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Abstract

We present a research narrative aimed at en-
abling language technology for multiple natu-
ral language generation (NLG) tasks in low-
resource languages (LRLs). With approxi-
mately 7,000 languages spoken globally, many
lack the resources required for model training.
NLG applications for LRLs present two addi-
tional key challenges: (i) The training is more
pronounced, and (ii) Zero-shot modeling is a vi-
able research direction for scalability; however,
generating zero-shot well-formed text in target
LRLs is challenging. Addressing these con-
cerns, this narrative introduces three promising
research explorations that serve as a step toward
enabling language technology for many LRLs.
These approaches make effective use of transfer
learning and limited supervision techniques for
modeling. Evaluations were conducted mostly
in the zero-shot setting, enabling scalability.
This research narrative is an ongoing doctoral
thesis'.

1 Introduction

Recently, there has been remarkable progress in
natural language processing (NLP) research, pri-
marily due to advancements in large pre-trained
language models (PLMs). The global linguistic
landscape comprises approximately 7,000 spoken
languages worldwide?. A notable disparity is evi-
dent in NLP research, with the majority of studies
conducted on English data (Bender, 2019; Joshi
et al., 2020b). This is concerning as the vast ma-
jority of the global population — roughly 95% —
does not speak English as their primary language,
and a staggering 75% do not speak English at all3.
According to Ruder (2022), out of the 7,000 lan-
guages, approximately 400 languages have more
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than 1 million speakers, and about 1,200 languages
have more than 100,000 speakers. Despite this,
only around 100 languages are incorporated into
large pre-trained models, and limited resources are
available for building NLP models for LRLs. Fur-
thermore, a study presented at ACL 2008 (Bender,
2011) revealed that 63% of all papers focused only
on English. A more recent study during ACL 2021
(Ruder et al., 2022) concluded that nearly 70%
of the papers were evaluated on English. Even a
decade later, there has been little change.

The NLP application involving text generation
(NLG tasks) in LRLs presents additional challenges
in model development: (1) The scarcity of NLG
resources for model development in LRLs is more
pronounced than other NLP tasks. (2) LRLs often
exhibit a long tail, with many lacking annotated
data. The preferred solution is zero-shot model-
ing, though this approach introduces additional
challenges for cross-lingual generation tasks. It
has been observed that zero-shot generation mod-
els frequently encounter issues like catastrophic
forgetting (van de Ven et al., 2022) or accidental
translation (Xue et al., 2021). Due to these prob-
lems, the zero-shot generated text is either code-
mixed or not in the intended target language. (3)
LRL modeling typically employs a transfer learn-
ing setup, where supervision is transferred from
HRLs to LRLs. However, performance tends to
degrade for LRLs that are different from their HRL
and (4) Many LRLs lack monolingual or paral-
lel data, and their representations are absent from
PLMs. These LRLs are referred to as Extremely
LRLs (ELRLs) or dialects. Despite having mil-
lions of speakers, there is a noticeable absence of
NLP technology for these ELRLs. This thesis is a
step towards addressing these challenges and aims
to enable language technology for LRLs, thereby
democratizing NLP research for the general popu-
lation/audience.

Prior to the emergence of transformers-based
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PLMs, most works in cross-lingual generation were
primarily reliant on machine translation (MT) sys-
tems. Existing models either directly employed the
MT system within the modeling (Wan et al., 2010;
Shen et al., 2018) or generate training data using
MT (Kumar et al., 2019; Chi et al., 2020) to develop
models. This dependence on MT not only limits
scalability but also propagate error with translation.
To address these limitations, multilingual PLMs
(mPLMs) have emerged (Zhao et al., 2023), where
a large set of languages share a common latent rep-
resentation space. The cross-lingual models built
on top of these mPLMs lead to the remarkable ad-
vancement (Hu et al., 2020; Artetxe et al., 2020) in
the cross-lingual transfer in zero-shot or few-shot
settings. However, most of these advancements
are limited to NLU tasks. Furthermore, existing
cross-lingual NLG models incorporate one or more
challenges mentioned above.

With this thesis, our contributions are as follows:

1. We proposed ZmBART framework (Maurya
etal., 2021) to mitigate the catastrophic forget-
ting and accidental translation issues and en-
able well-formed zero-shot text generation in
LRLs. We evaluated the model’s performance
across 18 task-setup combinations, including
four NLG tasks in three typologically diverse
languages.

2. We proposed the first meta-learning ap-
proach for cross-lingual generation in LRLs
(MetaXnLg; Maurya and Desarkar (2022)). It
is based on language clustering to improve the
cross-lingual transfer, even for distant LRLs.
The model is evaluated across 30 languages,
two tasks, and five datasets.

3. We proposed a character span noise
augmentation-based model (CHARSPAN;
Maurya et al. (2023)) to enable machine
translation for closely related HRLs and
ELRLs/dialects. It leverages surface-level
lexical similarity and uses noise augmentation
as a regularization technique to enable zero-
shot translation. The model’s performance
was evaluated across 12 ELRLs from three
typologically diverse language groups.

2 The Big Picture

In this section, we provide high-level details of the
proposed models. This also includes insights into

how we build more recent proposed models based
on earlier models and advance the field. Then, we
look back and position our research efforts by con-
textualizing a broader spectrum of multilingual re-
search, specifically for low-resource language gen-
eration. Finally, we list our learnings from failed
and successful modeling.

2.1 Thesis Overview: Connecting the Dots

Overall, our research contribution includes
the development of ZmBART, MetaXnrg, and
CHARSPAN models for NLG tasks in LRLs. The
primary focus is to extend the English NLG models
to LRLs through cross-lingual transfer and gener-
ation. These models are developed and evaluated
in a zero-shot setting, increasing language cover-
age. Typical cross-lingual modeling includes fine-
tuning multilingual PLMs with the task-specific
high-resource English language and learned super-
vision for transfer to LRLs (referred to as cross-
lingual transfer). Then, evaluate the model with a
zero-shot setting for target LRLs. In NLG, there
are two challenges: mitigation of the CF/AT prob-
lem in zero-shot text generation and improvement
of cross-lingual transfer. The effort with the Zm-
BART model mitigates the CF/AT issue and pro-
duces well-formed zero-shot generation in LRLs.
MetaXny gbuilds on top of the ZmBART model and
proposes a novel approach to improve cross-lingual
transfer, leading to better performance. Finally,
with the CHARSPAN model, we design another
approach to enhance cross-lingual transfer. This
effort scales the coverage to languages with very
limited linguistic resources ( i.e., ELRLSs) and is
similar to some HRLs. In summary, with these col-
lective efforts, we advance research in low-resource
language generation by mitigating CF/AT, improv-
ing cross-lingual transfer, and increasing language
coverage to ELRLs.

2.2 Position of the Thesis: Related Work

The research presented in this narrative spans the
past few years, during which multilingual Pre-
trained Language Models (PLMs) emerged. How-
ever, there have been limited concurrent efforts in
the field of low-resource language generation. Be-
fore the ZmBART model, most research in this area
primarily relied on MT (Wan et al., 2010; Shen
et al., 2018), parallel (Chi et al., 2020) or task-
specific data for LRLs (Kumar et al., 2019), and
did not utilize multilingual PLMs. Few attempts
were made using Adapter-based models (Houlsby



et al., 2019; Pfeiffer et al., 2021), but they were of-
ten limited to MT tasks and may not have zero-shot
capabilities. After ZmBART, (1)Vu et al. (2022)
presented the alternate method with prompt tuning
and compared it to the ZmBART, (2) Li and Mur-
ray (2023) proposed a model based on regulariza-
tion techniques and (3) Pfeiffer et al. (2023) intro-
duced a method for disentangling language-specific
information from language-agnostic information.
These models mitigate the CF/AT problems and
implicitly help improve the cross-lingual transfer.
However, their performance gains were limited
compared to MetaXyy gwhich explicitly leverages
meta-learning. Furthermore, there are state-of-the-
art (SOTA) approaches (Aepli and Sennrich, 2022;
Provilkov et al., 2020; Patil et al., 2022) for en-
hancing cross-lingual transfer for MT for ELRLs.
Our recently proposed CHARSPAN model has out-
performed existing models and established it as a
new SOTA solution. In summary, there has been
progress in low-resource language generation, and
our models have either pushed this research space
or currently represent the SOTA model in the field.

2.3 Learning from Failures and Successes

With many failed and limited successful experi-
ments, here are our key observations and learn-
ing: (1) NLG modeling is challenging in LRLs
setup, but evaluations are even more challenging.
(2) Effective cross-lingual transfer models consider
various knowledge, such as semantics, syntax, to-
kenization, lexical details, typology, and demo-
graphics. (3) Better modeling can extend the exist-
ing multilingual PLMs capabilities beyond the lan-
guages they are trained and (4) Promising research
directions to increase language technology cover-
age are multi-task and adaptive learning among
others.

3 Mitigating Catastrophic Forgetting to
Enable Zero-shot Language Generation

Our research mission to enable language technol-
ogy for NLG tasks in LRLs started with ZmBART
(Maurya et al., 2021) work. ZmBART is an un-
supervised cross-lingual transfer and generation
framework that focuses on generative tasks for
LRLs in zero-shot and few-shot settings. A typ-
ical zero-shot cross-lingual generation modeling
involves two main steps: (1) Training with HRLs:
Train (fine-tune) a model (PLM) using a large an-
notated dataset from HRLs, typically English. For

instance, training with English Abstractive Text
Summarization (ATS) dataset. (2) Zero-shot gener-
ation in LRLs: Utilize the trained model for zero-
shot inference. For instance, when given input in an
LRL (e.g., Hindi), the model generates a summary
in the same LRL (Hindi). Unlike natural language
understanding (NLU) tasks, the cross-lingual gen-
eration task in zero-shot scenarios is particularly
challenging. This is because the zero-shot gen-
erated text needs to be in the target LRL, which
generally suffers from Catastrophic Forgetting (CF;
van de Ven et al. (2022)) or Accidental Translation
(AT; Xue et al. (2021)) problems. Due to this, the
model fails to generate text in the target LRL or pro-
duce code-mixed output with both high-resource
and LRLs. With this work, our objective is to al-
leviate CF and AT problems with an unsupervised
framework, meaning we do not rely on any parallel
or pseudo-parallel/back-translated data. Instead,
we harness multilingual pre-trained checkpoints,
specifically the mBART model (Liu et al., 2020),
to seamlessly enable the generation of well-formed
text in LRLs across multiple generative tasks.

Prior to ZmBART, existing cross-lingual gen-
eration models were grounded with either ma-
chine translation (MT) or parallel/back-translated
datasets. Wan et al. (2010) employed the MT
pipeline to facilitate cross-language document sum-
marization. This involves the translation of non-
English input into English. Subsequently, the En-
glish ATS model was employed to procure the sum-
maries, which were finally translated back into non-
English languages. Similar approaches are adapted
by Shen et al. (2018) and Duan et al. (2019). This
direction is not feasible as MT systems are not avail-
able for many LRLs and the imperfect translations
propagate errors. Considering this, Kumar et al.
(2019) and Chi et al. (2020) use back-translated
(need MT system) and parallel datasets to develop
the few-shot cross-lingual question and answering
(Q&A) and zero-shot cross-lingual ATS, respec-
tively. These approaches require an MT system or
annotated dataset which limits the model develop-
ment to a few HRLs. Unlike these, we propose
ZmBART, the first unsupervised scalable model
based on mBART specialized for zero-shot cross-
lingual transfer and generation. Additionally, we
have also created HiDG*, a high-quality distractor
generation dataset in the Hindi language.

“Dataset and code are available here: https://github.
com/kaushal@494/ZmBART
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3.1 Methodology

In ZmBART, we mitigate Catastrophic Forgetting
and Accidental Translation problems by adapting
three key modeling modifications, details are pre-
sented below:

3.1.1 Unsupervised Auxiliary Task

The mBART model is pre-trained with denois-
ing objectives (masking and sentence permutation)
with datasets from 25 languages that encode multi-
lingual latent representation. This can not be used
directly for cross-lingual generation because the
model is trained with denoising objectives that
do not directly follow auto-regressive decoding,
thereby causing a mismatch between pretraining
and fine-tuning objectives (Chi et al., 2020; Devlin
et al., 2019). Considering this, the auxiliary task
is formulated with the following objectives: (1)
should only utilize monolingual data for selected
languages, (2) should enhance the latent represen-
tation space for selected languages, (3) maintain
close proximity between the auxiliary task objec-
tive and NLG tasks and (4) aid in mitigating CF/AT
issues. Moreover, the auxiliary task serves as an
adaptive pre-training step, facilitating better warm-
start of the mBART model for downstream natural
language generation (NLG) tasks. With these, we
have proposed the following auxiliary task: Given
an input passage, generate a few random sentences
(called rand-summary) derived from the passage.
Concretely, we take passages with 5-25 sentences
as input and 20% of the sentences randomly (1-5
sentences) as the target. We concatenate monolin-
gual datasets for selected languages and fine-tune
the mBART model (adaptive training) with this
auxiliary task to obtain the ZmBART model.

3.1.2 Freezing Model Components

During supervised training - fine-tuning ZmBART
with task-specific HRL data - we freeze all word
embeddings and the parameters of the decoder lay-
ers. This approach is adapted to ensure that the
ZmBART’s context and latent space are not over-
written during supervised training.

3.1.3 Adding Language Tag

We have made modifications to the language tag of
the mBART model for the cross-lingual generation
framework. We concatenate <fxx><2xx> tag in the
source side of the training data, where <xx> is the
ISO-2 language code. The language tag act as a

flag to trigger the zero-shot generation in target
<xx>languages.

The ablation study provides evidence that all
three components are necessary to effectively mit-
igate CF/AT problems and enable structured text
generation in a zero-shot setting.

3.1.4 Model Training and Generation

We consider four tasks: Question Generation (QG),
News Headline Generation (NHG), Abstractive
Text Summarization (ATS), and Distractor Genera-
tion (DG), in three typologically diverse languages.
The HRL is English (en), and the LRLs are Hindi
(hi) and Japanese (ja). First, the mBART model
undergoes adaptive pre-training with the auxiliary
task to obtain the ZmBART model. Then for each
NLG task, the ZmBART model is then fine-tuned
using the task-specific HRLs data while freezing
model components to obtain a task-specific fine-
tuned model. This model is used for zero-shot or
few-shot (1000 examples) generation in LRLs.

3.2 Experimental Setup and Results

News Passage: G&0T HRER & gerar foret 7 TR 9eif 3 WY I gous § Lhar &) 06
STTHATE S B T YR & T Yaall A I % 9 YINS H U SfITHAId AR T 3. T8
qols Mw%.mﬁmﬁw%aw?&mwﬁwﬁ 3R 50 gu
argiamﬂézﬁ%@aaﬁﬂs%anénwmwé%wﬂw-q-m%amm
|

E-(qTranslaﬁon: A militant was killed on Friday in an ongoing encounter with security forces in
Pulwama district of eroded Kashmir. A police spokesman said a militant was killed in the
encounter. The encounter is still going on, the spokesperson said, adding that an encounter
between security forces and hidden militants started this morning at Chandgam in
Pulwama. Two LeT militants are believed to be hiding in the village.)

Headline (ground truth): m%mﬁﬂ?ﬁg. TF TP @

(Translation: Encounter in Pulwama, Kashmir, a terrorist killed)

Headline (zero-shot generated output:) gaarmﬁarﬁgzﬂsﬁ TF AHTHATE! e

(Translation: A terrorist killed in ongoing encounter in Pulwama )

Figure 1: Zero-shot news headline generation from Zm-
BART in the Hindi language

We have considered three strong baseline mod-
els: MT-Pipeline, ZmBART with Masking Aux-
iliary Task (MAT), and a model inspired by Chi
et al. (2020). In total, we conducted experiments
across 18 task-setup combinations. The proposed
models and baseline models underwent evaluation
using three automated evaluation metrics (BLEU,
ROUGE-L, and BERTScore) and four manual eval-
uation metrics (Fluency, Relatedness, Correctness,
and Distractibility). The detailed results are pre-
sented in (Maurya et al., 2021). Here, we provide a
summary of the major results and observations: (1)
The ZmBART model consistently outperformed all
baseline models across tasks, LRLs, and automated
metrics in the zero-shot setting. The few-shot train-
ing further boosts the performance. (2) Human
evaluation scores exhibited a correlation with au-
tomated scores, reinforcing the reliability of the



evaluation process. (3) Among the baselines, the
MAT baseline demonstrated superiority, highlight-
ing the importance of an auxiliary task in enriching
and mitigating CF/AT problems. However, our pro-
posed auxiliary task exhibited even better results.
(4) An ablation study was conducted, indicating
that different modeling components (auxiliary task,
language tag, and freezing different model compo-
nents) are necessary to ensure effective zero-shot
text generation. A sample generation example is
presented in Fig. 1.

3.3 Insights and Limitations

As the auxiliary task is similar to NHG or ATS
tasks, it may appear that the auxiliary task is biased
towards these tasks, which leads to better perfor-
mance. However, the model performs equally well
for very different tasks like QG and distractor gen-
eration (generating incorrect options for MCQ read-
ing comprehension) which nullifies this assump-
tion. We have not modified any single model pa-
rameters for different tasks. We also experimented
with different objectives for auxiliary tasks; how-
ever, the rand-summary task performed best. We
explored the multiple continual learning techniques
(van de Ven et al., 2022) to mitigate CF; however,
freezing model components work best. We ob-
served that several generated questions in zero-shot
start with English *wh-words,” and the first word
is code-mixed. This is possibly due to English in-
terrogative sentences often introducing *wh-words’
at the beginning, which may not be the case with
Hindi and Japanese. However, the high BERTScore
indicates semantic correctness. Furthermore, such
code-mixing in human evaluation is somewhat ac-
ceptable with Hindi evaluators; however, it is not
acceptable with Japanese evaluators, resulting in
lower human evaluation scores for the QG task.
This is concurrent work with the adapter-based
models (Houlsby et al., 2019; Pfeiffer et al., 2021).
One limitation of this work is the adaption of the
new language may require re-training.

4 Meta-Learning Approach to Improve
Zero-shot Language Generation

The effort with the ZmBART helps in effectively
mitigating CT/AT problems and generating zero-
shot outputs in target LRLs seamlessly. In this
work, we leverage these findings and extend the
study to improve the cross-lingual supervised sig-
nals to boost the performance for zero-shot genera-

tion.

There are more than 7000 languages across the
globe. 95% of the world’s population does not
speak English as their first language and 75% does
not speak English at all>. However, the majority of
NLP research is focused on the English language
(Bender, 2019; Joshi et al., 2020b). To democratize
the NLP research for the benefit of the large global
community, it is essential to focus on non-English
languages. Recently, cross-lingual transfer learning
(Hu et al., 2020; Artetxe et al., 2020) has emerged
as a promising research direction where a model
is trained on HRL(s) and transfer supervision to
LRL(s). However, the supervision transfer is un-
even across languages, which leads to large perfor-
mance gaps. Such performance gaps are observed
because models do not account for cultural and lin-
guistic differences in the modeling (Lai et al., 2019;
Blasi et al., 2022). This work was a step towards
bridging this performance gap.

Meta-learning or learning to learn (Bengio et al.,
1990) has emerged as an active research direction
to learn shareable structures across multiple tasks
with limited annotated data. The only constraint is
all tasks should share some common structure (or
come from a task distribution). Different languages
in the world follow this constraint as they come
into existence with a common goal of communi-
cation and share some structure. So, we consider
languages as tasks. The meta-learning approach
has been actively applied to multiple NLP tasks
(Bansal et al., 2020; Gao et al., 2019) including
text classification (van der Heijden et al., 2021),
NER (Wu et al., 2020), dialogue systems and Q&A
(M’hamdi et al., 2021). There were few efforts
made in the multilingual setup (Tarunesh et al.,
2021; Nooralahzadeh et al., 2020); however, these
are limited to machine translation or NLU tasks
only. This work - to the best of our knowledge -
was the first attempt to study meta-learning tech-
niques for cross-lingual natural language gener-
ation (Xyrg). Particularly, we focus on zero-shot
XnLg for low-resource languages. Unlike NLU
tasks, the zero-shot NLG is a more challenging
setup due to the typological diversities of languages
and CF/AT problems. We refer to this framework as
MetaXnig® (Maurya and Desarkar, 2022), a frame-
work for effective cross-lingual transfer and gen-

Shttps://www.ethnologue.com/insights/
most-spoken-language/

8code & pre-trained models link: https://github.com/
kaushal@494/Meta_XNLG
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eration based on language clustering and Model-
Agnostic Meta-Learning (MAML) algorithm (Finn
et al., 2017).

Following are the main contributions: (1) We
propose a novel MetaXyy gframework based on
language clustering and meta-learning to improve
zero-shot generation performance for typologically
diverse LRLs. (2) We have conducted an exten-
sive empirical evaluation with 30 languages (29
LRLs), covering two tasks (QG and ATS) and using
5 popular datasets (XL-Sum, Wikilingua, MLQA,
TyDiQA, and XQuAD).

4.1 Methodology

The MetaXn; gmodel has two major components:
(a) Language Clustering, which clusters 30 se-
lected languages into different clusters and obtains
the centroid and non-centroid languages for each
cluster. (b) Meta-learning algorithms are trained
with centroid languages and evaluated with non-
centroid (target) LRLs in a zero-shot setting. With
this setup, our goal is to achieve Intra-cluster Gen-
eralization and Inter-cluster Generalization. Train-
ing with a centroid language leads to improved
transfer capability within a cluster, and multiple
centroid languages extend the transfer capability
to other closely-knit clusters, thereby increasing
coverage. The overview of MetaXy gis presented
in Fig. 2.

4.1.1 Language Clustering

In MetaXny g, we considered 30 languages. To
represent each language we have extracted a multi-
view language representation proposed by Oncevay
et al. (2020). It was obtained by fusing typologi-
cally learned (Littell et al., 2017) from WALS and
URIEL databases and task-learned (e.g., language
tag from MT; Malaviya et al. (2017)) language rep-
resentations using singular vector canonical corre-
lation analysis. We use this representation to obtain
centroid and non-centroid based on cosine distance.
Formally, given a cluster C = {L1, Lo, ... L},
where each L; is multi-view representation of i‘"
language, the centroid language L* € C'is defined
as:

L = arg min, Z d(Lj, L;).
LjEC

(1) We use d as the cosine distance.

4.1.2 Meta Training and Generation

The framework comprises five training/generation
steps:

1. Selection of Base PLM: The proposed ap-
proach is model-agnostic; however, due to
its large LRLs coverage, we have chosen the
multilingual TS (mT5) (Xue et al., 2021) as
the base PLM.

2. Adaptive Unsupervised Pre-training (Z Pyy):
We follow steps outlined in ZmBART to ob-
tain ZmT5 model.

3. Fine-tuning Z Py; with HRL: To facilitate the
transfer of supervision from HRLs to LRLs,
we have fine-tuned Z Py using a task-specific
HRL (e.g., English), which we refer to as
EnZPyy.

4. Meta-Training with Low-resource Centroid
Languages: A small, task-specific validation
dataset of centroid languages was employed
to train the E'nZ Py; model using the MAML
algorithm.

5. Meta-adaptation for Zero-shot Evaluation
with Non-Centroid Languages: Finally, the
meta-learned model is directly evaluated us-
ing a task-specific test split of the target lan-
guages in the zero-shot scenario.

There is a trade-off between the number of clusters
(centroid languages) and generalization. If there is
a single cluster (a single meta-training language),
then the model tries to over-generalize for different
typological structures and fails in the attempt. On
the other extreme, if there are too many centroid
languages (many typologically diverse structures),
then the learning possibly gets distracted. In both
cases, the model will be unable to learn a reason-
able structure (the required generalization) and per-
form poorly. The MetaXyy gpresents a discussion
and empirical evidence on this. Our experiments
suggest that three clusters across considered lan-
guages provide the best performance.

4.2 Experimental Setup and Results

We evaluated the MetaXny gperformance in the fol-
lowing settings: ((1) Two NLG tasks - Question

Cluster-1(14) Cluster-2(8) | Cluster-3(8)
hi,ur,te,tr,ja,fi,ko,gu, es,it,pt,ro, ru,cs,vi,th,
bn,mr,np,ta,pa,sw nl,de,en,fr zh,id,el,ar

Table 1: Clustering of considered 30 Languages
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Figure 2: An overview of Meta-XxnLg framework

Generation (QG) and Abstractive Text Summariza-
tion (ATS). (2) Five widely-used datasets: XL-Sum,
Wikilingua, MLQA, XQuAD, and TyDiQA. (3) 30
languages were selected based on diversity typol-
ogy, including one HRL (English) and 29 LRLs.
Refer to Table 1 for the list of selected languages
grouped into three clusters. (4) We employ two au-
tomated evaluation metrics (BLEU and ROUGE-L)
and three human evaluation metrics (Fluency, Re-
latedness, and Correctness). (5) LRL evaluation in
zero-shot setting on the test split. (6) We compare
model performance against two strong baselines:
(a) A ZmBART-like model using mT5 as the base
checkpoint instead of mBART, and (b) a model
fine-tuned directly with centroid languages rather
than meta-training, ensuring the performance gain
is not due to additional training.

Details of all results and observations are in-
cluded in the MetaXyy goriginal paper (Maurya
and Desarkar, 2022). In summary, based on au-
tomated scores, the proposed MetaXyn;gmodel
outperformed baselines in 30 out of 33 LRLs
for the ATS task and in 18 out of 19 LRLs for
the QG task. Even in cases where it did not
perform as well, the difference was marginal.
These trends were consistent when considering
human evaluation metrics as well, where human
scores showed a correlation with automated scores.
The MetaXnpgdemonstrated above-average flu-
ency and correctness scores, indicating its quick
adaptation to various syntactical structures and
overall improved performance. The consistent im-
provement for most of the typologically diverse
LRLs provides evidence that supervision transfer
is more uniform.

4.3 Insights and Limitations

As discussed in Section 4.1.2, there is a trade-off
between the number of clusters and generalization

capabilities. To ensure that we have selected the
correct number of clusters, we have conducted an
extensive adaptation study with 36 experimental
setups involving different numbers of clusters and
various combinations of languages. We observed
that the model with three clusters performs the
best. From Table 1, we can observe that most of
the clustering results are close to the clustering ap-
proach with language family - further validating
the correctness of clustering. Furthermore, less im-
provement is observed for Wikilingual data (ATS).
This could be due to the nature of Wikilingual input
articles, which consist of instructions for operating
software tools/packages. Each instruction is cru-
cial, making it challenging to generate an accurate
summary in zero-shot LRLs. One limitation, we
need small task-specific annotated data for centroid
languages, which will be used in the meta-training.

5 Utilizing Lexical Similarity to Enable
Zero-Shot MT for Extremely LRLs

The efforts with ZmBART, MetaXnig, and the
NLP research community on multilingual modeling
have extended the coverage of NLP technologies
for many LRLs. However, there is a long-tail of
languages for which there is no parallel/pseudo-
parallel data, no/limited monolingual data, and
their representations from the multilingual lan-
guage model are absent. These fall into categories
of extremely low resource languages (ELRLs) or
dialects. With this work (Maurya et al., 2023), we
made a step towards enabling technology for EL-
RLs where resources are limited (zero-shot setting).
In particular, our focus was on the machine transla-
tion (MT) task, driven by the availability of a true
evaluation test set from recently released sources
such as FLORES-200 (Costa-jussa et al., 2022).

Fortunately, many of these ELRLSs are lexically
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The initial cases of the disease this season were reported in late July.

HRL (HIN) + span noise: T_ o A AR & __U_ AT JaT$ & SRR T HA 3T _|

LRL (BHO): T A € ot & ufear aren Gars & SR F 9 o 19 ga|
LRL (HNE): T HoH 7 U SHRT & Ufedr AT ST & SRR 7 A 1T feH |

HRL (HIN):
ENG:

Figure 3: Hindi (HIN; HRL), Bhojpuri (BHO; LRL) and Chhattisgarhi (HNE;
LRL/Dialect) parallel sentences. Additionally, the corresponding noisy Hindi
example with character-span noise. BHO and HNE are closely related to Hin.

similar to closely related HRLS. Lexical similar-
ity refers to languages sharing words with similar
form (spelling and pronunciation) and meaning.’
This includes cognates, lateral borrowings, and
loan words. For example, the word 1gtA (lagta) in
Hindi (HRL) is spelled as 1AgatA (laagata) in Bho-
jpuri (LRL). Existing cross-lingual transfer meth-
ods based on common embedding spaces work best
between related languages (Nguyen and Chiang,
2017; Khemchandani et al., 2021). So, if we make
the HRL model robust to spelling variations, it will
improve cross-lingual transfer to related ELRLs.
To achieve this, we introduce unigram character
and character-span noise augmentation approaches,
CHARSPAN, to improve generalization in zeros-
shot. The noise injection acts as a regularizer. A
sample example is presented in Fig. 3. Formally,
we look at a machine translation task from an ELRL
to another language (English) with transfer en-
abled by a related HRL on the source side.

The character-level noise augmentation has been
employed to improve the robustness and adversar-
ial testing (Sperber et al., 2017; Vaibhav et al.,
2019; Karpukhin et al., 2019) for MT systems.
There are general noise augmentation techniques
(Sennrich et al., 2016a; Wang et al., 2018) that
help in cross-lingual transfer. Aepli and Sennrich
(2022) introduced unigram character noise augmen-
tation for NLU tasks such as NER, POS tagging,
and topic classification. In contrast, we propose
CHARSPAN noise augmentation for the more chal-
lenging MT task. There is another line of works
that leverages lexical similarity based on vocabu-
lary overlap (Patil et al., 2022), non-deterministic
segmentations (Provilkov et al., 2020), and soft
decoupled encoding (Wang et al., 2019). While
these approaches typically require certain amounts
of monolingual data, our proposed model operates
without such constraints, eliminating the need for
monolingual data. With this work, our key contri-
butions are: (a) we show that unigram character
and character-span level noise augmentation can

"https://en.wikipedia. org/wiki/Lexical_
similarity

improve zero-shot translation from ELRLs to En-
glish. CHARSPAN model outperforms the unigram
model. (b) The proposed approach is generalized
across three typologically diverse language groups
which include 6 HRLs and 12 ELRLs.

5.1 Methodology
5.1.1 Training and Zero-shot Generation

First, we created an augmented parallel cor-
pus from HRL (h) to English (En) as ﬁH =
{(h,e)|lang(h) = H,lang(e) = En}, where
H = n(H) and 7 is noise function. The input
parallel corpus (Dy) was augmented with differ-
ent kinds of noise (1) in the source HRL side (de-
scribed later) to create the augmented parallel cor-
pus (257{). We learned the subwords vocabulary V
using (YjH). We train the standard encoder-decoder
transformer model (M; Vaswani et al. (2017))
from scratch with (YjH) and )V to obtain the trained
model M. Finally, zero-shot evaluations are per-
formed with M’ for the source ELR language £ to
obtain a target English translation.

5.1.2 Noise Function

We conducted experiments involving two types of
noise functions: (1) unigram character noise and (2)
character-span noise. For unigram noise, we ran-
domly selected 9-11% of the characters from each
source example (excluding punctuation and num-
bers) and applied insertion, deletion, and replace-
ment operations with equal probabilities®. The un-
igram character noise has the potential to capture
limited variations, particularly relevant for very
similar languages and dialects. 7o address larger
lexical divergence, we propose a character-span
noising approach, i.e., applying to noise a span of
selected characters. Our particular span noising
approach is inspired by SpanBERT (Joshi et al.,
2020a).° We randomly select 1 to 3-gram charac-
ter spans with uniform probability and apply span
noise until the noise injection budget (ranging from
9-11% of characters) is exhausted. Our approach
includes span deletion and span replacement with
a single random character, both with equal prob-
ability as the noising operations. In the original
paper (Maurya et al., 2023), we conducted various
ablation studies involving different combinations
of operations, noise budgets, and other parameters.

8We explored some linguistically motivated noising
schemes as well, but these did not yield any benefits.

°SpanBERT applies denoising to subword tokens while
we apply it at the character level.
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Based on our findings, we concluded that the pro-
posed setup works best.

5.2 Experimental Setup and Results

We have carefully selected three typologically di-
verse language groups: Indo-Aryan, Romance, and
Malay-Polynesian. We consider 6 HRLs and 12 EL-
RLs (2 HRLs and several ELRLs from each group).
All the ELRLs and dialects are lexically similar
to corresponding HRLs. Each group has the same
writing script for all languages. For training, we use
13.6, 11, and 0.8 million public, parallel examples
for Indo-Aryan, Romance, and Malay-Polynesian,
respectively. The model’s performance was eval-
uated on the FLORES-200 devtest set. Based on
recent literature in low-resource MT, we compare
our approach with Vanilla NMT with BPE seg-
mentation (Sennrich et al., 2016b), methods using
lexical similarity (Overlap BPE and BPE-Dropout)
and their combinations. In alignment with recent
studies (Costa-jussa et al., 2022; Siddhant et al.,
2022) on MT for ELRLs, the evaluation scores are
reported with chrF (Popovié, 2015) and BLEU.

We have observed that the unigram noise injec-
tion outperformed all the baselines across all three
language groups. The CHARSPAN noise model
outperformed the unigram model. There were im-
provements for languages like Konkani which are
lexically less similar to corresponding HRLs. We
also conducted experiments where the noise was
augmented before and after vocabulary preparation.
We found that both experiments perform equally
well; however, the model where vocabulary created
with noisy data performs slightly better. Which
scale the proposed model usability to applications
where PLMs were involved as they usually have
fixed vocab. The CHARSPAN noise model com-
bined with BPE-Dropout emerged as the perform-
ing model. However, there is minimal degradation
in HRL performance.

5.3 Insights and Limitations

We have conducted several ablation experiments to
ensure that the proposed design choices result in
the best performance. Furthermore, our analysis
indicates that the character-span-based model en-
hances the performance of languages that are less
similar or more distant from HRLs. Additionally,
it is important to select lexically similar languages
HRLs. Finally, we explore a multilingual setup in
which multiple HRLs are trained together, result-
ing in a performance boost and scale coverage for

ELRs. Our model performs equally well with a
vocabulary that is learned with clean data. This
provides scalability for utilizing PLMs, which typi-
cally have a fixed vocabulary.

The current work is only investigated for EL-
RLs to English MT tasks. We assume that the
related languages also use the same script or scripts
that can be easily mapped/transliterated to each
other. This method might not be effective for trans-
fer between related languages that are written in
very different scripts, e.g., Hindi is written in the
Devanagari script, while Sindhi is written in the
Perso-Arabic script. We will extend this work to
English to ELRLs MT and other tasks in the future.

6 Conclusion

With this thesis, we have presented a coherent nar-
rative of our efforts in the field of text generation for
multiple LRLs with limited supervision. We began
by enabling zero-shot well-formed text generation,
then progressed to improving cross-lingual gener-
ation, and ultimately enabled zero-shot machine
translation for ELRLs and dialects. Our model-
ing approaches are aligned with adaptive training,
meta-learning, language clustering, lexical similar-
ity, and noise augmentation. The evaluations were
conducted across a wide range of LRLs across lan-
guage families, multiple NLG tasks, and datasets.
Through these endeavors, we have taken a step to-
wards facilitating language technology for the long
tail of languages that possess limited or no linguis-
tic resources. This advancement aims to benefit the
general audiences where text needs to be generated
in local languages.

In the future, we will explore the following direc-
tions: (1) Extend the existing modeling framework
to cover 7000+ spoken languages of the world. (2)
Design a single unified and scalable framework
for many NLG tasks and LRLs. (3) Develop a
better modeling approach to adapt the existing
Multilingual PLM representations to new/unseen
LRLs. (4) Since for many ELRLs there are no
evaluation datasets, we will explore a modeling
technique where the performance of LRLs is evalu-
ated without reference. (5) Creating a large-scale
multilingual NLG benchmark similar to Chen et al.
(2022). (6) Investigating active learning, prompt-
ing, and other trending methodologies to advance
cross-lingual transfer and generation research with
limited supervision.
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