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Abstract

This paper addresses the problem of providing
automatic feedback on orthographic errors in
handwritten text. Despite the availability of au-
tomatic error detection systems, the practical
problem of digitizing the handwriting remains.
Current handwriting recognition (HWR) sys-
tems produce highly accurate transcriptions but
normalize away the very errors that are essen-
tial for providing useful feedback, e.g. ortho-
graphic errors. Our contribution is twofold:
First, we create a comprehensive dataset of
handwritten text with transcripts retaining or-
thographic errors by transcribing 1,350 pages
from the German learner dataset FD-LEX. Sec-
ond, we train a simple HWR system on our
dataset, allowing it to transcribe words with
orthographic errors. Thereby, we evaluate the
effect of different dictionaries on recognition
output, highlighting the importance of address-
ing spelling errors in these dictionaries.

1 Introduction

Early L1 learners typically write by hand, even
in the digital age, and handwriting remains impor-
tant (Ray et al., 2022; Danna et al., 2022; Mathwin
et al., 2022). Automatic feedback on error types
in learner language is available (Laarmann-Quante,
2017; Berkling and Lavalley, 2015), but faces the
practical problem of having to digitize the handwrit-
ing first. Current handwriting recognition (HWR)
systems yield very good results (Kizilirmak and
Yanikoglu, 2022; Xiao et al., 2020; Li et al., 2021)
with one crucial problem: they typically normalize
away the orthographic errors (Neto et al., 2020) that
are important for giving useful feedback to learners.
In Figure 1, when humans read this handwritten
word, they look at the shapes of the letters to form
hypotheses. The first letter(s) could be a d or a cl
and we decide about this informed by a hypothesis
about the whole word. In this case, we see that
it is probably supposed to be dounut, so the first
letter is a d. We see that there is an extra letter u at

the third position which we ignore for forming our
hypothesis about the word, but still recognize so
that we could give a learner appropriate feedback
about it.

Automatic handwriting recognition systems are
typically trained and evaluated on handwritten text
along with transcripts that do not contain ortho-
graphic errors. Many HWR systems contain a lan-
guage model component (Scheidl et al., 2018) that
is used to further normalize the output. As a result,
HWR systems yield ‘clean’ transcripts without any
orthographic errors (right branch in Figure 1) that
cannot be used to give feedback on orthographic
errors. Instead, we need HWR systems outputting
transcripts that retain orthographic errors (middle
branch in Figure 1).

Character
Based

Normalizing
Spelling Errors

clounut donut

Retaining
Spelling Errors

dounut

Figure 1: Handwritten example for different hypotheses
(e.g. with and without normalizing spelling errors).

In this paper, we tackle this problem by first cre-
ating a dataset of handwritten text with transcripts
retaining orthographic errors. For that purpose,
we created comprehensive transcription guidelines
(Gold et al., 2023) that precisely define our tran-
scription goal. This is necessary as handwritten
text contains other artifacts beyond orthographic
errors, such as strikethroughs or inserts that we
need to transcribe. In total, we transcribe 1,350
handwritten pages from German learners and thus
create a dataset that is comparable in size to widely
used English datasets like IAM (Marti and Bunke,
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2002) and CVL (Kleber et al., 2013).
Given this dataset, we are then able to quantify

to what extent existing baseline systems are un-
able to transcribe handwritten text, especially if
we only use the underlying character recognition
probabilities. We compare this with training the
HWR system on parts of our data, enabling it (in
theory) to learn to correctly transcribe words with
orthographic errors.

Furthermore, we change the dictionary used in
the HWR system to also include systematic learner
errors created by an automated generator. Note
that providing the actual feedback is outside the
scope of this paper. Here, we focus on analyzing
the problem of turning an image of handwritten
text into a digitized transcript, which is currently
the main obstacle to applying existing feedback
methods on a scale.

2 Existing Datasets

For training and evaluating a handwriting recog-
nition system that retains orthographic errors, we
need a dataset combining images of learner hand-
writing with transcripts containing orthographic
errors. To our knowledge, no such dataset exists.

IAM and CVL are mostly in English and are
often used to evaluate handwriting recognition sys-
tems. IAM in its version 3.0 is an extensive dataset
and consists of about 1,500 pages with more than
13,000 text lines written by 650 adults, with dif-
ferent segmentation levels and corresponding tran-
scripts. CVL is comparable to IAM with about
1,600 pages from 310 adult writers. The set con-
sists of six English and one German text and thus
has a slightly increased alphabet as the German
Umlauts (ä, ö, and ü) are included. In comparison
to IAM, it is only transcribed word-wise, ignoring
most punctuation marks or strikethrough words,
although a segmentation of text lines is available.

The Growth-In-Grammar GIG dataset (Durrant
and Brenchley, 2018) is a learner dataset that re-
tained orthographic errors. However, the corre-
sponding image data is not available.

In contrast to GIG, FD-LEX (Becker-Mrotzek
and Grabowski, 2018) is another learner dataset
with published image data. In comparison to IAM
and CVL where the participants copied a presented
text by hand, this dataset consists of texts that
were freely written based on a picture or a short
story, and thus, more errors were made. Albeit,
the transcripts from the FD-LEX dataset normal-

Set GYM_5 GYM_9 IGS_5 IGS_9 Sum
1 144 90 84 72 390
2 102 96 84 108 390
3 132 138 114 60 444
4 120 138 90 90 438
5 156 132 72 84 444
6 162 120 96 114 492
7 168 144 132 120 564
8 150 132 120 120 522
9 138 144 126 114 522

10 138 144 132 132 546
11 150 120 108 90 468
12 144 84 108 72 408

Test Set 91 Total: 5628
Annotator 1 168
Annotator 2 1092

Table 1: Statistics of the complete FD-LEX Dataset and
our transcription effort. Cells in green are subsets for
the test set; dark orange and blue are transcribed by
Annotator 1 and Annotator 2, respectively.

ize orthographic errors and ignore other noise (e.g.
strikethroughs).

In conclusion, none of the existing datasets ful-
fills our need for available image data and a tran-
script containing orthographic errors.

3 Dataset Creation

As no suitable dataset is available, we need to build
one. We decided to use the German learner corpus
FD-LEX as a starting point, as it already contains
scans of learner handwriting with a sufficient num-
ber of orthographic errors. Looking at the example
in Figure 2, we can see additional typical chal-
lenges for automatic handwriting recognition e.g.
strikethroughs and inserts.

FD-LEX was built as a corpus for analyzing
the writing competence of learners. It covers
two different German school types: Gymnasium
(GYM) (‘academic track school’) and Integri-
erte Gesamtschule (IGS) (‘comprehensive school’)
from two grades (5th and 9th) each. It has about
5,600 scanned color pages from about 940 children
and is thus exceeding the IAM (1,500 pages) and
CVL (1,600 pages) datasets in size. A detailed list-
ing can be seen in Table 1. As stated, the transcript
provided with the corpus was created under another
focus (e.g. normalizing orthographic errors), thus
we had to transcribe it anew.

3.1 Transcription Guidelines

We first created transcription guidelines (Gold et al.,
2023) to formulate rules on how to deal with differ-
ent situations while creating an authentic transcrip-
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strikethroughinsert

a

Figure 2: An example of FD-LEX with common transcription challenges like strikethroughs and inserts.

tion of the written form.1 Following the guidelines
should yield an exact transcript of the handwritten
forms while at the same time allowing conversion
into readable text automatically. This approach en-
sures that the transcribed text accurately reflects the
writing skills of the learner and enables researchers
to identify any patterns or issues related to spelling
deficiencies.

We now describe the main issues covered in the
guidelines:

Text/line alignment One line of text in the image
must correspond to the line of text in the transcript.

Content Only the handwritten content of the
learner should be transcribed. This excludes the
printed text of the paper sheet as well as drawn
figures.

1The transcription guidelines can be found at https://github.
com/catalpa-cl/learner-handwriting-recognition.

Indistinct characters must be placed within
curly brackets {}. When in doubt between two
characters, the transcription should reflect the char-
acter that is appropriate in the given context. Learn-
ers may attempt to deceive teachers when uncertain
whether a word should begin with a capital letter2

or not, resulting in both versions being written on
top of each other. In such cases, both letters should
be enclosed in curly brackets and separated by a
plus (+) sign, with the first letter in curly brackets
being the correct one in the context.

Spacing should be carefully analyzed and consid-
ered in the context of the individual writing style.
In cases where a gap between characters of the
same word is noticeably larger than the average
space between words, the spacing should be tran-
scribed within curly brackets to indicate the devia-
tion from the norm: {S }chool.

2Particularly, since nouns are capitalized in German.
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Spelling errors are transcribed exactly as they
appear in the original text, without any correction
or modification.

Strikethrough characters, words, lines When a
character or a word is struck through, the transcript
should represent the number of characters with a
hash sign (#). If a line is made invalid in the same
manner, the line is transcribed with three hash signs
(###).

Inserts Direct inserts should be transcribed en-
closed in curly brackets with a less-than sign, like
< text. Indirect inserts, which are written at a
different location such as at the end of a page, can
be indicated by an asterisk (*) and a number if there
are multiple inserts. These indirect inserts should
be transcribed where they appear in the image. To
do this, an {insert1 *} tag is added in the line
where the text should be inserted, and the actual
insert content is transcribed at the location where it
appears with: {insert1 text}.

Punctuation marks, special characters, emoti-
cons All punctuation marks have to be tran-
scribed as they appear, with the only exception
that they should align with grammar rules in re-
gard to spacing: correct: (However,) incorrect:
(However ,). Special characters are treated indi-
vidually for e.g. tally marks3 are transcribed with
an ampersand (&) {|&}.

While using special signs and encoding (e.g. at
inserts or tally marks, strikethroughs), a conver-
sion between different target transcriptions can be
achieved, e.g. a) for a line-wise transcript of the
genuine content to be used for HWR; or b) for a
coherent text where inserts are inserted and the text-
line alignment is broken up to be used for semantic
analysis.

3.2 Annotation Process
Following the guidelines, we re-transcribed about
1,250 pages, each by one annotator. To diversify
our dataset, we transcribed the first 3 sets of each
school type and grade (colored cells of Table 1).
To assess the quality of the transcripts, some pages
were transcribed by both annotators and the inter-
annotator agreement (IAA) was computed. The
double-annotation was done repeatedly during the
whole transcription period and differences between
the transcripts were discussed among annotators.

3To keep track of word counts, the learners use vertical
strokes after every ten words. We refer to them as tally marks.
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Figure 3: Distribution of Word Error Rates (WER) be-
tween the original FD-LEX dataset transcription and our
error-retraining transcription.

In this way, a total of about 90 pages (subparts
in green, see Table 1) were transcribed in parallel
and both transcripts were merged into a gold tran-
scription by an adjudicator. We achieved an IAA
between both annotators of .98 on the character
level and an IAA of .99 between both annotators
and the gold label.4

3.3 Dataset Analysis

Transcribing the data allowed us to examine the
distribution of orthographic errors, i.e. spelling,
word separation, and capitalization. For that pur-
pose, we aligned our new transcripts with the origi-
nal transcripts using word alignment and measured
the word error rate (WER). As strikethroughs are
words that were made invalid, they would only
increase WER and thus were excluded from our
analysis.

In Figure 3, it can be observed that there are
many differences between our transcripts and the
original transcripts, suggesting that the use of the
original transcripts may not be ideal for HWR. Ad-
ditionally, the results in Figure 3 show that the 9th
grade had fewer errors compared to the 5th grade,
while the GYM performed better than the IGS for
both grades.

4 Baseline Experiments

To track our recognition performance improve-
ments, we create a baseline by training a straightfor-

4While some characters may appear unclear to one annota-
tor and the other annotator may see it differently, we decided
to calculate the IAA by ignoring curly brackets.
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ward handwriting recognizer on our dataset. Com-
monly, the performance of the recognizer is eval-
uated with two metrics, namely character error
rate (CER) and word error rate (WER). While
CER gives numerical feedback on how many char-
acters have been misread by the recognizer, WER
measures how many words are different from the
gold-standard transcription. This means that lower
values indicate better recognition performance. For
the purpose of this paper’s focus on word-level
analysis, we will concentrate on WER rather than
CER.

4.1 Recognizer Setup
For our experiments, we use a recognizer based
on a convolutional neural network (CNN) archi-
tecture combined with a connectionist temporal
classification (CTC) (Graves et al., 2006) for de-
coding. The designed architecture reduces the text-
line images from 2048x128 to 128x96 (Time-steps
x Charset) in 7 CNN-layers, 2 BLSTMs, and a final
dense layer. This architecture is based on Scheidl
(2018), with CTC decoding and additional word
beam search (WBS) for language-model decoding
(Scheidl et al., 2018)5. We extended the character
set used in the recognizer from 80 to 95 characters
to cover all German Umlauts (‘Ä’, ‘Ö’, ‘Ü’, ‘ä’, ‘ö’,
‘ü’) and ‘ß’ as well as additional punctuation marks
and special characters like ‘e’.

We use a text-line level recognizer and thus need
a text-line segmentation. Thus, we first reduced
the colored scans to gray level and removed ruled
lines as proposed by Gold and Zesch (2022). To
segment the full pages into text-lines we use a seg-
mentation with the A∗ path finding algorithm. This
algorithm works on a binary image and tries to
find a path through the text lines while avoiding
crossing handwritten strokes.

4.2 Baseline Setup
To train the recognizer we first used as much data
as possible and combined IAM (∼11,300 lines) and
CVL (∼13,400 lines) with our dataset (∼12,200
lines). Furthermore, we use the gold transcripts
which were transcribed by both annotators. These
91 pages (see Table 1) contain about 1,000 text-
lines and are referred to as test set in the following.
With the described setup and the combined training
data, the recognition performance results in a CER
of 11.5% and a WER of 37.6% on our test set.

5https://github.com/githubharald/SimpleHTR, https://github.com/
githubharald/CTCWordBeamSearch

As our dataset matches IAM and CVL in size,
we decided to train the recognizer again based on
our dataset only (without IAM and CVL). With
this setup, we were able to improve the recognition
performance slightly with a CER of 10.7% and a
WER of 34.7% on our test set. With these recog-
nition results, we decided to use this setup as our
Baseline (Table 2).

5 Decoding with Dictionary Constraint

Most research and publicly available databases for
HWR pertain to adults. In these cases, spelling
errors are typically ignored because they are esti-
mated to be rare and not important to be kept in
the output. Therefore, the predicted words can be
mapped to a large dictionary of possible words,
which has been shown to yield better recognition
rates, as recognition errors can be eliminated this
way (Scheidl et al., 2018).

5.1 Path Decoding and Word Beam Search
The standard method to map the Neural Network
(NN) results to a text string is the CTC (Graves
et al., 2006). In a more detailed manner, the NN
returns a matrix containing the probability distribu-
tion for each character along so-called time-steps
along the line of text. The matrix is then further
analyzed by a beam search decoder such as the
vanilla beam search by Hwang and Sung (2016).

However, without deeper knowledge, the beam
search algorithm could randomly output an indis-
tinguishably written character like ‘a’ as ‘o’, if the
probability is the same. To avoid this, a commonly
employed approach involves constraining the gen-
erated output to words that are contained in a pre-
defined dictionary. This can be done with WBS
as introduced by Scheidl et al. (2018).6 However,
with traditional dictionaries which only contain
correctly spelled words, spelling errors would be
eliminated from the texts.

5.2 Lower Bound
The ideal dictionary would consist of the vocab-
ulary of the learners as well as the orthographic
variants. To find out what the performance would
be with such an ideal dictionary, i.e. to determine
the lower bound for WER that would be possible
with such a dictionary, we compiled a dictionary

6Although the proposed algorithm of WBS includes a more
sophisticated language model, we did not make use of it as
the dictionary is increased enormously and thus increases the
computational costs.
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from our transcripts of the test set. This means that
this dictionary only contains words that appear in
the texts to be recognized as well as the specific
orthographic variants that are present in the texts.

Using this dictionary in the WBS decoder, we
can reduce the WER from 34.7% to 25.0%. Com-
pared to the baseline, this is an improvement of the
WER of 10 percentage points, i.e. almost one-third.
With the ideal dictionary, further recognition im-
provements could only be achieved by changing
the model or training data. This means, that the
achieved performance can be seen as the Lower
Bound that we want to approach.

5.3 German Learner Dictionary

For our purpose, we need a German dictionary cov-
ering the vocabulary of young learners in the first
place. We decide to use childLex (Schroeder et al.,
2015) for this purpose.7 The childLex corpus was
created by extracting word forms from over 500
children’s books with a target age between 6 and 12
years. Although this age range does not cover the
9th-grade students from our dataset, it seems better
suitable than a dictionary compiled from adult lan-
guage. To slightly restrict the extensive vocabulary,
we use a subset that comprises all word forms that
occurred in at least ten different books (an arbitrary
cutoff point)8. This is supposed to exclude rare and
specialized words, which could distract the recog-
nizer from choosing words that are generally much
more likely to appear in a text. In total, the dic-
tionary compiled this way contains about 45,000
word forms.

Using this dictionary in Word Beam Search, i.e.
constraining the output possibilities to the dictio-
nary words, resulted in a WER of 29.6%, which is
an improvement of 5 percentage points compared
to the baseline, see Table 2, row ‘WBS childLex’.

5.4 Specific Dictionary

Since childLex is a generic dictionary compiled
from books, it does not cover the whole vocabulary
of the FD-LEX dataset. Therefore, we compiled
another dictionary from the original transcripts of
the FD-LEX dataset (in which orthographic errors
were normalized) with a total of ∼11,850 words.
Although the dictionary is smaller than the one
compiled from childLex, it benefits from contain-

7For the English community we want to mention a similar
corpus https://www.sketchengine.eu/oxford-childrens-corpus/.

8More precisely, if a word form is included, all related
word forms with the same lemma are included as well.

CER WER
Baseline 10.7 34.7

WBS childLex 11.3 29.6
WBS childLex + SP 10.0 30.1
WBS FD-LEX 12.4 31.3
WBS FD-LEX + SP 9.9 29.0
WBS childLex + FD-LEX + SP 9.0 25.9

Lower Bound 10.8 25.0

Table 2: Results obtained with and without using the
WBS, and using different dictionaries. SP indicates
dictionaries that are expanded to include spelling errors.

ing only words which the learners wrote in relation
to the topics of the dataset. For example, one of
the texts is about an accident with a cyclist and
therefore, 20 compound words containing the Ger-
man word for ‘bicycle’ appear in the dictionary,
whereas only 9 such words appear in the childLex
dictionary. Overall, there is an overlap of about
7,150 words between the FD-LEX dictionary and
the childLex dictionary.

Incorporating the FD-LEX dictionary instead
yielded a notable improvement in recognition per-
formance at the word level compared to the base-
line, achieving a WER of 31.3%, see Table 2,
row ‘WBS FD-LEX’. However, it fell slightly
short of the recognition accuracy obtained with
the childLex dictionary.

6 Spelling Error Generator

To approximate the Lower Bound (see Section 5.2),
spelling variants must be added to the dictionary.
Thus, we generate possible (systematic) spelling er-
rors based on the procedure described in Laarmann-
Quante (2016). We generate possible misspellings
for all words in the childLex and FD-LEX dic-
tionaries. The error generation procedure works
as follows: A correctly spelled word is automati-
cally enriched with linguistic information such as
phonemes, syllables, and morphemes, based on the
web service G2P of the Bavarian Archive of Speech
Signals (BAS) (Reichel, 2012; Reichel and Kisler,
2014)9, see also Laarmann-Quante et al. (2019a)
for more information about these annotations. The
information is then used to analyze (via a set of
rules) which systematic errors could be made on
this word. By systematic we mean that particular

9https://clarin.phonetik.uni-muenchen.de/BASWebServices/
interface/Grapheme2Phoneme/
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principles of German orthography are violated, e.g.
consonant doubling (*komen for kommen, eng.: ‘to
come’)10, a syllabic principle, or final devoicing
(*Walt for Wald, eng.: ‘forest’), a morphological
principle (see Eisenberg, 2006 for the theoretical
framework). We also generate errors reflecting the
overuse of such principles, e.g. *Walld for Wald.
Errors that cannot be explained via such principles
(such as a seemingly random omission of a letter
as in *Wad for Wald) are not generated because
there is an infinite number of ways in which a word
could be misspelled. We assume, however, that
using the systematic errors in the sense described
above, should capture most of the errors that the
pupils commit because they are the major obstacles
when learning how to spell in German.

In total, 57 different error categories can be gen-
erated (not all apply to each word, though, while
some words may contain multiple instances of the
same error category, e.g. when there are two dou-
bled consonants in one word such as Wasserfall,
eng.: ‘waterfall’). The error categories that can be
generated can be found in Laarmann-Quante et al.
(2019b).11

Of course, more than one error can be committed
within a word. We account for this by including all
possible combinations of up to 2 systematic errors
that apply to a word. Including all possible error
combinations would lead to an exponential increase
of misspellings to consider, most of which will be
highly unlikely, though.

6.1 Coverage of the Dictionaries

Applying the spelling error generation to all words
in a dictionary results in an enormous increase in
the number of word forms. As shown in Table 3, for
the childLex dictionary, the number of words rises
from 45,000 (row 2) to about 14 million (row 3).
Likewise, FD-LEX with 11,000 words (row 4) rises
to 3.6 million words (row 5).

As we see in the last column of the table, the
original dictionaries only cover 74% (childLex) or
88% (FD-LEX) of the word forms present in the
test set. Including the generated spelling errors,
the coverage increases by 7-8 percentage points.
However, even if FD-LEX and childLex and the
spelling errors are combined (row 6 in Table 3), not
all word forms are covered (90%).

10We mark misspellings with an asterisk (*) in this paper.
11Under the levels PGI and PGII (‘Phoneme-Grapheme Cor-

respondence Level’), SL (‘Syllabic Level’), and MO (‘Mor-
phematic Level’)

Dictionary # Words Coverage

test set 1,472 100
childLex 45,347 74
childLex + SP 13,993,376 82
FD-LEX 11,874 81
FD-LEX + SP 3,670,962 88
FD-LEX + childLex + SP 15,990,735 90
FD-LEX + childLex + SP + Case - 94

Table 3: Number of words and coverage of the test
set vocabulary (in percent) for various dictionary set-
tings. SP indicates dictionaries with added spelling
errors, Case indicates that letter case variants are con-
sidered.

A manual inspection showed that one reason
that not all vocabulary was covered, is that words
may be capitalized at sentence beginnings in the
texts, but the dictionaries do not contain capitalized
variants of all words. However, including upper-
and lowercase variants for all words would nearly
double the size of the vocabulary, which is compu-
tationally not feasible for WBS. However, it shall
be mentioned that the inclusion of both letter cases
increases the coverage rate to approximately 94%
(row 7 in Table 3).

We further investigated the last 6% of missing
coverage, which is 88 words. 30 of these were
caused by incorrect word separation (14 words
that were incorrectly written together; 9 interrupted
words due to line-breaks; 5 separated words due
to strict transcription (e.g. huge gap after the first
character); and 2 miscellaneous cases). Another
24 words were not covered due to a missing letter
and 3 times two letters were swapped. These are
‘unsystematic’ errors that were not generated. For
19 words, the errors were not covered by the gen-
erator but they appeared systematic in a sense that
one may think of further rules to generate them in
the future, e.g. if ‘i’ follows ‘l’ the learner tends to
write ‘di’ instead of ‘li’. The few words left were
not covered for various reasons, e.g. interference
with transcription rules, more than 2 errors in the
word, and 2 non-words (number plate of a car).

6.2 Influence of the Advanced Dictionaries
In the following, we include the dictionaries (with
and without generated spelling errors) in the decod-
ing process of the HWR system with WBS to see
if the recognition performance can be improved.

The results are shown in Table 2. We see in rows
‘WBS childLex’ and ‘WBS FD-LEX’ that includ-
ing a dictionary (without spelling errors) already
improves the recognition performance compared
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to the Baseline by 3-4 percentage points in terms
of WER.

However, adding spelling errors into the dictio-
nary did not necessarily improve the performance.
For childLex, the WER increases by 0.5 percent-
age points when spelling errors are added to the
dictionary (compare rows 2 and 3). As discussed
in Section 6.1, by adding spelling errors, the num-
ber of word forms included in the dictionary is
increased extremely. Hence, chances are high that
a wrong spelling variant or a spelling variant of
another word is chosen. In contrast, the FD-LEX

dictionary is more restricted to the vocabulary of
the learners and thus could benefit from adding
spelling variants: The recognition performance is
increased by 1 percentage point when compared to
the dictionary without spelling errors (see rows 4
and 5).

The best result was achieved by combining both
dictionaries and their spelling errors. This way,
the WER decreases to 25.9% and is thus within 1
percentage point of the Lower Bound.

7 Conclusion and Further Work

In this paper we tackled the issue of retaining or-
thographic errors when automatically recognizing
learner handwriting. This is a prerequisite for giv-
ing automated feedback on spelling performance
based on handwritten texts.

We created a handwriting recognition dataset of
German learner texts based on the FD-LEX dataset
by transcribing 1,350 pages using new transcription
guidelines. The utilization of a dictionary to restrict
the output resulted in an improvement of our base-
line. Furthermore, our results indicate that incorpo-
rating generated spelling errors leads to an improve-
ment in recognition performance at the word level,
with the error rate decreasing from 35% to 25%,
representing a decrease of 10 percentage points.

Although we were able to cover 94% of the orig-
inally used words using a spelling error generator,
the huge number of words in the dictionary raises
questions about its practicality. Therefore, one of
the next goals should be to allow more probable
errors while avoiding overwhelming the dictionary.
Therefore, further analysis is necessary to deter-
mine which errors were made by learners in FD-
LEX and which ones were addressed by the gener-
ated errors. This information can be used to reduce
the size of the error set by eliminating unnecessary
or rare errors. Additionally, an analysis of com-

mon error combinations can aid in generating more
targeted errors while avoiding redundant ones.

Furthermore, the focus of this study was not on
improving the recognition model itself. However,
recognition improvements could be made by imple-
menting a more sophisticated model like full page
recognition as introduced by Bluche et al. (2017).
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