hops away from the source.
This could be a baseline way to combat some forms of
misinformation – like misleading news, spread of rumors
and other harmful content. Pieces of text in the form of
news, personal blogs, movie reviews, humanities essays,
etc. could build trust with similar digital identifiers.

Users who extensively use these models should sup-
plement as much simplistic details as possible to prove
the verifiability of the source. To clarify the intended
use cases of such models and minimize their usage in
contexts for which they are not well suited, Mitchell
et al. (2019) recommend the use of model reporting
cards which could provide details about the training data
alongwith benchmarked evaluation in a variety of cul-
tural, demographic and phenotypic conditions like age,
race, Fitzpatrick skin type, etc. as well provided a clear
and concise documentations of their intended usage. Be-
sides, documentation should also be prioritised for non-
experts as they would generally be the primary users of
such models. For example, Crisan et al. (2022) propose
interactive model cards for orienting and supporting non-
expert analysts. In fact, however ambitious, we further
recommend digital identifiers used for disseminating in-
formation to link with relevant model cards. Gao et al.
(2023) enable LLMs to generate citations alongwith their
text.

• Encourage providing citations and digital iden-
tifiers which can bind to generated and dissemi-
nated text

• Bind digital identifiers with appropriate model
7About forwarding limits (faq.whatsapp.com)72
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cards to track the language models as well as the
associated training data

2.4 The Formalism Trap

Selbst et al. (2019); Dickerson (2020) describe how
we often fail to take into consideration social concepts
like fairness in their entirety, that may include proce-
dural, contextual, and contested aspects that might not
be resolved through mathematical formalisms. Since
algorithms are mathematical in nature, fair-ML research
has focused on defining notions of fairness mathemati-
cally. Many of them are directly or indirectly premised
on local legalities. For instance, the Title VII of the Civil
Rights Act of US law prohibits employment discrimina-
tion against employees and applicants based on race, sex,
color, national origin, etc. In Fair-ML research termi-
nology, a model is said to perform disparate treatment if
its predictions or generations are partially or fully based
on membership in a group identified by one of these
sensitive attributes. Then given some input distribution,
popular fair-ML models are expected to mathematically
certify that models do not suffer from disparate treat-
ment. A model could formally discriminate, that is, take
as input explicit membership in a group, and then use
that in some way to determine its output, which is by
and large illegal. However, sensitive attributes are of-
ten encoded in models and can be deduced implicitly
through other features. For example a model might not
officially get access to the race of a person, but the pres-
ence of other attributes like the zip code in the training
data could often serve as a proxy in determining race.
Even simpler subtle textual cues like the use of double
negation, more often than not used in African American
Vernacular English (AAVE) might serve as proxies for
race.

The STS lens: Selbst et al. (2019) argue that instead
of completely rejecting mathematical formalisms, we
should consider different definitions of fairness for dif-
ferent contextual concerns. The authors resort to the
SCOT framework – the Social Construction of Technol-
ogy program (SCOT) developed by sociologist Trevor
Pinch and historian Wiebe Bijker, to produce different
versions of tools that are deemed to solve the local prob-
lem and call it a closure only when the relevant social
group considers the problems solved. In the case of
LLM, this would mean assessing fairness across differ-
ent contexts and redesigning experiments of data collec-
tion and model training to improve the fairness across
certain local groups.

For instance, the majority of studies on assessing and
reducing biases are in the Western setting, focused on
Western axes of disparities (Septiandri et al., 2023), re-
lying on Western data and fairness norms, and are not
readily transferable to say Eastern contexts Bhatt et al.
(2022); Divakaran et al. (2023). For example, region-

wise disparities among people in the United States might
not be a crucial axis to account for fairness vis-à-vis In-
dia, where the people of most neighbouring states differ
drastically. Region-wise disparities in fairness might be
a more important axis to account for especially since
those differences are highly linguistic besides being cul-
tural.

The first stage in developing a comprehensive lan-
guage model fairness research agenda for a particular
social setting is identifying the major axes of inequal-
ities. Ghosh et al. (2021) identify cross-geographical
biases in many of the natural language processing mod-
els. Bhatt et al. (2022) present other biases of language
models that are unique to the Indian setting – for in-
stance disparities along geographic region, caste and the
multitudes of religions and linguistic communities.

• Identify the different axis of social disparities as
well as the socio-cultural norms for each context
and how they are expressed in reading, writing
and consuming information

• Ensure that the training data is as adequately and
fairly represented across those axes

• Ensure that low-resource languages are ac-
counted for

2.5 The Solutionism Trap

Selbst et al. (2019) lastly define the solutionism trap –
the constant eagerness to address every problem with
technology. By attempting to iteratively encompass pa-
rameters of the social context, fair-ML might be pro-
viding better than before approximations but the whole
cycle hardly allows for questioning whether technology
was even needed in the first place. Such a trap is highly
witnessed in the language models regime. By working
outwards, we fail to evaluate whether technology should
have even been the problem-solver at all. Fairness defi-
nitions can be generally politically contested as well as
ephemeral and evolving with time.

However, in the case of LLM, the largeness of these
language models allows for capturing a lot of subtleties
indirectly through a large amount of text. Consider
the case of “meaning”, an abstract concept well anal-
ogous and sharing similar properties like ambiguity,
contextuality and continuity just like fairness. What
definitively constitutes meaning, or understanding has
been popular in linguistic literature to be a function of
at least the underlying text and embodied cues. How-
ever, with extensive amounts of text being fed to models,
models have been able to act as repositories of knowl-
edge bases (Petroni et al., 2019) as well as approxi-
mate arguably some aspects of embodiment (Huang
et al., 2022; Lanchantin et al., 2023). So, while one73



definitely can’t discount Selbst et al. (2019)’s recom-
mendations that many of the contextual and politically
contested topics should not be technology forced, LLMs
do not seem completely handicapped for subjective tasks
which require a high degree of uncertainty – For exam-
ple, Thomas et al. (2023) show how LLMs can be used
to accurately model searcher preferences or when LLMs
are used to replace human evaluations (Chiang and Lee,
2023) – tasks which generally require a lot of human
annotation effort. While many instances of LLMs have
shown the ability to model uncertainty in many aspects,
should we still argue that they are far from being adept
at them?

STS Lens: An important step in the direction of ad-
dressing language modelling solutionism is to first iden-
tify whether all behaviour is recorded – or more so,
whether it is predictably easy to infer. Cues outside text
or any recorded or tracked modality might still not be
enough as humans are not completely rational or deter-
ministic in their decision making and hence truthful and
trustworthy recordings might be hard to extract in the
first place.

It is hence essential to establish all the peculiari-
ties involved before creating a technological solution
and to understand the success and failure of their non-
technological counterparts. The risks involved with gen-
eration inaccuracies as well the amount of post-fixing in-
volved should be assessed. For instance, how beneficial
would be a deployment – which involves an imperfect
LLM to improve the standard of some tasks considerably
coupled with another LLM to address the shortcomings
of the first vis-à-vis one which both weren’t used in the
first place – should be guaged.

• Consider whether it is possible to get recordings or
annotations of all decisive inputs before training
large and expensive language models

• Assess the feasibility of targeted settings (like em-
ploying multiple smaller models) where the impact
over unknown or unmeasured tasks is minimised

3 Conclusion

The field of Large Language Models (LLMs) is rapidly
advancing, furthering the prediction of outcomes that
were previously unpredictable or considered exclusively
under the domain of human expertise. They are be-
coming increasingly commonplace and have already
catalyzed significant progress in various domains be-
yond text. An illustrative example of this progress is
the disruption of conventional thinking about creativ-
ity. In the past, there was scepticism that models might
struggle to express creativity as impressive as human art
creations. However, recent successes have given rise to
AI art models that challenge these assumptions, usher-
ing in a new era of commercial artistry – redefining the

boundaries of human-machine collaboration (Newton
and Dhole, 2023). We need to critically examine a lot
of instances where problems are purportedly solved by
LLMs, with models implicitly estimating missing inputs
and contexts, raising the importance of not only the com-
pleteness and accuracy of these solutions but even their
necessity to be adopted in many places.

We established Selbst et al. (2019)’s abstraction traps
in the context of Large Language Models. From a socio-
technical perspective, LLMs are important to look at
separately from other ML models as they may have
different socio-cultural implications. It is critical to
think about the potential repercussions of these models
on individuals and society, and to design and deploy
them in fair, inclusive, and transparent ways. Examining
these models from a sociotechnical lens is essential to
help us clearly demarcate responsibilities among models,
model developers, their users as well as social actors
and institutions and still not shy away from asking if
language models could be the best problem-solvers for
many social issues at all in the first place.

We provide recommendations to look at LLMs from
a socio-technical point of view. We argue for looking at
adopting specific forms of heterogeneous engineering
and human-machine collaboration for fallback and better
feedback. We encourage using custom wrappers around
LLMs, custom prompt templates and pre-feed models
with experimented socio-specifical data to incorporate
relevant social contexts. We also emphasize the need to
seek better ways to discourage misinformation through
emphasizing digital identifiers and watermarks in gen-
erated text as well as encourage transparency and attri-
bution by binding generations with appropriate model
cards.
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Abstract

We present a research narrative aimed at en-
abling language technology for multiple natu-
ral language generation (NLG) tasks in low-
resource languages (LRLs). With approxi-
mately 7,000 languages spoken globally, many
lack the resources required for model training.
NLG applications for LRLs present two addi-
tional key challenges: (i) The training is more
pronounced, and (ii) Zero-shot modeling is a vi-
able research direction for scalability; however,
generating zero-shot well-formed text in target
LRLs is challenging. Addressing these con-
cerns, this narrative introduces three promising
research explorations that serve as a step toward
enabling language technology for many LRLs.
These approaches make effective use of transfer
learning and limited supervision techniques for
modeling. Evaluations were conducted mostly
in the zero-shot setting, enabling scalability.
This research narrative is an ongoing doctoral
thesis1.

1 Introduction

Recently, there has been remarkable progress in
natural language processing (NLP) research, pri-
marily due to advancements in large pre-trained
language models (PLMs). The global linguistic
landscape comprises approximately 7,000 spoken
languages worldwide2. A notable disparity is evi-
dent in NLP research, with the majority of studies
conducted on English data (Bender, 2019; Joshi
et al., 2020b). This is concerning as the vast ma-
jority of the global population — roughly 95% —
does not speak English as their primary language,
and a staggering 75% do not speak English at all3.
According to Ruder (2022), out of the 7,000 lan-
guages, approximately 400 languages have more

1From a senior graduate student - the first author of the
paper

2https://www.ethnologue.com/insights/
how-many-languages/

3https://www.ethnologue.com/insights/
most-spoken-language/

than 1 million speakers, and about 1,200 languages
have more than 100,000 speakers. Despite this,
only around 100 languages are incorporated into
large pre-trained models, and limited resources are
available for building NLP models for LRLs. Fur-
thermore, a study presented at ACL 2008 (Bender,
2011) revealed that 63% of all papers focused only
on English. A more recent study during ACL 2021
(Ruder et al., 2022) concluded that nearly 70%
of the papers were evaluated on English. Even a
decade later, there has been little change.

The NLP application involving text generation
(NLG tasks) in LRLs presents additional challenges
in model development: (1) The scarcity of NLG
resources for model development in LRLs is more
pronounced than other NLP tasks. (2) LRLs often
exhibit a long tail, with many lacking annotated
data. The preferred solution is zero-shot model-
ing, though this approach introduces additional
challenges for cross-lingual generation tasks. It
has been observed that zero-shot generation mod-
els frequently encounter issues like catastrophic
forgetting (van de Ven et al., 2022) or accidental
translation (Xue et al., 2021). Due to these prob-
lems, the zero-shot generated text is either code-
mixed or not in the intended target language. (3)
LRL modeling typically employs a transfer learn-
ing setup, where supervision is transferred from
HRLs to LRLs. However, performance tends to
degrade for LRLs that are different from their HRL
and (4) Many LRLs lack monolingual or paral-
lel data, and their representations are absent from
PLMs. These LRLs are referred to as Extremely
LRLs (ELRLs) or dialects. Despite having mil-
lions of speakers, there is a noticeable absence of
NLP technology for these ELRLs. This thesis is a
step towards addressing these challenges and aims
to enable language technology for LRLs, thereby
democratizing NLP research for the general popu-
lation/audience.

Prior to the emergence of transformers-based
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PLMs, most works in cross-lingual generation were
primarily reliant on machine translation (MT) sys-
tems. Existing models either directly employed the
MT system within the modeling (Wan et al., 2010;
Shen et al., 2018) or generate training data using
MT (Kumar et al., 2019; Chi et al., 2020) to develop
models. This dependence on MT not only limits
scalability but also propagate error with translation.
To address these limitations, multilingual PLMs
(mPLMs) have emerged (Zhao et al., 2023), where
a large set of languages share a common latent rep-
resentation space. The cross-lingual models built
on top of these mPLMs lead to the remarkable ad-
vancement (Hu et al., 2020; Artetxe et al., 2020) in
the cross-lingual transfer in zero-shot or few-shot
settings. However, most of these advancements
are limited to NLU tasks. Furthermore, existing
cross-lingual NLG models incorporate one or more
challenges mentioned above.

With this thesis, our contributions are as follows:

1. We proposed ZmBART framework (Maurya
et al., 2021) to mitigate the catastrophic forget-
ting and accidental translation issues and en-
able well-formed zero-shot text generation in
LRLs. We evaluated the model’s performance
across 18 task-setup combinations, including
four NLG tasks in three typologically diverse
languages.

2. We proposed the first meta-learning ap-
proach for cross-lingual generation in LRLs
(MetaXNLG; Maurya and Desarkar (2022)). It
is based on language clustering to improve the
cross-lingual transfer, even for distant LRLs.
The model is evaluated across 30 languages,
two tasks, and five datasets.

3. We proposed a character span noise
augmentation-based model (CHARSPAN;
Maurya et al. (2023)) to enable machine
translation for closely related HRLs and
ELRLs/dialects. It leverages surface-level
lexical similarity and uses noise augmentation
as a regularization technique to enable zero-
shot translation. The model’s performance
was evaluated across 12 ELRLs from three
typologically diverse language groups.

2 The Big Picture

In this section, we provide high-level details of the
proposed models. This also includes insights into

how we build more recent proposed models based
on earlier models and advance the field. Then, we
look back and position our research efforts by con-
textualizing a broader spectrum of multilingual re-
search, specifically for low-resource language gen-
eration. Finally, we list our learnings from failed
and successful modeling.

2.1 Thesis Overview: Connecting the Dots
Overall, our research contribution includes
the development of ZmBART, MetaXNLG, and
CHARSPAN models for NLG tasks in LRLs. The
primary focus is to extend the English NLG models
to LRLs through cross-lingual transfer and gener-
ation. These models are developed and evaluated
in a zero-shot setting, increasing language cover-
age. Typical cross-lingual modeling includes fine-
tuning multilingual PLMs with the task-specific
high-resource English language and learned super-
vision for transfer to LRLs (referred to as cross-
lingual transfer). Then, evaluate the model with a
zero-shot setting for target LRLs. In NLG, there
are two challenges: mitigation of the CF/AT prob-
lem in zero-shot text generation and improvement
of cross-lingual transfer. The effort with the Zm-
BART model mitigates the CF/AT issue and pro-
duces well-formed zero-shot generation in LRLs.
MetaXNLGbuilds on top of the ZmBART model and
proposes a novel approach to improve cross-lingual
transfer, leading to better performance. Finally,
with the CHARSPAN model, we design another
approach to enhance cross-lingual transfer. This
effort scales the coverage to languages with very
limited linguistic resources ( i.e., ELRLs) and is
similar to some HRLs. In summary, with these col-
lective efforts, we advance research in low-resource
language generation by mitigating CF/AT, improv-
ing cross-lingual transfer, and increasing language
coverage to ELRLs.

2.2 Position of the Thesis: Related Work
The research presented in this narrative spans the
past few years, during which multilingual Pre-
trained Language Models (PLMs) emerged. How-
ever, there have been limited concurrent efforts in
the field of low-resource language generation. Be-
fore the ZmBART model, most research in this area
primarily relied on MT (Wan et al., 2010; Shen
et al., 2018), parallel (Chi et al., 2020) or task-
specific data for LRLs (Kumar et al., 2019), and
did not utilize multilingual PLMs. Few attempts
were made using Adapter-based models (Houlsby
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et al., 2019; Pfeiffer et al., 2021), but they were of-
ten limited to MT tasks and may not have zero-shot
capabilities. After ZmBART, (1)Vu et al. (2022)
presented the alternate method with prompt tuning
and compared it to the ZmBART, (2) Li and Mur-
ray (2023) proposed a model based on regulariza-
tion techniques and (3) Pfeiffer et al. (2023) intro-
duced a method for disentangling language-specific
information from language-agnostic information.
These models mitigate the CF/AT problems and
implicitly help improve the cross-lingual transfer.
However, their performance gains were limited
compared to MetaXNLGwhich explicitly leverages
meta-learning. Furthermore, there are state-of-the-
art (SOTA) approaches (Aepli and Sennrich, 2022;
Provilkov et al., 2020; Patil et al., 2022) for en-
hancing cross-lingual transfer for MT for ELRLs.
Our recently proposed CHARSPAN model has out-
performed existing models and established it as a
new SOTA solution. In summary, there has been
progress in low-resource language generation, and
our models have either pushed this research space
or currently represent the SOTA model in the field.

2.3 Learning from Failures and Successes

With many failed and limited successful experi-
ments, here are our key observations and learn-
ing: (1) NLG modeling is challenging in LRLs
setup, but evaluations are even more challenging.
(2) Effective cross-lingual transfer models consider
various knowledge, such as semantics, syntax, to-
kenization, lexical details, typology, and demo-
graphics. (3) Better modeling can extend the exist-
ing multilingual PLMs capabilities beyond the lan-
guages they are trained and (4) Promising research
directions to increase language technology cover-
age are multi-task and adaptive learning among
others.

3 Mitigating Catastrophic Forgetting to
Enable Zero-shot Language Generation

Our research mission to enable language technol-
ogy for NLG tasks in LRLs started with ZmBART
(Maurya et al., 2021) work. ZmBART is an un-
supervised cross-lingual transfer and generation
framework that focuses on generative tasks for
LRLs in zero-shot and few-shot settings. A typ-
ical zero-shot cross-lingual generation modeling
involves two main steps: (1) Training with HRLs:
Train (fine-tune) a model (PLM) using a large an-
notated dataset from HRLs, typically English. For

instance, training with English Abstractive Text
Summarization (ATS) dataset. (2) Zero-shot gener-
ation in LRLs: Utilize the trained model for zero-
shot inference. For instance, when given input in an
LRL (e.g., Hindi), the model generates a summary
in the same LRL (Hindi). Unlike natural language
understanding (NLU) tasks, the cross-lingual gen-
eration task in zero-shot scenarios is particularly
challenging. This is because the zero-shot gen-
erated text needs to be in the target LRL, which
generally suffers from Catastrophic Forgetting (CF;
van de Ven et al. (2022)) or Accidental Translation
(AT; Xue et al. (2021)) problems. Due to this, the
model fails to generate text in the target LRL or pro-
duce code-mixed output with both high-resource
and LRLs. With this work, our objective is to al-
leviate CF and AT problems with an unsupervised
framework, meaning we do not rely on any parallel
or pseudo-parallel/back-translated data. Instead,
we harness multilingual pre-trained checkpoints,
specifically the mBART model (Liu et al., 2020),
to seamlessly enable the generation of well-formed
text in LRLs across multiple generative tasks.

Prior to ZmBART, existing cross-lingual gen-
eration models were grounded with either ma-
chine translation (MT) or parallel/back-translated
datasets. Wan et al. (2010) employed the MT
pipeline to facilitate cross-language document sum-
marization. This involves the translation of non-
English input into English. Subsequently, the En-
glish ATS model was employed to procure the sum-
maries, which were finally translated back into non-
English languages. Similar approaches are adapted
by Shen et al. (2018) and Duan et al. (2019). This
direction is not feasible as MT systems are not avail-
able for many LRLs and the imperfect translations
propagate errors. Considering this, Kumar et al.
(2019) and Chi et al. (2020) use back-translated
(need MT system) and parallel datasets to develop
the few-shot cross-lingual question and answering
(Q&A) and zero-shot cross-lingual ATS, respec-
tively. These approaches require an MT system or
annotated dataset which limits the model develop-
ment to a few HRLs. Unlike these, we propose
ZmBART, the first unsupervised scalable model
based on mBART specialized for zero-shot cross-
lingual transfer and generation. Additionally, we
have also created HiDG4, a high-quality distractor
generation dataset in the Hindi language.

4Dataset and code are available here: https://github.
com/kaushal0494/ZmBART
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3.1 Methodology

In ZmBART, we mitigate Catastrophic Forgetting
and Accidental Translation problems by adapting
three key modeling modifications, details are pre-
sented below:

3.1.1 Unsupervised Auxiliary Task

The mBART model is pre-trained with denois-
ing objectives (masking and sentence permutation)
with datasets from 25 languages that encode multi-
lingual latent representation. This can not be used
directly for cross-lingual generation because the
model is trained with denoising objectives that
do not directly follow auto-regressive decoding,
thereby causing a mismatch between pretraining
and fine-tuning objectives (Chi et al., 2020; Devlin
et al., 2019). Considering this, the auxiliary task
is formulated with the following objectives: (1)
should only utilize monolingual data for selected
languages, (2) should enhance the latent represen-
tation space for selected languages, (3) maintain
close proximity between the auxiliary task objec-
tive and NLG tasks and (4) aid in mitigating CF/AT
issues. Moreover, the auxiliary task serves as an
adaptive pre-training step, facilitating better warm-
start of the mBART model for downstream natural
language generation (NLG) tasks. With these, we
have proposed the following auxiliary task: Given
an input passage, generate a few random sentences
(called rand-summary) derived from the passage.
Concretely, we take passages with 5-25 sentences
as input and 20% of the sentences randomly (1-5
sentences) as the target. We concatenate monolin-
gual datasets for selected languages and fine-tune
the mBART model (adaptive training) with this
auxiliary task to obtain the ZmBART model.

3.1.2 Freezing Model Components

During supervised training - fine-tuning ZmBART
with task-specific HRL data - we freeze all word
embeddings and the parameters of the decoder lay-
ers. This approach is adapted to ensure that the
ZmBART’s context and latent space are not over-
written during supervised training.

3.1.3 Adding Language Tag

We have made modifications to the language tag of
the mBART model for the cross-lingual generation
framework. We concatenate <fxx><2xx> tag in the
source side of the training data, where <xx> is the
ISO-2 language code. The language tag act as a

flag to trigger the zero-shot generation in target
<xx> languages.

The ablation study provides evidence that all
three components are necessary to effectively mit-
igate CF/AT problems and enable structured text
generation in a zero-shot setting.

3.1.4 Model Training and Generation
We consider four tasks: Question Generation (QG),
News Headline Generation (NHG), Abstractive
Text Summarization (ATS), and Distractor Genera-
tion (DG), in three typologically diverse languages.
The HRL is English (en), and the LRLs are Hindi
(hi) and Japanese (ja). First, the mBART model
undergoes adaptive pre-training with the auxiliary
task to obtain the ZmBART model. Then for each
NLG task, the ZmBART model is then fine-tuned
using the task-specific HRLs data while freezing
model components to obtain a task-specific fine-
tuned model. This model is used for zero-shot or
few-shot (1000 examples) generation in LRLs.

3.2 Experimental Setup and Results

  News Passage: दि�ण क�ीर के पुलवामा िजले म� सुर�ा बलो ंके साथ जारी मुठभेड़ म� शु�वार को एक
  आतंकवादी ढेर हो गया.पुिलस के एक �व�ा ने बताया िक इस मुठभेड़ म� एक आतंकवादी मारा गया है. यह
  मुठभेड़ अभी जारी है.�व�ा ने बताया िक पुलवामा के च�गाम म� आज सुबह सुर�ा बलो ंऔर िछपे �ए
  आतंकवािदयो ंके बीच मुठभेड़ शु� हो गई।माना जा रहा है िक गांव म� ल�र-ए-तैयबा के दो आतंकवादी िछपे
�ए ह�।
  (Translation: A militant was killed on Friday in an ongoing encounter with security forces in
  Pulwama district of eroded Kashmir. A police spokesman said a militant was killed in the
  encounter. The encounter is still going on, the spokesperson said, adding that an encounter
  between security forces and hidden militants started this morning at Chandgam in
  Pulwama. Two LeT militants are believed to be hiding in the village.)

  Headline (ground truth): क�ीर के पुलवामा म� मुठभेड़, एक आतंकी ढेर
  (Translation: Encounter in Pulwama, Kashmir, a terrorist killed)

  Headline (zero-shot generated output:)  पुलवामा म� जारी मुठभेड़ म�  एक आतंकवादी ढेर
  (Translation:  A terrorist killed in ongoing encounter in Pulwama )

Figure 1: Zero-shot news headline generation from Zm-
BART in the Hindi language

We have considered three strong baseline mod-
els: MT-Pipeline, ZmBART with Masking Aux-
iliary Task (MAT), and a model inspired by Chi
et al. (2020). In total, we conducted experiments
across 18 task-setup combinations. The proposed
models and baseline models underwent evaluation
using three automated evaluation metrics (BLEU,
ROUGE-L, and BERTScore) and four manual eval-
uation metrics (Fluency, Relatedness, Correctness,
and Distractibility). The detailed results are pre-
sented in (Maurya et al., 2021). Here, we provide a
summary of the major results and observations: (1)
The ZmBART model consistently outperformed all
baseline models across tasks, LRLs, and automated
metrics in the zero-shot setting. The few-shot train-
ing further boosts the performance. (2) Human
evaluation scores exhibited a correlation with au-
tomated scores, reinforcing the reliability of the
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evaluation process. (3) Among the baselines, the
MAT baseline demonstrated superiority, highlight-
ing the importance of an auxiliary task in enriching
and mitigating CF/AT problems. However, our pro-
posed auxiliary task exhibited even better results.
(4) An ablation study was conducted, indicating
that different modeling components (auxiliary task,
language tag, and freezing different model compo-
nents) are necessary to ensure effective zero-shot
text generation. A sample generation example is
presented in Fig. 1.

3.3 Insights and Limitations

As the auxiliary task is similar to NHG or ATS
tasks, it may appear that the auxiliary task is biased
towards these tasks, which leads to better perfor-
mance. However, the model performs equally well
for very different tasks like QG and distractor gen-
eration (generating incorrect options for MCQ read-
ing comprehension) which nullifies this assump-
tion. We have not modified any single model pa-
rameters for different tasks. We also experimented
with different objectives for auxiliary tasks; how-
ever, the rand-summary task performed best. We
explored the multiple continual learning techniques
(van de Ven et al., 2022) to mitigate CF; however,
freezing model components work best. We ob-
served that several generated questions in zero-shot
start with English ’wh-words,’ and the first word
is code-mixed. This is possibly due to English in-
terrogative sentences often introducing ’wh-words’
at the beginning, which may not be the case with
Hindi and Japanese. However, the high BERTScore
indicates semantic correctness. Furthermore, such
code-mixing in human evaluation is somewhat ac-
ceptable with Hindi evaluators; however, it is not
acceptable with Japanese evaluators, resulting in
lower human evaluation scores for the QG task.
This is concurrent work with the adapter-based
models (Houlsby et al., 2019; Pfeiffer et al., 2021).
One limitation of this work is the adaption of the
new language may require re-training.

4 Meta-Learning Approach to Improve
Zero-shot Language Generation

The effort with the ZmBART helps in effectively
mitigating CT/AT problems and generating zero-
shot outputs in target LRLs seamlessly. In this
work, we leverage these findings and extend the
study to improve the cross-lingual supervised sig-
nals to boost the performance for zero-shot genera-

tion.
There are more than 7000 languages across the

globe. 95% of the world’s population does not
speak English as their first language and 75% does
not speak English at all5. However, the majority of
NLP research is focused on the English language
(Bender, 2019; Joshi et al., 2020b). To democratize
the NLP research for the benefit of the large global
community, it is essential to focus on non-English
languages. Recently, cross-lingual transfer learning
(Hu et al., 2020; Artetxe et al., 2020) has emerged
as a promising research direction where a model
is trained on HRL(s) and transfer supervision to
LRL(s). However, the supervision transfer is un-
even across languages, which leads to large perfor-
mance gaps. Such performance gaps are observed
because models do not account for cultural and lin-
guistic differences in the modeling (Lai et al., 2019;
Blasi et al., 2022). This work was a step towards
bridging this performance gap.

Meta-learning or learning to learn (Bengio et al.,
1990) has emerged as an active research direction
to learn shareable structures across multiple tasks
with limited annotated data. The only constraint is
all tasks should share some common structure (or
come from a task distribution). Different languages
in the world follow this constraint as they come
into existence with a common goal of communi-
cation and share some structure. So, we consider
languages as tasks. The meta-learning approach
has been actively applied to multiple NLP tasks
(Bansal et al., 2020; Gao et al., 2019) including
text classification (van der Heijden et al., 2021),
NER (Wu et al., 2020), dialogue systems and Q&A
(M’hamdi et al., 2021). There were few efforts
made in the multilingual setup (Tarunesh et al.,
2021; Nooralahzadeh et al., 2020); however, these
are limited to machine translation or NLU tasks
only. This work - to the best of our knowledge -
was the first attempt to study meta-learning tech-
niques for cross-lingual natural language gener-
ation (XNLG). Particularly, we focus on zero-shot
XNLG for low-resource languages. Unlike NLU
tasks, the zero-shot NLG is a more challenging
setup due to the typological diversities of languages
and CF/AT problems. We refer to this framework as
MetaXNLG

6 (Maurya and Desarkar, 2022), a frame-
work for effective cross-lingual transfer and gen-

5https://www.ethnologue.com/insights/
most-spoken-language/

6code & pre-trained models link: https://github.com/
kaushal0494/Meta_XNLG
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eration based on language clustering and Model-
Agnostic Meta-Learning (MAML) algorithm (Finn
et al., 2017).

Following are the main contributions: (1) We
propose a novel MetaXNLGframework based on
language clustering and meta-learning to improve
zero-shot generation performance for typologically
diverse LRLs. (2) We have conducted an exten-
sive empirical evaluation with 30 languages (29
LRLs), covering two tasks (QG and ATS) and using
5 popular datasets (XL-Sum, Wikilingua, MLQA,
TyDiQA, and XQuAD).

4.1 Methodology

The MetaXNLGmodel has two major components:
(a) Language Clustering, which clusters 30 se-
lected languages into different clusters and obtains
the centroid and non-centroid languages for each
cluster. (b) Meta-learning algorithms are trained
with centroid languages and evaluated with non-
centroid (target) LRLs in a zero-shot setting. With
this setup, our goal is to achieve Intra-cluster Gen-
eralization and Inter-cluster Generalization. Train-
ing with a centroid language leads to improved
transfer capability within a cluster, and multiple
centroid languages extend the transfer capability
to other closely-knit clusters, thereby increasing
coverage. The overview of MetaXNLGis presented
in Fig. 2.

4.1.1 Language Clustering

In MetaXNLG, we considered 30 languages. To
represent each language we have extracted a multi-
view language representation proposed by Oncevay
et al. (2020). It was obtained by fusing typologi-
cally learned (Littell et al., 2017) from WALS and
URIEL databases and task-learned (e.g., language
tag from MT; Malaviya et al. (2017)) language rep-
resentations using singular vector canonical corre-
lation analysis. We use this representation to obtain
centroid and non-centroid based on cosine distance.
Formally, given a cluster C = {L1, L2, . . . Lt},
where each Li is multi-view representation of ith

language, the centroid language L∗ ∈ C is defined
as:

L∗ = arg min
Li∈C

∑

Lj∈C
d(Lj , Li).

(1) We use d as the cosine distance.

4.1.2 Meta Training and Generation
The framework comprises five training/generation
steps:

1. Selection of Base PLM: The proposed ap-
proach is model-agnostic; however, due to
its large LRLs coverage, we have chosen the
multilingual T5 (mT5) (Xue et al., 2021) as
the base PLM.

2. Adaptive Unsupervised Pre-training (ZPM ):
We follow steps outlined in ZmBART to ob-
tain ZmT5 model.

3. Fine-tuning ZPM with HRL: To facilitate the
transfer of supervision from HRLs to LRLs,
we have fine-tuned ZPM using a task-specific
HRL (e.g., English), which we refer to as
EnZPM .

4. Meta-Training with Low-resource Centroid
Languages: A small, task-specific validation
dataset of centroid languages was employed
to train the EnZPM model using the MAML
algorithm.

5. Meta-adaptation for Zero-shot Evaluation
with Non-Centroid Languages: Finally, the
meta-learned model is directly evaluated us-
ing a task-specific test split of the target lan-
guages in the zero-shot scenario.

There is a trade-off between the number of clusters
(centroid languages) and generalization. If there is
a single cluster (a single meta-training language),
then the model tries to over-generalize for different
typological structures and fails in the attempt. On
the other extreme, if there are too many centroid
languages (many typologically diverse structures),
then the learning possibly gets distracted. In both
cases, the model will be unable to learn a reason-
able structure (the required generalization) and per-
form poorly. The MetaXNLGpresents a discussion
and empirical evidence on this. Our experiments
suggest that three clusters across considered lan-
guages provide the best performance.

4.2 Experimental Setup and Results

We evaluated the MetaXNLGperformance in the fol-
lowing settings: ((1) Two NLG tasks - Question

Cluster-1(14) Cluster-2(8) Cluster-3(8)
hi,ur,te,tr,ja,fi,ko,gu, es,it,pt,ro, ru,cs,vi,th,

bn,mr,np,ta,pa,sw nl,de,en,fr zh,id,el,ar

Table 1: Clustering of considered 30 Languages
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Figure 2: An overview of Meta-XXNLG framework

Generation (QG) and Abstractive Text Summariza-
tion (ATS). (2) Five widely-used datasets: XL-Sum,
Wikilingua, MLQA, XQuAD, and TyDiQA. (3) 30
languages were selected based on diversity typol-
ogy, including one HRL (English) and 29 LRLs.
Refer to Table 1 for the list of selected languages
grouped into three clusters. (4) We employ two au-
tomated evaluation metrics (BLEU and ROUGE-L)
and three human evaluation metrics (Fluency, Re-
latedness, and Correctness). (5) LRL evaluation in
zero-shot setting on the test split. (6) We compare
model performance against two strong baselines:
(a) A ZmBART-like model using mT5 as the base
checkpoint instead of mBART, and (b) a model
fine-tuned directly with centroid languages rather
than meta-training, ensuring the performance gain
is not due to additional training.

Details of all results and observations are in-
cluded in the MetaXNLGoriginal paper (Maurya
and Desarkar, 2022). In summary, based on au-
tomated scores, the proposed MetaXNLGmodel
outperformed baselines in 30 out of 33 LRLs
for the ATS task and in 18 out of 19 LRLs for
the QG task. Even in cases where it did not
perform as well, the difference was marginal.
These trends were consistent when considering
human evaluation metrics as well, where human
scores showed a correlation with automated scores.
The MetaXNLGdemonstrated above-average flu-
ency and correctness scores, indicating its quick
adaptation to various syntactical structures and
overall improved performance. The consistent im-
provement for most of the typologically diverse
LRLs provides evidence that supervision transfer
is more uniform.

4.3 Insights and Limitations

As discussed in Section 4.1.2, there is a trade-off
between the number of clusters and generalization

capabilities. To ensure that we have selected the
correct number of clusters, we have conducted an
extensive adaptation study with 36 experimental
setups involving different numbers of clusters and
various combinations of languages. We observed
that the model with three clusters performs the
best. From Table 1, we can observe that most of
the clustering results are close to the clustering ap-
proach with language family - further validating
the correctness of clustering. Furthermore, less im-
provement is observed for Wikilingual data (ATS).
This could be due to the nature of Wikilingual input
articles, which consist of instructions for operating
software tools/packages. Each instruction is cru-
cial, making it challenging to generate an accurate
summary in zero-shot LRLs. One limitation, we
need small task-specific annotated data for centroid
languages, which will be used in the meta-training.

5 Utilizing Lexical Similarity to Enable
Zero-Shot MT for Extremely LRLs

The efforts with ZmBART, MetaXNLG, and the
NLP research community on multilingual modeling
have extended the coverage of NLP technologies
for many LRLs. However, there is a long-tail of
languages for which there is no parallel/pseudo-
parallel data, no/limited monolingual data, and
their representations from the multilingual lan-
guage model are absent. These fall into categories
of extremely low resource languages (ELRLs) or
dialects. With this work (Maurya et al., 2023), we
made a step towards enabling technology for EL-
RLs where resources are limited (zero-shot setting).
In particular, our focus was on the machine transla-
tion (MT) task, driven by the availability of a true
evaluation test set from recently released sources
such as FLORES-200 (Costa-jussà et al., 2022).

Fortunately, many of these ELRLs are lexically
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  HRL (HIN):                           इस सीज़न म� बीमारी के शु�आती मामले जुलाई के आ�खर म� सामने आए थे।
  ENG:                                            The initial cases of the disease this season were reported in late July.

  HRL (HIN) + span noise:   ए_ सीज़न म बीमारी के __प_ मामले जुलाई के आ�खर म सामने आए _।

  LRL (BHO):                         ए सीजन म� ई बीमारी क पिहला मामला जुलाई क आ�खर म� सामने आ गइल रहले।
  LRL (HNE):                         ए सीजन म ए बीमारी के पिहला मामला जुलाई के आ�खर म सामने आए रिहस।

Figure 3: Hindi (HIN; HRL), Bhojpuri (BHO; LRL) and Chhattisgarhi (HNE;
LRL/Dialect) parallel sentences. Additionally, the corresponding noisy Hindi
example with character-span noise. BHO and HNE are closely related to Hin.

similar to closely related HRLS. Lexical similar-
ity refers to languages sharing words with similar
form (spelling and pronunciation) and meaning.7

This includes cognates, lateral borrowings, and
loan words. For example, the word lgtA (lagta) in
Hindi (HRL) is spelled as lAgatA (laagata) in Bho-
jpuri (LRL). Existing cross-lingual transfer meth-
ods based on common embedding spaces work best
between related languages (Nguyen and Chiang,
2017; Khemchandani et al., 2021). So, if we make
the HRL model robust to spelling variations, it will
improve cross-lingual transfer to related ELRLs.
To achieve this, we introduce unigram character
and character-span noise augmentation approaches,
CHARSPAN, to improve generalization in zeros-
shot. The noise injection acts as a regularizer. A
sample example is presented in Fig. 3. Formally,
we look at a machine translation task from an ELRL
to another language (English) with transfer en-
abled by a related HRL on the source side.

The character-level noise augmentation has been
employed to improve the robustness and adversar-
ial testing (Sperber et al., 2017; Vaibhav et al.,
2019; Karpukhin et al., 2019) for MT systems.
There are general noise augmentation techniques
(Sennrich et al., 2016a; Wang et al., 2018) that
help in cross-lingual transfer. Aepli and Sennrich
(2022) introduced unigram character noise augmen-
tation for NLU tasks such as NER, POS tagging,
and topic classification. In contrast, we propose
CHARSPAN noise augmentation for the more chal-
lenging MT task. There is another line of works
that leverages lexical similarity based on vocabu-
lary overlap (Patil et al., 2022), non-deterministic
segmentations (Provilkov et al., 2020), and soft
decoupled encoding (Wang et al., 2019). While
these approaches typically require certain amounts
of monolingual data, our proposed model operates
without such constraints, eliminating the need for
monolingual data. With this work, our key contri-
butions are: (a) we show that unigram character
and character-span level noise augmentation can

7https://en.wikipedia.org/wiki/Lexical_
similarity

improve zero-shot translation from ELRLs to En-
glish. CHARSPAN model outperforms the unigram
model. (b) The proposed approach is generalized
across three typologically diverse language groups
which include 6 HRLs and 12 ELRLs.

5.1 Methodology

5.1.1 Training and Zero-shot Generation
First, we created an augmented parallel cor-
pus from HRL (h) to English (En) as D̂H =
{(ĥ, e)|lang(ĥ) = Ĥ, lang(e) = En}, where
Ĥ = η(H) and η is noise function. The input
parallel corpus (DH) was augmented with differ-
ent kinds of noise (η) in the source HRL side (de-
scribed later) to create the augmented parallel cor-
pus (D̂H). We learned the subwords vocabulary V
using (D̂H). We train the standard encoder-decoder
transformer model (M; Vaswani et al. (2017))
from scratch with (D̂H) and V to obtain the trained
model M′

. Finally, zero-shot evaluations are per-
formed with M′

for the source ELR language L to
obtain a target English translation.

5.1.2 Noise Function
We conducted experiments involving two types of
noise functions: (1) unigram character noise and (2)
character-span noise. For unigram noise, we ran-
domly selected 9-11% of the characters from each
source example (excluding punctuation and num-
bers) and applied insertion, deletion, and replace-
ment operations with equal probabilities8. The un-
igram character noise has the potential to capture
limited variations, particularly relevant for very
similar languages and dialects. To address larger
lexical divergence, we propose a character-span
noising approach, i.e., applying to noise a span of
selected characters. Our particular span noising
approach is inspired by SpanBERT (Joshi et al.,
2020a).9 We randomly select 1 to 3-gram charac-
ter spans with uniform probability and apply span
noise until the noise injection budget (ranging from
9-11% of characters) is exhausted. Our approach
includes span deletion and span replacement with
a single random character, both with equal prob-
ability as the noising operations. In the original
paper (Maurya et al., 2023), we conducted various
ablation studies involving different combinations
of operations, noise budgets, and other parameters.

8We explored some linguistically motivated noising
schemes as well, but these did not yield any benefits.

9SpanBERT applies denoising to subword tokens while
we apply it at the character level.
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Based on our findings, we concluded that the pro-
posed setup works best.

5.2 Experimental Setup and Results
We have carefully selected three typologically di-
verse language groups: Indo-Aryan, Romance, and
Malay-Polynesian. We consider 6 HRLs and 12 EL-
RLs (2 HRLs and several ELRLs from each group).
All the ELRLs and dialects are lexically similar
to corresponding HRLs. Each group has the same
writing script for all languages. For training, we use
13.6, 11, and 0.8 million public, parallel examples
for Indo-Aryan, Romance, and Malay-Polynesian,
respectively. The model’s performance was eval-
uated on the FLORES-200 devtest set. Based on
recent literature in low-resource MT, we compare
our approach with Vanilla NMT with BPE seg-
mentation (Sennrich et al., 2016b), methods using
lexical similarity (Overlap BPE and BPE-Dropout)
and their combinations. In alignment with recent
studies (Costa-jussà et al., 2022; Siddhant et al.,
2022) on MT for ELRLs, the evaluation scores are
reported with chrF (Popović, 2015) and BLEU.

We have observed that the unigram noise injec-
tion outperformed all the baselines across all three
language groups. The CHARSPAN noise model
outperformed the unigram model. There were im-
provements for languages like Konkani which are
lexically less similar to corresponding HRLs. We
also conducted experiments where the noise was
augmented before and after vocabulary preparation.
We found that both experiments perform equally
well; however, the model where vocabulary created
with noisy data performs slightly better. Which
scale the proposed model usability to applications
where PLMs were involved as they usually have
fixed vocab. The CHARSPAN noise model com-
bined with BPE-Dropout emerged as the perform-
ing model. However, there is minimal degradation
in HRL performance.

5.3 Insights and Limitations
We have conducted several ablation experiments to
ensure that the proposed design choices result in
the best performance. Furthermore, our analysis
indicates that the character-span-based model en-
hances the performance of languages that are less
similar or more distant from HRLs. Additionally,
it is important to select lexically similar languages
HRLs. Finally, we explore a multilingual setup in
which multiple HRLs are trained together, result-
ing in a performance boost and scale coverage for

ELRs. Our model performs equally well with a
vocabulary that is learned with clean data. This
provides scalability for utilizing PLMs, which typi-
cally have a fixed vocabulary.

The current work is only investigated for EL-
RLs to English MT tasks. We assume that the
related languages also use the same script or scripts
that can be easily mapped/transliterated to each
other. This method might not be effective for trans-
fer between related languages that are written in
very different scripts, e.g., Hindi is written in the
Devanagari script, while Sindhi is written in the
Perso-Arabic script. We will extend this work to
English to ELRLs MT and other tasks in the future.

6 Conclusion

With this thesis, we have presented a coherent nar-
rative of our efforts in the field of text generation for
multiple LRLs with limited supervision. We began
by enabling zero-shot well-formed text generation,
then progressed to improving cross-lingual gener-
ation, and ultimately enabled zero-shot machine
translation for ELRLs and dialects. Our model-
ing approaches are aligned with adaptive training,
meta-learning, language clustering, lexical similar-
ity, and noise augmentation. The evaluations were
conducted across a wide range of LRLs across lan-
guage families, multiple NLG tasks, and datasets.
Through these endeavors, we have taken a step to-
wards facilitating language technology for the long
tail of languages that possess limited or no linguis-
tic resources. This advancement aims to benefit the
general audiences where text needs to be generated
in local languages.

In the future, we will explore the following direc-
tions: (1) Extend the existing modeling framework
to cover 7000+ spoken languages of the world. (2)
Design a single unified and scalable framework
for many NLG tasks and LRLs. (3) Develop a
better modeling approach to adapt the existing
Multilingual PLM representations to new/unseen
LRLs. (4) Since for many ELRLs there are no
evaluation datasets, we will explore a modeling
technique where the performance of LRLs is evalu-
ated without reference. (5) Creating a large-scale
multilingual NLG benchmark similar to Chen et al.
(2022). (6) Investigating active learning, prompt-
ing, and other trending methodologies to advance
cross-lingual transfer and generation research with
limited supervision.
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Abstract

We argue that Transformers are essentially
graph-to-graph models, with sequences just
being a special case. Attention weights are func-
tionally equivalent to graph edges. Our Graph-
to-Graph Transformer architecture makes this
ability explicit, by inputting graph edges into the
attention weight computations and predicting
graph edges with attention-like functions,
thereby integrating explicit graphs into the la-
tent graphs learned by pretrained Transformers.
Adding iterative graph refinement provides a
joint embedding of input, output, and latent
graphs, allowing non-autoregressive graph
prediction to optimise the complete graph
without any bespoke pipeline or decoding
strategy. Empirical results show that this archi-
tecture achieves state-of-the-art accuracies for
modelling a variety of linguistic structures, inte-
grating very effectively with the latent linguistic
representations learned by pretraining.

1 Introduction

Computational linguists have traditionally made
extensive use of structured representations to
capture the regularities found in natural language.
The huge success of Transformers (Vaswani et al.,
2017) and their pre-trained large language mod-
els (Devlin et al., 2019; Zhang et al., 2022; Touvron
et al., 2023a,b) have brought these representations
into question, since these models are able to cap-
ture even subtle generalisations about language and
meaning in an end-to-end sequence-to-sequence
model (Wu et al., 2020; Michael et al., 2020;
Hewitt et al., 2021). This raises issues for research
that still needs to model structured representations,
such as work on knowledge graphs, hyperlink
graphs, citation graphs, or social networks.

In this paper we show that the sequence-to-
sequence nature of most Transformer models is
only a superficial characteristic; underlyingly they

∗Work done while working at Idiap Research Institute.
†Now at Google

are in fact modelling complex structured repre-
sentations. We survey versions of the Transformer
architecture which integrate explicit structured
representations with the latent structured represen-
tations of Transformers. These models can jointly
embed both the explicit structures and the latent
structures in a Transformer’s sequence-of-vectors
hidden representation, and can predict explicit
structures from this embedding. In the process,
we highlight evidence that the latent structures
of pretrained Transformers already include much
information about traditional linguistic structures.
These Transformer architectures support explicit
structures which are general graphs, making
them applicable to a wide range of structured
representations and their integration with text.

The key insight of this line of work is that
attention weights and graph structure edges are
effectively the same thing. Linguistic structures
are fundamentally an expression of locality in
the interaction between different components of
a representation. As Henderson (2020) argued,
incorporating this information about locality in the
inductive bias of a neural network means putting
connections between hidden vectors if their associ-
ated components are local in the structure. In Trans-
formers (Vaswani et al., 2017), these connections
are learned in the form of attention weights. Thus,
these attention weights are effectively the induced
structure of the Transformer’s latent representation.

However, attention weights are not explicitly
part of a Transformer’s hidden representation. The
output of a Transformer encoder is a sequence of
vectors, and the same is true of each lower layer
of self-attention. The latent attention weights
are extracted from these sequence-of-vector
embeddings with learned functions of pairs of
vectors. Edges in explicit graphs can be predicted
in the same way (from pairs of vectors), assuming
that these graphs have also been embedded in the
sequence of vectors.
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In recent years, the main innovation has been
in how to embed explicit graphs in the hidden
representations of Transformers. In our work on
this topic, we follow the above insight and input the
edges of the graph into the computation of attention
weights. Attention weights are computed from an
n× n matrix of attention scores (where n is the
sequence length), so we input the label of the edge
between nodes i and j into the score computation
for the i,j cell of this matrix. Each edge label has
a learned embedding vector, which is input to the
attention score function in various ways depending
on the architecture. This allows the Transformer
to integrate the explicit graph into its own latent
attention graph in flexible and powerful ways. This
integrated attention graph can then determine the
Transformer’s sequence-of-vectors embedding in
the same way as standard Transformers.

Researchers from the Natural Language Under-
standing group at Idiap Research Institute have
developed this architecture for inputting and pre-
dicting graphs under the name of Graph-to-Graph
Transformer (G2GT). G2GT allows conditioning
on an observed graph and predicting a target graph.
For the case where a graph is only observed at
training time, we not only want to predict its edges,
we also want to integrate the predicted graph into
the Transformer embedding. This has a number
of advantages, most notably the ability to jointly
model all the edges of the graph. By iteratively
refining the previous predicted graph, G2GT can
jointly model the entire predicted graph even
though the actual prediction is done independently
for each edge. And this joint modelling can be done
in conjunction with other explicit graphs, as well
as with the Transformer’s induced latent graph.

Our work on G2G Transformer has included a
number of different explicit graph structures. The
original methods were developed on syntactic pars-
ing (Mohammadshahi and Henderson, 2021, 2020).
The range of architectures was further explored
for semantic role labelling (Mohammadshahi and
Henderson, 2023) and collocation recognition (Es-
pinosa Anke et al., 2022). G2GT’s application to
coreference resolution extended the complexity
of graphs to two levels of representation (mention
spans and coreference chains) over an entire
document, which was all modelled with iterative
refinement of a single graph (Miculicich and
Henderson, 2022). Current work on knowledge
extraction poses further challenges, most notably

the issue of tractably modelling large graphs. The
code for G2GT is open-source and available for
other groups to use for other graph structures (at
https://github.com/idiap/g2g-transformer).

In the rest of this paper, we start with a review of
related work on deep learning for graph modelling
(Section 2). We then present the general G2GT
architecture with iterative refinement (Section 3),
before discussing the specific versions we have
evaluated on specific tasks (Section 4). We then
discuss the broader implications of these results
(Section 5), and conclude with a discussion of
future work (Section 6).

2 Deep Learning for Graphs

Graph Neural Networks. Early attempts at
broadening the application of neural networks
to graph structures were pursued by Gori et al.
(2005) and Scarselli et al. (2008), who intro-
duced the Graph Neural Networks (GNNs)
architecture as a natural expansion of Recurrent
Neural Networks (RNNs) (Hopfield, 1982). This
architecture regained interest in the context of
deep learning, expanded through the inclusion of
spectral convolution layers (Bruna et al., 2013),
gated recurrent units (Li et al., 2015), spatial
convolution layers (Kipf and Welling, 2017), and
attention layers (Veličković et al., 2018). GNNs
generally employ the iterative local message
passing mechanism to aggregate information from
neighbouring nodes (Gilmer et al., 2017). Recent
research, analysing GNNs through the lens of
Weisfeiler and Leman (1968), has highlighted two
key issues: over-smoothing (Oono and Suzuki,
2020) and over-squashing (Alon and Yahav, 2021).
Over-smoothing arises from repeated aggregation
across layers, leading to convergence of node
features and loss of discriminative information.
Over-squashing, on the other hand, results from
activation functions during message aggregation,
causing significant information and gradient
loss. These issues limit the capacity of GNNs to
effectively capture long-range dependencies and
nuanced graph relationships (Topping et al., 2021).
The Transformer architecture (Vaswani et al.,
2017) can be seen as addressing these issues, in
that its stacked layers of self-attention can be seen
as a fixed sequence of learned aggregation steps.

Graph Transformers. Transformers (Vaswani
et al., 2017), initially designed for sequence tasks,
represent a viable and versatile alternative to GNNs
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due to their intrinsic graph processing capabilities.
Through their self-attention mechanism, they can
seamlessly capture global wide-ranging relation-
ships, akin to handling a fully-connected graph.
Shaw et al. (2018) explicitly input relative position
relations as embeddings into the attention function,
thereby effectively inputting the relative position
graph, instead of absolute position embeddings, to
represent the sequence. Generalising this explicit
input strategy to arbitrary graphs (Henderson,
2020) has led to a general class of models which
we will refer to as Graph Transformers (GT).

GT Evolution and Applications. The history
of graph input methods used in GTs started with
Transformer variations that experimented with
relative positions to more effectively capture
distance between input elements. Rather than
adopting the sinusoidal position embedding
introduced by Vaswani et al. (2017) or the absolute
position embedding proposed by Devlin et al.
(2019), Shaw et al. (2018) added relative position
embeddings to attention keys and values, capturing
token distance within a defined range. Dai et al.
(2019) proposed Transformer-XL, which used
content-dependent positional scores and a global
positional score in attention weights. Mohammad-
shahi and Henderson (2020) demonstrated one of
the earliest successful integration of an explicit
graph into Transformer’s latent attention graph.
They introduced the Graph-To-Graph Transformer
(G2GT) architecture and applied it to syntactic
parsing tasks by effectively leveraging pre-trained
models such as BERT (Devlin et al., 2019). Huang
et al. (2020) introduced new methods to enhance
interaction between query, key and relative position
embeddings within the self-attention mechanism.
Su et al. (2021) proposed RoFormer, which utilises
a rotation matrix to encode absolute positions
while also integrating explicit relative position
dependencies into the self-attention formulation.
Liutkus et al. (2021) and Chen (2021) extended
Performer (Choromanski et al., 2020) to support
relative position encoding while scaling Trans-
formers to longer sequences with a linear attention
mechanism. Graphormer (Ying et al., 2021) intro-
duced node centrality encoding as an additional
input level embedding vector, node distances and
edges as soft biases added at attention level, and
obtained excellent results on a broad range of graph
representation learning tasks. Mohammadshahi
and Henderson (2021) built upon the G2GT

architecture and proposed an iterative refinement
procedure over previously predicted graphs, using
a non-autoregressive approach. SSAN (Xu et al.,
2021) leveraged the GT approach to effectively
model mention dependencies for document-level
relation extraction tasks. JointGT (Ke et al., 2021)
exploited the GT approach for knowledge to text
generation tasks via a joint graph-text encoding.
Similarly, TableFormer (Yang et al., 2022)
demonstrated the successful utilisation of the GT
approach for combined text-table encoding in table-
based question answering tasks. Espinosa Anke
et al. (2022) proposed a GT architecture for simul-
taneous collocation extraction and lexical function
typification, incorporating syntactic dependencies
into the attention mechanism. Miculicich and
Henderson (2022) showed that the G2GT iterative
refinement procedure can be effectively applied
to graphs at multiple levels of representation. Diao
and Loynd (2022) further extended a GT architec-
ture with new edge and node update methods and
applied them to graph-structured problems. QAT
(Park et al., 2022) substantially expanded upon
GT models to jointly handle language and graph
reasoning in question answering tasks. In the study
conducted by Mohammadshahi and Henderson
(2023), the G2GT model showed substantial
improvements in the semantic role labelling tasks.
The multitude of successful applications and
extensions firmly establish Graph Transformers as
a robust and adaptable framework for addressing
complex challenges in language and graphs.

3 Graph-to-Graph
Transformer Architecture

Our Graph-to-Graph Transformer (G2GT) ar-
chitecture combines the idea of inputting graph
edges into the self-attention function with the idea
of predicting graph edges with an attention-like
function. By encoding the graph relations into
the self-attention mechanism of Transformers, the
model has an appropriate linguistic bias, without
imposing hard restrictions. Specifically, G2GT
modifies the attention mechanism of Transform-
ers (Vaswani et al., 2017) to input any graph. Given
the input sequence W =(x1,x2,...,xn), and graph
relations G={(xi,xj ,l),1≤ i,j≤n,l∈L} (where
L is the set of labels), the modified self-attention
mechanism is calculated as1:

1Various alternative functions are possible for inputting re-
lation embeddings into attention weight computations. Dufter
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where rij ∈ {0, 1}|L| is a one-hot vector which
specifies the type of the relation between xi and
xj ,2 WR

1 ,WR
2 ∈ R|L|×d are matrices of graph

relation embeddings which are learned during
training, |L| is the label size, and d is the size
of hidden representations. The value equation of
Transformer (Vaswani et al., 2017) is also modified
to pass information about graph relations to the
output of the attention function:

zi=
∑

j

αij(xjW
V +rijW

R
3 ) (2)

where WR
3 ∈ R|L|×d is another learned relation

embedding matrix.
To extract the explicit graph from the sequence

of vectors output by the Transformer, a classifi-
cation module is applied to pairs of vectors and
maps them into the label space L. Initially, the
module transforms each vector into distinct head
and tail representations using dedicated projection
matrices. Subsequently, a classifier (linear, bilinear
or MLP) is applied, to map the vector pair onto
predictions over the label space. Notably, each
edge prediction can be computed in parallel (i.e.
in a non-autoregressive manner), as predictions for
each pair are independent of one another. Given
the discrete nature of the output, various decoding
methods can be employed to impose desired
constraints on the complete output graph. These
can range from straightforward head-tail order con-
straints, to more complex decoding algorithms such
as the Minimum Spanning Tree (MST) algorithm.

Having an architecture which can both con-
dition on graphs and predict graphs gives us the
powerful ability to do iterative refinement of
arbitrary graphs. Even when graph prediction is
non-autoregressive, conditioning on the previously
predicted graph allows the model to capture
between-edge correlations like an autoregressive
model. As illustrated in Figure 1, we propose
Recursive Non-autoregressive G2GT (RNGT),

et al. (2022) provide a survey of previous proposals for relative
position encoding. In ongoing work, we have found that using
a relation embedding vector to reweight the dimensions in stan-
dard dot-product attention works well for some applications.

2This formulation can be easily extended to multi-
label graphs by removing the one-hot constraint. We are
investigating the most effective method for doing this.
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Figure 1: The Recursive Non-autoregressive Graph-to-
Graph Transformer architecture.

which predicts all edges of the graph in parallel,
and is therefore non-autoregressive, but can still
condition every edge prediction on all other edge
predictions by conditioning on the previous version
of the graph (using Equations 1 and 2).

The input to the model is the input graph W
(e.g. a sequence of tokens), and the output is the
final graph GT over the same set of nodes. First,
we compute an initial graph G0 over the nodes of
W , which can be done with any model. Then each
recursive iteration encodes the previous graph Gt−1

and predicts a new graph Gt. It can be formalised in
terms of an encoder ERNG and a decoder DRNG:

{
Zt=ERNG(W,Gt−1)

Gt=DRNG(Zt)
t=1,...,T (3)

where Z represents the set of vectors output by the
model, and T indicates the number of refinement
iterations. Note that in each step of this iterative
refinement process, the G2G Transformer first
computes a set of vectors which embeds the
predicted graph (i.e. ERNG(W, Gt−1)), before
extracting the edges of the predicted graph from
this set-of-vectors embedding (i.e. DRNG(Zt)).

4 G2GT Models and Results

This section provides a more comprehensive expla-
nation of each alternative G2GT model we have ex-
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plored, along with an outline of how we’ve applied
these models to address various graph modelling
problems. The empirical success of these models
demonstrate the computational adequacy of Trans-
formers for extracting and modelling graph struc-
tures which are central to the nature of language.
The large further improvements gained by initialis-
ing with pretrained models demonstrates that Trans-
former pretraining encodes information about lin-
guistic structures in its attention mechanisms.

4.1 Syntactic Parsing

Syntactic parsing is the process of analysing the
grammatical structure of a sentence, including
identifying the subject, verb, and object. Syntactic
dependency parsing is a critical component in a
variety of natural language understanding tasks,
such as semantic role labelling (Henderson et al.,
2013; Marcheggiani and Titov, 2017, 2020),
machine translation (Chen et al., 2017), relation
extraction (Zhang et al., 2018), and natural
language inference (Pang et al., 2019). It is also
a benchmark structured prediction task, because
architectures which are not powerful enough to
learn syntactic parsing cannot be computationally
adequate for language understanding.

Syntactic structure is generally specified in
one of two popular grammar styles, constituency
parsing (i.e. phrase-structure parsing) (Manning
and Schutze, 1999; Henderson, 2003, 2004;
Titov and Henderson, 2007a) and dependency
parsing (Nivre, 2003; Titov and Henderson, 2007b;
Carreras, 2007; Nivre and McDonald, 2008; Dyer
et al., 2015). There are two main approaches to
compute the dependency tree: transition-based
and graph-based parsers. Transition-based parsers
predict the dependency graph one edge at a time
through a sequence of parsing actions (Yamada
and Matsumoto, 2003; Nivre and Scholz, 2004;
Titov and Henderson, 2007b; Zhang and Nivre,
2011; Weiss et al., 2015; Yazdani and Henderson,
2015), and graph-based parsers compute scores
for every possible dependency edge and then apply
a decoding algorithm to find the highest scoring
total tree (McDonald et al., 2005; Koo and Collins,
2010; Kuncoro et al., 2016; Zhou and Zhao, 2019).

In the following, we outline our proposals for
using G2GT for syntactic parsing tasks.

4.1.1 Transition-based Dependency Parsing
In (Mohammadshahi and Henderson, 2020), we
integrate the G2GT model with two baselines,

Model UAS LAS
Andor et al. (2016) 94.61 92.79
StateTr 92.32 89.69
StateTr+G2GT 93.07 91.08
BERT StateTr 95.18 92.73
BERT StateTr+G2GT 95.58 93.74
BERT SentTr 95.65 93.85
BERT SentTr+G2GT 96.06 94.26

Table 1: Comparisons to the previous comparable
models, including transition-based and sequence-to-
sequence approaches (according to Mohammadshahi
and Henderson (2020)) on English WSJ Treebank Stan-
ford dependencies. Labelled and Unlabelled Attachment
Scores (LAS,UAS) are used as evaluation metrics.

named StateTransformer (StateTr) and Sentence-
Transformer (SentTr). In the former model, we
directly input the parser state into the G2GT model,
while the latter takes the initial sentence as the
input. For better efficiency of our transition-based
model, we used an alternative version of G2GT,
introduced in Section 3, where the interaction of
graph relations with key matrices in Equation 1
is removed. Each parser decision is conditioned
on the history of previous decisions by inputting
an unlabelled partially constructed dependency
graph to the G2GT model. Mohammadshahi
and Henderson (2020) evaluate the integrated
models on the English Penn Treebank (Marcus
et al., 1993), and 13 languages of Universal
Dependencies Treebanks (Nivre et al., 2018).

Results of our models on the Penn Treebank
are shown in Table 1 (see (Mohammadshahi
and Henderson, 2020) for further results on
UD Treebanks). Integrating the G2GT model
with the StateTr baseline achieves 9.97% LAS
Relative Error Reduction (RER) improvement,
which confirms the effectiveness of modelling
the graph information in the attention mechanism.
Furthermore, initialising our model weights with
the BERT model (Devlin et al., 2019), provides sig-
nificant improvement (27.65% LAS RER), which
shows the compatibility of our modified attention
mechanism with the latent representations learned
by BERT pretraining. Integrating the G2GT
model with the SentTr baseline results in a similar
significant improvement (4.62% LAS RER).

4.1.2 Graph-based Dependency Parsing

The StateTr and SentTr models generate the
dependency graph in an autoregressive manner,
predicting each parser action conditioned on the
history of parser actions. Many previous models
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have achieved better results with graph-based
parsing methods, which use non-autoregressive
computation of scores for all individual candidate
dependency relations and then use a decoding
method to reach the maximum scoring struc-
ture (McDonald et al., 2005; Koo and Collins,
2010; Ballesteros et al., 2016; Wang and Chang,
2016; Kuncoro et al., 2016; Zhou and Zhao, 2019).
However, these models usually ignore correlations
between edges while predicting the complete graph.
In (Mohammadshahi and Henderson, 2021), we
propose the Recursive Non-autoregressive Graph-
to-Graph Transformer (RNGT) architecture, as
discussed in Section 3. The RNGT architecture
can be applied to any task with a sequence or graph
as input and a graph over the same set of nodes as
output. Here, we apply it for the syntactic depen-
dency parsing task, and preliminary experiments
showed that removing the interaction of graph
relations with key vectors, in Equation 1, results in
better performance and a more efficient attention
mechanism. Mohammadshahi and Henderson
(2021) evaluate this RNGT model on Universal
Dependency (UD) Treebanks (Nivre et al., 2018),
Penn Treebanks (Marcus et al., 1993), and the
German CoNLL 2009 Treebank (Hajič et al., 2009)
for the syntactic dependency parsing task.

Table 2 shows the results on 13 languages of UD
Treebanks. First, we use UDify (Kondratyuk and
Straka, 2019), the previous state-of-the-art multi-
lingual dependency parser, as the initial parser for
the RNGT model. The integrated model achieves
significantly better LAS performance than the
UDify model in all languages, which demonstrates
the effectiveness of the RNGT model at refining a
dependency graph. Then, we combine RNGT with
Syntactic Transformer (SynTr), a stronger mono-
lingual dependency parser, which has the same
architecture as the RNGT model except without the
graph input mechanism. The SynTr+RNGT model
reaches further improvement over the strong SynTr
baseline (four languages are significant), which is
stronger evidence for the effectiveness of the graph
refinement method. Interestingly, there is little
difference between the performance with different
initial parsers, implying that the RNGT model is
effective enough to refine any initial graphs. In fact,
even when we initialise with an empty parse, the
Empty+RNGT model achieves competitive results
with the other RNGT models, again confirming
our powerful method of graph refinement.

4.2 Semantic Role Labelling

The semantic role labelling (SRL) task provides
a shallow semantic representation of a sentence
and builds event properties and relations among
relevant words, and is defined in both dependency-
based (Surdeanu et al., 2008) and span-based (Car-
reras and Màrquez, 2005; Pradhan et al., 2012)
styles. Previous work (Marcheggiani and Titov,
2017; Strubell et al., 2018; Cai and Lapata, 2019;
Fei et al., 2021; Zhou et al., 2020) showed that the
syntactic graph helps SRL models to predict better
output graphs, but finding the most effective way to
incorporate the auxiliary syntactic information into
SRL models was still an open question. In (Mo-
hammadshahi and Henderson, 2023), we introduce
the Syntax-aware Graph-to-Graph Transformer
(SynG2G-Tr) architecture. The model conditions
on the sentence’s dependency structure and jointly
predicts both span-based (Carreras and Màrquez,
2005) and dependency-based (Hajič et al., 2009)
SRL structures. Regarding the self-attention
mechanism, we remove the interaction of graph
embeddings with value vectors in Equation 2, as
it reaches better performance in this particular task
(Mohammadshahi and Henderson, 2023).

Results for span-based SRL are shown in
Table 3. Without initialising the models with
BERT (Devlin et al., 2019), the SynG2G-Tr model
outperforms a previous comparable state-of-the-art
model (Strubell et al., 2018) in both end-to-end and
given-predicate scenarios. The improvement indi-
cates the benefit of encoding the graph information
in the self-attention mechanism of Transformer
with a soft bias, instead of hard-coding the graph
structure into deep learning models (Marcheggiani
and Titov, 2017; Strubell et al., 2018; Xia et al.,
2019), as the model can still learn other attention
patterns in combination with this graph knowledge.
BERT (Devlin et al., 2019) initialisation results in
further significant improvement in both settings,
which again shows the compatibility of the G2GT
modified self-attention mechanism with the latent
structures learned by BERT pretraining.

4.3 Coreference Resolution

Coreference resolution (CR) is an important and
complex task which is necessary for higher-level
semantic representations. We show that it benefits
from a graph-based global optimisation of all the
coreference chains in a document.
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Language Multi Multi+Mono Mono Mono Mono
UDify UDify+RNGT SynTr SynTr+RNGT Empty+RNGT

Arabic 82.88 85.93 (+17.81%) 86.23 86.31 (+0.58%) 86.05
Basque 80.97 87.55 (+34.57%) 87.49 88.2 (+5.68%) 87.96
Chinese 83.75 89.05 (+32.62%) 89.53 90.48 (+9.08%) 89.82
English 88.5 91.23 (+23.74%) 91.41 91.52 (+1.28%) 91.23
Finnish 82.03 91.87 (+54.76%) 91.80 91.92 (+1.46%) 91.78
Hebrew 88.11 90.80 (+22.62%) 91.07 91.32 (+2.79%) 90.56
Hindi 91.46 93.94 (+29.04%) 93.95 94.21 (+4.3%) 93.97
Italian 93.69 94.65 (+15.21%) 95.08 95.16 (+1.62%) 94.96

Japanese 92.08 95.41 (+42.06%) 95.66 95.71 (+1.16%) 95.56
Korean 74.26 89.12 (+57.73%) 89.29 89.45 (+1.5%) 89.1
Russian 93.13 94.51 (+20.09%) 94.60 94.47 (-2.4%) 94.31
Swedish 89.03 92.02 (+27.26%) 92.03 92.46 (+5.4%) 92.40
Turkish 67.44 72.07 (+14.22%) 72.52 73.08 (+2.04%) 71.99
Average 85.18 89.86 90.05 90.33 89.98

Table 2: Labelled attachment scores of monolingual (SynTr) and multilingual (UDify (Kondratyuk and Straka,
2019)) baselines, and the refined models (+RNGT) pre-trained with BERT (Devlin et al., 2019) on 13 languages
of UD Treebanks. The relative error reduction after the integration is illustrated in parentheses. Bold scores are not
significantly different from the best score in that row (with α=0.01).

Model in-domain out-of-domain
end-to-end
Strubell et al. (2018) 84.99 74.66
SynG2G-Tr (w/o BERT) 85.45 75.26
+pre-training
Strubell et al. (2018) 86.9 78.25
SynG2G-Tr 87.57 80.53
given predicate
Strubell et al. (2018) 86.04 76.54
SynG2G-Tr (w/o BERT) 86.50 77.45
+pre-training
Jia et al. (2022) 88.25 81.90
SynG2G-Tr 88.93 83.21

Table 3: Comparing our SynG2G-Tr with previous com-
parable SoTA model on CoNLL 2005 test sets for both in-
domain (WSJ), and out-of-domain (Brown) sets. Scores
being boldfaced means that they are significantly better.

4.3.1 CR Task Definition and Background

Coreference resolution is the task of linking all
linguistic expressions in a text that refer to the same
entity. Solutions for this task involve three parts:
mention-detection (Yu et al., 2020; Miculicich and
Henderson, 2020), classification or ranking of men-
tions, and finally reconciling the decisions to create
entity chains. These approaches fall within three
principal categories: mention-pair models which
perform binary decisions (McCarthy and Lehnert,
1995; Aone and William, 1995; Soon et al., 2001),
entity-based models which focus on maintaining
single underlying entity representation, contrasting
the independent pair-wise decisions of mention-
pair approaches (Clark and Manning, 2015, 2016),
and ranking models which aim at ranking the
possible antecedents of each mention instead of
making binary decisions (Wiseman et al., 2016). A

Figure 2: Example of a graph structure for coreference.
Mention spans are shown in bold, and colours represent
entity clusters. The mention heads are underlined.

Figure 3: Example of iterations with G2GT in two stages.

limitation of these methods lies in their bottom-up
construction, resulting in an underutilisation
of comprehensive global information regarding
coreference links among all mentions in individual
decisions. Furthermore, these methods tend to
exhibit significant complexity. Modelling of
coreference resolution as a graph-based approach
offer an alternative to deal with these limitations.

4.3.2 Iterative Graph-based CR
Miculicich and Henderson (2022) proposed a novel
approach to modelling coreference resolution, treat-
ing it as a graph problem. In this framework, the
tokens within the text serve as nodes, and the con-
nections between them signify coreference links
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(see Figure 2). Given a document D=[x1,...,xN ]
with length N , the coreference graph is formally
defined as the matrix G⊂NN×N , which represents
the relationships between tokens. Specifically, the
relationship type between any two tokens, xi and
xj , is labelled as gi,j∈{0,1,2} for the three distinct
relation types: (0) no link, (1) mention link, and (2)
coreference link.

The primary objective of this approach is to
learn the conditional probability distribution
p(G|D). To achieve this, an iterative refinement
strategy is employed, which captures interdepen-
dencies among relations. The model iterates over
the same document D for a total of T iterations.
In each iteration t, the predicted coreference graph
Gt is conditioned on the previous prediction,
denoted as Gt−1. Thus, the conditional probability
distribution of the model is defined as follows:

p(Gt|D,Gt−1)=

N∏

i=1

i∏

j=1

p(gi,j |D,Gt−1) (4)

The proposed model operates on two levels of
representation. In each iteration, it predicts the
entire graph. However, during the first iteration,
the model focuses on predicting edges that pinpoint
mention spans, given that coreferent links only
have relevance when mentions are detected. From
the second iteration, both mention links, and
coreference links are refined. This iterative strategy
permits the model to enhance mention-related
decisions based on coreference resolutions, and
vice versa. This framework utilises iterative graph
refinement as a substitute for conventional pipeline
architectures in multi-level deep learning models.
The iterative process concludes either when the
graph no longer undergoes changes or when a
predetermined maximum iteration count is attained
(see Figure 3).

Ideally, encoding the entirety of the document in
a single pass would be optimal. However, in prac-
tical scenarios, a constraint on maximum length
arises due to limitations in hardware memory
capacity. To address this challenge, Miculicich and
Henderson (2022) introduce two strategies: over-
lapping windows and reduced document approach.
In the latter strategy, mentions are identified during
an initial iteration with a focus on optimising
recall, as previously suggested in (Miculicich and
Henderson, 2020). Only the representations of
these identified spans are subsequently used as
inputs for the following iterations.

Miculicich and Henderson (2022) conducted ex-
periments on the CoNLL 2012 corpus (Pradhan
et al., 2012) and showed improvements over rele-
vant baselines and previous state-of-the-art meth-
ods, summarised in Table 4. We compare our
model with three baselines: Lee et al. (2017) pro-
posed the first end-to-end model for coreference
resolution; Lee et al. (2018) extended the previ-
ous model by introducing higher order inference;
and Xu and Choi (2020) used the span based pre-
trained model SpanBERT (Joshi et al., 2020). The
‘Baseline’ of Lee et al. (2018) uses ELMo (Peters
et al., 2018) to obtain token representations, so
versions of this Baseline which use ‘BERT-large’
(Joshi et al., 2019) and ‘SpanBERT-large’ (Joshi
et al., 2020) as their pretrained models, are directly
comparable to our ‘G2GT BERT-large’ and ‘G2GT
SpanBERT-large’ models, respectively.

These results show that coreference resolution
benefits from making global coreference decisions
using document-level information, as supported
by the G2GT architecture. Our model achieves
its optimal solution within a maximum of three
iterations. Notably, due to the model’s ability to
predict the entire graph in a single iteration, its
computational complexity is lower compared to
that of the baseline approaches.

5 Discussion

The empirical success of Graph-to-Graph
Transformers on modelling these various graph
structures helps us understand how Transformers
model language. This success demonstrates that
Transformers are computationally adequate for
modelling linguistic structures, which are central
to the nature of language. The reliance of these
G2GT models on using self-attention mechanisms
to extract and encode these graph relations shows
that self-attention is crucial to how Transformers
can do this modelling. The large improvements
gained by initialising with pretrained models
indicates that pretrained Transformers are in fact
using the same mechanisms to learn about this
linguistic structure, but in an unsupervised fashion.

These insights into pretrained Transformers give
us a better understanding of the current generation
of Large Language Models (LLMs). It is not
that these models do not need linguistic structure
(since their attention mechanisms do learn it);
it is that these models do not need supervised
learning of linguistic structure. But perhaps in a
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MUC B3 CEAFϕ4

Model P R F1 P R F1 P R F1 Avg. F1
Lee et al. (2017) 78.4 73.4 75.8 68.6 61.8 65.0 62.7 59.0 60.8 67.2
Xu and Choi (2020) 85.9 85.5 85.7 79.0 78.9 79.0 76.7 75.2 75.9 80.2
Baseline (Lee et al., 2018) 81.4 79.5 80.4 72.2 69.5 70.8 68.2 67.1 67.6 73.0
+ BERT-large (Joshi et al., 2019) 84.7 82.4 83.5 76.5 74.0 75.3 74.1 69.8 71.9 76.9
+ SpanBERT-large (Joshi et al., 2020) 85.8 84.8 85.3 78.3 77.9 78.1 76.4 74.2 75.3 79.6
G2GT BERT-large reduced 84.7 83.1 83.9 76.8 74.0 75.4 75.3 70.1 72.6 77.3
G2GT SpanBERT-large reduced 85.9 86.0∗† 85.9∗ 79.3∗ 79.4∗† 79.3∗ 76.4 75.9∗ 76.1∗ 80.5∗

Table 4: Evaluation of CR on the test set (CoNLL 2012) in terms of precision (P), recall (R) and F1 score for three
metrics, as well as the average F1 over metrics. ∗ significant at p < 0.01 compared to (Joshi et al., 2020), † significant
at p < 0.05 compared to (Xu and Choi, 2020).

low-resource scenario LLMs would benefit from
the inductive bias provided by supervised learning
of linguistic structures, such as for many of the
world’s languages other than English. And these
insights are potentially relevant to the issues of
interpretability and controllability of LLMs.

These insights are also relevant for any ap-
plications which could benefit from integrating
text with structured representations. Our current
work investigates jointly embedding text and
parts of a knowledge base in a single G2GT
model, providing a way to integrate interpretable
structured knowledge with knowledge in text. Such
representations would be useful for information
extraction, question answering and information
retrieval, amongst many other applications. Other
graphs we might want to model with a Transformer
and integrate with text include hyperlink graphs,
citation graphs, and social networks. An important
open problem with such models is the scale of the
resulting Transformer embedding.

6 Conclusion and Future Work

The Graph-to-Graph Transformer architecture
makes explicit the implicit graph processing
abilities of Transformers, but further research is
needed to fully leverage the potential of G2GT.

6.1 Conclusions

The success of the above models of a variety
linguistic structures shows that Transformers
are underlyingly graph-to-graph models, not
limited to sequence-to-sequence tasks. The G2GT
architecture with its RNGT method provides an
effective way to exploit this underlying ability
when modelling explicit graphs, effectively inte-
grating them with the implicit graphs learned by
pre-trained Transformers. Inputting graph relations
as features to the self-attention mechanism enables

the information input to the model to be steered by
domain-specific knowledge or desired outcomes
but still learned by the Transformer, opening up
the possibility for a more tailored and customised
encoding process. Predicting graph relations
with attention-like functions and then re-inputting
them for iterative refinement, encodes the input,
predicted and latent graphs in a single joint
Transformer embedding which is effective for
making global decisions about structure in a text.

6.2 Future Work

One topic of research where explicit graphs are
indispensable is knowledge graphs. Knowledge
needs to be interpretable, so that it can be audited,
edited, and learned by people. And it needs to be
integrated with existing knowledge graphs. Our
current work uses G2GT to integrate knowledge
graphs with knowledge conveyed by text.

One of the limitations of the models discussed
in this paper is that the set of nodes in the output
graph needs to be (a subset of) the nodes in the
input graph. General purpose graph-to-graph
mappings would require also predicting a set
of new nodes in the output graph. One natural
solution would be autoregressive prediction of one
node at a time, as is done for text generation, but an
exciting alternative would be to use methods from
non-autoregressive text generation in combination
with our iterative refinement method RNGT.

The excellent performance of the models
presented in this paper suggest that many more
problems can be successfully formulated as
graph-to-graph problems and modelled with G2GT,
in NLP and beyond. The code for G2GT and
RNGT is open-source and publicly available at
https://github.com/idiap/g2g-transformer.
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Jaroslava Hlaváčová, Florinel Hociung, Petter Hohle,
Jena Hwang, Radu Ion, Elena Irimia, O. lájídé Ishola,
Tomáš Jelínek, Anders Johannsen, Fredrik Jørgensen,
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Abstract

Minimum Bayes Risk (MBR) decoding is a
method for choosing the outputs of a machine
learning system based not on the output with
the highest probability, but the output with the
lowest risk (expected error) among multiple
candidates. It is a simple but powerful method:
for an additional cost at inference time, MBR
provides reliable several-point improvements
across metrics for a wide variety of tasks with-
out any additional data or training. Despite
this, MBR is not frequently applied in NLP
works, and knowledge of the method itself is
limited. We first provide an introduction to the
method and the recent literature. We show that
several recent methods that do not reference
MBR can be written as special cases of MBR;
this reformulation provides additional theoret-
ical justification for the performance of these
methods, explaining some results that were pre-
viously only empirical. We provide theoretical
and empirical results about the effectiveness
of various MBR variants and make concrete
recommendations for the application of MBR
in NLP models, including future directions in
this area.

1 Introduction

“Sometimes innovation is only old ideas
reappearing in new guises . . . [b]ut the new
costumes are better made, of better materials, as
well as more becoming: so research is not so much
going round in circles as ascending a spiral.”

(Jones, 1994)

Minimum Bayes Risk (MBR) decoding (Bickel
and Doksum (1977); §2) is a decoding method fol-
lowing a simple intuition: when choosing a best
output from a set of candidates, the desirable output
should be both 1) high probability and 2) relatively
consistent with the rest of the outputs (i.e., outputs
that are not consistent with the other outputs are
high risk– they may be dramatically better or worse

∗Denotes equal contribution.

than the consensus). MBR thus provides an alter-
native to the more standard maximum-likelihood
decoding; when a sample of sufficient size is taken,
MBR almost uniformly outperforms beam search
and single-output sampling across tasks, metrics,
and datasets (see §6). It is also notable in its flexibil-
ity; in §3 we organize and discuss several different
design decisions that go into the use of MBR and
how they affect the efficacy of the method.

While MBR is rarely applied by name in modern
NLP, a number of methods with similar intuitions
have gained popularity. In §4, we demonstrate
that a number of generation techniques widely
used with modern language models can be viewed
as special instances of MBR: self-consistency
(Wang et al., 2023) and its extensions, range vot-
ing (Borgeaud and Emerson, 2020), output en-
sembling (DeNero et al., 2010; Martínez Lorenzo
et al., 2023), and some types of density estimation
(Kobayashi, 2018). This view exposes connections
between seemingly disparate methods and presents
theoretical justifications for existing empirical re-
sults using these methods. We also discuss how
insights from the MBR literature can inform the
use of these other MBR-like methods.

With the framing of MBR, the theoretical jus-
tification for the empirical performance of sev-
eral methods becomes clear; the extension of self-
consistency to open-ended generations becomes
trivial; and several promising modifications to self-
consistency and output ensembling are exposed. In
particular, modern MBR-like methods often do not
apply the insights from research on MBR, suggest-
ing that these methods could be further improved.
In §5, we show that some design choices, though
seemingly intuitive to a practitioner accustomed to
search-based decoding methods, should be avoided
when applying MBR.

2 Formalization

We begin with the basics of decoding and MBR.
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2.1 Standard decoding

Decoding from an autoregressive model (such as a
transformer decoder) is performed tokenwise. The
distribution at each decoding step is conditioned
on the prior tokens and the input text:

p(yi|y<i, x) (1)

The model is locally normalized; the probabilities
of next tokens sum to 1. The probability of a se-
quence under this global model distribution is

p(y|x) =
T∏

i=1

p(yi|y<i, x) (2)

Given this distribution, there are several ways
of extracting an output: by sampling at each de-
coding step from the distribution over next tokens
(often with some modification to the distribution,
e.g. temperature, nucleus, or epsilon sampling;
Holtzman et al. (2019)); by always choosing the
most probable next token (i.e. greedy decoding);
or by performing a search over some subset of the
output space, guided by the distribution (e.g. beam
search, best-first search). These methods generally
return a single output; if multiple output candidates
are present, the one with the maximum likelihood
under the model distribution is returned.

2.2 Minimum Bayes Risk decoding

The traditional formulation of MBR is as a mini-
mization objective. Given a output space Y and a
probability distribution over this space p(y|x), we
compute the risk R(y′) of a candidate decoding y′

as the expected error (also called loss) under this
distribution (Bickel and Doksum, 1977; Kumar and
Byrne, 2004; Tromble et al., 2008). The MBR de-
coding is then the y′ within Y that minimizes risk:

ŷ = argmin
y′∈Y

R(y′) (3)

= argmin
y′∈Y

Ey|x[L(y, y
′)] (4)

= argmin
y′∈Y

∑

y∈Y

L(y, y′)p(y|x) (5)

We can trivially rewrite the risk as a maximiza-
tion of gain (also called utility) rather than a min-
imization of error, where G(y, y′) = −L(y, y′).
Gain or loss functions are any function (e.g. a met-
ric) that compares two sequences G : Y ×Y → R.

Approximating risk Computing this sum over
the space of all possible outputs Y is intractable
for most models.1 In these cases, we approximate
the risk R(y′) by using a subset of the full space
Y ⊂ Y ; that is, instead of exact computation
of the expectation, we approximate it with a sum
over independent samples from p(y|x). Generally,
this is performed by sampling repeatedly from a
model (or several models) and estimating the prob-
ability of each individual output as proportional
to the relative frequency that the output occurs.2

For an unbiased sampling method3 (e.g. ancestral
sampling), as the number of outputs drawn goes to
infinity, this recovers the model’s true distribution
of probability over sequences. Thus, we approxi-
mate risk using this sample:

R(y′) ≈ 1

|Y|
∑

y∈Y
L(y, y′) (6)

= − 1

|Y|
∑

y∈Y
G(y, y′) (7)

Thus, given a sample (which may include dupli-
cates) Y and a gain function, we approximate the
true MBR decoding rule as:

ŷ = argmax
y′∈Y

1

|Y|
∑

y∈Ye

G(y, y′) (8)

Separation of evidence and hypothesis sets In
many cases, the same subset of the output space is
used for both the risk estimate and the candidate
outputs. However, when the sample is substantially
smaller than the full output space, it is often benefi-
cial to use separate sets (Eikema and Aziz, 2022;
Yan et al., 2023). Following prior work (§2.2), we
refer to these as the evidence set (Ye) and hypothe-
sis set (Yh).

This separation is beneficial because there are
distinct and potentially contradictory desiderata
for the two sets. We wish for our evidence set to
cover a large, representative portion of the search
space to obtain a more accurate estimate of risk.
However, we want our hypothesis set to only cover
the narrower, high-quality region of the space, as
we do not want to consider candidate hypotheses
that are low-quality. Applying the separation of
evidence and hypothesis sets yields the equation
for MBR over two subsets of the output space:

1This is the case for many deep generative models, such as
a transformer language model and other autoregressive models
without conditional independence assumptions.

2This is called a Monte Carlo approximation.
3We discuss the use of biased samplers in §3.2 and §3.1.
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ŷ = argmax
y′∈Yh

∑

y∈Ye

G(y, y′) (9)

Note that this implicitly encodes the distribution
of the evidence set samples in the sum. That is,
by averaging over the gain on evidence set exam-
ples, we are estimating the expected gain under this
evidence set’s distribution over sequences.

3 Taxonomy of MBR

Equation 9 demonstrates four major axes along
which an MBR method may vary:

1. Choice of hypothesis set Yh

2. Choice of evidence set Ye

3. Choice of gain (or error) function G(y, y′)

4. Choice of evidence distribution p(y|x)

In this section, we examine how these four factors
affect the efficacy of MBR and give recommenda-
tions for each; in Section 4, we discuss how these
apply to other MBR-like methods.

3.1 Sampling a hypothesis set
Several recent works show benefits from improv-
ing the quality of the hypothesis space. Fernandes
et al. (2022) apply a two-stage approach where they
first apply an N -best (referenceless) reranker and
then do MBR over only the most highly ranked
hypotheses, which they also use as the evidence
set. Eikema and Aziz (2022) introduce a method,
Coarse-to-Fine MBR, that first uses MBR with a
cheap-to-compute metric to filter a large hypothe-
sis space to a smaller set, then uses MBR with a
better but more expensive to compute metric over
the smaller set; they separate evidence and hypoth-
esis sets. Freitag et al. (2023) further investigates
sampling strategies for MBR, finding that epsilon
sampling (Hewitt et al., 2022) outperforms other
strategies in automated and human evaluations.

Another earlier line of work has considered
growing post hoc the hypothesis set in order
to obtain hypotheses with higher expected gain
(González-Rubio et al., 2011; González-Rubio and
Casacuberta, 2013; Hoang et al., 2021).

3.2 Sampling an evidence set
Comparatively less work has studied strategies for
sampling the evidence set. Most recent work has
adopted the unbiased sampling strategy of Eikema
and Aziz (2020), i.e. drawing i.i.d. samples from

the model distribution p(y|x) (equation 2). This
strategy is motivated by their observation that unbi-
ased sampling is reasonably reflective of the data
distribution, much more so than beam search. How-
ever, their approach is incompatible with models
trained via label smoothing (Szegedy et al., 2016).
Yan et al. (2023) attempt to remedy this by sam-
pling the evidence set with temperature τ < 1,
sharpening the model distribution.

3.3 What metric do we want to maximize?

The gain G (alternatively, error L) may be an arbi-
trary function Ye × Yh → R. Early work focused
on simple, token-level metrics like word error rate
and BLEU (Kumar and Byrne, 2004; Ehling et al.,
2007), but more recent work has explored the use
of neural metrics (Amrhein and Sennrich, 2022;
Freitag et al., 2022), as well as executing outputs in
code generation (Shi et al., 2022; Li et al., 2022).

Generally, for both neural and non-neural met-
rics, MBR with metric G as a gain function will
yield the largest downstream improvements on G
(Müller and Sennrich, 2021; Freitag et al., 2022;
Fernandes et al., 2022). In other words, if one aims
to optimize system performance on metric M , one
should perform MBR with M as gain. Although
MBR uses pseudoreferences, using a metric M to
score candidates against these pseudoreferences
generally produces a candidate that also scores
quite highly on M against the gold reference.

However, MBR also inherits the weaknesses
and biases of the gain metric used. MBR has
been shown to suffer from length and token fre-
quency biases brought on by the metric, i.e. MBR
with BLEU prefers shorter sentences (Nakov et al.,
2012; Müller and Sennrich, 2021). Similarly, Am-
rhein and Sennrich (2022) find that MBR using the
metric COMET (Rei et al., 2020) causes higher
rates of errors for named entities and numbers due
to a lack of sensitivity in the metric. Moreover,
MBR is susceptible to overfitting to the metric; Fre-
itag et al. (2023) show that the MBR setting that
maximizes the metric is not the one that humans
prefer. Thus, if the same metric is used for both
MBR and evaluation of the output, not all of the
improvement in that metric can be attributed to
higher quality: it is possible that some of the im-
provement comes from gaming the metric. This
provides an additional reason to evaluate across
multiple, diverse metrics.

Note that in the most trivial case, where the met-
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Method Evidence Gen. Hypothesis Gen. Metric p(y|x)
Lattice MBR (Tromble et al., 2008) N-best list N-best list BLEU translation lattice
Coarse-to-fine MBR (Eikema and Aziz, 2022) ancestral sampling filter(sample) BEER single model
Wiher et al. (2022) ancestral sampling evidence + more decodings BEER single model
MBR-DC (Yan et al., 2023) temperature sampling1 temperature sampling1 BLEURT single model
Ours (§ 3.3) ancestral sampling temperature sampling BERTScore single model
Ours (§ 3.4) ancestral sampling temperature sampling BERTScore length-corrected scores
Freitag et al. (2023) epsilon sampling BLEURT single model
Crowd sampling2 (Suzgun et al., 2023) temperature sampling neural score metric single model
MBR-Exec (Shi et al., 2022) temperature sampling execution match single model

Self-consistency (SC) (Wang et al., 2023) temperature sampling exact answer match single model
Complex SC (Fu et al., 2022) filter(temperature sample) exact answer match single model
SC for open-ended gen (Jain et al., 2023) temperature sampling n-gram overlap single model
Range voting (Borgeaud and Emerson, 2020) beam search n-gram overlap single model
Post-Ensemble (Kobayashi, 2018) beam search for each model in ensemble cosine similarity model set
AMRs Assemble! (Martínez Lorenzo et al., 2023) model set beam search perplexity model set

Table 1: Recent work under our taxonomy. The line separates methods that are explicitly MBR (above) from those that we
identify as MBR-like (below).
1 Different temperatures used for evidence and hypothesis.
2 While Suzgun et al. (2023) coin the new term crowd sampling, they also explicitly refer to their method as MBR.

ric is G(y, y′) = 1[y = y′], MBR recovers mode-
seeking methods like beam search– i.e. MBR un-
der this metric, in expectation, yields the maximum
likelihood decoding. This is because, as the size
of the sampled evidence set grows to infinity, the
most frequent evidence set sequence (and thus the
sequence with the highest gain) becomes the one
with the highest probability under the sampling
distribution.

3.4 What probability distribution should we
use to estimate risk?

Most MBR decoding methods use the model’s
score distribution over outputs, s, as the (unnor-
malized) evidence distribution. Alternately, this
distribution may be normalized by a temperature
(during minimum risk training (Smith and Eisner,
2006) or decoding (Yan et al., 2023)). Some work
(e.g Suzgun et al. (2023)) interprets this as a weak
proxy for the human or true distribution, arguing
that the true objective is to minimize error under
the human distribution:

argmin
y′∈Yh

Ey∼phuman [L(y, y
′)]

Note that this is not the only reasonable choice of
p(y|x); other possible distributions include a dis-
tribution over outputs from multiple models (§4.2)
or the length-penalized distribution over a single
model’s outputs pl(y|x) (§5.3).

4 MBR as a frame for other methods

Self-consistency, output ensembling, density esti-
mation, and range voting can all be viewed through

the framing of MBR. This exposes unstated con-
nections between the methods and provides some
theoretical backing to the empirical success of these
methods. We discuss each in turn.

4.1 Self-consistency as MBR

Self-consistency (Wang et al., 2023) is a method
for choosing outputs from language models. In self-
consistency, the model is prompted to generate an
explanation and then an answer. Multiple outputs
O = {y1, . . . , ym} are sampled from the model,
the answers A = {a1, . . . , am} are extracted ai =
ans(yi), and the most frequent answer is returned:

argmax
a

m∑

i=1

1(ai = a) (10)

Self-consistency only computes exact match
over the answer, not the reasoning chain. It is
possible to recover MBR from this method by ei-
ther taking the hypothesis/evidence sets to be the
set of resulting answers Yh = Ye = A discarding
the reasoning chain, or by defining a gain function
G(y, y′) = 1(ans(y) = ans(y′)) over full outputs
O; though notationally different, they are mathe-
matically equivalent.

Thus, self-consistency is a type of MBR decod-
ing in which we approximate the risk with a Monte
Carlo estimate (cf. Eq. 6), the answers are sampled
from the model (conditioned on the prompt), and
the metric is exact match of the “final answer.”

This framing additionally explains some re-
sults from the self-consistency paper. Wang
et al. (2023) compare the performance of self-
consistency across sampling strategies, finding that
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the best of the strategies they tried are those that
are closest to ancestral sampling (nucleus sampling
with p = 0.95 and τ = 0.7 without top-k sam-
pling). They also find that self-consistency works
better with a sampled output rather than outputs
from beam search (their Table 6). Through the lens
of MBR, this empirical result has a clear theoret-
ical justification: ancestral sampling of evidence
sets generally yields the best performance for MBR
because this provides an unbiased estimator of the
probabilities of the sampled sequences. This also
presents an opportunity for improvement: while
Wang et al. (2023) do not evaluate on ancestral
sampling, it is possible that this would outperform
their best results.

Self-consistency is a special case of MBR. Pro-
posed extensions to self-consistency have recov-
ered aspects of generalized MBR decoding, includ-
ing filtering to smaller hypothesis/evidence sets
(Fu et al., 2022) and the use of alternative gain
metrics (Jain et al., 2023). As a result, the term
self-consistency has widened in definition from a
specific type of MBR to a catch-all for MBR-based
decoding methods on large language models.

4.2 Output Ensembling as MBR
Model ensembling techniques that operate on com-
pleted outputs of models may also be cast in MBR
terms. Note that this does not include methods
that operate on model weights or partial outputs.
Common ensembling methods such as averaging
model weights (Izmailov et al., 2018) or averag-
ing token-level probabilities (Sennrich et al., 2016;
Manakul et al., 2023) cannot be explicitly formu-
lated as MBR.

The connection to MBR is most straightforward
in methods that perform MBR decoding over the
outputs of multiple models (DeNero et al., 2010;
Duh et al., 2011; Barzdins and Gosko, 2016; Lee
et al., 2022, inter alia). Representative of this fam-
ily of methods is Post-Ensemble (Kobayashi, 2018),
which ensembles multiple text generation models
θ1, θ2, . . . , θn by separately decoding from each
model, computing pairwise sentence embedding
similarity between all pairs of outputs, and yielding
the output with greatest average similarity. Observe
that this may be framed as MBR minimizing the
expected risk over the mixture distribution

pensemble(y|x) =





pθ1(y|x) with probability π1

· · ·
pθn(y|x) with probability πn

where
∑n

i=1 πi = 1. While πi is usually taken to
be uniform over the ensemble, this need not always
be the case (Duan et al., 2010).

Other methods may be viewed as relaxations
of MBR decoding. Assemble! (Martínez Lorenzo
et al., 2023) ensembles Abstract Meaning Repre-
sentation (AMR) graph parsers by computing the
pairwise perplexities of each output under each
parser. While this is not precisely MBR, it may be
viewed as a variation where the evidence set is a
set of models, not a set of model outputs.

ŷ = argmin
y′∈Yh

Eθ∼π(·)[L(θ, y
′)]

In this case, the error L(θ, y′) is the perplexity of
y′ under model θ, i.e. exp(− log pθ(y

′)) = 1
pθ(y′)

,
and π(·) is the distribution over models.

4.3 MBR as Density Estimation
Interestingly, Post-Ensemble (Kobayashi, 2018)
(§4.2) was not formulated as MBR (and in fact
never referred to by name as MBR), but rather as
kernel density estimation. Kernel density estima-
tion is a non-parametric method for estimating the
probability density function p of an unknown distri-
bution, given samples (x1, x2, · · · , xn) from that
distribution (Rosenblatt, 1956; Parzen, 1962).

p̂(x) =
1

n

n∑

i=1

K(x, xi) (11)

Indeed, Equation 11 very closely resembles the
Monte Carlo estimator of expected loss in Equa-
tion 6. This connection allowed (Kobayashi, 2018)
to propose approximation error bounds on MBR,
drawing from the density estimation literature.4

Note that the kernel function K(x, xi) is more
commonly written as K(x− xi), or K(xTxi) for
directional statistics. While this may seem limiting,
we can rewrite commonly used MBR metrics in this
form; we show this for ROUGE-n as an example.
For a sequence y, define Tn(y) to be a vector of
size |V |n, where |V | is the size of the vocabulary,
containing the number of times every possible n-
gram appears in y. Then we can rewrite ROUGE-n
as the following:

KR(Tn(y)− Tn(y
′))

= 1− |Tn(y)− Tn(y
′)|1

|Tn(y)|1 + |Tn(y′)|1
(12)

4We do not reproduce their bounds here; we direct inter-
ested readers to the original paper.
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where | · |1 is the L1 norm.
The similarity between density estimation and

MBR yields an alternative interpretation of MBR
as a mode-seeking search. However, we are not
seeking the mode of the model’s distribution over
outputs, p(y|x), but rather that of a distribution
over some features ϕ(y) of our output, p′(ϕ(y)|x).
For instance, in the case of ROUGE-n MBR,

ŷ = argmax
y′∈Yh

∑

y∈Ye

KR(Tn(y
′)− Tn(y)) (13)

≈ argmax
y′∈Yh

p′(Tn(y
′)|x) (14)

We posit that this alternative distribution
p′(Tn(y

′)|x) may be better correlated with
performance on specific downstream metrics than
the original model distribution, potentially adding
an additional justification for MBR’s effectiveness.
We hope this may inspire future work investigating
the theoretical underpinnings of MBR.

4.4 Range Voting as MBR
Methods that take inspiration from outside of NLP
may also be MBR-like; in particular, some MBR-
like algorithms in the literature are formulated from
a voting theory perspective where candidate hy-
potheses are assigned votes based on similarity to
some set of voters (Wang et al., 2023; Jain et al.,
2023; Suzgun et al., 2023; Hoang et al., 2021).
We show here that range voting (Borgeaud and
Emerson, 2020), which broadly encapsulates these
proposed voting methods, reduces to MBR.

Range voting describes a family of voting sys-
tems in which each voter assigns each candidate a
score and the candidate with the greatest total or
average score is elected. Observe that the set of
candidates C corresponds to the hypothesis set Yh

and the set of voters V corresponds to the evidence
set Ye. Then, if voter v’s score for candidate c
is taken to be a gain G(v, c) and each voter is as-
signed uniform weight, range voting is equivalent
to the MBR decision rule in Equation 8:

celected = argmax
c∈C

1

|V |
∑

v∈V
G(v, c) (15)

Other range-voting methods can similarly be cast
as MBR variants.

5 Design Decisions Impact MBR
Performance

Although all the methods in Section 4 are MBR-
like, they make very different decisions about the

four design choices in our MBR taxonomy. To
demonstrate the importance of the method design,
we consider empirically two cases where changing
design impacts the performance of the method.

5.1 Experimental Details

We run MBR experiments for abstractive summa-
rization on CNN/DM (Nallapati et al., 2016) with
a fine-tuned BART-Large5 released by the BART
authors (Lewis et al., 2020) as our base model. In
§5.3, we additionally report results for translation
on WMT’16 Romanian-English (Ro-En) (Bojar
et al., 2016) using mBART-50 (Liu et al., 2020).6

We draw ne ancestral samples for our evidence
set and nt temperature samples (τ = 0.5 for
CNN/DM, τ = 0.3 for WMT’16 Ro-En) for our
hypothesis set. We set ne = nt = 30 in §5.2 and
ne = nt = 50 in §5.3. Unless otherwise specified,
we take ROUGE-1 (Lin, 2004) as our gain metric
for summarization and BLEU-4 (Papineni et al.,
2002)7 as our gain metric for translation.

Our code is available at https:
//github.com/abertsch72/
minimum-bayes-risk.

5.2 The MBR metric matters – but perhaps
not as much as the hypothesis set

We find that using MBR with the summariza-
tion n-gram metric ROUGE-1 (Lin, 2004) im-
proves abstractive summarization performance
over beam search on CNN/DM, even when evalu-
ating performance with neural metrics; using the
general-purpose neural metric BERTScore (Zhang
et al., 2020) as the MBR metric yields highest
BERTScore but smaller gains on non-neural met-
rics, a finding consistent with past work; and even
BEER (Stanojević and Sima’an, 2014), a transla-
tion metric, works as an MBR metric for this task.

However, prior work using the same dataset
and model (Wiher et al., 2022) found that BEER
(Stanojević and Sima’an, 2014) underperforms
beam search. This divergence in results is likely
due to our different choices in hypothesis set – Wi-
her et al. (2022) use the evidence set plus additional

5facebook/bart-large-cnn on HuggingFace
(Wolf et al., 2020)

6facebook/mbart-large-50-many-to-many
-mmt

7We use the implementation from
sacrebleu (Post, 2018) with signature
nrefs:1|case:mixed|eff:yes|tok:13a|
smooth:exp|version:2.3.1
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Method R1 R2 RL BS

Greedy 43.98 20.88 30.88 88.04
BS (k = 5) 43.16 20.63 30.53 87.82
BS (k = 10) 42.62 20.23 30.02 87.71
DBS (k = g = 5) 43.77 20.85 30.77 87.97

MBR ROUGE-1 46.89 22.29 32.01 88.41
MBR BEER 46.31 22.36 32.02 88.38
MBR BERTSCORE 46.04 22.09 32.09 88.68

Table 2: MBR results on CNN/DM for various gain functions.
We additionally test the same non-MBR, (approximate) mode-
seeking baselines as Wiher et al. (2022). All MBR methods
outperform all non-MBR methods tested.

outputs from other decoding methods as hypothe-
ses, while we use temperature samples at τ = 0.5.
While reusing the evidence set is more efficient
than sampling a separate set of hypotheses, it leads
to performance degregation in this case; this fur-
ther emphasizes the importance of choosing the
hypothesis set in MBR.

5.3 Varying the risk distribution: lessons from
beam search don’t translate to MBR

By nature, autoregressive text generation models
suffer from length bias: sequence probability mono-
tonically decreases with increasing length, caus-
ing shorter, potentially less informative sequences
to be favored by the model distribution (Koehn
and Knowles, 2017; Stahlberg and Byrne, 2019).
For non-sampling methods such as beam search,
the sequence probabilities are generally modified
with a length-dependent term when comparing se-
quences (Murray and Chiang, 2018; Cho et al.,
2014). Hence, it stands to reason that a length-
corrected distribution with these biases alleviated
may provide a better estimate of the risk R(y′).

Vanilla Monte Carlo MBR (as depicted in Equa-
tion 6) yields an estimate of the expected risk un-
der the distribution that our evidence samples are
drawn from. To modify the distribution used in
our estimate, we turn to importance sampling, a
method for estimating the expected value of a quan-
tity under target distribution p, given samples from
proposal distribution q (Kloek and van Dijk, 1978).
For a brief tutorial on importance sampling and
description of our estimator, see Appendix A.

We take the score of a sequence to be the log
probability: We then experiment with two of the
strategies described in Murray and Chiang (2018)
for constructing the length corrected score sl(y|x):
(a) Length normalization: The model distribu-

Method R1 R2 RL BS LR

Beam search, no correction 43.88 20.96 30.77 87.79 108.00
Beam search 43.95 21.00 30.84 87.81 114.39

MBR, No correction 47.70 23.00 32.54 88.50 111.64
MBR, Length norm, β = 0.5 44.29 19.95 29.99 88.03 110.75
MBR, Length norm, β = 1.0 44.29 19.98 30.0 88.03 110.77
MBR, Length reward, γ = 0.5 47.60 22.93 32.48 88.48 112.52
MBR, Length reward, γ = 1.0 47.41 22.72 32.25 88.43 112.50

Table 3: MBR results for various length correction schemes
on CNN/DM. We report ROUGE-1, ROUGE-2, ROUGE-L,
BERTSCORE, and length ratio, respectively.

Method BLEU chrF BLEURT BS LR

Beam search, no correction 33.21 59.81 65.50 94.95 99.37
Beam search 33.06 60.05 65.60 94.96 101.58

MBR, No correction 33.56 60.00 65.53 94.96 100.04
MBR, Length norm, β = 0.5 31.14 58.53 64.70 94.71 102.82
MBR, Length norm, β = 1.0 31.09 58.51 64.68 94.71 102.60
MBR, Length reward, γ = 0.5 32.09 59.63 65.19 94.82 105.00
MBR, Length reward, γ = 1.0 31.29 59.17 64.91 94.73 105.63

Table 4: MBR results for various length correction schemes
on WMT’16 Romanian-English. We report BLEU, chrF,
BLEURT, BERTSCORE, and length ratio, respectively. We use
the chrF (Popović, 2015) implementation from sacrebleu.
We use the smaller BLEURT-20-D6 checkpoint for effi-
ciency (Sellam et al., 2020; Pu et al., 2021).

tion is smoothed with temperature T β , where
T is the sequence length and β is the length
penalty, a hyperparameter. A larger β more
heavily prioritizes longer sequences.

sl(y|x) = s(y|x)/T β (16)

(b) Length reward (He et al., 2016): A fixed
reward γ is added to the score per token gen-
erated.

sl(y|x) = s(y|x) + γT (17)

The length-corrected distribution is then pl(y|x) ∝
exp sl(y|x). We apply normalized importance
sampling (Rubinstein and Kroese, 2016) to esti-
mate the risk under the length corrected distribu-
tion, i.e. R(y′) = Ey∼pl [L(y, y

′)], given samples
drawn from the model distribution p(y|x).

We compare our MBR results against beam
search both with and without length normaliza-
tion. We use the models’ default values for length
penalty (β = 2 for BART, β = 1 for mBART).

Our results are Tables 3 and 4. In line with past
work, we find that beam search generally bene-
fits from incorporating a length penalty. However,
we find that length-corrected MBR underperforms
vanilla MBR. This may be due to a gap between the
sampling and length-correction distibutions, lead-
ing to a high-variance estimator of risk.
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However, our results are also emblematic of a
wider trend among minimum-risk techniques. Past
work has found that models trained with Minimum
Error Rate Training (Och, 2003; Shen et al., 2016),
an error-aware training method, do not require
length correction in beam search (Neubig, 2016).
Similarly, we find that MBR without length cor-
rection generates outputs relatively close in length
to the references, more so than length-normalized
beam search. This suggests that MBR may be to
some extent immune from length biases, when they
are not introduced by the MBR metric (Müller and
Sennrich, 2021).

6 MBR applications in NLP

The use of minimum Bayes risk decoding in NLP
predates these MBR-like methods; MBR has been
applied by name in NLP since the 1990s.

Historical context Minimum Bayes Risk decod-
ing has roots in Bayesian decision theory, a field
of study that dates as far back as the Age of En-
lightenment (Bernoulli, 1738; Parmigiani, 2001).
Central to Bayesian decision theory is the principle
of risk minimization: in the face of uncertainty, an
optimal decision maker should choose the option
that minimizes the amount of error they can expect
to suffer – or, in other terms, maximizes the amount
of utility they can expect to enjoy (DeGroot, 1970;
Bickel and Doksum, 1977). This is precisely the
intuition encoded in MBR (i.e. Equation 3).

Adoption in NLP MBR was adopted by the
speech and NLP communities in the 1990s and
early 2000s, finding applications in syntactical pars-
ing (Goodman, 1996; Sima’an, 2003), automatic
speech recognition (Stolcke et al., 1997; Goel and
Byrne, 2000), and statistical machine translation
(Kumar and Byrne, 2004; Tromble et al., 2008; Ku-
mar et al., 2009). Many NLP tasks during this time
relied upon graph structures as inductive biases (i.e.
parse trees or translation lattices/hypergraphs). As
such, early MBR works often used these graphical
models as hypothesis and evidence spaces. Work
on lattice MBR (Tromble et al., 2008), for instance,
treated the set of all hypotheses encoded in a word
lattice, of which there are exponentially many, as
both evidence and hypothesis sets. This is in con-
trast to most later MBR work, which operates on a
relatively small list of text outputs obtained from
a neural model. As a result, early work relied on
rather involved dynamic programming algorithms
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Figure 1: The use of MBR (by name) peaked in the mid-2010s.
This graph shows the percentage of ACL Anthology papers
that mention several MBR-related phrases by year, from 2000
to 2022.

for exact MBR decoding and were restricted to
token-factorizable metrics such as BLEU and edit
distance. Later work additionally demonstrated the
efficacy of MBR for question answering (Duan,
2013) and for joining statistical and neural ap-
proaches to translation (Stahlberg et al., 2017).

Recent usage In an effort to move past
beam search, which has well-known pathologies
(Stahlberg and Byrne, 2019), MBR has in re-
cent years resurfaced as a decision rule for text-
generation models (Eikema and Aziz, 2020). As
discussed earlier in §3, several lines of work have
sprung up investigating the properties of MBR in
modern neural text generation setups. Notably,
however, most of these works have focused on ap-
plications of the method to neural machine transla-
tion, with only a few very recent works studying
its applications in other text generation tasks (Shi
et al., 2022; Wiher et al., 2022; Suzgun et al., 2023).

Outside of these areas, the method has largely
been applied in shared task papers (e.g. Manakul
et al. (2023); Yan et al. (2022); Barzdins and Gosko
(2016)), as it provides a reliable boost in perfor-
mance. The fraction of papers in the ACL Anthol-
ogy that reference MBR (at least by this name) has
declined from its peak around 2009 (Figure 1).

7 Conclusion

Minimum Bayes Risk decoding has declined in
popularity, but the underlying concept of sam-
pling a set from a distribution and choosing an
output to minimize risk according to that set has
remained. This concept now takes many surface
forms– from self-consistency to range voting to
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output ensembles– and current research in these
areas rarely draws connections to MBR. While re-
discovery is a key part of science, so is recontex-
tualizing new methods within a broader research
narrative. This can often reveal new insights or
cast findings in a different light. For instance, the
empirical benefits of self-consistency can be justi-
fied through an MBR framing; work on extensions
to self-consistency has rediscovered other proper-
ties of MBR; and work on ensembling has raised
questions about how to weight mixtures of models
that can be reasoned about within the framework of
noisy estimates of global probability distributions.

The adoption of newer terms for MBR-like meth-
ods may be a type of terminology drift. Related
phenomena have been studied in the philosophy
of science literature, including pressures to coin
new terms (Dyke, 1992; Merton, 1957), potential
negative consequences of divergent terminology
(Calvert, 1956; Samigullina et al., 2020), and de-
creased citation of older methods in NLP (Singh
et al., 2023). For a more involved discussion of the
literature on term coining and possible connections,
see Appendix B.

Language is not static, so some degree of ter-
minology drift in scientific literature is unavoid-
able. However, recognizing the connections be-
tween modern techniques and older work is crucial
to understanding why such methods are effective.
We must not forget the lessons of the past as we
search for the methods of the future.
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A More details on importance sampling
for MBR

We present in this section the normalized impor-
tance sampling estimator of risk used in our experi-
ments in §5.3.

The core insight of importance sampling is that
we can rewrite the expected value of a random
variable f(x) under target distribution p as another
expectation under some proposal distribution q:

Ep[f(x)] =
∑

x

f(x)p(x)

=
∑

x

f(x)
p(x)

q(x)
q(x)

= Eq

[
f(x)

p(x)

q(x)

]

Importance sampling can be particularly useful
when sampling from the proposal distribution is
easy, but sampling from the target distribution is
costly or intractable; this is indeed the case for
MBR, as sampling from the length-corrected distri-
bution pl(y|x) requires computation of its partition
function, which has exponential complexity.

Hence, for MBR, if we draw evidence samples
Ye according to model distribution p(y|x) but wish
to compute the risk under some length-corrected
distribution pl(y|x), we may compute

R(y′) = Ey∼pl [L(y, y
′)]

= Ey∼p

[
L(y, y′)

pl(y|x)
p(y|x)

]

=
∑

y∈Ye

L(y, y′)
pl(y|x)
p(y|x)

=
∑

y∈Ye

L(y, y′)w(y)

where we let w(y) = pl(y|x)/p(y|x), commonly
referred to as the importance weight.

Note, however, that importance sampling re-
quires us to be able to exactly compute the prob-
abilities p(y|x) and pl(y|x); while the former can
be computed efficiently (Equation 2), the latter is
intractable, again because it requires the partition
function. What we can efficiently compute is the
unnormalized probability p̃l(y|x) = exp sl(y|x),
where sl is the length-corrected score given by ei-
ther Equation 16 or 17.

Fortunately, we can use normalized importance
sampling to obtain a consistent estimator of the

risk by adjusting importance weights (Rubinstein
and Kroese, 2016):

R(y′) = Ey∼pl [L(y, y
′)] (18)

=
Ey∼p[L(y, y

′)w̃(y)]
Ey∼p[w̃(y)]

(19)

=
∑

y∈Ye

L(y, y′) · w̃(y)∑
y∈Ye

w̃(y)
(20)

where w̃(y) = p̃l(y|x)/p(y|x). As it is the ratio of
two estimates, the normalized importance sampling
estimator is biased for finite sample sizes.
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B Contextualizing this work within
philosophy of science

In this section, we contextualize our work in the
broader framings of meta-analysis of scientific re-
search.

Patterns of citation in NLP Several factors have
been shown to correlate with citation rate in NLP,
including author geographic location (Rungta et al.,
2022), author gender (Mohammad, 2020), and pub-
lication date (Bollmann and Elliott, 2020; Singh
et al., 2023). Bollmann and Elliott (2020) con-
duct a bibliometric anaylsis of the ACL Anthology,
finding that the mean age of papers cited decreased
significantly from 2010 to 2019. Singh et al. (2023)
expand this analysis to the full anthology, finding
that, while citations of older papers rose briefly
in the mid-2010s, it has since declined, with 2021
marking a historic low for the percentage of cita-
tions that went to older papers8. They term this
citational amnesia and discuss several possible rea-
sons for the result, including the shift to neural
methods and the rise of new areas of NLP.

Our work raises another potential explanation:
some citational amnesia is due to terminology drift
over time, as old methods begin to be referred to
by newer names.

Term coining in science Work in science and
technology studies has examined the broader phe-
nomenon of term coining in science. Dyke (1992)
argues that neologisms emerge more frequently in
fields that prize novelty and see science as funda-
mentally about leaps of discovery, and fields that
are perceived as synthesizing findings from mul-
tiple fields are most likely to recycle terms from
other disciplines. She cites computer science as
an example of a field where most new terms of
art emerge from recycling common words, often
those that draw a metaphor to some basic physical
or human concept; this is reflected in the adop-
tion of the humanizing “self-consistency” and the
political-science-inspired “range voting” in decod-
ing. Raad (1989) suggests that evocative, metaphor-
laden names are more likely to emerge as a scien-
tific field grows more public-facing and in times
where many new terms are being coined; both of
these descriptors apply to modern NLP. While sev-
eral works in linguistics and STS have considered

8They define an “older paper” as one that is more than 10
years older than the paper that is citing it.

the coining of new terms for new phenomena, rela-
tively little work has focused on the divergence of
terminology for previously observed phenomena.

The consequences of divergent or distinct termi-
nology have also been studied, with differences in
terminology across fields blamed for slow adap-
tation of research to practical applications (e.g.
in studying visual distortions during plane take-
off (Calvert, 1956)). Borrowing terminology from
another language (often Latin or Greek) or from an-
other field has been described as a method to build
common ground between researchers (Samigullina
et al., 2020) and as a possibly concerning pressure
against developing language-specific scientific ter-
minology in lower-resourced languages (Hultgren,
2013). However, most work on lexical divides in
science has focused on divides across language or
field rather than divides across time in the same
field.

122



Proceedings of the the Big Picture Workshop, pages 123–134
December 7, 2023 ©2023 Association for Computational Linguistics

Analyzing Pre-trained and Fine-tuned Language Models

Marius Mosbach
Department of Language Science and Technology

Saarland University
mmosbach@lsv.uni-saarland.de

Abstract

Since the introduction of transformer-based lan-
guage models in 2018, the current generation of
natural language processing (NLP) models con-
tinues to demonstrate impressive capabilities
on a variety of academic benchmarks and real-
world applications. This progress is based on a
simple but general pipeline which consists of
pre-training neural language models on large
quantities of text, followed by an adaptation
step that fine-tunes the pre-trained model to per-
form a specific NLP task of interest. However,
despite the impressive progress on academic
benchmarks and the widespread deployment of
pre-trained and fine-tuned language models in
industry we still lack a fundamental understand-
ing of how and why pre-trained and fine-tuned
language models work, as well as they do. We
make several contributions towards improving
our understanding of pre-trained and fine-tuned
language models, ranging from analyzing the
linguistic knowledge of pre-trained language
models and how it is affected by fine-tuning, to
a rigorous analysis of the fine-tuning process
itself and how the choice of adaptation tech-
nique affects the generalization of models. We
thereby provide new insights about previously
unexplained phenomena and the capabilities of
pre-trained and fine-tuned language models.

1 Introduction

Since the introduction of transformer-based pre-
trained neural language models in 2018 (Devlin
et al., 2019; Liu et al., 2019b), the field of nat-
ural language processing (NLP) has witnessed a
paradigm shift. Instead of designing and training
highly task-specific models from scratch, the cur-
rent default approach for most NLP tasks consists
of adapting general-purpose pre-trained language
models, a process which typically requires only
very few task-specific changes to the model archi-
tecture, and therefore allows us to easily apply the
same pre-trained model to different tasks. Over
the last five years (2019 – 2023), this paradigm

Figure 1: Our contributions positioned along the pre-
train then adapt pipeline which is prevalent in modern-
day NLP. §3 is concerned with how fine-tuning affects
the linguistic knowledge of a model, §4 focuses on a
better understanding of the fine-tuning process, and §5
is concerned with the generalization of models adapted
via fine-tuning and in-context learning during inference.

shift has led to impressive progress on a large vari-
ety of downstream NLP tasks, ranging from tradi-
tional computational linguistics tasks such as part-
of-speech tagging and more challenging tasks like
natural language inference, to text-based dialogue
and assistant systems (Wang et al., 2018, 2019;
OpenAI, 2023, inter alia).

At the core of this impressive progress lies a
very simple but general pipeline which is illus-
trated in Figure 1 together with our contributions.
The first step of this pipeline, which we will refer
to as the pre-train then adapt pipeline, consists
of pre-training a (large) neural language model
on large quantities of text using self-supervised
training. Due to the discrepancy between the pre-
training objective (e.g., masked language model-
ing) and the downstream task (e.g., classification),
the pre-training step is followed by an adaptation
step which fine-tunes the pre-trained model to per-
form a specific task of interest. During fine-tuning,
we either update all of the pre-trained parameters
or update only a small fraction of them by leverag-
ing parameter-efficient fine-tuning techniques. In
both cases, however, fine-tuning results in a task-
specific model which can be used for a single task.
An alternative task-adaptation technique which was
popularized by the most recent advances in training
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pre-trained language models (Brown et al., 2020;
OpenAI, 2023), allows us to bypass the fine-tuning
step by treating the downstream task as a language
modeling problem. This process, known as in-
context learning, enables adapting a pre-trained
model without updating any parameters and allows
even non-expert users to easily leverage pre-trained
language models.

Recent advancements in in-context learning have
led to impressive progress on challenging reason-
ing benchmarks, surpassing the capabilities of fine-
tuned language models by large margins (Wei et al.,
2022a), a development which has resulted in un-
precedented interest from the general public in the
promises and potential risks associated with the use
of large language models.

2 Research objectives

The previously described pipeline is ubiquitous in
modern-day NLP and pre-trained and fine-tuned
language models are now dominating research in
academia as well as in industry. However, regard-
less of their impressive capabilities, pre-trained and
fine-tuned language models are not without short-
comings. Our contributions center around three
major shortcomings of pre-trained and fine-tuned
language models. Each of the shortcomings con-
cerns a specific component (or the interaction be-
tween two components) of the pre-train then align
pipeline (see Figure 1).

2.1 Interplay between fine-tuning and probing

It is well established that fine-tuned language mod-
els are often right for the wrong reasons and their
good performance on downstream tasks can at least
in part be explained by the tendency to pick up spu-
rious correlations during the adaptation process
(Jia and Liang, 2017; McCoy et al., 2019; Niven
and Kao, 2019; Warstadt et al., 2020, inter alia).
These results stand in contrast to a large body of
evidence that pre-trained language models encode
various forms of linguistic and factual knowledge
(Liu et al., 2019a; Tenney et al., 2019a; Petroni
et al., 2019; Goldberg, 2019; Hewitt and Manning,
2019, inter alia).

When combined, these findings require taking a
nuanced perspective on the connection between the
strong capabilities of language models, as shown
by their impressive results on common NLP tasks,
and their encoding of linguistic and factual knowl-
edge. These findings also demonstrate the need

for investigating the interplay between the linguis-
tic capabilities of pre-trained language models and
their downstream performance.

2.2 Investigating fine-tuning stability

Fine-tuned language models often exhibit striking
variation in downstream task performance when
performing small changes to the adaptation process
such as changing the random seed used for initializ-
ing model weights, the order of training examples,
or the format of a task instruction (Dodge et al.,
2020; Webson and Pavlick, 2022; Lu et al., 2022).
Large variations in fine-tuning performance are
undesirable for several reasons such as hindering
reproducible research and complicating the distinc-
tion between actual improvements due to modeling
or algorithmic advances and comparisons against
weak baselines.

Given the ubiquity of fine-tuned language mod-
els, it is therefore critical to gain a better under-
standing of the fine-tuning algorithms that are com-
monly applied to adapt language models to down-
stream tasks.

2.3 Generalization of task-adapted models

As mentioned in the previous section, the rapid
progress in training ever larger language models
has resulted in novel ways to adapt pre-trained lan-
guage models to downstream tasks by simply in-
structing them to perform a task of interest via
in-context learning. Instead of adapting a model
via gradient based fine-tuning, in-context learning
allows task adaptation via mere textual interaction
and has lead to impressive progress on challenging
reasoning benchmarks (Wei et al., 2022b,a). At
the same time, there is growing evidence that in-
context learning suffers from similar shortcomings
to fine-tuning such as their sensitivity to changes in
the data order (Min et al., 2022; Lu et al., 2022) and
difficulties with generalizing to out-of-distribution
inputs (Si et al., 2023).

Given the prevalence of task adaptation via fine-
tuning and in-context learning in modern NLP, it
is necessary to investigate their respective benefits
and downsides and provide a fair comparison of
task adaptation approaches.

3 Interplay between fine-tuning and
probing (Mosbach et al., 2020)

Our first contribution focuses on the connection be-
tween high performance on downstream tasks and
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(a) Difference in probing accuracy before and after fine-tuning
on CoLA using different models and pooling strategies.
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Figure 2: A selection of our findings. (a) shows that when comparing to a stronger pooling baseline, fine-tuning has
a negligible impact on probing performance. (b) shows that fine-tuning results in a more uniform attention which
offers an alternative explanation for improved sentence-level probing performance.

the linguistic information encoded by a pre-trained
model. Specifically, we investigate the hypothesis
that the strong capabilities of fine-tuned language
models can at least implicitly be attributed to the
vast amount of linguistic knowledge which they
encode (Pruksachatkun et al., 2020).

3.1 Previous work

A large body of previous work focused on analyz-
ing the internal representations of neural models
and the linguistic knowledge they encode via prob-
ing (Shi et al., 2016; Ettinger et al., 2016; Adi
et al., 2016; Belinkov et al., 2017; Hupkes et al.,
2018; Conneau et al., 2018; Krasnowska-Kieraś
and Wróblewska, 2019). In a similar spirit to these
first works on probing, Conneau et al. (2018) were
the first to compare different sentence embedding
methods based on the linguistic knowledge they en-
code. Krasnowska-Kieraś and Wróblewska (2019)
extended this approach to study sentence-level
probing tasks on English and Polish sentences.

Alongside sentence-level probing, a lot of recent
work (Peters et al., 2018; Liu et al., 2019a; Tenney
et al., 2019b; Lin et al., 2019; Hewitt and Manning,
2019) has focused on token-level probing tasks in-
vestigating more recent contextualized embedding
models such as ELMo (Peters et al., 2018), GPT
(rad), and BERT (Devlin et al., 2019). Two of the
most prominent works following this methodology
are Liu et al. (2019a) and Tenney et al. (2019b).

Limitations In contrast to our work, most studies
that investigate pre-trained contextualized embed-

ding models focus on pre-trained models and not
fine-tuned ones. Therefore, little is known about
the interaction between fine-tuning and probing.
In our work, we aim to assess how probing per-
formance changes with fine-tuning and how these
changes differ based on the model architecture, as
well as probing and fine-tuning task combination.

3.2 Our contributions

Setup We study three different pre-trained lan-
guage models: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019b), and ALBERT (Lan
et al., 2020), and investigate via sentence-level
probing (Conneau et al., 2018) how fine-tuning
them on downstream tasks affects the linguistic
information encoded in their representations.

We fine-tune on four datasets: CoLA (Warstadt
et al., 2018), SST-2 (Socher et al., 2013), RTE (Da-
gan et al., 2005), SQuAD (Rajpurkar et al., 2016),
and perform sentence-level probing experiments on
three tasks from the SentEval probing suite (Con-
neau et al., 2018), each of which targets a differ-
ent level of linguistic competence: bigram-shift,
semantic-odd-man-out, and coordination inversion.

To evaluate the impact of fine-tuning on the lin-
guistic information encoded by a model, we com-
pare probing results before and after fine-tuning.

Fine-tuning mostly affects upper layers Com-
paring differences in probing performance before
and after fine-tuning, we observe that fine-tuning
mostly interacts with the upper layers of the pre-
trained model. Changes in probing performance
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are typically larger for higher layers and this find-
ing is consistent across all models and tasks we
experiment with.

Positive effect on probing performance is
marginal When following the default strategy
for sentence-level probing, i.e., constructing sen-
tence representations based on the cls-token of the
last hidden layer, we indeed observe large posi-
tive changes in probing performance due to fine-
tuning, suggesting the encoding of new linguistic
information during fine-tuning. However, when
we change the pooling approach during probing to
mean-pooling, the positive impact of fine-tuning
on probing becomes negligible. This effect is illus-
trated in Figure 2a. For all models, we observe a
large increase in probing performance when using
cls-pooling to construct sentence representations.
However, with mean-pooling, the difference in
probing accuracy between the pre-trained and fine-
tuned models becomes marginal and fine-tuning
even hurts probing performance in lower layers.

Fine-tuning affects attention distribution To
better understand the origin of the positive improve-
ments in probing accuracy for cls-pooling, we in-
vestigate the attention distribution of the cls-token
at every layer. We observe a large increase in en-
tropy in the last three layers when fine-tuning on the
cls-token (orange bars in Figure 2b). This is con-
sistent with our hypothesis that during fine-tuning,
the cls-token learns to take more sentence-level in-
formation into account, thus spreading its attention
over more tokens, which offers an alternative ex-
planation to why fine-tuning has a positive impact
on probing performance.

3.3 Discussion

Our work provides novel insight into how to per-
form a fine-grained evaluation of the linguistic
knowledge of pre-trained language models and on
the interaction between probing performance and
fine-tuning. Our findings demonstrate that there
is no straightforward causal relationship between
the linguistic information encoded by a model and
its performance on NLP downstream tasks, which
calls for a careful interpretation of changes in prob-
ing performance as a result of fine-tuning.

4 Investigating fine-tuning stability
(Mosbach et al., 2021)

Our next contribution focuses on the second step
of the pre-train then adapt pipeline. We analyze
the fine-tuning process itself and study the intrigu-
ing finding that fine-tuned models tend to exhibit
a large variance in performance, a phenomenon
commonly referred to as fine-tuning instability.

4.1 Previous work

Previous work (Devlin et al., 2019; Lee et al., 2020;
Dodge et al., 2020) has observed large differences
in downstream task performance simply when fine-
tuning models with different random seeds. Devlin
et al. (2019) report instabilities when fine-tuning
BERT-large on small datasets and resort to perform-
ing multiple restarts of fine-tuning and selecting the
model that performs best on the development set.
Dodge et al. (2020) performed a large-scale empir-
ical investigation of the fine-tuning instability of
BERT and found dramatic variations in fine-tuning
accuracy across multiple restarts and argue how
it might be related to the choice of random seed
and the dataset size. Few approaches have been
proposed to address the observed fine-tuning in-
stability. Phang et al. (2018) study intermediate
task training before fine-tuning with the goal of im-
proving performance on the GLUE benchmark and
find that their proposed method leads to improved
fine-tuning stability. Lee et al. (2020) propose a
new regularization technique termed Mixout which
improves stability during fine-tuning.

Limitations While previous work on fine-tuning
instability commonly states two hypotheses for the
observed instability: catastrophic forgetting (Lee
et al., 2020) and the small size of the training data
(Dodge et al., 2020), there is no previous work that
provides a sufficient understanding of why fine-
tuning is prone to instability in the first place.

4.2 Our contributions

Motivated by the anecdotal observations stated in
previous work, we perform a rigorous investigation
of fine-tuning instability in order to determine its
root cause.

Setup We analyze three different pre-trained
language models: BERT (Devlin et al., 2019),
RoBERTa (Liu et al., 2019b), and ALBERT (Lan
et al., 2020) and fine-tune them on widely used
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Figure 3: Previous hypotheses fail to explain fine-tuning stability. (a) shows average training loss and validation
accuracy across 3 failed fine-tuning runs on RTE. (b) shows validation performance of models fine-tuned on
down-sampled CoLA.

datasets from the GLUE benchmark (Wang et al.,
2018). We summarize our contributions below.

Previous hypotheses fail to explain instability
First, we show that both catastrophic forgetting and
the small size of the training data fail to explain
the observed instability phenomenon. As shown
in Figure 3a, failed fine-tuning runs in fact do not
learn at all, violating the core assumption of catas-
trophic forgetting that the model performs well on
the new task.

Regarding the small size of the training data, Fig-
ure 3b shows that fine-tuning on a down-sampled
dataset for a small number of epochs does increase
variance on the downstream task, however simply
training for more iterations fully recovers the origi-
nal variance in fine-tuning performance. This sug-
gests that the observed instability on small datasets
is connected to the number of training steps and
not the size of the training set.

Optimization difficulties cause instability Next,
we demonstrate that the observed instability is
caused by optimization difficulties during fine-
tuning that lead to vanishing gradients and models
converging to sub-optimal local minima (illustrated
in Figure 4). As we show in our work, this behav-
ior is further amplified by choosing too large step
sizes, fixing the number of epochs, and not warm-
ing up learning rates during the initial phase of
fine-tuning.

A strong baseline for fine-tuning Based on our
analysis, we present recommendations and a simple
but strong baseline approach for fine-tuning. We

Approach
RTE MRPC CoLA

std mean max std mean max std mean max

Devlin 4.5 50.9 67.5 3.9 84.0 91.2 25.6 45.6 64.6
Lee 7.9 65.3 74.4 3.8 87.8 91.8 20.9 51.9 64.0

Ours 2.7⋆ 67.3 71.1 0.8⋆ 90.3 91.7 1.8⋆ 62.1 65.3

Table 1: Standard deviation, mean, and maximum
performance on the development set of RTE, MRPC,
and CoLA when fine-tuning BERT over 25 random
seeds. Standard deviation: lower is better, i.e., fine-
tuning is more stable. ⋆ denotes significant difference
(p < 0.001) when compared to the second smallest
standard deviation.

recommend using small learning rates combined
with warmup to avoid vanishing gradients during
the initial fine-tuning phase. Additionally, when
fine-tuning on small datasets, we suggest not fixing
the number of epochs a priori (as was common
practice) but rather fix the number of training steps.

As can be seen in Table 1, our baseline makes
fine-tuning pre-trained language models signifi-
cantly more stable than previously proposed ap-
proaches while at the same time maintaining or
even improving performance.

4.3 Discussion
Our work answers an open question about the
instability of fine-tuning and shows that neither
catastrophic forgetting nor small dataset sizes suffi-
ciently explain fine-tuning instability. Instead, our
analysis reveals that fine-tuning instability can be
characterized by two distinct problems: (1) opti-
mization difficulties early in training, characterized
by vanishing gradients, and (2) differences in gen-
eralization, characterized by a large variance of de-
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Figure 4: Fine-tuning instabilities are characterized by vanishing gradients (a) and convergence to sub-optimal local
minima. The 2D loss surface in (b) is spanned by δ1 = θf − θp and δ2 = θs − θp on RTE.

velopment set accuracy for runs with almost equiv-
alent training performance. Based on our analysis,
we propose a simple but strong baseline strategy
for fine-tuning BERT which outperforms previous
works in terms of fine-tuning stability while main-
taining or even increasing overall performance.

5 Generalization of task-adapted models
(Mosbach et al., 2023)

Our final contribution is concerned with the last
step of the NLP pipeline, namely, inference.
We compare the generalization behavior of task-
adaptation via few-shot fine-tuning and in-context
learning (ICL), which has recently gained popular-
ity over fine-tuning due to its simplicity and strong
performance on challenging reasoning tasks.

5.1 Previous work
Brown et al. (2020) compared GPT-3’s few-shot
in-context learning performance with fine-tuned
language models trained in the fully supervised set-
ting and found that both approaches lead to similar
results in question answering. More recently, Liu
et al. (2022) compared parameter-efficient few-shot
FT of T0 (Sanh et al., 2022) to in-context learning
with GPT-3, finding that their parameter-efficient
fine-tuning approach outperforms in-context learn-
ing when evaluated on in-domain data. Focusing on
out-of-domain (OOD) performance, Si et al. (2023)
investigated the generalization of GPT-3 along var-
ious axes, including generalization under covariate
shift. They observed much better OOD perfor-
mance for in-context learning than fine-tuning, con-
cluding that in-context learning with GPT-3 is more

robust than fine-tuning using BERT or RoBERTa.
Another work that compares the OOD generaliza-
tion of different adaptation approaches is Awadalla
et al. (2022). They investigate the robustness of
question answering models under various types of
distribution shifts and find that in-context learning
is more robust to distribution shifts than fine-tuning.
Moreover, they argue that for fine-tuning, increas-
ing model size does not have a strong impact on
generalization.

Utama et al. (2021) investigate the OOD general-
ization of encoder-only models adapted via pattern-
based few-shot fine-tuning. For MNLI and HANS,
they find that these models adopt similar inference
heuristics to those trained with vanilla fine-tuning
and hence perform poorly OOD. They observe that
models rely even more on heuristics when fine-
tuned on more data. Lastly, Bandel et al. (2022)
show that masked language models can generalize
well on HANS if fine-tuned for a sufficient number
of steps.

Limitations A common limitation in the previ-
ous literature is the comparisons of generalization
abilities under unequal conditions. Most studies ei-
ther compare the in-context learning abilities of
large models (e.g., GPT-3, 175B; Brown et al.,
2020) to the fine-tuning abilities of much smaller
models (e.g., RoBERTa-large, 350M; Liu et al.,
2019b), or compare models fine-tuned on large
datasets to few-shot in-context learning (Si et al.,
2023). These comparisons raise the question of
whether fine-tuning leads to weaker OOD general-
ization than in-context learning, or whether this is

128



0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9
ou

t-
of

-d
om

ai
n

ac
cu

ra
cy

125M

350M

1.3B

2.7B

6.7B

13B

30B

(a) In-context learning

0.4 0.5 0.6 0.7 0.8 0.9
in-domain accuracy

0.4

0.5

0.6

0.7

0.8

0.9

ou
t-

of
-d

om
ai

n
ac

cu
ra

cy

(b) Fine-tuning

Figure 5: In-domain (RTE) and out-of-domain performance (HANS) for in-context learning and fine-tuning with
OPT models of various sizes. We fine-tune models using pattern-based fine-tuning. We report results using 10
different data seeds. When using 16 samples, in-context learning’s performance with a 30B model is comparable to
that of fine-tuning with smaller models (6.7B) and for most model sizes, fine-tuning outperforms in-context learning.
− in the x- and y-axes indicates majority class accuracy.

just a byproduct of the experimental setup.

5.2 Our contributions

In our work, we investigate whether the observed
weaker out-of-domain generalization of fine-tuned
models by previous work is an inherent property of
fine-tuning or an artifact of their experimental setup
and provide a fair comparison between the gener-
alization of fine-tuning and in-context learning.

Setup For our experiments, we consider few-
shot pattern-based fine-tuning (Schick and Schütze,
2021; Gao et al., 2021, inter alia) and in-context
learning (Brown et al., 2020). We perform a
fair comparison of task adaptation focusing on in-
domain and OOD generalization under covariate
shift (Hupkes et al., 2022). We run all experiments
using 7 different OPT models (Zhang et al., 2022)
ranging from 125 million to 30 billion parameters.
During fine-tuning, we update all model parameters
if not stated otherwise.

Fine-tuned models can generalize well OOD
For our first experiment, we compare fine-tuning
and in-context learning using 16 examples for each.
We plot the results of this experiment in Figure 5.
For in-context learning, we observe an increase in
in-domain performance with model size and non-
trivial OOD performance only for the largest model
(30B). For fine-tuning, we similarly observe that

PBFT

125M 350M 1.3B 2.7B 6.7B 13B 30B

IC
L

125M −0.00 0.01 0.02 0.03 0.12 0.14 0.09
350M −0.00 0.01 0.02 0.03 0.12 0.14 0.09
1.3B −0.00 0.01 0.02 0.03 0.12 0.14 0.09
2.7B −0.00 0.01 0.02 0.03 0.12 0.14 0.09
6.7B −0.00 0.01 0.02 0.03 0.12 0.14 0.09
13B −0.04 −0.02 −0.01 −0.00 0.09 0.11 0.05
30B −0.11 −0.09 −0.08 −0.08 0.02 0.03 −0.02

Table 2: Difference between average out-of-domain
performance of ICL and FT on RTE across model
sizes. We use 16 examples and 10 random seeds for both
approaches. We perform a Welch’s t-test and color cells
according to whether: ICL performs significantly better
than FT, FT performs significantly better than ICL. For
cells without color, there is no significant difference.

in-domain performance increases with model size.
However, as model size increases, OOD perfor-
mance increases as well, demonstrating that even in
the challenging few-shot setting, fine-tuned models
can generalize OOD. In Table 2 we provide signif-
icance tests that further support our findings. In-
context learning only outperforms fine-tuning when
comparing large models adapted via in-context
learning to small fine-tuned models, which is un-
fair. Comparing models of the same size however,
reveals that fine-tuned models either perform sig-
nificantly better or similarly to models adapted via
in-context learning.
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Generalization improves with more data In
contrast to in-context learning, where the maxi-
mum number of demonstrations is limited by the
context size of a model, fine-tuning allows us to
perform task adaptation using arbitrary amounts of
training data. Therefore, we analyze how the rela-
tionship between in-domain and OOD performance
is impacted by training on more data. For the small-
est models, we find that while in-domain perfor-
mance increases with more training data, OOD
performance remains low, which is consistent with
previous work (Utama et al., 2021). However, for
larger models, OOD performance improves as the
amount of training data increases.

Findings generalize beyond OPT To test the
generality of our findings beyond the OPT models,
we run the same experiments using Pythia models
of different sizes (Biderman et al., 2023). Simi-
larly to OPT, we observe a clear effect of model
size on both in-domain and OOD performance. For
most model sizes, fine-tuning leads to significantly
better OOD performance than in-context learning.
Additionally, both the in-domain and OOD perfor-
mance of Pythia models improve drastically as we
fine-tune on more data.

Findings generalize to parameter-efficient
fine-tuning We additionally experiment with
parameter-efficient fine-tuning via LoRA (Hu et al.,
2022) to demonstrate the generality of our find-
ings beyond full fine-tuning. Using LoRA makes
adaptation via fine-tuning more similar to adapta-
tion via in-context learning as it allows the re-use
of a large fraction of the weights of a pre-trained
language model across tasks. Figure 6 shows that
fine-tuning via LoRA leads to similar performance
as training all parameters (shown in Figure 5b)
which demonstrates the generality of our findings
beyond a specific fine-tuning method.

5.3 Discussion
Our findings are an important first step towards a
better understanding of the fundamental differences
in model behavior between different task adapta-
tion approaches. We demonstrate that fine-tuned
language models can generalize well both in and
out-of-domain. In fact, we find that the generaliza-
tion of fine-tuning and in-context learning is highly
similar as both approaches exhibit large variation
in performance and strongly depend on properties
such as model size and the number of examples.
Hence, our work provides evidence that the poor
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Figure 6: In-domain and OOD performance of
parameter-efficient fine-tuning via LoRA on RTE. − in
the x- and y-axes indicates the accuracy of the majority
class label.

out-of-domain generalization of fine-tuned models
observed in previous work is not a fundamental
flaw of fine-tuning but rather a result of their ex-
perimental setup, highlighting that truly robust task
adaptation remains a challenge.

6 The bigger picture

Adapting pre-trained language models via fine-
tuning or in-context learning is an integral part
of modern-day NLP. While from late 2018 to
mid-2020, fine-tuning was the dominating strategy
for task adaptation, i.e., converting a pre-trained
(masked) language model into a classifier, the in-
troduction of GPT-3 (Brown et al., 2020) in 2020
and the demonstration of its in-context learning
abilities resulted in an increasing interest in in-
context learning as a new promising paradigm for
task adaptation. Recently however, driven by work
on instruction fine-tuning (Sanh et al., 2022; Wang
et al., 2022, inter alia) and alignment to human
preferences (Ouyang et al., 2022; Zhou et al., 2023,
inter alia), fine-tuning1 is again gaining significant
interest from the NLP research community.

Given the ubiquity of language model adaptation
in modern-day NLP and machine learning research,
it is crucial to make progress towards a better under-
standing of the inner workings of commonly used

1Due to the dominance of decoder-only language mod-
els fine-tuning is however no longer used to explicitly adapt
language models into classifiers but is instead used to adapt
language models to assign higher probability to specific distri-
butions, e.g., instructions and information seeking questions.
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adaptation techniques as well as their limitations.
The work presented in this paper demonstrates how
empirical research can help to achieve this goal
and hopefully serves as an inspiration for future re-
search that critically investigates the rapid progress
made along the pre-train then adapt pipeline.

7 Summary

Our work makes several contributions towards im-
proving our understanding of pre-trained and fine-
tuned language models by carrying out a detailed
analysis of various parts of the pre-train then adapt
pipeline. Our contributions range from analyzing
the linguistic knowledge of pre-trained language
models and how it is affected by fine-tuning, to a
rigorous analysis of the fine-tuning process itself
and how the choice of adaptation technique affects
the generalization of models. We provide new in-
sights about previously unexplained phenomena
and the capabilities of pre-trained and fine-tuned
language models and overall a better understanding
of a crucial component of the modern NLP toolbox.
Beyond our empirical contributions, we hope that
our work demonstrates the importance of taking
a critical perspective on previous work and shows
that despite the rapid progress in our field, there is a
need for work that critically analyzes this progress.
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