
Proceedings of the 18th Workshop on Innovative Use of NLP for Building Educational Applications (BEA 2023), pages 20–28
July 13, 2023 c©2023 Association for Computational Linguistics

Improving Mathematics Tutoring With A Code Scratchpad

Shriyash Upadhyay
Martian

yash@withmartian.com

Etan Ginsberg
Martian

etan@withmartian.com

Chris Callison-Burch
University of Pennsylvania

ccb@upenn.edu

Abstract

Large language models can solve reasoning
tasks (like math problems) more effectively
when they are allowed to generate rationales.
However, a good tutoring system should not
just generate solutions, but should also gener-
ate explanations and should be able to correct
and guide students. We show that providing a
code scratchpad improves performance on each
tutoring step with a gradeschool mathematics
dataset. On these tutoring tasks, GPT-3 models
provided with a code scratchpad significantly
outperform those given only a language scratch-
pad (77.7% vs 48.7% cumulative accuracy).

1 Introduction

Intelligent Tutoring Systems (ITS) are known to
be effective aids to learning, but are currently diffi-
cult and time consuming to create. Such systems
can aid learning significantly despite limitations,
improving student performance with a median im-
provement of 0.66 standard deviations (Kulik and
Fletcher, 2016). However, many notable ITS (for
example (Chaudhri et al., 2013)) have been lim-
ited due to the time-intensive and costly processes
required to create them. Previous work on ITS
has typically focused on rule-based methods. To
the degree that large language models (LLMs) are
used, it has been to generate additional rules for
such systems. Recently, advances in natural lan-
guage processing have pointed at the possibility of
using LLMs as tutoring systems, most notably 1)
the success of large language models in math world
problem solving due to rationale generation (Ra-
jani et al., 2019; Nye et al., 2021; Wei et al., 2022)
and 2) the improved alignment of dialogue agents
such as ChatGPT and Sparrow (Glaese et al., 2022).
We conduct a feasibility study on the application
of LLMs to tutoring in the context of mathematics
at an elementary school level by investigating their
performance on the tasks required by an ITS (see
Figure 1).

Figure 1: We evaluate the performance of two GPT-3
models on the sub-tasks present in an intelligent tutoring
system, providing one with a text-only scratchpad and
the other with a code scratchpad.

Our contributions are the following:
• We evaluate LLMs on the tasks present in an

ITS by proving a mapping between the sub-
tasks in an ITS and tasks which can be done
by an LLM. Using this, we show that GPT-3
with a text-only scratchpad has a significant
error rate when acting as a domain model and
tutoring model.

• We show that using a code scratchpad instead
of text-only ameliorates the errors in acting as
a tutoring model. Combined with improved
ability to solve math problems, this means
GPT-3 makes a significantly better tutor with a
code scratchpad (77.7% vs 48.7% cumulative
accuracy on ITS sub-tasks).

20



2 Related Work & Background

Early uses of NLP in ITS involved the use of
knowledge-based and rule-based systems (Hartley
and Sleeman, 1973). Such systems have shown
to be pedagogically effective (Kulik and Fletcher,
2016), and as such they continue to constitute the
majority of ITS today. Teaching and interacting
with the student in an ITS takes place through
some fixed set of interactions, often mediated by
extracting keywords from user utterances or as
goal-oriented dialogue systems. This tends to be
the case in both knowledge-based ITS (Piramuthu,
2005; Chaudhri et al., 2013), and in rule-based sys-
tems (Jarvis et al., 2004; Stamper, 2006). For open-
ended domains, Named Entity Recognition (NER)
has been used to determine whether a student’s
open-ended response meets a set of constraints
(Dzikovska et al., 2007). Techniques from NLP
have also been used more selectively to implement
features in these systems, such as machine transla-
tion for language learning (Moghrabi, 1998) and
Automatic Speech Recognition (ASR) for audio-
based tutors (Ward et al., 2011; Pradhan et al.,
2016).

However, newer techniques such as LLMs have
not found extensive use in implementing tutoring
systems. This is despite the success of generative
models such as GPT-3 (Brown et al., 2020) and
PALM (Chowdhery et al., 2022) across a wide vari-
ety of tasks, the improvement in dialogue systems
stemming from alignment as seen in models like
ChatGPT and Sparrow (Glaese et al., 2022), and
the success of LLMs (especially those that generate
code) in the related domain of Math Word Problem
Solving (Li et al., 2022; Gao et al., 2022). Much
of the work on LLMs in education has focused on
question generation as opposed to intelligent tu-
toring systems, for example (Dugan et al., 2022)
for flashcard generation or (Sarsa et al., 2022) for
programming exercises.

This may be the result of the difficulty in evalu-
ating the quality of generations from LLMs, espe-
cially explanations for the answers that they give,
as noted in (Lewkowycz et al., 2022). In this paper,
we evaluate the ability of LLMs to serve as tutors,
focusing on the evaluation of generated explana-
tions and corrections.

3 Methodology

Intelligent Tutoring System. In order to evaluate
the suitability of large language and code models

to tutoring, we test how well those models do in the
sub-tasks typically present in Intelligent Tutoring
Systems.

Intelligent tutoring systems are typically com-
posed of four components (Nkambou et al., 2010):
the domain model, student model, tutoring model,
and user interface model. The domain model con-
sists of the actions and correct steps required to
solve a problem. For example, in an ITS for mathe-
matics the domain model might consist of all the
relevant operations and the correction method of
solving problems. The student model consists of
the actions taken by the student (for example, the
scratchpad the student is using to do their work).
When the student deviates from the domain model,
the tutoring model provides feedback (for example,
telling a student what step they should take next
or what a student did wrong in their scratchpad).
Finally, the user interface model facilitates interac-
tion between the user and the tutoring model (this
might be the system which parses the scratchpad
and then parlays feedback to the student).

We can instantiate a tutor using an LLM by
creating each of the following parts. The user
interface model is simply natural language. The
domain model consists of problems with correct
solutions (generated by the model), the student
model consists of the language produced by
the student, and the tutoring model consists of
comparing domain and student models in text and
producing feedback. We illustrate each of the parts
of an ITS and how they can be performed by an
LLM in Figure 4.

Dataset. Following previous work, we re-
port our results on SVAMP (Patel et al., 2021).
SVAMP is a challenge dataset consisting of 1000
math word problems designed to demonstrate the
failures modes of word problem solving models.
The dataset focuses on arithmetic word problems,
i.e. those whose solutions are a combination
of numerical values and the basic arithmetic
operations (+, −, ×, ÷). Examples of such
problems can be found in Table 1. Each problem
has both a body (containing the narrative that
furnishes the relevant values and relationships) and
the question being asked about that narrative. Each
problem is also annotated with additional data,
such as the correct numerical solution. The dataset
also contains three types of "difficult" problems:
problems with re-used values, problems with

21



Dave had 24 files and 13 apps on his phone. After
deleting some apps and files he had 17 apps and 21 files
left. How many files did he delete?

The grasshopper and the frog had a jumping contest.
The grasshopper jumped 9 inches and the frog jumped
12 inches. How much farther did the frog jump than the
grasshopper?

At the zoo, a cage had 95 snakes and 61 alligators. If 64
snakes were hiding How many snakes were not hiding?

Table 1: Examples of problems from the SVAMP dataset
(Patel et al., 2021).

multiple operations, and problems with unused
values.

Models. The large language model used in our
experiments is GPT-3 (Brown et al., 2020). All
experiments are run using the largest version of
these models (the text scratchpad is generated with
text-davinci-002 and the code scratchpad with
code-davinci-002). For both models, decoding was
done with nucleus sampling using p=1 (Holtzman
et al., 2020). The temperature parameter was 0 and
the frequency penalty was 0.5. The prompts used
with each model can be found in Appendix A.

Scratchpads. Previous work has shown
that providing models with a scratchpad where
they can generate rationales for their answers
improves their accuracy on reasoning tasks such as
math word problem solving (Rajani et al., 2019;
Nye et al., 2021; Wei et al., 2022). In our work,
the scratchpads are a "thinking space" for models,
which would not be shown to the students, but
are used to compute answers or analyze student
responses.

Scratchpads can take the form of text, code, or
a combination of both. When the scratchpad is
purely code, we extract an answer by running the
code. When the scratchpad is text or a combination
of both, the model produces an answer in the form
of text.

Generating and Running Code. All code
snippets generated in this paper’s experiments are
generated in the python programming language.
If GPT-3 is used to generate runnable output,
we generate GPT-3’s response in a function
named solution. Any code generated outside the
solution function is not run. In order to prevent

Code Text

Solved 79.4% 63.7%
Explained 98.9% 97.9%
Corrected 99.0% 78.1%

Cummulative 77.7% 48.7%

Table 2: Performance of GPT-3 with text/code scratch-
pads on each tutoring sub-task. The cummulative per-
formance is the product of the performance on each
sub-task.

Figure 2: Results of our human evaluation for explana-
tion generation. Numbers represent the percentage of
annotations which provided a yes answer to each evalu-
ation criterion.

multiple solution functions from being generated,
we stop generation whenever GPT-3 tries to open a
multi-line comment using triple quotes (""").

4 Experiments

Our first experiment evaluates the difference in
performance between text and code scratchpads
in math problem solving. We evaluate, as is typi-
cal for math word problem solving, by measuring
the percentage of numerically correct answers pro-
duced by the model. This is a necessary, but not
sufficient, part of generating the domain model.
The LLM should produce not only a correct an-
swer, but should also provide a correct explanation
to produce that answer. Therefore, our second ex-
periment evaluates whether the model provides an
acceptable explanation for its answer. Because we
generate answers with GPT-3 by using CoT prompt-
ing, an explanation is automatically produced. For
the code scratchpad, we generate an explanation
by asking the model to convert the code used to
produce an answer into plain English. These two
experiments evaluate the ability of the LLMs to
serve as a domain model.

22



Figure 3: Results of our human evaluation for correction
generation. Numbers represent the percentage of anno-
tations which provided a yes answer to each evaluation
criterion.

Our third experiment evaluates the ability of the
LLMs to serve as tutoring models. We start with the
correct answers and explanations provided by the
model. For each question answered correctly, we
prompt the models using poorly formed prompts
in order to generate plausible incorrect answers
(i.e. using the model to simulate the output of a
student). Then, we provide the model with the in-
correct answer and the correct answer, and prompt
it to explain why the incorrect answer is wrong and
to accordingly provide feedback to the student.

The first experiment is evaluated automatically,
while the second and third experiments are evalu-
ated by human annotators.

5 Evaluation

We tasked 208 annotators to evaluate the quality
of explanations and corrections. Each annotator
was shown 20 examples of explanations and later
shown 20 examples of corrections. A total of 213
explanations and 190 corrections were evaluated
in this way. We modify the question evaluation
procedure in (Dugan et al., 2022) for evaluating
explanations and asked the following yes/no ques-
tions:

1. (Valid) Does the explanation contain instruc-
tions which could be used to correctly answer
the problem? It may also have other steps
which are irrelevant or incorrect.

2. (Complete) Does the explanation explain all
steps required to do the problem? That means
the explanation is not missing any key steps
a learner would need in order to solve such a
problem.

3. (Correct) Does the explanation *not* contain
any incorrect steps or incorrect explanation?

4. (Relevant) Does the explanation *not* contain
information irrelevant to the problem.

5. (Interpretable) Would a student who is learn-
ing material at the level of this problem be
able to understand the explanation?

If an annotator answered yes to all of the above
questions, the explanation/correction was consid-
ered "acceptable"; otherwise, it was considered
"unacceptable". Using Fleiss’ κ, we observe mod-
erate inter-annotator agreement (κ = 0.21).

In Table 2 we report the overall performance
with each type of scratchpad on each sub-task.
Code generation outperforms text generation on
all sub-tasks.

In Figure 2 we report the detailed results of our
evaluation for explanations. We can see that lan-
guage and code scratchpads achieve similar perfor-
mance in generating explanations. This is notable
because of the difference in how the two models
can create explanations. Text generation, by virtue
of generating a Chain of Thought, comes with an
explanation. Code generation requires an addi-
tional step of transforming code into text, which
introduces an opportunity for more errors. This is
reflected in the fact that explanations generated in
text are more likely to be correct. However, code
generation is much more likely to result in a com-
plete explanation. This makes sense, as the model
must explicitly list steps in code in order for the
code to compile, while text is more prone to logical
leaps or implicit steps.

In Figure 3 we report the detailed results of our
evaluation for corrections. In contrast with explana-
tion generation, when generating corrections, code
scratchpads encounter fewer errors of all kinds than
text ones.

6 Conclusion & Future Work

In this work we show that large language models
can perform the tasks associated with traditional
Intelligent Tutoring Systems (ITS). We show that
models which use text scratchpads suffer from sbus-
tantial errors in solving and correcting mathemati-
cal questions, and that these errors can be amelio-
rated through the use of code scratchpads. Nonethe-
less, code generation (while accurate enough to
potentially useful as tool for authoring ITS) still
suffers from significant errors.

23



Future work should seek to further explore the
applicability of LLMs to tutoring. This includes
developing both new evaluation methods and new
methods of reducing errors.

7 Limitations

Testing Necessary, But Not Sufficient Conditions
For Tutoring With LLMs. In this paper, we
test the abilities of LLMs to perform the functions
present in Intelligent tutoring systems, namely
generating explanations and corrections. There
are also other desirable properties, like the ability
to answer direct questions from a student or the
ability to present content engagingly, which are
beyond the scope of this paper. Indeed, those
properties are some of the areas where LLMs
probably excel relative to traditional ITS. We have
only explored a necessary condition – are models
able to reliably teach – not a sufficient set of con-
ditions for the evaluation of tutoring using an LLM.

Focusing On Mathematics. In this paper,
we focus on tutoring in rudimentary mathematics.
While this is useful – it is a necessary condition
for a useful tutoring system, especially because
arithmetic skills are used in almost all domains of
learning – there are many other domains to which
we might want to apply tutoring. LLMs may have
greater or lesser aptitude in these domains than in
arithmetic. Evaluation at the level of gradeschool
mathematics tells us that these models are still
error prone, but does not necessarily tell us how
close they are to usefulness in tutoring other
subjects (either more advanced mathematics or
orthogonal subjects like history or writing).

Generalizing Text vs Code Results. We
aim to examine the differences in ability of code
scratchpads and text scratchpads for the purposes
of tutoring. While this paper provides evidence
in that direction, we only compare two GPT-3
models: text-davinci-002 and code-davinci-002.
The amount of manual effort required to evaluate
explanations and correction limited the number of
comparisons we could conduct, as did the limited
number of highly performant code/text generating
models.

8 Ethics Statement

By offering a highly scalable and low-cost tutor-
ing solution, ITS offer lower income and minority

communities a critical resource in boosting edu-
cational outcomes that has historically only been
available to wealthy students in the form of expen-
sive individual private tutors. We hope that these
advancements will reduce key educational dispari-
ties. It is also important in that vein to ensure that
public schools with smaller budgets are given ac-
cess to ITS systems in pilot trials. Instructors and
students should become well-versed in using the
technology in order to ensure successful expansion
into such schools. Furthermore, advancements in
model distillation and the creation of smaller lan-
guage models will lead to lower costs for adoption
for the schools that are most in need. Intelligent
Tutoring Systems that run on generative AI models
bring many of the same dangers of bias that are
prevalent in models more generally. Gender and
racial stereotypes can be invoked when students are
presented with specific explanations. For example,
a model may explain a math question that involved
individuals choosing jobs through a hypothetical
example that invokes a gender or racial stereotype
based on the example given. However, recent ad-
vancements in alignment have made great strides
in reducing this issue.

As these models become more widely available
to students, there is an increased likelihood of stu-
dents using these models for cheating on assign-
ments that are supposed to be completed without
outside resources. Unlike traditional plagiarism
which can be checked by comparing document sim-
ilarity, the use of generative AI to answer questions
on exams and assignments is far more difficult to
detect.

Lastly, discrepancies in model outputs and in-
accurate answers given when some students use
the ITS but not others can lead to misunderstand-
ings and confusion amongst students. As a result,
instructors should supervise the outputs given by
the ITS to students. In the event that a student
was supplied incorrect information by an ITS, that
should be taken into account in grading that stu-
dent’s course material. Instructors should incor-
porate AI policies in their syllabi that outline ac-
ceptable uses of ITS systems, address the handling
of potential inaccuracies from those systems, and
ensure all students have access to the ITS systems.

By highlighting the limitations of large language
models as tutoring systems, we hope our work will
prevent the premature use of these technologies.

24



9 Acknowledgements

This research is based upon work supported in part
by the the NSF (Award 1928631). Approved for
Public Release, Distribution Unlimited. The views
and conclusions contained herein are those of the
authors and should not be interpreted as necessarily
representing the official policies, either expressed
or implied, of the NSF or the U.S. Government.

References
Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie

Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, T. J. Henighan, Rewon Child,
Aditya Ramesh, Daniel M. Ziegler, Jeff Wu, Clemens
Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack
Clark, Christopher Berner, Sam McCandlish, Alec
Radford, Ilya Sutskever, and Dario Amodei. 2020.
Language models are few-shot learners. ArXiv,
abs/2005.14165.

Vinay K. Chaudhri, Britte Haugan Cheng, Adam Over-
holtzer, Jeremy Roschelle, Aaron Spaulding, Peter
Clark, Mark T. Greaves, and David Gunning. 2013.
Inquire biology: A textbook that answers questions.
AI Mag., 34:55–72.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin,
Maarten Bosma, Gaurav Mishra, Adam Roberts, Paul
Barham, Hyung Won Chung, Charles Sutton, Sebas-
tian Gehrmann, Parker Schuh, Kensen Shi, Sasha
Tsvyashchenko, Joshua Maynez, Abhishek B Rao,
Parker Barnes, Yi Tay, Noam M. Shazeer, Vinodku-
mar Prabhakaran, Emily Reif, Nan Du, Benton C.
Hutchinson, Reiner Pope, James Bradbury, Jacob
Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin,
Toju Duke, Anselm Levskaya, Sanjay Ghemawat,
Sunipa Dev, Henryk Michalewski, Xavier García,
Vedant Misra, Kevin Robinson, Liam Fedus, Denny
Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim,
Barret Zoph, Alexander Spiridonov, Ryan Sepassi,
David Dohan, Shivani Agrawal, Mark Omernick, An-
drew M. Dai, Thanumalayan Sankaranarayana Pil-
lai, Marie Pellat, Aitor Lewkowycz, Erica Oliveira
Moreira, Rewon Child, Oleksandr Polozov, Kather-
ine Lee, Zongwei Zhou, Xuezhi Wang, Brennan
Saeta, Mark Díaz, Orhan Firat, Michele Catasta, Ja-
son Wei, Kathleen S. Meier-Hellstern, Douglas Eck,
Jeff Dean, Slav Petrov, and Noah Fiedel. 2022. Palm:
Scaling language modeling with pathways. ArXiv,
abs/2204.02311.

Liam Dugan, Eleni Miltsakaki, Shriyash Upadhyay,
Etan Ginsberg, Hannah Gonzalez, DaHyeon Choi,
Chuning Yuan, and Chris Callison-Burch. 2022. A
feasibility study of answer-agnostic question genera-
tion for education. In Findings of the Association for

Computational Linguistics: ACL 2022, pages 1919–
1926, Dublin, Ireland. Association for Computational
Linguistics.

Myroslava O. Dzikovska, Charles B. Callaway, Elaine
Farrow, Manuel Marques-Pita, Colin Matheson, and
Johanna D. Moore. 2007. Adaptive tutorial dialogue
systems using deep nlp techniques. In North Amer-
ican Chapter of the Association for Computational
Linguistics.

Luyu Gao, Aman Madaan, Shuyan Zhou, Uri Alon,
Pengfei Liu, Yiming Yang, Jamie Callan, and Gra-
ham Neubig. 2022. Pal: Program-aided language
models. ArXiv, abs/2211.10435.

Amelia Glaese, Nat McAleese, Maja Trębacz, John
Aslanides, Vlad Firoiu, Timo Ewalds, Maribeth Rauh,
Laura Weidinger, Martin Chadwick, Phoebe Thacker,
Lucy Campbell-Gillingham, Jonathan Uesato, Po-
Sen Huang, Ramona Comanescu, Fan Yang, Abigail
See, Sumanth Dathathri, Rory Greig, Charlie Chen,
Doug Fritz, Jaume Sanchez Elias, Richard Green,
Soňa Mokrá, Nicholas Fernando, Boxi Wu, Rachel
Foley, Susannah Young, Iason Gabriel, William Isaac,
John Mellor, Demis Hassabis, Koray Kavukcuoglu,
Lisa Anne Hendricks, and Geoffrey Irving. 2022.
Improving alignment of dialogue agents via targeted
human judgements.

J. R. Hartley and Derek H. Sleeman. 1973. Towards
more intelligent teaching systems. International
Journal of Human-computer Studies International
Journal of Man-machine Studies, 5:215–236.

Ari Holtzman, Jan Buys, Maxwell Forbes, and Yejin
Choi. 2020. The curious case of neural text degener-
ation. ArXiv, abs/1904.09751.

Matthew P. Jarvis, Goss Nuzzo-Jones, and Neil T. Hef-
fernan. 2004. Applying machine learning techniques
to rule generation in intelligent tutoring systems. In
International Conference on Intelligent Tutoring Sys-
tems.

James A. Kulik and John Dexter Fletcher. 2016. Effec-
tiveness of intelligent tutoring systems. Review of
Educational Research, 86:42 – 78.

Aitor Lewkowycz, Anders Andreassen, David Dohan,
Ethan Dyer, Henryk Michalewski, Vinay Venkatesh
Ramasesh, Ambrose Slone, Cem Anil, Imanol
Schlag, Theo Gutman-Solo, Yuhuai Wu, Behnam
Neyshabur, Guy Gur-Ari, and Vedant Misra. 2022.
Solving quantitative reasoning problems with lan-
guage models. ArXiv, abs/2206.14858.

Yifei Li, Zeqi Lin, Shizhuo Zhang, Qiang Fu, Bei Chen,
Jian-Guang Lou, and Weizhu Chen. 2022. On the
advance of making language models better reasoners.
ArXiv, abs/2206.02336.

Chadia Moghrabi. 1998. Using language resources in
an intelligent tutoring system for french. In ACL.

25

https://doi.org/10.18653/v1/2022.findings-acl.151
https://doi.org/10.18653/v1/2022.findings-acl.151
https://doi.org/10.18653/v1/2022.findings-acl.151
https://doi.org/10.48550/ARXIV.2209.14375
https://doi.org/10.48550/ARXIV.2209.14375


Roger Nkambou, Jacqueline Bourdeau, and Riichiro
Mizoguchi. 2010. Advances in Intelligent Tutoring
Systems. Springer Berlin, Heidelberg.

Maxwell Nye, Anders Andreassen, Guy Gur-Ari,
Henryk Michalewski, Jacob Austin, David Bieber,
David Dohan, Aitor Lewkowycz, Maarten Bosma,
David Luan, Charles Sutton, and Augustus Odena.
2021. Show your work: Scratchpads for interme-
diate computation with language models. ArXiv,
abs/2112.00114.

Arkil Patel, Satwik Bhattamishra, and Navin Goyal.
2021. Are NLP models really able to solve simple
math word problems? In Proceedings of the 2021
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 2080–2094, Online.
Association for Computational Linguistics.

Selwyn Piramuthu. 2005. Knowledge-based web-
enabled agents and intelligent tutoring systems.
IEEE Transactions on Education, 48:750–756.

Sameer Pradhan, Ronald A. Cole, and Wayne H. Ward.
2016. My science tutor—learning science with a
conversational virtual tutor. In ACL.

Nazneen Rajani, Bryan McCann, Caiming Xiong, and
Richard Socher. 2019. Explain yourself! leveraging
language models for commonsense reasoning. In
Annual Meeting of the Association for Computational
Linguistics.

Sami Sarsa, Paul Denny, Arto Hellas, and Juho
Leinonen. 2022. Automatic generation of program-
ming exercises and code explanations using large
language models. Proceedings of the 2022 ACM
Conference on International Computing Education
Research - Volume 1.

John C. Stamper. 2006. Automating the generation of
production rules for intelligent tutoring systems.

Wayne H. Ward, Ronald A. Cole, Daniel Bolaños, Cindy
Buchenroth-Martin, Edward Svirsky, Sarel van Vu-
uren, Timothy J. Weston, Jing Zheng, and Lee Becker.
2011. My science tutor: A conversational multime-
dia virtual tutor for elementary school science. ACM
Trans. Speech Lang. Process., 7:18:1–18:29.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Ed Huai hsin Chi, Quoc Le, and Denny Zhou.
2022. Chain of thought prompting elicits reasoning
in large language models. ArXiv, abs/2201.11903.

26

https://doi.org/https://doi.org/10.1007/978-3-642-14363-2
https://doi.org/https://doi.org/10.1007/978-3-642-14363-2
https://doi.org/10.18653/v1/2021.naacl-main.168
https://doi.org/10.18653/v1/2021.naacl-main.168


A Prompts

A.1 Prompts Used For Math Problem Solving
Solving Math Problems With GPT-3
1 {problem.body} {problem.question}
2
3 A: L e t s think step by step.
4 {model output}
5
6 So , the answer (in arabic numerals)

is:
7 {model output}

Solving Math Problems With code
1 """
2 {problem.body} {problem.question}
3 """
4 {model output}
5
6 # So the answer (in arabic numerals)

is: {model output}

A.2 Prompts Used For Explanation
Generation

Converting Code Answers To English Explanations
1 """
2 Write a function which computes and

returns the solution to the
following word problem:

3 At the zoo , a cage had 95 snakes and
61 alligators. If 64 snakes were
hiding How many snakes were not
hiding?

4 The function must return a single
numerical value. It cannot print
the answer.

5 """
6 def solution ():
7 # Given
8 snakes = 95
9 alligators = 61

10 hiding_snakes = 64
11
12
13 # How many snakes were not hiding?
14 return snakes - hiding_snakes
15
16 """
17 Here's what the above code is doing:
18 1. The problem is asking how many

snakes were not hiding. So, we
need to find how many snakes were
hiding and subtract it from how

many snakes there were. (snakes -
hiding_snakes)

19 2. The problem tells us that there
were 95 snakes. (snakes = 95)

20 3. The problem tells us that 64
snakes were hiding. (
hiding_snakes = 64)

21 4. So, the answer is 95 - 64 = 31.
22 """
23
24 {answer}
25
26 """
27 Here's what the above code is doing:
28 1. {model output}

A.3 Prompts Used To Generate Incorrect
Answers

Generating example scratchpads using Code
1 """
2 {problem.body} {problem.question}
3 """
4 def solution ():
5 return {model output}

A.4 Prompts Used For Correction Generation
Correcting Solutions (used for both text and code)
1 {problem.body} {problem.question}
2 {correct_explanation}
3 {incorrect_answer}
4
5 What approach does the correct

solution take:
6 {model outout}
7
8 What approach does the incorrect

solution take:
9 {model output}

10
11 Why is the incorrect solution

incorrect:
12 {model output}

B Annotation Interface

Figure 4: We evaluate the the performance of LLMs
with text scratchpads and code scratchpads models in
tutoring. (A) shows the parts of our system: given a
question, a student produces an answer and the answer
is shown to an LLM. The LLM first generates a solution
to the question and a explanation for the solution. If
the student gets the question wrong, the model also pro-
vides a correction. (B) shows how each of those steps
corresponds to the parts of a traditional Intelligent Tutor-
ing System (ITS). The red portion is what we evaluate:
namely, the ability of the model to serve as a domain
model (explanation) and tutoring model (correction).

27



Figure 5: The annotation guidelines shown to annota-
tors immediately before annotation. Complementary
instructions were given prior to annotation.

Figure 6: The annotation interface shown to annotators
to annotate explanations.

Figure 7: The annotation interface shown to annotators
to annotate corrections.

28


