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Abstract

We introduce a novel technique for auto-
matically summarizing lecture videos using
large language models such as GPT-3 and we
present a user study investigating the effects on
the studying experience when automatic sum-
maries are added to lecture videos. We test stu-
dents under different conditions and find that
the students who are shown a summary next to
a lecture video perform better on quizzes de-
signed to test the course materials than the stu-
dents who have access only to the video or the
summary. Our findings suggest that adding au-
tomatic summaries to lecture videos enhances
the learning experience. Qualitatively, students
preferred summaries when studying under time
constraints.

1 Introduction

Video lectures have been an important part of
scaled online courses and flipped classrooms for
several years, and have become widely used for
an increasingly larger range of courses as a sub-
stitute for students unable to attend class due to
the COVID-19 pandemic (van Alten et al., 2020).
Past research in human-computer interaction aimed
to improve educational videos via interactive tran-
scripts, word clouds, keyword search, and highlight
storyboards (Kim et al., 2014), or by segmenting
the videos to present highlight moments with snap-
shots and transcripts (Yang et al., 2022). Others
have created video digests that are organized into
a textbook-like format with chapters, titles, and
sections with text summaries (Pavel et al., 2014).
Pavel et al. (2014)’s system provides an author-
ing interface that allows video authors to manually
write textual summaries of a video themselves or to
send the video to a crowdsourcing service to have
summaries written. Textual summaries are believed
to be effective in helping students review course
materials. For example, Shimada et al. (2017) find
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that students using summaries of slides for preview
have higher pre-quiz scores and spend less time,
compared to students previewing original learning
materials.

In this work, we investigate the feasibility of au-
tomatically summarizing lecture videos’ transcripts
using recent advances in large language models
such as GPT-3 (Brown et al., 2020). We are en-
couraged by recent research in natural language
processing demonstrating that people often prefer
GPT-3 generated summaries over other methods
of automatically generated summaries for news
(Goyal et al., 2022).

The availability of high-quality automatic sum-
maries would allow their use in a wide range of
online courses. In this paper, we first detail our
method for creating an automatic summarizer of
video lectures. Then, we report a controlled user
study that we conducted with around 100 univer-
sity students to investigate whether the automatic
summaries were an effective study aid.

2 Automatic Video Lecture Summarizer

We designed an automatic lecture summarizer that
leverages recent advances in large language mod-
els (LLMs). Large language models are trained
on massive language datasets, thus creating rich
representations of language content. These models
have been especially successful in generating fluent
responses in a variety of natural language genera-
tion tasks with zero or few-shot prompting (Brown
et al., 2020; Liu et al., 2023), instruction following
(Sanh et al., 2021; Mishra et al., 2022; Bach et al.,
2022), or fine-tuning (Howard and Ruder, 2018;
Wei et al., 2021).

It is well-known, albeit not well-understood, that
the quality of GPT-3 language generation is af-
fected by the given prompt even if the differences
in the way the prompt is articulated are not seman-
tically very different. It is, also, unclear for which
tasks it is sufficient to give prompts to achieve suc-
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cessful GPT-3 responses or whether there is a need
for fine-tuning a model. For these reasons, we ex-
perimented with three approaches to generating
lecture summaries.

In all of our experiments, the input provided to
the model is retrieved by transcribing video lec-
tures. For the video transcription, we use Amazon
Transcribe. The transcribed video content is then
split into chunks of a maximum of 4,000 tokens.
This is the maximum length that can be encoded
by GPT-3. The final summary of the lecture is the
aggregate of the summaries of its parts. For each
chunk, we retain the corresponding start time in the
video.

(1) Zero prompt summarization. In the first
approach, for each retrieved chunk we generated a
summary providing the following prompt:

I am a summarization bot. If you give me text, I
will provide a textbook-like summary.

Text: <transcript_chunk>
Summary:

In this condition, the summary is generated
without any training. We call this approach the
"zero prompt" condition. Below we provide an
input example of a raw transcript from a Natural
Language Processing lecture given in an Artificial
Intelligence university course.

Sample input to summarizer:

So uh if we’re just talking about, we were just
talking about input sequences for our problem
with dimensionality, then let’s imagine that we’ve
got an input sequence of like 10 And we’ve got
of okay, let’s imagine we have a vocabulary size
of 100,000. then we’ve got 100,000 to the power
of 10 different possible sequences, word combi-
nations. So that ended of itself is going to be 10
to the power of 50 parameters like unimaginably
large, way more then? The number of ida adam
is in the universe? So too high to estimate from
data.

Summarizer output:

If we have a vocabulary size of 100,000 and an
input sequence of 10, there are 100,000 to the
power of 10 different possible sequences. This is
too high to estimate from data.

As can be seen in the summarizer output above,
the zero-shot summarizer removes filled pauses like
um and uh, eliminates false starts like the repetition
of let’s imagine, deletes misrecognized phrases like
the number of ida adam (which should be the num-
ber of atoms), and concisely summarizes the idea
in the transcript chunk.

In Appendix A we provide details about the
model variant and parameters that we used.

(2) Few shot prompt summarization. In the
second approach, we enriched the prompt by pro-
viding ten prompt-summary pairs as context to the
current prompt.

In this approach, we provide a few training exam-
ples to the GPT-3 model and we call it the "few shot
prompt" condition. The structure of this few-shot
prompting is as follows:

I am a summarization bot. If you give me text, I
will provide a textbook-like summary without re-
peating past summaries or describing the speaker.

Text: <chunk from 10 prompts ago>
Summary: <summary of that chunk>
...
Text: <chunk from 9 prompts ago>
Summary: <summary of that chunk>
...
Text: <chunk from 1 prompt ago>
Summary: <summary of that chunk>

Text: <current_transcript_chunk>
Summary:

In this condition, we modified the prompt by
adding to it “without repeating past summaries
or describing the speaker.” This modification pre-
vented the summarizer from a) repeating past sum-
maries and b) starting summaries with statements
like The speaker is discussing [topic]. To further
reduce repetition errors, we included in the summa-
rizer a step to check if the current summary output
matches any of the previous summaries. If so, GPT-
3 would be prompted to generate a new output on
the same prompt.

We observed that there were several advantages
to including previous chunks and their summaries
as part of the input. First, they provide useful con-
text for subsequent summaries to remain topical.
Second, transcription errors are not always uniform
across chunks. For example, the term n-gram is
misrecognized in the following chunk of the tran-
script.

What we what we’re doing is basically just con-
structing a table. Look I wanted to say here’s
a sequence. What’s the probability of the next
word? Just looking up at the table. And the trick
for these engram based language models was how
do we deal with unseen sequences? So how do
we deal with new combinations of n words that
were never that never occurred in our training So
we did things like smoothing, we did things like
interpretation. We did back off too small, the two
smaller and smaller sequences.

Due to the context given previously, the summa-
rizer provides a correction in its output, as can be
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Figure 1: We introduce a new method for creating automatic summaries of lecture video transcripts, and perform
a user study with 106 students to determine whether supplementing videos with the summaries enhances their
learning.

seen in the output shown below (but not for the
word interpolation that remains incorrectly tran-
scribed as interpretation):

The trick for n-gram based language models is
how to deal with unseen sequences. This is done
with smoothing, interpretation, and back off to
smaller sequences.

Table 2 in the Appendix gives more examples of
the automatic summaries produced by our few-shot
model.
(3) Fine-tuning GPT-3. In the third approach, we
experimented with fine-tuning GPT-3 to perform
lecture summarization. We manually edited the out-
put of our few-shot model described above in order
to provide annotated examples for fine-tuning. By
this process, we obtained 114 prompt/output pairs
which we then used to fine-tune a summarization
model. When fine-tuning a GPT-3 model, we no
longer need to provide prompts like we did in the
previous two approaches.

The motivation behind experimenting with dif-
ferent approaches to summarizing transcribed
video lectures was to identify a model that is likely
to yield quality summaries. Through a series of
informal evaluations of the three types of outputs,
we observed that the fine-tuned model produced
summaries that were more consistent in style and
contained less repetition than the zero-shot and
few-shot models. Table 3 in the Appendix gives
examples of the automatic summaries produced by
our fine-tuned model. As our main interest in this
study is to evaluate whether adding summaries to

video lectures yields learning benefits to students’
review of course materials, we did not perform a
formal evaluation of the three approaches to auto-
matic summarization. Instead, we opted to conduct
a controlled study to evaluate the learning benefits
of summarization in three course reviewing condi-
tions. We report this evaluation study in the next
section.

3 Evaluation Study

In this section, we report a controlled study that we
conducted with the goal of evaluating the potential
benefits of offering students an automatic summary
of transcribed video lectures. In what follows, we
describe the participants of the study, the testing
conditions, and the results.

Participants. We recruited 106 undergraduate
and Master’s students who were taking an Artificial
Intelligence course in Fall 2022. Students were
given extra course credit for their participation.

Study design. We evaluated student perfor-
mance on materials that students reviewed for
two upcoming topics in the course presented in
video lectures. These consisted of two short, pre-
recorded lecture videos on Lexical Semantic Mod-
els (10 minutes) and Stochastic Gradient Descent
(12 minutes). For each topic, we evaluated the three
learning conditions listed below.
Testing conditions
1) Reviewing only the lecture video, 2) Reviewing
only the automatically generated summary, 3) Re-
viewing both the video and the automatic summary.
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Cond. N Pre-test σ Post-test σ ∆
Sum. 56 62% 1.03 73% 1.4 17.7%
Video 39 67% 0.9 79.7% 1.1 18.5%
V+S 48 66% 0.9 82% 1.2 24.4%

Table 1: Mean correctness on the pre-test quizzes, and
mean correctness on the quiz after reviewing the study
materials for students in each of our three learning con-
ditions for both lectures: Summary, Video, and Both.

All students were randomly assigned to a differ-
ent learning condition for each topic. Many partici-
pants reviewed both lecture topics. For the second
round, they were assigned to a different learning
condition.

Prior to reviewing the course materials, students
were given pre-test quizzes with four questions
for each topic to test their initial understanding of
the concepts. The answers were not shown to the
students. After the pre-test, students reviewed the
course materials using the materials associated with
their randomly assigned learning condition. Finally,
they answered a 10-question quiz on the material
that they had reviewed. These included the 4 ques-
tions from the pre-test, plus 6 previously unseen
questions. The quiz questions consisted of a mix of
True/False questions and multiple-choice questions.
The quiz questions are given in Appendix D.

The students were not given a time constraint
for reviewing the materials. However, once they
started the quiz, they were no longer allowed to
review the materials. Table 1 summarizes the stu-
dents’ performance under the different learning
conditions. We calculated the relative percentage
point increase as follows:

∆ =
Post score (%) − Pre score (%)

Pre score (%)

The mean correctness on the pre-test quizzes is
below 70%. After reviewing the learning materials,
the condition in which students demonstrate the
smallest improvement is condition (2) with only
access to the automatic summaries improve: a rela-
tive improvement of 17.7% or an 11% absolute im-
provement. Students who reviewed only the videos
(condition 1) have a relative improvement of 18.5%
(12.7% absolute). Students who reviewed both the
videos and the automatic summaries have a relative
improvement of 24.4% (16% absolute). A finer-
grained breakdown of the students’ performance
on the quizzes for each lecture video is given in
Appendix F.

We conducted a paired t-test to determine if there

was a significant difference in the test correctness
scores before and after the video+summary inter-
vention. The results showed a calculated t-statistic
of 2.12 and a p-value of 0.045 for the Lexical Se-
mantic Lecture, as well as a calculated t-statistic
of -4.16 and a p-value of 0.0003 for the Stochastic
Gradient Descent Lecture. These findings indi-
cate a significant difference between the means.
Although we cannot conclusively determine that
the video+summary approach is the most effective
learning condition among those tested (as indicated
by the Kruskal-Wallis test result of H(2) = 2.13
and a p-value of 0.34), we can observe that the re-
sults show a positive trend in the desired direction.

3.1 Qualitative student feedback

In order to examine the potential impact of time
constraints on learning, we solicited feedback from
an additional group of students that learned under a
two-minute time constraint. They were allowed to
learn from both the video lecture and the summary
within the given time frame. After the experiment,
we asked the students to fill out a qualitative feed-
back survey about their study methods, specifically
if they utilized the summary, video, or both.

Overall, we found that under timed conditions,
students tended to use summaries over video lec-
tures when both were available just as they would
do when studying before an exam when time con-
straints make summaries more useful. We report
three representative quotes from the student re-
sponses:

"Summaries are helpful to get an overview of
lecture."

"Used mainly the timestamps and the summary,
didn’t pay too much attention to the video itself."

"I initially did not look at the lecture summarizer
because the material was new to me and as a re-
sult it seemed better to take in a larger quantity of
material with new details. However, over time, as I
began to get confused or did not recall all details
about the lecture I started looking at the summaries.
This is where I felt the lecture summaries were par-
ticularly valuable - to reinforce details about the
lecture that I might have overlooked. Initially, with-
out the context of having already watched the lec-
ture, the summaries were not useful, but with this
context existing as s sort of partial lattice structure
in my head, the summaries became useful for filling
the gaps that were missing from that structure."
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4 Conclusion

Our work shows that students reviewing both the
lecture video and the automatically generated sum-
mary have a performance improvement from pre-
test to post-quiz. This suggests that accompanying
lecture videos with automatically generated sum-
maries does improve the studying experience. As
online learning becomes more ubiquitous, incor-
porating automatically generated summaries with
videos can enhance students’ overall learning expe-
rience.

5 Limitations

Our user study tests students on only two short
lecture videos which are pre-recorded and carefully
edited. Future work should test the efficacy of the
summaries under a wider range of conditions: pre-
recorded videos versus live lectures, lectures and
summaries of different lengths, and a wider range
of topics and disciplines.

Overall, our experiments compare three different
conditions. Adding other conditions might have
shed light on the relative value of automatic sum-
maries. For instance, if we limit the time avail-
able for participants to prepare before taking the
quiz, and at the same time track the amount of time
spent on summaries and/or videos, then that could
give better insights into how students would uti-
lize the two sources differently with limited time
constraints. Finally, we could also contrast the
usefulness of summaries versus transcripts.
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A Model Details

We use the ‘text-davinci-002’ version of GPT-3 for
our zero-shot and few-shot experiments, and as the
basis for our fine-tuned davinci model. We use
these parameters:

• Temperature: .6

• Frequency penalty: .7

• Presence penalty: .7

• Max tokens: maximum possible

To compute the maximum possible tokens for
each API call we made to the model, we start
with the total number of tokens that the model
can process (4000 tokens for ‘text-davinci-002’,
2048 for our fine-tuned model) minus the number
of tokens in the current prompt. We used Ope-
nAI’s ‘GPT2TokenizerFast’ (from huggingface-
transformers) to count tokens.

B Example Summaries

Table 2 gives example summaries from 13 consec-
utive transcript chunks from a lecture on Neural
Network Language Models given in an Artificial
Intelligence course. This output is produced by our
few-shot model. In the few-shot model, there are
many repetitive outputs with several of the sum-
maries beginning at The speaker is discussing.

Table 3 gives example summaries from 15 con-
secutive transcript chunks from a lecture on Vector-
Space Semantic Models given in an Artificial Intel-
ligence course. This table shows outputs from our

fine-tuned model. We can observe that the repeti-
tions in the summary are gone and the style of the
summaries has improved.

C User Interface

Figure 2 shows the interface template for the video-
and-summary condition group in the user study,
where we have instructions and a lecture video on
the left side, and a summary with timestamps on
the right side followed by a quiz link. Students can
scroll down on the lecture summary.

Figure 2: Video-and-Summary Interface

D Pre-Quiz and Post-Quiz questions

Lexical Semantic Pre-Quiz Questions

1. In N-gram language models, words are repre-
sent as

(a) Vectors
(b) Tokens
(c) Scalars
(d) Lists of ASCII codes

2. In the N-gram model, are the following words
(introduce, introducing, introduced) treated as
the same token? (T/F)

3. What is the LEAST important factor that we
should consider while encoding word mean-
ings?

(a) Words have synonyms
(b) Words that have opposite meanings
(c) Words that reflect different semantics

roles
(d) The number of word occurrences

4. Semantic representation will not involve en-
compassing syntactic positions of the words.
(T/F)
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Raw Transcript Chunks Automatic Summaries
I feel a little bit like I’m landing an airplane coming in for the end of the semester
filled with hundreds of people. But other than that. All right. How you doing?
Thank you. Gave me a linchpin for the here. I appreciate it. Thank you. Yes. Yeah.
It’s a to cope with the mask of the students. Good. Thank you. Thank you. You
too. Right. Yeah. All right. So now we’re on to the very last topic of the class. My
personal favorite natural language processing.

The speaker is discussing their fa-
vorite topic, natural language process-
ing. They mention that they feel like
they are landing an airplane when com-
ing in for the end of the semester. The
speaker thanks the person they are talk-
ing to and mentions that it is difficult
for students to cope with mask wear-
ing.

So uh we call it natural language processing to distinguish it from programming
languages, natural language. Um and there’s lots and lots of different elements of
this field. So I’m gonna walk you through one particular topic. So we’ll talk about
um how we’ve been, how we’ve adapted to use neural networks to do the problem of
language modeling. And then we’ll talk more generally about how we can represent
the meaning of words. So how do we come up with a computer interpret herbal
representation of word meaning?

The speaker is discussing natural lan-
guage processing and how it is differ-
ent from programming languages. The
speaker talks about how neural net-
works can be used to do the problem of
language modeling. The speaker also
talks about how computer representa-
tions of word meaning can be created.

Embedding and stores this in a matrix ah where we have the words in the vocabulary
and each Word embedding of length M. So that’s that 10, 30, 60 kind of length. Um
And in this old paper they initialized this with singular value decomposition. But
detailed doesn’t really matter that much anymore. And the neural architecture that
they use, I was just feed forward neural net. Okay, but here’s my cartoon of what
their neural network looks like. We’ve got our input words here. So we’ve got some
number of input words, we want to predict the next word.

The neural network they use is a feed
forward neural net. The input words
are fed into the network, and the goal
is to predict the next word.

And then we have a bunch of hidden layers and then we aggregate all the weights
together into a weight matrix for each hidden layer and we have an output layer that
we usually push through a softmax function. That changes the uh numbers here that
are real valued numbers into a probability distribution. And that output layer, the
number of nodes in the output layer can correspond to the number of classes that
we have in our prediction problem. Okay. And then the math underlying, it is not
that much different than we had for the logistic progression classifier.

Feed forward neural nets work. The
math underlying the neural net is simi-
lar to the logistic progression classifier.

So the main difference is instead of taking the dot product between a weight vector
and the input vector, we now take a matrix multiplication between the input vector
X. And the weight matrix for that entire hidden layer. Right? But we still have the
bias term. We still pump it through an activation function which could either be the
sigmoid just like in logistic regression or it could be one of another uh set of things
like rectified linear units or tangent. All right. And so that that then gives us the
output of pin layer.

The main difference between a feed
forward neural net and logistic regres-
sion is that with a feed forward neural
net, we take a matrix multiplication be-
tween the input vector and the weight
matrix. We still have the bias term and
we still pump it through an activation
function.

And then each hidden layer could act as the input to the subsequent hidden layer
or to the final air. So each of these transmits uh its own output to the next player,
just like the input to this first layer. And so each layer has its own set of weights.
So these are the parameters of the model. And finally we put things through the
softmax operation. Right.

Each hidden layer in a feed forward
neural net transmits its output to the
next layer. The weights for each layer
are the parameters of the model. Fi-
nally, the output is put through a soft-
max operation.

And so last time we talked about training the networks Arianna, we use a cross
entropy loss function, just like with logistic regression, we compute the gradients
but we use uh the computation graphs and the back propagation algorithm. Okay,
so how can we use these neural networks to do the problem of language modeling?
So you’ll recall from your language modeling homework that one of the goals of
language modeling is to estimate the probability of some sequence of words that
form a sentence.

Neural networks can be used for lan-
guage modeling. They talk about how
the goal of language modeling is to
estimate the probability of a sentence.

So if we’ve got a sequence of words uh where we have them index from word
one up towards the end been we can use the chain rule for probability to say
the probability of each next word, depends on all the previous words. And the
simplification that we’ve made in our language modeling homework, in our n gram
based language modeling homework was to make a Markov assumption where we
said the probability of the next word only depends on a short sequence of words in
its history.

The probability of each next word in
a sentence depends on all the previ-
ous words. The simplification that was
made in the language modeling home-
work was to make a Markov assump-
tion where the probability of the next
word only depends on a short sequence
of words in its history.

So it doesn’t depends on the whole world history, just a short sequence. And
the advantage that that had, was it allowed us a straightforward mechanism for
estimating the probabilities. Alright, so once we make that Markov assumption,
estimating the probabilities of each next word, given that limited history is really
just a matter of going through and counting up that sequence of those and words
and or and divided by the total number of words. Words with that preceding history
plus any other words. Right. And so that would just be the maximum likelihood
estimate.

The Markov assumption allows for a
straightforward mechanism of estimat-
ing probabilities. Estimating the proba-
bility of each next word is just a matter
of counting up the sequence of words
and dividing by the total number of
words with that preceding history.

Table 2: Example summaries generated by our few-shot summarizer
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Raw Transcript Chunks Automatic Summaries
Any questions about the homework assignments, um, or the reading from, for the
Ngrams? Nope. Okay. Um, so as friendly reminders, homeworks do at midnight,
you have a total of five free late days for the course. Uh, you could use them at
any time without asking the maximum number of late days you could use on any
assignment is two. So, um, but I also recommend that maybe you don’t. Uh, use
them early if at all possible, because then you’re just stuck in this thing with being a
couple days behind on the next homework.

There are five free late days for the
course, which can be used at any time.
However, it is recommended that stu-
dents do not use them early if at all
possible.

So they’re a blessing and a curse. Um, the next homework will be out shortly. I’m
meeting up with one of the TAs to look over the revisions of it from last year, this
afternoon. So with any luck, we’ll get up, get it up this afternoon, even before, uh,
homework number three is due. So this homework will be, uh, implementing the
style of, uh, vector space models that we talked about, um, on Monday, which are
the, uh, uh, long sparse vectors that you get via accounting. And then interesting
transformations on the counts.

The next homework will be imple-
menting vector space models using the
counts from a corpus.

Like the TF IDF, the term frequency, inverse document frequency one, and also the
positive pointwise mutual information, which we didn’t cover in class, but which is
included in the textbook in chapter six. So. Please do read that section. Um, and, uh,
we’ll sh we’ll like, have you, uh, analyze a Corpus of Shakespeare’s writings? So
you’ll be able to say like, uh, for this term by document matrix, pull out the column
vectors, representing the documents and compare, uh, pairs of Shakespeare’s plays.

The term frequency, inverse document
frequency, and positive pointwise mu-
tual information are all types of vector
space models. The class will analyze a
corpus of Shakespeare’s writings using
these techniques.

So, um, when people in the English department are studying Shakespeare, they
categorize, uh, his plays into like dramas, comedies and histories. So it might be
interesting to see whether, uh, the plays that are in those conceptual categories
established through literature, um, have a higher co-sign similarity with each other
than with the other categories. So that’s one potential analysis that you could do, um,
and then read the textbook. Chapter six, that’ll be the quiz that’ll, uh, be released
this week and will be due again on Monday at midnight. Okay.

One potential analysis is to see whether
plays in the same conceptual category
have a higher co-sign similarity with
each other than with the other cate-
gories.

So, uh, uh, last time we were talking about these term by document matrices that we
can construct through counting. Uh, we talked about one of the two transformations
that we could do to those by applying term frequency, inverse document frequency.
The other in the textbook is PPMI. Um, and we also talked about how you could
move from that idea that was developed in information retrieval, which is really,
uh, really conceptualized the value of those matrices as a way of retrieving similar
documents.

The term by document matrix is a way
of retrieving similar documents.

So if your query was thought of as a document, you could pull related queries or
sorry, related documents to that query by querying the co-signed similarity for all
the documents in your term by document matrix. Um, and then we saw how you
could extend that term by document matrix idea to get word semantics by having
a term by context matrix or a term by term matrix. Um, so those term by term
matrixes are parameterized in a lot of different ways. We could think about how
many words of context we want to take into account.

We can query a term by document ma-
trix for related documents by querying
the co-signed similarity for all the doc-
uments in the matrix. We could also
think about how many words of con-
text to take into account when comput-
ing semantic similarity.

We could think about, um, adding interesting linguistic context. Like we saw
through the dirt method where they had dependency information. So instead of
immediately adjacent words, they looked at, uh, parent of child of grandparent, of
grandchild of et cetera, but they all kind of had the property that the vectors that
resulted from these various methods for, uh, creating the term by context matrix
meant that the representation of words were long and sparse the length of the vectors
tended to be some function of the vocabulary size.

We could think about adding interest-
ing linguistic context to our word rep-
resentations by looking at words that
are higher up in the dependency tree.
The length of the vectors tended to be
some function of the vocabulary size.

Um, and the sparsity results in effect that by looking at a, a sliding window around
a word, you’re not gonna encounter that word. Co-occurring with all words in the
vocabulary of English. So there’s gonna be lots of zeros. So the, the place that we
pivoted to at the end of last lecture was to start looking at the more modern, um,
representation that we use for words still in the same vector space idea, called word
embeddings, where the major difference is the vectors themselves.

The modern representation for words
is called word embeddings. The ma-
jor difference is that the vectors them-
selves are learned through training.

Instead of being the length, the size of the vocabulary are gonna be much, much
shorter. We’re going to be able to specify however many dimensions we want to
use to encode the, the, uh, representation of the word. And usually we pick some
relatively small number of dimensions, like on the order of 100 or 300.

We can specify as many dimensions
as we want for the representation of
a word. Usually we pick some small
number, like 100 or 300.

um, and partially as a result of picking a much smaller number and as a result of
how we are then going to train the values, uh, to be included in the representation
of each word, the vectors then move from being sparse vectors with lots of zeros
to dense vectors, where we have almost no zeros. So the algorithm that we briefly
looked at last time, um, uh, was called word Tove, which produces these dense
vectors.

The algorithm that is used to generate
word embeddings is called word2vec.
The vectors that are produced are
dense vectors, which is different from
the sparse vectors that we have seen
before.

So the value of these dense vectors versus the sparse vectors, um, and the value of
them be having a relative few number of dimensions is that they’re much easier,
uh, to use for things like machine learning. So for instance, if you were to train
your classifier to say, is this word simple or complex, you could actually use those a
hundred dimensions as features in your classifier.

The value of dense vectors for machine
learning is that they are much easier to
use than sparse vectors.

Table 3: Example summaries generated by our fine-tuned summarizer389



Lexical Semantic Post-Quiz Question

1. Vector space semantics is a representation of
word meaning. (T/F)

2. In N-gram language models, words are repre-
sented as

(a) Vectors
(b) Tokens
(c) Scalars
(d) Lists of ASCII codes

3. In the N-gram model, the following words (in-
troduce, introducing, introduced) are treated
as the same token. (T/F)

4. What are the drawbacks of simply using N-
gram models?

(a) We really didn’t understand that there
was a relationship between those differ-
ent variants of the same underlying word

(b) We can run into the problem of sparse
counts

(c) Both of A and B
(d) None of A and B

5. When we encode word meanings, we should
consider the property that words can be syn-
onyms, meaning that they have similar mean-
ings to other words that are totally different.
(T/F)

6. What is the LEAST important factor that we
should consider while encoding word mean-
ings?

(a) Words have synonyms
(b) Words that have opposite meanings
(c) Words that reflect different semantic

roles
(d) The number of word occurrences

7. Semantic representation will not involve en-
compassing syntactic positions of the words.
(T/F)

8. WordNet is an example of ___ knowledge
base.

(a) Syntactical
(b) Lexical
(c) Grammatical
(d) Pronunciation

9. WordNet does not encode hierarchical organi-
zation of words. (T/F)

10. Which of the following refers to words that
are more general than the current word?

(a) Hypernym
(b) Hyponym
(c) Synonym
(d) Antonym

Stochastic Gradient Descent Pre-Quiz Ques-
tions

1. At each step, gradient descent finds out the
direction along which the function changes
the most quickly, and moves in this direction.
(T/F)

2. In gradient descent, at each step, what should
we know to update the weight?

(a) Previous weight, learning rate, slope
value

(b) Previous weight, learning rate, previous
function value

(c) Previous weight, previous function value
(d) Learning rate, slope value

3. What is the role of learning rate in gradient
descent?

(a) To decrease the weights and avoid very
large weights

(b) To control the step size of our move in
gradient descent at each step

(c) To learn from the training set
(d) To account for overfitting

4. Gradient descent can not be used for weights
with multiple features. (T/F)

Stochastic Gradient Descent Post-Quiz Ques-
tions

1. At each step, gradient descent finds out the
direction along which the function changes
the most quickly, and moves in this direction.
(T/F)

2. In gradient descent, at each step, what should
we know to update the weight?

(a) Previous weight, learning rate, slope
value
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(b) Previous weight, learning rate, previous
function value

(c) Previous weight, previous function value
(d) Learning rate, slope value

3. What is the role of learning rate in gradient
descent?

(a) To decrease the weights and avoid very
large weights

(b) To control the step size of our move in
gradient descent at each step

(c) To learn from the training set
(d) To account for overfitting

4. What might be the problem when our learning
rate is too big for convex functions?

(a) We will have very large weights at the
end

(b) We will have very small weights at the
end

(c) We will move back and forth in gradient
descent update and never find the global
minimum

(d) There is no problem with a very large
learning rate

5. For logistic regression, gradient descent can
always find the global minimum of its loss
function. (T/F)

6. Gradient descent can not be used for weights
with multiple features. (T/F)

7. For convex functions, gradient descent with a
reasonable learning rate can always find the
global minimum. (T/F)

8. For convex functions, the starting point where
we start gradient descent is not important.
(T/F)

9. Gradient descent is a method that uses which
of the following to determine the minimum of
a function

(a) The function’s current value
(b) The function’s intercept
(c) The function’s slope
(d) The function’s maximum value

10. Gradient Descent is guaranteed to find the
minimum of the logistic regression loss func-
tion because

(a) We use very powerful machines to run
the method

(b) The loss function is convex
(c) The loss function is concave
(d) We start gradient descent from a carefully

chosen point

E Summaries From Our User Study

E.1 Lexical Semantic Lecture Summary
0:29 - The current most exciting trendy topic in
NLP is how to represent the meaning of words.
This will be discussed through a particular style of
representation called vector space semantics.
0:29 - The history of vector space semantics goes
back to the information retrieval systems. More re-
cently, we have changed the way we create vectors
by using neural networks.
0:29 - The problem with traditional language mod-
els is that they do not understand the relationship
between words. In this class, we will discuss ways
to create neural language models that do have this
understanding.
1:38 - The problem with N-gram based language
models is that we can run into the problem of sparse
counts, where we cannot see how likely it is that
some other variants of a word will appear at test
time if we only have a small sample of data from
which to learn.
2:39 - There are many different elements that we
would like a good representation of word meaning
to be able to encode. One is the idea that words can
be synonyms even though they are totally different
in terms of their spelling.
2:51 - We will discuss how to measure similarity
between words, as well as how to understand the
opposite and similar meanings of words.
3:36 - There can be words that reflect different
semantic roles, and words that have a positive or
negative connotation.
3:25 - Entailment is an important aspect of word
meaning.
6:48 - Entailment can be mapped onto language in
a way that reflects the meaning of words.
8:47 - Entailment can be used to make inferences.
For example, if we know that all animals have an
old and their artery, then we can infer that dogs
must have an old and their artery.
4:51 - The ability to use logic as a representation
of the meaning of language would give us a very
powerful machinery for handling inferences and
entailments.
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8:46 - The downside of using formal logic as a rep-
resentation for the meaning of language is that we
have to acquire that knowledge. There are, how-
ever, resources that have been created that help
with this problem. One very important resource is
called WordNet, which is a lexical knowledge base
containing the meaning of words.
7:23 - WordNet has synonym sets that represent
different senses of a word. Each sense of the word
is represented as a distinct concept.
8:59 - The WordNet resource encodes the meaning
of words in a way that reflects the hierarchical or-
ganization of words in the language.
8:47 - In WordNet, a dog is a kind of canine and
a domesticated animal. Clicking on each of these
concepts shows how they are related through inher-
itance.
8:46 - In order to make an entailment, we need
to be able to walk through the different levels of
hierarchy in WordNet.

E.2 Stochastic Gradient Descent Lecture
Summary

0:00 - We want to find a parameter setting that
minimizes this loss over all of the items in our
training set. Theta is the set of parameters that we
have at our model.
0:54 - We want a good setting of theta that
minimizes the average loss across our training set
using the cross entropy loss function.
1:52 - The algorithm that is used to find the optimal
parameter setting is called gradient descent.
1:36 - The algorithm for finding the optimal
parameter setting is called gradient descent. The
algorithm uses a method for pushing around values
in a weight vector to find the optimal setting.
2:23 - The algorithm uses a method for pushing
around values in a weight vector to find the optimal
setting. The analogy for thinking about this is
you’re in a canyon and you want to find your way
down to the river.
2:51 - The idea of a function and what its minimum
point is can be used to understand the idea of
gradient descent.
3:20 - The loss function for logistic regression is
convex, which means there’s just one minimum for
logistic regression. As a result, gradient descent
starting from any point is guaranteed to find the
minimum.
4:00 - The loss function for logistic regression
looks like this. We can decrease w by pushing it in

this direction and we can increase w by pushing it
in this direction.
4:22 - We want to find the point where the loss
is the lowest by computing the slope of w with
respect to our loss function.
2:00 - We will compute the slope of w with respect
to our loss function and take one step in the
direction of the slope.
6:53 - The learning rate is the amount by which we
step in the direction of the slope.
1:36 - The weight at each time step is the current
weight at the previous time step minus the learning
rate, which is the step size. The slope is the
derivative of the loss function with respect to the
weight, and then we add back in the learning rate.
7:22 - The reason the curve goes up after we cross
the minimum is because this is just how we drew
this particular loss function. The minimum is
always going to be with respect to the loss.
9:20 - The minimum point is the best weight
associated with one of our features.
8:30 - This is a convex optimization problem,
which means there’s only one minimum. Other
types of problems are nonconvex, which means
there can be multiple minimums.
9:90 - The idea of taking a step in the direction of
the slope may not work for nonconvex problems,
which are problems with multiple minimums.
9:43 - The learning rate is how much we should
step in the direction of the slope. There’s interest-
ing literature on how to set the learning rate for
nonconvex problems.
10:43 - We want to use the intuition of moving left
and right for a single value to move left and right
for multiple variables.
11:14 - We will take the gradient of the weight
across many dimensions and use that to find the
minimum.
11:14 - We will use the intuition of moving left and
right for a single value to move left and right for
multiple variables.
11:25 - The intuition is that moving left and right
for a single value should move left and right for
multiple variables.

F Student performance on each quiz

From the pre-quiz and post-quiz results, as shown
in Tables 4 and 5, we can calculate the increase in
percentages of mean correctness of the different
conditions for Lexical Semantic lecture. Refer to
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Table 6 for this analysis. Similarly, we calculate
the increase for the Gradient Descent lecture, as
shown in Table 7. Note that values are normalized
when calculating the percentage increase.

Condition Mean Correctness Std Dev
Video 2.8 0.94

Summary 3.24 1.03
V+S 2.88 0.93

Table 4: Pre-Quiz results
Lexical Semantic

Condition Mean Correctness Std Dev
Video 7.92 1.62
Summary 7.72 1.37
V+S 8.33 1.25

Table 5: Post-Quiz re-
sults Lexical Semantic

Condition % increase
Video 13.14%
Summary -4.69%
V+S 15.69%

Table 6: Percentage in-
crease from Pre-Quiz to
Post-Quiz results in Lex-
ical Semantic Lecture

Condition % increase
Video 26.48%
Summary 21.75%
V+S 35.33%

Table 7: Percentage in-
crease from Pre-Quiz
to Post-Quiz results in
Stochastic Gradient De-
scent Lecture
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