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Abstract

Since performing exercises (including, e.g.,
practice tests) forms a crucial component of
learning, and creating such exercises requires
non-trivial effort from the teacher. There is a
great value in automatic exercise generation
in digital tools in education. In this paper, we
particularly focus on automatic creation of gap-
filling exercises for language learning, specifi-
cally grammar exercises. Since providing any
annotation in this domain requires human ex-
pert effort, we aim to avoid it entirely and ex-
plore the task of converting existing texts into
new gap-filling exercises, purely based on an
example exercise, without explicit instruction
or detailed annotation of the intended gram-
mar topics. We contribute (i) a novel neural
network architecture specifically designed for
aforementioned gap-filling exercise generation
task, and (ii) a real-world benchmark dataset
for French grammar. We show that our model
for this French grammar gap-filling exercise
generation outperforms a competitive baseline
classifier by 8% in F1 percentage points, achiev-
ing an average F1 score of 82%. Our model im-
plementation and the dataset are made publicly
available! to foster future research, thus offer-
ing a standardized evaluation and baseline so-
Iution of the proposed partially annotated data
prediction task in grammar exercise creation.

1 Introduction

While digital education tools have been increas-
ingly developed and deployed for over a decade,
the e-learning sector has definitely boomed in the
wake of COVID-19, even leading to a new Digital
Education Action Plan from the European Commis-
sion.” As one application in e-learning, we particu-
larly focus on language education, and specifically
on the automatic generation of gap-filling gram-
mar exercises. This type of exercises has been

"https://github.com/semerekiros/GF2/
2https ://education.ec.europa.eu/focus-topics/
digital-education/action-plan

shown to be very effective in language learning,
with a noticeable effect of such practice tests on
students progress and is generally considered as a
global measure of language proficiency (Oller Jr,
1973). Furthermore, automatic generation of ex-
ercises has been shown produce relatively high
quality exercises, for example, for multiple choice
questions (Mitkov et al., 2006), demonstrating the
potential effectiveness of reducing human effort
and offering cost-effective solutions towards per-
sonalized exercise generation. In terms of tech-
nology, recent developments in natural language
processing, e.g., BERT (Devlin et al., 2018), GPT-
3 (Brown et al., 2020), InstructGPT (Ouyang et al.,
2022), open up new opportunities for further up-
scaling and improving automatic generation of
such tests/exercises.

In this paper we specifically propose to generate
grammar exercises from existing texts, by inducing
well-chosen gaps in a given input sentence, fol-
lowing a set of given example exercise sentences.
Further, we aim to create models that can be trained
on the exercises themselves, without further anno-
tations. The latter implies that we want to forgo
a fully supervised learning setting, because such
models would require each gap in the available ex-
ercises to be manually annotated with additional
metadata, such as the particular exercise type, e.g.,
for gap-filling exercises, a suitable category such
as a verb tense. Thus, we focus on converting given
input texts into gap-filling exercises, by mimicking
the implicit rules underlying a given example exer-
cise, rather than by following explicit instructions
such as a prescribed exercise type.

Application scenario: Consider a language
teacher, who just introduced a particular grammat-
ical topic (e.g., a new verb tense), and needs the
students to practice. The grammar topic of interest
may need to be practiced in combination with par-
ticular other topics (e.g., related tenses already stud-
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ied by the students). Given that gap-filling ques-
tions can be completed online and automatically
assessed (Daradoumis et al., 2019), the teacher
creates a new gap-filling exercise, covering these
combined grammar topics. The goal of our model
is then to support the automatic creation of new
exercises, based on that example exercise, by trans-
forming other texts provided by the teacher into
additional gap-filling exercises that target the same
linguistic topics to be practiced, without explicit in-
structions by the teacher of which topics the model
should include. This would allow the teacher to
rapidly create new training material for the students,
potentially more diverse, for example, in terms of
topics of the texts, their temporal relevance, or the
inherent linguistic difficulty.

Learning from partially annotated data: The
scenario outlined above represents a learning task
in between one-shot learning (i.e., learning from
one example (Wang et al., 2020) and full super-
vision (i.e., based on the full annotation of all ex-
amples). On the one hand, the one-shot setting
considers the example exercise as a single training
instance defining the nature of the prediction task
by the way it was constructed by the teacher (in this
case, the included grammar topics). On the other
hand, the fully supervised setting would require
at least explicit knowledge of all exercise instruc-
tions (i.e., gap types per exercise). Although we
assume the availability of an entire corpus of such
exercises, on overlapping grammar topics, we will
not rely on explicit annotation of the nature of the
gaps (i.e., gap type that defines the type/scope of
the grammar exercise, or even just identifying the
word category). Thus, we do want to learn from
partially annotated examples, where the annotation
is limited to just the indication of the gap and the
text span that constitutes the expected answer. This
basically amounts to the type of information that
would be available in a one-/few-shot setting, but
we aim to leverage the complete corpus to train our
models.

Note that, while creating exercises, teachers are
aware of the envisioned exercise type and the gap
types, and such exercise type would also be commu-
nicated (e.g., as a free-text instruction) to students.
Still, to keep our experiments and the gained in-
sights transparent, we left out any exercise level
instructions for our experiments.

Link with related research: In broad terms, the
proposed work fits within the area of automatic
question generation (AQG) for the educational do-
main. In the field of education, creating questions
manually is an arduous task that demands consider-
able time, training, experience, and resources from
educators (Davis, 2009). As a solution to this chal-
lenge, researchers have turned towards AGQ ap-
proaches to automatically generate homework, test,
and exam exercises from readily available plain
text that requires little to no human calibration. In
particular, educational AQG systems have been de-
veloped for generating factoid questions covering
several subjects such as history (Al-Yahya, 2011;
Papasalouros et al., 2008), general sciences (Sun
et al., 2018; Stasaski and Hearst, 2017; Conejo
et al., 2016), health and biomedical sciences (Pugh
et al., 2016; Afzal and Mitkov, 2014), etc., as well
as for language learning such as vocabulary or
grammar exercises (Susanti et al., 2017; Hill and
Simha, 2016; Goto et al., 2010). There has been
some more generic recent work, however, on find-
ing distractors for multiple choice questions across
subjects and languages (Bitew et al., 2022). It is
line with recent work on training deep neural net-
works for general-purpose question generation (Du
et al., 2017), based on large training sets. There
is a clear preference for two question types that al-
low for automated assessment, i.e., multiple-choice
questions (e.g., in (Stasaski and Hearst, 2017; Pugh
et al., 2016; Afzal and Mitkov, 2014; Papasalouros
et al., 2008)) or gap-filling questions (as in (Hill
and Simha, 2016; Malinova and Rahneva, 2016;
Perez-Beltrachini et al., 2012; Goto et al., 2010)).

Our work is focused on gap-filling questions,
which typically require test-takers to fill in blank
spaces in a text with missing word(s) omitted by
test developers. The missing words can either
be chosen from a set of possible answers (i.e.,
closed cloze questions), or generated from scratch
using hints provided in the text (i.e., open cloze
questions). To generate such questions, various
strategies were employed, such as deleting ev-
ery nth word from a text (Taylor, 1953), or ra-
tionally deleting words according to specific pur-
pose, e.g., usage of prepositions (Lee and Seneff,
2007), verbs (Sumita et al., 2005) etc. Previous
studies have relied on selecting informative sen-
tences (Slavyj et al., 2021; Pino et al., 2008) from
existing corpora, such as textbooks (Agarwal and
Mannem, 2011), WordNet (Pino et al., 2008), and
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Example 1

1 Vous travaillerez beaucoup?
1 Will you work a lot?

tu maigriras vite!

2 By not eating sweets, you will lose
weight quickly!

3 J’espere que mon équipe favorite
ne perdra plus aucun match.

3 I hope my favorite team won't lose any

mentira plus jamais.

4 Maxime promised me that he will never

lie again.

Example 2

A l'age de 27 ans, le Californien David Blancarte
At the age of 27, Californian David Blancarte had

a eu un grave accident de scooter. Quand il s'est
a serious scooter accident. When he_woke up

réveillé a 1'hopital, il ne sentait plus ses
in the hospital, he no longer felt his

jambes. On lui a_expliqué qu'il ne pourrait
legs. It was explained to him that he couldn't

pour lui! Pendant une longue période de
During a long period of rehabilitation, he learned

revalidation, il a appris a se déplacer en chaise.
to move around in a wheelchair.

5 Maman préparera des spaghettis ce soir.

5 Mum will make spaghetti tonight.

roulante. ...

Figure 1: French grammar exercise from the GF2 corpus, with English translations for convenience shown in light
grey. Green spans (with solid underline) are actual gaps as selected by teachers in the dataset, red spans represent
potential gaps on other grammar topics but were not marked as gaps. (Left) Isolated sentence exercise with focus on
a single tense (futur simple); (right) full text exercise combining two tense types (imparfait and passé composé).

then using techniques such as POS tagging (Agar-
wal and Mannem, 2011) or term frequency analy-
sis (Mitkov et al., 2006) to determine gap positions.
More recently, Marrese-Taylor et al. (2018), have
developed sequence labeling model to automate the
process of generating gap-filling exercises.

Another very relevant work by Felice et al.
(2022) devised a method to adapt an ELEC-
TRA (Clark et al., 2020) model for the purpose
of generating open cloze grammar exercises in En-
glish. Their approach involved classifying each
individual token as either a gap or non-gap. How-
ever, there exist several notable distinctions be-
tween their approach and our own. Firstly, unlike
their method that solely focused on individual to-
kens, we make gap decisions based on spans. This
distinction is essential as our gaps can encompass
multiple words, allowing for more comprehensive
and contextually accurate grammar exercises. Sec-
ondly, our objective and experimental setup differ
significantly. Our ultimate goal is to generate multi-
ple versions of the same text, with each version tar-
geting a distinct grammar aspect (e.g., future tense,
prepositions of time or combinations of different

types). In contrast, their approach consistently pro-
duces exercises of the same type for a given input
text (i.e., similar to our baseline model), lacking
the versatility and adaptability our model offers.
We observed a tendency in generation of gap-
filling questions aiming at well-defined tasks. To
the best of our knowledge, none of the prior works
have proposed strategies to capture common under-
lying structures in terms of task definition, while
training on a heterogeneous set of real-world exam-
ples (e.g., covering various grammatical topics).

Key research contributions:

* We introduce the task of the example-aware
prediction of suitable linguistic gaps in texts
based on partially annotated data. This task is
of paramount importance in the development
of new gap-filling exercises.

We present our real-world dataset of French
gap-filling exercises covering unknown com-
binations of grammatical aspects. Our dataset
called GF2 (‘Gap-Filling for Grammar in
French’) is released as a research benchmark
for the introduced task.
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* We propose and train a suitable neural network
architecture for the task, and show that condi-
tioning the model’s output for a given input
text on an example exercise of the envisioned
exercise type, leads to an increased effective-
ness, compared to an example-independent
baseline model. Additionally we analyse the
model’s ability to disentangle elementary ex-
ercise types, without being explicitly trained
to do so, and we observe that it can recognize
types to some extent, especially for the most
commonly occurring types in the test set.

2 Gap-filling Exercise Creation as a Span
Detection Task

This section describes the particular prediction task
this paper focuses on. We cast the creation of a
French gap-filling exercise from an input text as a
binary span detection task: the goal is detecting
each span (i.e., consecutive sequence of tokens)
that represents a correct gap. For clarity, we left
out creating the ‘hint’ (e.g., the infinitive for verbs)
which would make it a finalized gap-filling exercise,
as it is considered less challenging and may deviate
attention from the core problem of identifying the
correct spans.

Figure 1 shows two example gap-filling exer-
cises, with indication of the ground truth spans in
green (and with solid underline). We denote the dis-
tinguishing feature of each gap as its gap type (e.g.,
the tense futur simple for each of the valid tags in
Example 1). An exercise typically covers multi-
ple gap types, and the particular combination that
characterizes a given exercise is called its exercise
type. As such, many different exercise types can be
constructed, and some may be unseen in the train-
ing data. For example, Example 2 (again in Fig. 1)
combines three tenses (imparfait, passé composé,
and conditionnel présent), which constitutes its ex-
ercise type. However, the same text could have
been enriched with different gaps, corresponding
to a different exercise type. In fact, our test set of
one hundred exercises, for which we annotated gap
types in terms of 12 elementary verb tenses, covers
a total of 35 such composite exercise types.

Considering the lack of information regarding
the exercise types for the training exercises, we
further define the task we are examining more pre-
cisely. The objective is to detect the valid spans
(i.e., spans that will be designated as gaps) of a
given flat input text that mimics the same underly-

ing exercise type as an example gap-filling exercise,
which we denote as the exemplar. This exemplar
serves as an indirect reference for the model to un-
derstand the desired exercise type. By utilizing this
approach, we can better inform the model about
the desired exercise type while accounting for the
the lack of exercise information available.

Note that our goal is working with real-world
data. Our training data contains gap-filling exam-
ples following particular unknown exercise types.
Moreover, teachers appear to not always select ev-
ery possible span that satisfies the exercise type.
We saw cases in our dataset (cf. Section 4.1), where
the same verb occurring twice in the same form
would be selected as a valid gap only once. Such
real-world ‘inconsistencies’ contribute to the chal-
lenging nature of learning from such data without
additional annotations.

3 Example-aware span detection model

This section describes our baseline model and pro-
posed example-aware gap detection model. Fig-
ure 2 provides a schematic overview. We first de-
tail the part indicated as Baseline model, inside the
smaller dashed box, followed by the part that en-
codes the exemplar, which leads to the full model.

Baseline model: An input text t, consisting
of N tokens t = [to,t1,...,tn—1] iS en-
coded by a transformer based masked language
model (MLM), in our experiments the multi-
lingual XLM-RoBERTa (Conneau et al., 2019).
From the corresponding transformer outputs
[ho,hy,...,hy_1] (with h; € RF, i=0...N-1),
vector representations are constructed for all possi-
ble spans inside the input sequence, up to a certain
length (in our experiments 12 tokens). The goal is
then to make a binary prediction in terms of valid
gaps, for each of these spans. In particular, for a
span s = [tsart, - - - , tend) With endpoint tokens tggart,
tena and width |¢| = (end — start 4+ 1) in the input
text, the corresponding span representation h. is
constructed as

h = FFNN(har © hena © hyg))

in which @ represents vector concatenation, hy
corresponds to a span width embedding, jointly
learned with the model, and FFNN is a fully con-
nected feed-forward model with a single hidden
layer, ReLLU activation, and output dimension k.
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Span Embedding
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A
MLM

[begin & end ®
width emb]

Dot product

MLM

Exemplar "She [[had done]] her home work.

I [[have been working]] for a year.
They [[had gone]]."

Figure 2: Example-aware gap detection model architecture. & denotes concatenation. In general, the model
considers all possible spans up to a maximum width, but we depict here only one span from the input for brevity.

The XLM-RoBERTa output representations hg,« and
h,q of the start and end token of ¢ are concate-
nated with the span width embedding h| |, and
transformed through FFNN into the k-dimensional
span representation h.. The probability of span ¢
representing a valid gap is modeled as

Poase(s) = o(w - he +b)

in which the trainable parameters w and b are a k-
length coefficient vector and bias, respectively, o is
the sigmoid function, and - represents the dot prod-
uct. The baseline model is trained by minimizing
the cross entropy loss between each span’s score
Drase () and its label (1 for valid gaps, 0 otherwise).
At inference, spans are predicted as gaps as soon
as pc > 0.5.

Example-aware gap detection model: As
shown in Fig. 2, our example-aware model is a
direct extension of the baseline model which by
construction makes example-unaware predictions.
The same MLM that encodes the input, is now

used to also encode the exemplar, which contains
the example exercise text as well as the correct gap
information. The latter is added by surrounding
each gap with the special tokens ‘[[* and ‘]]’ (as
seen in the figure). Details on how the examples are
chosen, are provided in Section 4.2. The exemplar
representation hegeppiqr is obtained as the MLM’s
[CLS] representation3.

We then quantify the compatibility of each span
¢ in the input text with the exemplar, through the
dot product hexemplar - h¢ of their respective rep-
resentations. In a direct extension of the baseline
model, it leads to the proposed model for the proba-
bility pexample-aware(S) that ¢ represents a valid gap:

Pexample-aware (g) = U(hg W + he - hexemplar + b)

3[CLS] is a special token that is prepended to the input,
and its corresponding output representation is pretrained to
represent the entire sequence that is used for classification
tasks
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4 Empirical validation on real-world data

In this section, we first introduce the dataset that
we will publicly release. Then, we explain how
we train our models and use them for inference.
Finally, we describe the strategies we adopted to
evaluate the effectiveness of our models.

4.1 GF2 dataset: Gap-Fill for Grammar in
French

We denote our new dataset as “Gap-Filling for
Grammar in French” (GF2). It was contributed
by Televic Education®, and gathered through its
education platform assessmentQ°. AssessmentQ
is a comprehensive online platform for interactive
workforce learning and high-stakes exams. It al-
lows teachers to compose their questions and an-
swers for practice and assessment. As a result, the
dataset is made up of a real-world set of gap-filling
grammar exercise questions for French, manually
created by experts. We cleaned and preprocessed
the data before we could use it to train our models.
First, organizational metadata information was re-
moved. Other elements that we removed are the
hints within the body of the text that could eas-
ily give away the gap positions, as well as inline
instructions (if present) about the exercise type.
Second, we automatically stripped off HTML tags
from the documents. Our final dataset contains a
total of 768 exercise documents, in which a total
of 5,530 spans are tagged as gaps. The exercises
were randomly split into 618 train documents, and
50 and 100 for validation and test, respectively.
Table 1 summarizes FG2’s descriptive statistics.

For the validation and test exercises, we made an
extra manual effort to enrich each of the existing
gaps with their gap type. Our annotations reflect
the fact that the data contains a mix of verb and
non-verb gaps. Every gap has an associated word
type attribute (e.g. adverb, adjective, verb) and in
case of verbs a tense attribute. In what follows we
zoom in on the verb gaps and consider the tense
as the main gap type. The bottom half of Table 1
shows the frequency of occurrence for the main
verb types in the development and test documents.
We use this annotations to get insights into the
dataset and to evaluate the properties of our models
(see Section 5). Note that the examples shown in
Fig. 1 are actual entries from the GF2 dataset.

4https://www.televic.com/en/education
Shttps://www.televic-education.com/en/
assessmentq

4.2 Training and inference

Our baseline model is relatively straightforward
to train. We designate all spans indicated as gaps
in our training data as valid gaps, which are con-
sidered positive examples. Conversely, any spans
that are not indicated as gaps are labeled as nega-
tives. We train our model by minimizing the cross
entropy loss between each span’s predicted score
and its label as described in Section 3. However,
training our example-aware model poses a chal-
lenge due to the lack of knowledge regarding the
exercise types of the training exercises. Using one
exercise as an example and another exercise of the
same type as the input, along with the correspond-
ing targets, is not therefore feasible. Instead, we
make the assumption that exercises are generated
by teachers who consistently follow the underlying
exercise type throughout the entire exercise. As
a result, we divide the training exercises into two
parts: one part is used as an exemplar, and the other
part serves as the actual input, for which the gaps
are assumed to follow the same exercise type.

To this end, we first segment each document in
the training set into a list of sentences, along with
their corresponding target gap positions. We create
a new (exemplar, input) training pair by sampling
one sentence to be used as the input, and uniformly
sampling one up to m sentences from the remain-
ing sentences within the same document to be used
as the exemplar. The exemplar is constructed by
concatenating these sampled sentences, with the
addition of special symbols denoting the gap lo-
cations. (See Appendix A for details.) These are
the positive training examples that encourage the
model to correctly learn predicting example-aware
gaps. However, to facilitate efficient learning, it is
crucial to also provide negative examples on which
the model should not predict gaps. To create such
negative training instances, a sentence is sampled
as input from the considered document, but its span
targets are set to zero (no gaps), and the negative
exemplar is composed as before (including indicat-
ing the gaps), but by sampling sentences from a
randomly selected other training exercise. There is
risk of incidentally creating false negative training
examples, if the exemplar gaps correspond with
left-out gaps in the input. However, negative exem-
plars appeared important for obtaining a suitable
model.

We determine the optimal proportion of negative
to positive instances for training our models by em-
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Table 1: Statistics of the FG2 dataset and breakdown into key verb tenses (gap types) in the validation and test split.
For the train split we only know gap spans, not their types, since they are not labelled.

Train Dev Test
# Documents 618 50 100
# Sentences 4786 378 707

# Gaps

4518 365 647

Subjonctif Présent (SPR)

Passé Composé (participe passé) (PCP)

Passé Composé (PC)
Imparfait (IM)
Conditionnel Présent (CPR)
Passé Récent (PR)

Futur Proche (FP)

Futur Simple (FS)

Indicatif Présent (IP)
Conditionnel Passé (CPA)
Impératif (IMP)
Plus-que-parfait (PQ)

UNK 1 28
UNK 31 8
UNK 84 108
UNK 8 46
UNK 23 92
UNK 0 12
UNK 9
UNK 8 49
UNK 126 144
UNK 0 3
UNK 12 26
UNK 0 1

p—

ploying a fine-tuning approach utilizing the macro
F1 score as the evaluation metric on the valida-
tion set. This increases the impact of the rarer gap
types in the metric, and therefore in the final model,
which we considered important for practical use.
Other choices could have been made, however. Ul-
timately, the final model is trained on the union of
the training and validation splits, using the optimal
proportion determined via the fine-tuning process.

During inference, we use our trained model to
predict the gap positions for an input text that is
implicitly conditioned on the target exercise type
through the exemplar.

Implementation and training details: We im-
plement our models using pytorch and Hugging-
face. We initialize our MLM encoders with
xlm-roberta-base. To avoid extensive hyper-
parameter tuning, we made the following choices;
a learning rate of 2e-5 in combination with the ro-
bust Adam optimizer. We use a batch size of 16
and train our models for 30 epochs. We consider
all spans up to a maximum length 12 and we set k,
the number of sentences per exemplar to 3.

4.3 Evaluation setup

In order to assess and analyze the performance of
the baseline and the example-aware model, we de-
sign two evaluation strategies that look at different
effectiveness aspects.

Binary gap prediction evaluation: the primary
objective of our model is to mimic the real-world
setting where gap labels are not given. We measure
how well our models predict gap positions (i.e., gap
or no-gap decisions for all input spans). To do this,
we split up each of the exercise documents in our
test into two parts that are roughly the same size,
given that by assumption they then represent the
same exercise type. We calculate the automated
metrics by using one half as the exemplar and the
second as the input text to our model. We repeat
this process by exchanging the roles of the parts.
It is worth noting that we excluded one-sentence
test documents (i.e., because they can not be chun-
ked into two parts), which amount to 16% of the
total test documents. However, since most of the
excluded sentences (i.e., one-line documents) only
had one gap, we only removed 2.7% of the total
gaps in the test set.

Gap type disentangling evaluation: The goal
of the second evaluation setting is to analyze how
well the model has learned to disentangle individ-
ual gap types, despite not being explicitly trained to
do so. This analysis is based on the assumption that
a model that scores high on that aspect, would be
stronger in dealing with new or rare exercise types.
Potentially even at creating new combinations of
existing exercises. This is an aspect we plan to
study further when designing more advanced mod-
els in future research. To this end, we construct
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Table 2: Tense disentangling ability in terms of precision, recall, and F1 (in %) on the test set, as reported for each
key verb tenses (with on the right their support, i.e., number of occurrences). We also show the macro F1 score for
the static baseline (baseline) and our proposed example-aware gap prediction (ours).

Baseline Ours

Tenses P R F1 P R F1  Support
SPR 5.0x03 78.6+59 9.4+06 7.5+02  81.0+125  13.7+04 28
PCP 0.1+01 424163 0.2+05  12.6441 62.5:125  20.7+62 8
PC 21.3+12 86.4+37 342115 64 +94 86.1+19  73.1+s5 108
IM 9.3+04 884437 162108 12.0+25  78.3+100  20.9139 46
CPR 19.9+05 94.5+20  32.8+0s 28.3129 924147 432131 92
PR 2.7+01  100.0+00 5.3+01 9.7+0 100.0x00 17.7133 12
FP 1.6+00 77.77+00 3.1+01 6.0+00 77.8+x00 11.1+1s 9
FS 9.9103 88.5+17  17.8+05 13.6+1 844110 233117 49
1P 24.6+12 75.0+43  37.1+19 32014 662119 42.9+24 144
CPA 0.1+01 11.1+16 0.2+03 0 0 0 3
IMP 5.2+03 88.5+22 99+05  16.8+17 84.6+39  25.3121 26
PQ 0.2+00  100.0x00 0.5+00 0.6x01 10000 1.2+02 1
Macro F1 13.9 24.4

a small set of 12 exemplars, one for each of the
key verb tenses, by randomly selecting them from
the original data and subsequently removing them
from the train/validation/test splits. Each exem-
plar comprises multiple sentences, all of which are
homogeneously annotated with the same intended
verb type, which will serve as the desired homo-
geneous exercise type. We evaluate our model on
every sentence of the test set, by prompting it with
each of these 12 fixed exemplars. Based on the
gap types we annotated on the test set, we can then
compute the precision, recall and F1 score for each
of these 12 tenses.

5 Experimental Results

In this section, we provide evidence of the effec-
tiveness of our proposed model by reporting and
discussing the experimental results. Table 3 sum-
marizes the binary gap prediction evaluation of the
baseline vs. the example-aware model on the test
set. We report our results as the mean and stan-
dard deviation over five runs, each using a different
random seed for model training. The proposed
example-aware model (denoted as ours) consis-
tently outperforms the example-unaware baseline
on all metrics. In general, there is an absolute gain
of 8 percentage points in F1 for the proposed model
in comparison with the baseline, achieving an aver-
age F1 score of 82.4%. This confirms our intention
when designing the model, that providing exam-

ple exercises leads to an increased effectiveness in
terms of predicting gap positions compared to the
static baseline model.

Table 3: Overall binary gap prediction in terms of pre-
cision, recall, and F1 (in %) on the test set. Results
shown for the static baseline (baseline) and our pro-
posed example-aware gap prediction (ours).

Precision Recall F1
Baseline 74.87+244  73. 114200 73.92+049
Ours 84.30+170  80.74+180 82.40-+020

In Table 2, we show the evaluation of our mod-
els in their ability to disentangle the 12 main verb
types. We observe that for the tenses with relatively
higher support, the example-aware model outper-
forms the baseline with certainty as demonstrated
by the individual F1 scores.

The overall macro F1 score for the example-
aware model stands at 24.4%, which is low in ab-
solute value, but considerably higher than the base-
line’s macro F1 score of 13.9%. We observe that
the proposed model is able to recognize verb types
such as passé compassé (PC), imparfait (IM), and
conditionnel présent (CPR) to some extent with F1
scores of 73%, 43%, and 42%, respectively. How-
ever, the low overall scores are not unexpected,
because the models are not trained to recognize
gap types. Furthermore, some tenses are either
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very rare (e.g., PQ, CPA, PCP) as indicated by their
support, or may appear mainly in combination with
other exercise types. This makes achieving a bet-
ter resolution in disentangling gap types without
any explicit gap labels during training an inherently
difficult task.

6 Conclusion

In this paper, we introduced a new task within the
general challenge of training models to automat-
ically create new exercises for use in education,
based on existing exercises and without requiring
additional manual annotations.

In particular, we introduced a dataset and asso-
ciated prediction task, focusing on detecting gaps
within a given input text, without knowledge of the
exact exercise type, by only relying on an example
exercise. We proposed an example-aware neural
network model designed for this task, and com-
pared it with a baseline model that does not take
into account any example of the desired exercise
type. We found that our example-aware model out-
performs the baseline model not only in predicting
gaps, but also in disentangling gap types despite
not being explicitly trained on that task. Our real-
world GF2 dataset of French gap-filling exercises
will be publicly released together with the code to
reproduce the presented empirical results.

The presented work fits with our pursuit towards
supporting personalized learning experiences by
either suggesting existing or generating new exer-
cises that are tailored to students’ needs. Teachers
could also benefit from an increased efficiency in
creating new exercises. For example, they could
make many and diverse drill and practice exercises
on chunks of text based on existing standard ex-
ercise types without having to provide extra meta-
data information such as instructions. We hope our
benchmark dataset and task will spark new research
in the CL and Educational NLP community.

Limitations

We identify two limitations of the current work
and make suggestions for future directions. First,
while our proposed method is language-agnostic in
principle, our evaluation is limited to our French
benchmark dataset. Expanding our approach to
encompass other languages would bring new and
interesting challenges for further investigation. Sec-
ond, despite topic diversity within our exercise doc-
uments (e.g., the first example in Fig. 1 consists of

independent sentences, while the second is a coher-
ent text centered around the same topic.), it would
be interesting to quantify the degree of topical bias
introduced during our training process and its im-
pact on our binary task evaluation. For future work,
we first aim to adapt seq2seq models for our task
particularly text-to-text models such as T5 (Raffel
et al., 2020). There is also potential to explore dif-
ferent prompting strategies for large language mod-
els (LLMs), when generating gap-filling grammar
exercises. For instance, the utilization of chain-
of-thought prompting (Wei et al., 2022), which
involves generating intermediate steps before pro-
ducing the final response, could be explored for
generating grammar exercises. Additionally, an in-
teresting future study would involve investigating
the number of example demonstrations that LLMs
require in order to accurately mimic example gap
exercises.

Ethics Statement

In this research, we posit that the dataset and mod-
els introduced are of low-risk in terms of poten-
tial harm to individuals. The dataset used is a cu-
rated selection of existing educational content en-
riched with meta-data, and we are confident that
our compilation of the dataset has not introduced
any additional ethical risks. However, it is crucial
to emphasize the need for accountability and the
establishment of clear guidelines for the deploy-
ment of grammar generation models, such as the
ones benchmarked in this paper, for educational
purposes.

It should be noted that our models are derived
from general-purpose neural language encoders
that have been trained on real-world data, which
may contain biases or discriminatory content (Bom-
masani et al., 2021). As a result, our models may
have inherited some of these biases and could po-
tentially base their prediction on such biased infor-
mation. Therefore, it is imperative for educators
and researchers to thoroughly consider these ethi-
cal issues and ensure that the generated grammar
questions align with educational goals and do not
perpetuate harmful biases.

Educators should retain the final authority in
accepting or modifying grammar question sugges-
tions generated by such models, keeping their edu-
cational goals in mind (e.g., in terms of formative
and especially summative assessment). In practice,
these models are designed to enhance teachers’ effi-
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ciency in preparing teaching materials, rather than
replacing teachers in any way. An important benefit
of using Al-supported question generation with in-
creased efficiency is the potential for personalized
approaches towards students.
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A Training details

In this section we detail our training procedure. As
depicted in Fig. 3, we first split training exercises
into list of sentences, along with their correspond-
ing gap position indications. In order to create new
(input, exemplar) pair, we sample 1 sentence from
the sentence list to be used as our input text, and
we uniformly sample 1 up to m (we set m = 3)
sentences from the remaining sentence list to be
used as our exemplar. We form our exemplar by
concatenating all the sampled sentences with gap
positions indicated by special tokens “[[” and “]]”.
Then our model is trained by minimizing the bi-
nary cross entropy (BCE) loss between predicted
gaps and their target labels (1 for valid gaps, and 0
otherwise).
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Exercise e.g.,
"She [[had done]] her home
document

work. I [[have been working]] =B
for a year. They [[had gone]]." g‘n =
Exempl 2 2
split to sentences xempiar j——» ; E
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Figure 3: Training procedure of our example-aware gap detection model. First, we split exercise documents into list
of sentences. Then we create (input, exemplar) training pairs that will be used by our model. We use one sentence
as an input, while the exemplar is made up of sentences that are uniformly sampled from the remaining sentences.
The exemplar is constructed by concatenating the m sampled sentences. The special symbols “[[” and “]]” in the
exemplar indicate the gap positions. Binary cross entropy (BCE) loss is used to train our models.
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