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Abstract

In this paper, we discuss the nlpBDpatriots en-
try to the shared task on Sentiment Analysis
of Bangla Social Media Posts organized at the
first workshop on Bangla Language Process-
ing (BLP) co-located with EMNLP. The main
objective of this task is to identify the polarity
of social media content using a Bangla dataset
annotated with positive, neutral, and negative
labels provided by the shared task organizers.
Our best system for this task is a transfer learn-
ing approach with data augmentation which
achieved a micro F1 score of 0.71. Our best
system ranked 12th among 30 teams that par-
ticipated in the competition.

1 Introduction

NLP has become a major domain of modern com-
putational research, offering a lot of applications
from machine translation to chatbots. However,
much of this research has been concentrated on
English and other high-resource languages like
French, German, and Spanish.

Bangla, despite being the seventh most spoken
language in the world with approximately 273 mil-
lion speakers (Ethnologue, 2023), has not received
similar attention from the NLP community. This
gulf is not just an academic oversight; it has real-
world implications. Bangla is a language of signifi-
cant cultural heritage and economic activity. The
development of NLP technologies for Bangla is
both a scientific necessity and a practical imper-
ative. The limited availability of Bangla NLP re-
sources has led to a reliance on traditional machine
learning techniques like SVMs and Naive Bayes
classifiers for classification tasks such as sentiment
analysis. The advent of deep learning models has
opened new avenues. Models like BERT (Devlin
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et al., 2019) have shown promising results in lan-
guages other than English and has been recently
trained to support Bangla (Kowsher et al., 2022).

Sentiment analysis is increasingly becoming a
vital tool for understanding public opinion and peo-
ple’s behavior (Rosenthal et al., 2017). It has found
applications in various sectors, including finance,
where it helps investors to leverage social media
data for better investment decisions (Mishev et al.,
2020). In the context of Bangla, the utility of senti-
ment analysis extends beyond mere academic inter-
est. It can serve as a powerful tool for businesses
to gauge customer satisfaction, for policymakers
to understand public sentiment, and even for social
scientists studying behavioral trends.

In this paper, we evaluate several models and
implement transfer learning for the shared task
on Sentiment Analysis of Bangla Social Media
Posts organized at the first workshop on Bangla
Language Processing (BLP) (Hasan et al., 2023a).
Moreover, an ensemble model consisting of three
transformer-based models generates a superior per-
formance over the other approaches.

2 Related Work

Initiating Sentiment Analysis in Bangla Senti-
ment analysis, which was mainly focused on En-
glish (e.g. Yadav and Vishwakarma 2020, Saberi
and Saad 2017), is now becoming popular in other
low resource languages like Urdu (e.g. Noor et al.
2019, Muhammad and Burney 2023), Pashto (e.g.
Iqbal et al. 2022, Kamal et al., Kamal et al.),
Bangla (e.g. Islam et al. 2020, Akter et al. 2021).
Researchers are actively working to improve how
people analyze and modify Bangla online com-
ments using different methods and datasets. They
are doing a variety of tasks, from classifying docu-
ments to mining opinions and analyzing sentiment,
all while adapting their techniques to the specifics
of the Bangla language. For example, for docu-
ment classification, Rahman et al. (2020) presented
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an approach using the transformer-based models
BERT and ELECTRA with transfer learning. The
models were fine-tuned on three Bangla datasets.
Similarly, Rahman et al. (2020) explored character-
level deep learning models for Bangla text classi-
fication, testing Convolutional Neural Networks
(CNN) and Long Short-Term Memory (LSTM)
models. On the other hand, for opinion mining,
Haque et al. (2019) analyzed Bangla and Phonetic
Bangla restaurant reviews using machine learning
on a dataset of 1500 reviews. SVM achieved the
highest accuracy of 75.58%, outperforming prior
models.

Advancements of Sentiment Analysis in Bangla
Islam et al. (2020) presented two new Bangla senti-
ment analysis datasets which achieved state-of-the-
art results with multi-lingual BERT (71% accuracy
for 2-class, 60% for 3-class), and notes sentiment
differences in newspaper comments. Tuhin et al.
(2019) proposed two Bangla sentiment analysis
methods: Naive Bayes and a topical approach, aim-
ing at six emotions, which achieved over 90% ac-
curacy for sentence-level emotion classification,
outperforming Naive Bayes. Similarly, Al Kaiser
et al. (2021) discussed research focused on senti-
ment analysis and hate speech detection in Bangla
language Facebook comments; compiling a dataset
of over 11,000 comments, categorized by polarity
(positive, negative, neutral) and various sentiment
types, including gender-based hate speech. Further-
more, there are researches conducted on sentiment
analysis in the field of online Bangla reviews. For
example, Khan et al. (2020) detected depression
in Bangla social media using sentiment analysis.
They preprocessed a small dataset and employed
machine learning classifiers, but faced limitations
due to the dataset’s size and basic classifiers.

Akter et al. (2021) used machine learning for
Bangla e-commerce review sentiment analysis,
with KNN achieving 96.25% accuracy, outper-
forming other classifiers. This highlighted ma-
chine learning’s potential in analyzing Bangla e-
commerce reviews. Whereas, Banik and Rahman
(2018) introduced a Bangla movie review senti-
ment analysis system using 800 annotated social
media reviews. (Hasan et al., 2023b) introduced a
significant dataset of 33,605 manually annotated
Bangla social media posts and examined how differ-
ent language models perform in zero- and few-shot
learning situations. Thus, the research of sentiment
analysis is continuously growing, and it’s helping

us better understand sentiment in Bangla online
content.

3 Dataset

The dataset provided for the shared task (Hasan
et al., 2023a), consists of a training set, a develop-
ment set, and a blind test set. For each set, the texts
have been annotated using three labels - ’Positive’,
’Neutral’, or ’Negative’ (Islam et al., 2021). The
label distribution for each set is provided in Table
1.

Label Train Dev Test
Positive 35% 35% 31%
Neutral 20% 20% 19%
Negative 45% 45% 50%

Table 1: Distribution of instances and labels across
training, development, and test sets.

The dataset is imbalanced across the labels,
hence it is challenging for the models to learn well.

4 Experiments

We conduct a wide range of experiments with
several models and data augmentation strategies.
Our experiments include statistical models,
transformer-based models; data augmentation
strategies like back-translation, multilinguality and
also prompting proprietary LLMs.

Statistical ML Classifiers In our experiments,
we use statistical machine learning models like
Logistic Regression and Support Vector Machine
using TF-IDF vectors. We implement both models
and some hyperparameter tuning. While SVM
performs better with a 0.55 F1 score (Micro) the
overall results do not improve much.

Transformers We also test several transformer-
based models which are pre-trained on Bangla
data. Our initial experiments include Bangla-BERT
(Kowsher et al., 2022) which is only pre-trained on
bangla corpus. We finetune the model on the train
set and evaluate it on the dev set with empirical
hyperparameter tuning. We get 0.64 as the best
micro F1 using Bangla-BERT. We then use multi-
lingual transformer models like multilingual-BERT
(Devlin et al., 2019) and xlm-roBERTa (Conneau
et al., 2020), which are pre-trained on 104 and 100
different languages respectively, including Bangla.
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Figure 1: Workflow of the Ensemble Model

We also do the same hyperparameter tuning with
both models. While mBERT gets a 0.60 Micro
F1 score, xlm-roBERTa does better with 0.71 on
the dev set and 0.70 on the test set. Lastly, we
use MuRIL (Khanuja et al., 2021), another trans-
former pre-trained in 17 Indian languages including
Bangla. It has a test micro F1 score of 0.67. While
experimenting with these models, we observe the
losses while fine-tuning to make sure the models
do not overfit.

Prompting Next, we try prompting with gpt-3.5-
turbo model (OpenAI, 2023) from OpenAI for this
classification task. We use the API to prompt the
model, while providing a few examples for each
label and ask the model to label the dev and test
set. The model does not do well with a micro F1 of
0.57 on the dev and 0.51 on the test set.

Transfer Learning on Augmented Data Finally,
we augment the data of the Bangla YouTube Sen-
timent and Emotion dataset by Hoq et al. (2021).
The dataset has highly positive (2), positive (1),
neutral (0), negative (-1) and highly negative (-2)
labels. We merge the highly positive and posi-
tive labels to Positive, negative and highly negative
labels to Negative and keep the neutral label un-
changed. This is how we get three labels out of
five and merge it with our train data. Following
this procedure, we get 0.71 micro F1 score for test
dataset.

Ensemble After finding the results of
transformer-based models, we perform an
ensemble approach on BanglaBERT, MuRIL,
and XLM-R. We then find the weighted average
confidence of these three models. For Negative, the

confidence interval is fixed 0.0 - 0.33, for Neutral
between 0.33 to 0.66 exclusive and for Positive
0.66 - 1.0. The weights are their corresponding test
F1 scores found in Table 3. With that confidence
interval, we predict the test labels. We get a 0.72
micro F1 score by this approach. However this
result is not reported to the shared task test phase
as we get this result by additional experiments.
The detailed label prediction procedure is given in
Table 2 and the workflow of the whole ensemble
method is given in Figure 1. For the first instance,
the example is indeed Neutral but BanglaBERT
predicts it borderline Negative and XLM-R
predicts it Positive. But the power of ensemble
approach bring it to the confidence interval of
Neutral and thus predicts the label correctly.
Similarly, for the second one, a corrected Neutral
label is predicted from a Negative, Neutral and
borderline Positive confidence. For the last two
cases, Negative and Positive labels are determined
correctly even with the presence of two Neutral
confidence.

5 Results and Analysis

At the start of the share task competition, 3 baseline
micro F1 scores are provided by the organizers.
For random selection the provided baseline is 0.34,
for majority selection 0.50, and n-gram 0.55. The
results of different models are given in Table 3.

Amongst the statistical machine learning models,
we use logistic regression and support vector ma-
chine. For logistic regression, we achieve a micro
F1 score of 0.45 and for the support vector machine,
the F1 is 0.55.

For transformer-based models, we use mBERT,
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Table 2: Ensemble with Three Transformer Based Models based on Confidence Score

BanglaBERT, MuRIL and XLM-R where we get
the best F1 score of 0.70 by XLM-R.

A few shot learning procedure is used by using
GPT3.5 Turbo. We give a few instances of each la-
bel as prompt and got 0.51 F1 which is significantly
lower than our other attempted approaches except
logistic regression. It is because GPT3.5 is still not
efficient enough for any downstream classification
problem in bangla like this shared task.

Moreover, we augment the data of Bangla
YouTube Sentiment and Emotion dataset by Hoq
et al. (2021). The dataset has highly positive, posi-
tive labels which we consider as positive and neg-
ative, highly negative labels which we consider
negative. We keep the neutral label unchanged.
This is how we get three labels out of five labels
and merge it with our train data. Following this
procedure, we finally achieve micro F1 score of
0.71 which we this shared task’s leader board.

Additionally, we perform ensemble method over
the test micro F1 score of BanglaBERT, MuRIL
and XLM-R. Instead of doing majority voting on
the predicted test label, we find weighted average of
confidence interval for the each instances of the test
set for the three transformer based models shown
in Table 3. With that confidence interval, test la-
bels are predicted with 0.72 F1 score which is the
best among all our experiments. A comparison bar

Models Dev Test
Logistic Regression 0.47 0.45
Support Vector Machine 0.56 0.55
mBERT 0.60 0.60
BanglaBERT 0.66 0.64
MuRIL 0.70 0.67
XLM-R 0.71 0.70
GPT 3.5 Turbo 0.57 0.51
XLM-R (Transfer Learning
on Augmented data) 0.71 0.71
Ensemble - 0.72

Table 3: Dev and Test micro F-1 score for different
models and procedures

chart for different models’ performance is shown
in Figure 2.
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Figure 2: Models vs. Test Micro-F1 score (in percent-
age)

6 Error Analysis

The classification report provides a comprehensive
understanding of our model’s performance across
the three classes. The overall accuracy of the model
is 0.71. The ’Positive’ class has the highest F1-
score of 0.78, driven by a precision of 0.75 and a
recall of 0.80. The ’Neutral’ class, on the other
hand, shows a relatively weaker performance with
an F1-score of 0.42, a result of its lower precision
and recall, 0.51 and 0.37 respectively. The ’Nega-
tive’ class offers a competitive performance with an
F1-score of 0.74, a precision of 0.72, and a recall
of 0.76.
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On a macro level, the average values indicate a
precision of 0.66, recall of 0.64, and an F1-score
of 0.65. When weighted by support, the averages
show a slightly better picture with precision at 0.69,
recall identical to the overall accuracy at 0.71, and
an F1-score of 0.70.

Further dissecting the errors by text length of-
fers more insights. Texts with lengths in the range
of 50 to 100 characters contribute the most to the
dataset, constituting 43.73% of the samples, and
have an F1-score of 0.74. The second largest group,
texts ranging from 20 to 50 characters, contribute
26.64% to the dataset with a slightly better F1-
score of 0.70. It is also worth noting that the perfor-
mance drastically reduces for texts with lengths be-
tween 500 and 1000 characters, yielding the lowest
F1-score of 0.39, albeit they only make up 0.73%
of the samples. Few misclassified examples are
given in Figure 4.

Figure 3: Confusion Matrix

Figure 4: Few examples of misclassified labels

Text_Length Micro_F1 Count %
(0, 10] 0.67 69 1.03
(10, 20] 0.64 250 3.73
(20, 50] 0.70 1787 26.64
(50, 100] 0.74 2933 43.73
(100, 200] 0.69 1288 19.20
(200, 300] 0.64 202 3.01
(300, 500] 0.59 119 1.77
(500, 1000] 0.39 49 0.73
(1000, 5000] 0.80 10 0.15

Table 4: Performance Analysis Based on Text Length.

Figure 5: Performance Analysis

7 Conclusion

In this shared task, we use statistical machine learn-
ing models, transformer-based models, a few shot
prompting, some customization with transformer-
based models with transfer learning, data augmen-
tation, and an ensemble-based approach. The trans-
fer learning and data augmentation procedure is re-
ported as the most successful approach in terms of a
micro F1 score of 0.71. But additional experiments
by doing an ensemble over three transformer-based
models provide a 0.72 F1 score. Overall, this paper
can be treated as a holistic experimental outcome
for this shared task.

Limitations

Our transfer learning approach towards solving
the problem presented for this shared task shows
promising results. However, in most cases, our
models keep overfitting. We use dropouts and
weight decaying to handle the issue. Even though
we perform a lot of hyper-parameter tuning with
all the models, it might still be the case that we are
not able to find the optimal set of parameters for a
few models in our experiments.
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Ethics Statement

The present study, which centers on the analysis of
sentiment in Bangla text, rigorously adheres to the
ACL Ethics Policy and seeks to make a valuable
contribution to the realm of online safety. The
dataset was supplied to us by the organizers and has
undergone anonymization to secure the privacy of
the users. The technology in question possesses the
potential to serve as a beneficial instrument for the
moderation of online content, thereby facilitating
the creation of safer digital environments. However,
it is imperative to exercise caution and implement
stringent regulations to prevent its potential misuse
for purposes such as monitoring or censorship.
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