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Abstract

Bangla typing is mostly performed using
English keyboard and can be highly erroneous
due to the presence of compound and similarly
pronounced letters. Spelling correction of a
misspelled word requires understanding of
word typing pattern as well as the context of the
word usage. A specialized BERT model named
BSpell has been proposed in this paper targeted
towards word for word correction in sentence
level. BSpell contains an end-to-end trainable
CNN sub-model named SemanticNet along
with specialized auxiliary loss. This allows
BSpell to specialize in highly inflected Bangla
vocabulary in the presence of spelling errors.
Furthermore, a hybrid pretraining scheme has
been proposed for BSpell that combines word
level and character level masking. Comparison
on two Bangla and one Hindi spelling
correction dataset shows the superiority of
our proposed approach. BSpell is available
as a Bangla spell checking tool via GitHub:
https://github.com/Hasiburshanto/Bangla-
Spell-Checker.

1 Introduction

Bangla is the native language of 228 million peo-
ple which makes it the sixth most spoken language
in the world 1. This Sanskrit originated language
has 11 vowels, 39 consonants, 11 modified vowels
and 170 compound characters (Sifat et al., 2020).
There is vast difference between Bangla grapheme
representation and phonetic utterance for many
commonly used words. As a result, fast typing
of Bangla yields frequent spelling mistakes. Al-
most all Bangla native speakers type using English
QWERTY layout keyboard (Noyes, 1983) which
makes it difficult to type Bangla compound charac-
ters, phonetically similar single characters and sim-
ilar pronounced modified vowels correctly. Thus
Bangla typing speed, if error-free typing is desired,

1https://www.babbel.com/en/magazine/the-10-most-
spoken-languages-in-the-world

is slow. An accurate spell checker (SC) can be a
solution to this problem.

Existing Bangla SCs include phonetic rule (Uz-
Zaman and Khan, 2004, 2005) and clustering based
methods (Mandal and Hossain, 2017). These meth-
ods do not take misspelled word context into con-
sideration. Another N-gram based Bangla SC
(Khan et al., 2014) takes only short range previous
context into consideration. Recent state-of-the-art
(SOTA) spell checkers have been developed for
Chinese language, where a character level confu-
sion set (similar characters) guided sequence to
sequence (seq2seq) model has been proposed by
Wang et al. (2019). Another research used similar-
ity mapping graph convolutional network in order
to guide BERT based character by character par-
allel correction (Cheng et al., 2020). Both these
methods require external knowledge and assump-
tion about confusing character pairs existing in the
language. The most recent Chinese SC offers an
assumption free BERT architecture where error
detection network based soft-masking is included
(Zhang et al., 2020). This model takes all N charac-
ters of a sentence as input and produces the correct
version of these N characters as output in a parallel
manner.

Incorrect Correct

পিরকা (প+র+ ि◌+ক+◌া) পরী�া  (প+র+◌ী+ক+ ◌্ +ষ+◌া ): Exam
িবশশ (ব+ি◌+শ+শ) িব� (ব+ি◌+শ+ ◌্ +ব ): World  

ভাদর (ভ+◌া+দ+র) ভা� (ভ+◌া+দ+ ◌্ +র): month name

Figure 1: Heterogeneous character number between
error word and corresponding correctly spelled word

One of the limitations in developing Bangla SC
using SOTA BERT based implementation (Zhang
et al., 2020) is that number of input and output
characters in BERT has to be exactly the same.
Such scheme is only capable of correcting substi-
tution type errors. As compound characters are
common in Bangla words, an error made due to the
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substitution of such characters also changes word
length (see the table in Figure 1). So, we introduce
word level prediction in our proposed BERT based
model.

Correct Incorrect

�সিনক �ঘাড়া চেড় যুে� �গল।
(Soldier went to war riding a horse)

আসামী �দাষ �ীকার করল। 
(The criminal confessed crime)

কাল আমােদর বািষ �ক পরী�া।  
(Tomorrow is our final exam)

�সিনক �ঘারা চেড় যুে� �গল।
(Soldier went to war riding a visit)

আসামী �দাষ িশকার করল। 
(The criminal hunted crime)

কাল আমােদর বািষ �ক পিরখা।  
(Tomorrow is our final trench)

Figure 2: ample words that are correctly spelled acci-
dentally, but are context-wise incorrect.

The table shown in Figure 2 illustrates the im-
portance of context in Bangla SC. Although the
red marked words of this figure are the misspelled
versions of the corresponding green marked cor-
rect words, these red words are valid Bangla words.
But if we check these red words based on sen-
tence semantic context, we can realize that these
words have been produced accidentally because
of spelling error. An effective SC has to consider
word pattern, its prior context and its post context.

Misspelled

Misspelled: গরাম ��িশর অরর িনরভরিশল

গরাম

��িশর

অরর

িনরভরিশল

       Correct:  �াম   কৃিষর   ওপর   িনভ�রশীল

Correct

�াম (village)

কৃিষর (Agriculture)

ওপর (on)

িনভ�রশীল (dependent)

Context

কৃিষর

�াম, িনভ�রশীল

িনভ�রশীল

ওপর

Meaning: Villages are dependent on agriculture

Figure 3: Necessity of understanding existing erroneous
words for spelling correction of misspelled words

Spelling errors often span up to multiple words
in a sentence. Figure 3 provides an example where
all four words have been misspelled. The correc-
tion of each word has context dependency on a few
other words of the same sentence. The problem is
that these words that form the correction context are
also misspelled. The table in the figure shows the
words to look at in order to correct each misspelled
word. In the original sentence (colored in red), all
these words that need to be looked at for context
are misspelled. If a SC cannot understand the ap-
proximate underlying meaning of these misspelled
words, then we lose all context for correcting each
misspelled word which is undesirable.

We propose a word level BERT (Devlin et al.,
2018) based model BSpell. This model is capa-
ble of learning prior and post context dependency

through the use of multi-head attention mechanism
of stacked Transformer encoders (Vaswani et al.,
2017). The model uses CNN based learnable Se-
manticNet sub-model to capture semantic meaning
of both correct and misspelled words. BSpell also
uses specialized auxiliary loss to facilitate word
level pattern learning and vanishing gradient prob-
lem removal. We introduce hybrid pretrainingfor
BSpell to capture both context and word error pat-
tern. We perform detailed evaluation on three error
datasets that include a real life Bangla error dataset.
Our evaluation includes detailed analysis on pos-
sible LSTM based SCs, SC variants of BERT and
existing classic Bangla SCs.

2 Related Works

Several studies on Bangla SC development have
been conducted in spite of Bangla being a low re-
source language. A phonetic encoding oriented
Bangla word level SC based on Soundex algorithm
was proposed by UzZaman and Khan (2004). This
encoding scheme was later modified to develop
a Double Metaphone encoding based Bangla SC
(UzZaman and Khan, 2005). They took into ac-
count major context-sensitive rules and consonant
clusters while performing their encoding scheme.
Another word level Bangla SC able to handle both
typographical and phonetic errors was proposed by
Mandal and Hossain (2017). An N gram model was
proposed by Khan et al. (2014) for checking sen-
tence level Bangla word correctness. An encoder-
decoder based seq2seq model was proposed by
Islam et al. (2018) for Bangla sentence correction
task which involved bad arrangement of words and
missing words, though this work did not include in-
correct spelling. A recent study has included Hindi
and Telugu SC development, where mistakes are
assumed to be made at character level (Etoori et al.,
2018). They have used attention based encoder-
decoder modeling as their approach.

SOTA research in this domain involves Chinese
SCs as it is an error prone language due to its con-
fusing word segmentation, phonetically and visu-
ally similar but semantically different characters.
A seq2seq model assisted by a pointer network
was employed for character level spell checking
where the network is guided by externally gener-
ated character confusion set (Wang et al., 2019).
Another research incorporated phonological and vi-
sual similarity knowledge of Chinese characters
into BERT based SC model by utilizing graph

8



convolutional network (Cheng et al., 2020). A
recent BERT based SC has taken advantage of
GRU (Gated Recurrent Unit) based soft masking
mechanism and has achieved SOTA performance
in Chinese character level SC in spite of not provid-
ing any external knowledge to the network (Zhang
et al., 2020). Another external knowledge free ap-
proach namely FASPell used BERT based seq2seq
model (Hong et al., 2019). HanSpeller++ is notable
among initially implemented Chinese SCs (Xiong
et al., 2015). It was an unified framework utilizing
a hidden Markov model.

3 Our Approach

3.1 Problem Statement

Suppose, an input sentence consists of n words –
Word1, Word2, . . . , Wordn. For each Wordi,
we have to predict the right spelling, if Wordi ex-
ists in the top-word list of our corpus. If Wordi is
a rare word (Proper Noun in most cases), we pre-
dict UNK token denoting that we do not make any
correction to such words. For correcting a particu-
lar Wordi in a paragraph, we only consider other
words of the same sentence for context information.

3.2 BSpell Architecture

Figure 4 shows the details of BSpell architecture.
Each input word of the sentence is passed through
the SemanticNet sub-model. This sub-model re-
turns us with a SemanticVec vector representation
for each input word. These vectors are then passed
onto two separate branches (main branch and sec-
ondary branch) simultaneously. The main branch
is similar to BERT_Base architecture (Gong et al.,
2019). This branch provides us with the n correct
words corresponding to the n input sentence words
at its output side. The secondary branch consists of
an output dense layer. This branch is used for the
sole purpose of imposing auxiliary loss to facili-
tate SemanticNet sub-model learning of misspelled
word patterns.

3.2.1 SemanticNet Sub-Model
Correcting a particular word requires the under-
standing of other relevant words in the same sen-
tence. Unfortunately, those relevant words may
also be misspelled. As humans, we can understand
the meaning of a word even if it is misspelled be-
cause of our deep understanding at word syllable
level and our knowledge of usual spelling error pat-
tern. We want our model to have similar semantic

level understanding of the words. We propose Se-
manticNet, a sequential 1D CNN sub-model that
is employed at each individual word level with a
view to learning intra word syllable pattern. Details
of individual word representation has been shown
in the bottom right corner of Figure 4. We repre-
sent each input word by a matrix (each character
represented as a one hot vector). We apply global
max pooling on the final convolution layer out-
put feature matrix of SemanticNet which gives us
the SemanticVec vector representation of the input
word. We get a similar SemanticVec representation
from each of our input words by independently ap-
plying the same SemanticNet sub-model on each
of their matrix representations.

3.2.2 BERT_Base as Main Branch
Each of the SemanticVec vector representations ob-
tained from the input words are passed parallelly
on to our first Transformer encoder. 12 such Trans-
former encoders are stacked on top of each other.
Each Transformer employs multi head attention
mechanism, layer normalization and dense layer
specific modification on each input vector. The
attention mechanism applied on the word feature
vectors in each transformer layer helps the words
of the input sentence interact with one another ex-
tracting sentence context. We pass the final Trans-
former layer output vectors to a dense layer with
Softmax activation function applied on each vec-
tor in an independent manner. So, now we have
n probability vectors from n words of the input
sentence. Each probability vector contains lenP

values, where lenP is one more than the total num-
ber of top words considered (the additional word
represents rare words). The top word correspond-
ing to the index of the maximum probability value
of ith probability vector represents the correct word
for Wordi of the input sentence.

3.2.3 Auxiliary Loss in Secondary Branch
Gradient vanishing problem is a common phenom-
ena in deep neural networks, where weights of the
shallow layers are not updated sufficiently during
backpropagation. With the presence of 12 Trans-
former encoders on top of the SemanticNet sub-
model, the layers of this sub-model certainly lie in
a shallow position. Although SemanticNet consti-
tutes a small initial portion of BSpell, this portion is
responsible for word pattern learning, an important
task of SC. In order to eliminate gradient vanishing
problem of SemanticNet and to turn it into an ef-
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Figure 4: BSpell architecture details

fective pattern based word level spell checker, we
introduce an auxiliary loss based secondary branch
in BSpell. Each of the n SemanticVecs obtained
from the n input words are passed parallelly on
to a Softmax layer without any further modifica-
tion. The outputs obtained from this branch are
probability vectors similar to the main branch out-
put. The total loss of BSpell can be expressed as:
LTotal = LFinal + λ × LAuxiliary. We want our
final loss to have greater impact on model weight
update as it is associated with the final prediction
made by BSpell. Hence, we impose the constraint
0 < λ < 1. This secondary branch of BSpell does
not have any Transformer encoders through which
the input words can interact to produce context in-

formation. The prediction made from this branch
is dependent solely on misspelled word pattern ex-
tracted by SemanticNet. This enables SemanticNet
to learn more meaningful word representation.

3.3 BERT Hybrid Pretraining

In contemporary BERT pretraining methods, each
input word Wordi maybe kept intact or maybe
replaced by a default mask word in a probabilis-
tic manner (Devlin et al., 2018; Liu et al., 2019).
BERT has to predict the masked words. Mistakes
from the BERT side will contribute to loss value
accelerating backpropagation based weight update.
In this process, BERT learns to fill in the gaps,
which in turn teaches the model language context.
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Semantic BERT

Word1 Word2 Word3 Word4 Word5

Word1 Word2 Word3 Word4 Word5

Word Masking Char MaskingChar Masking

BSpell Model

Figure 5: BERT hybrid pretraining

Sun et al. (2020) proposed incremental ways of
pretraining the model for new NLP tasks. We take
a more task specific approach for masking. In SC,
recognizing noisy word pattern is important. But
there is no provision for that in contemporary pre-
training schemes and so, we propose hybrid mask-
ing (see Figure 5). Among n input words in a sen-
tence, we randomly replace nW words with a mask
word MaskW . Among the remaining n − nW

words, we choose nC words for character mask-
ing. We choose mC characters at random from a
word having m characters to be replaced by a mask
character MaskC during character masking. Such
masked characters introduce noise in words and
helps BERT to understand the probable semantic
meaning of noisy/ misspelled words.

4 Experimental Setup

4.1 Implemented Pretraining Schemes
We have experimented with three types of masking
based pretraining schemes. During word masking
we randomly select 15% words of a sentence and
replace those with a fixed mask word. During char-
acter masking, we randomly select 50% words of
a sentence. For each selected word, we randomly
mask 30% of its characters by replacing each of
them with a special mask character. Finally, during
hybrid masking, we randomly select 15% words
of a sentence and replace them with a fixed mask
word. We randomly select 40% words from the
remaining words. For these selected words, we
randomly mask 25% of their characters.

4.2 Dataset Specification
We have used one Bangla and one Hindi corpus
with over 5 million (5 M) sentences for BERT pre-
training (see Table 1). Bangla pretraining corpus
consists of Prothom Alo 2 articles dated from 2014-
2017 and BDnews24 3 articles dated from 2015-

2https://www.prothomalo.com/
3https://bangla.bdnews24.com/

2017. The Hindi pretraining corpus consists of
Hindi Oscar Corpus 4, preprocessed Wikipedia ar-
ticles 5, HindiEnCorp05 dataset 6 and WMT Hindi
News Crawl data 7 (all of these are publicly avail-
able corpus). We have used Prothom-Alo 2017 on-
line newspaper dataset for Bangla SC training and
validation purpose. Our errors in this corpus have
been produced synthetically using the probabilistic
algorithm described by Sifat et al. (2020). We fur-
ther validate our baselines and proposed methods
on Hindi open source SC dataset, namely Tools-
ForIL (Etoori et al., 2018). For real error dataset,
we have collected a total of 6300 sentences from
Nayadiganta 8 online newspaper. Then we have dis-
tributed the dataset among ten participants. They
have typed (in regular speed) each correct sentence
using English QWERTY keyboard producing natu-
ral spelling errors. It has taken 40 days to finish the
labeling. Top words have been taken such that they
cover at least 95% of the corresponding corpus.

4.3 BSpell Architecture Hyperparameters

SemanticNet sub-model of BSpell consists of a
character level embedding layer producing a 40
size vector from each character, then 5 consec-
utive layers each consisting of 1D convolution
(batch normalization and Relu activation in be-
tween each pair of convolution layers) and fi-
nally, a 1D global max pooling in order to ob-
tain SemanticVec representation from each input
word. The five 1D convolution layers consist
of (64, 2), (64, 3), (128, 3), (128, 3), (256, 4) con-
volution, respectively. The first and second ele-
ment of each tuple denote number of convolution
filters and kernel size, respectively. We provide a
weight of 0.3 (λ value of loss function) to the aux-
iliary loss. The main branch of BSpell is similar to
BERT_Base (Gong et al., 2019) in terms of stack-
ing 12 Transformer encoders. Attention outputs
from each Transformer is passed through a dropout
layer (Srivastava et al., 2014) with a dropout rate
of 0.3 and then layer normalized (Ba et al., 2016).
We use Stochastic Gradient Descent (SGD) Opti-
mizer with a learning rate of 0.001 for our model
weight update. We clip our gradient value and keep
it below 5.0 to avoid gradient exploding problem.

4https://www.kaggle.com/abhishek/hindi-oscar-corpus
5https://www.kaggle.com/disisbig/hindi-wikipedia-

articles-172k
6http://hdl.handle.net/11858/00-097C-0000-0023-625F-0
7https://www.aclweb.org/anthology/W19-5301
8https://www.dailynayadiganta.com/
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Datasets Unique
Word

Unique
Char

Top
Word

Train
Sample

Validation
Sample

Unique
Error Word

Error
Word

Percentage
Prothom-Alo

Bangla
Synthetic Error

262 K 73 35 K 1 M 200 K 450 K 52%

Bangla Real
Error

14.5 K 73 _ 4.3 K 2 K 10 K 36%

Bangla Pretrain
Corpus

513 K 73 40 K 5.5 M _ _ _

Hindi Synthetic
Error Corpus
(ToolsForIL)

20.5 K 77 15 K 75 K 16 K 5 K 10%

Hindi Pretrain
Corpus

370 K 77 40 K 5.5 M _ _ _

Table 1: Dataset specification details

5 Results and Discussion

5.1 Training and Validation Details

In case of Bangla SC, we randomly initialize the
weights of model M . We use our large Bangla
pretrain corpus for hybrid pretraining and get pre-
trained model Mpre. Next we split our benchmark
synthetic spelling error dataset (Prothom-Alo) into
80%-20% training-validation set. We fine tune
Mpre using the 80% training portion (obtaining
fine tuned model Mfine) and report performance
on the remaining 20% validation portion. We use
the Bangla real spelling error dataset in two ways -
(1) We do not fine tune Mfine on any of part of this
data and use the entire dataset as an independent
test set (result reported with the title real error (no
fine tune)) (2) We split this real error dataset into
80%-20% training-validation and fine tune Mfine

further using the 80% portion, then validate on the
remaining 20% (result reported with the title real
error (fine tuned)). In case of Hindi, the first two
steps (pretraining and fine tuning) are the same.
We have not constructed any real life spelling error
dataset for Hindi. So, results are reported on the
20% held out portion of the benchmark dataset.

5.2 BSpell vs Contemporary BERT Variants

We start with BERT Seq2seq where the encoder
and decoder portion consist of 12 stacked Trans-
formers (Devlin et al., 2018). Predictions are made
at character level. Similar architecture has been
used in FASpell (Hong et al., 2019) for Chinese
SC. A word is considered wrong if even one of its

characters is predicted incorrectly. Hence character
level seq2seq modeling achieves poor result (see
Table 2). Moreover, in most cases during sentence
level spell checking, the correct spelling of the ith

word of input sentence has to be the ith word in the
output sentence as well. Such constraint is difficult
to follow through such architecture design. BERT
Base consisting of stacked Transformer encoders
has two differences from the design proposed by
Cheng et al. (2020) - (i) We make predictions at
word level instead of character level (ii) We do not
incorporate any external knowledge about Bangla
SC since such knowledge is not well established in
the field. This approach achieves good performance
in all four cases. Soft Masked BERT learns to ap-
ply specialized synthetic masking on error prone
words in order to push the error correction per-
formance of BERT Base further. The error prone
words are detected using a GRU sub-model and the
whole architecture is trained end to end. Although
Zhang et al. (2020) implemented this architecture
to make corrections at character level, our imple-
mentation does everything in word level. We have
used popular FastText (Athiwaratkun et al., 2018)
word representation for both BERT Base and Soft
Masked BERT. BSpell shows decent performance
improvement in all cases.

5.3 Comparing BSpell Pretraining Schemes

We have implemented three different pretraining
schemes (details provided in Subsection 4.1) on
BSpell before fine tuning on spell checker dataset.
Word masking teaches BSpell context of a lan-
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Synthetic Error
(Prothom-Alo)

Real-Error
(No Fine Tune)

Real-Error
(Fine Tuned)

Synthetic Error
(Hindi)Spell Checker

Architecture ACC F1 ACC F1 ACC F1 ACC F1
BERT Seq2seq 31.6% 0.305 24.5% 0.224 29.3% 0.278 22.8% 0.209

BERT Base 91.1% 0.902 83% 0.823 87.6% 0.855 93.8% 0.923
Soft Masked BERT 92% 0.919 84.2% 0.832 88.1% 0.862 94% 0.933

BSpell 94.7% 0.934 86.1% 0.859 90.1% 0.898 96.2% 0.96

Table 2: Comparing BERT based variants. Typical word masking based pretraining has been used on all these
variants. Real-Error (Fine Tuned) denotes fine tuning of the Bangla syn- thetic error dataset trained model on real
error dataset, while Real-Error (No Fine Tune) means directly validating synthetic error dataset trained model on
real error dataset without any further fine tuning.

Synthetic Error
(Prothom-Alo)

Real-Error
(No Fine Tune)

Real-Error
(Fine Tuned)

Synthetic Error
(Hindi)Pretraining

Scheme ACC F1 ACC F1 ACC F1 ACC F1
Word Masking 94.7% 0.934 86.1% 0.859 90.1% 0.898 96.2% 0.96

Character Masking 95.6% 0.952 85.3% 0.851 89.2% 0.889 96.4% 0.963
Hybrid Masking 97.6% 0.971 87.8% 0.873 91.5% 0.911 97.2% 0.97

Table 3: Comparing BSpell exposed to various pretraining schemes

guage through a fill in the gaps sort of approach.
SC is not all about filling in the gaps. It is also
about what the writer wants to say, i.e. being able
to predict a word even if some of its characters are
blank (masked). Character masking takes a more
drastic approach by completely eliminating the fill
in the gap task. This approach masks a few of the
characters residing in some of the input words of
the sentence and asks BSpell to predict these noisy
words’ original correct version. The lack of context
in such pretraining scheme puts negative effect on
performance over real error dataset experiments,
where harsh errors exist and context is the only
feasible way of correcting such errors (see Table 3).
Hybrid masking focuses both on filling in word
gaps and on filling in character gaps through pre-
diction of correct word and helps BSpell achieve
SOTA performance.

5.4 BSpell vs Possible LSTM Variants

BiLSTM is a many to many bidirectional LSTM
(two layers) that takes in all n words of a sentence
at once and predicts their correct version as output
(Schuster and Paliwal, 1997). During SC, BiL-
STM takes in both previous and post context into
consideration besides the writing pattern of each
word and shows reasonable performance (see Table
4). In Stacked BiLSTM, we stack twelve many
to many bidirectional LSTMs instead of just two.
We see marginal improvement in SC performance

in spite of such large increase in parameter num-
ber. Attn_Seq2seq LSTM model utilizes attention
mechanism at decoder side (Bahdanau et al., 2014).
This model takes in misspelled sentence characters
as input and provides the correct sequence of char-
acters as output (Etoori et al., 2018). Due to word
level spelling correction evaluation, this model
faces the same problems as BERT Seq2seq model
discussed in Subsection 5.2. Proposed BSpell out-
performs these models by a large margin.

5.5 Ablation Study

BSpell has three unique features - (1) secondary
branch with auxiliary loss (possible to remove
this branch), (2) 1D CNN based SemanticNet sub-
model (can be replaced by simple Byte Pair En-
coding (BPE) (Vaswani et al., 2017)) and (3) hy-
brid pretraining (can be replaced by word masking
based pretraining). Table 5 demonstrates the results
we obtain after removing any one of these features.
In all cases, the results show a downward trend
compared to the original architecture.

5.6 Existing Bangla Spell Checkers vs BSpell

Phonetic rule based SC takes a Bangla phonetic
rule based hard coded approach (Saha et al., 2019),
where a hybrid of Soundex (UzZaman and Khan,
2004) and Metaphone (UzZaman and Khan, 2005)
algorithm has been used. Clustering based SC
on the other hand follows some predefined rules
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Spell Checker
Architecture

Synthetic Error
(Prothom-Alo)

Real-Error
(No Fine Tune)

Real-Error
(Fine Tuned)

Synthetic Error
(Hindi)

ACC F1 ACC F1 ACC F1 ACC F1
BiLSTM 81.9% 0.818 78.3% 0.781 81.1% 0.809 81.2% 0.809

Stacked BiLSTM 83.5% 0.832 80.1% 0.80 82.4% 0.822 82.7% 0.824
Attn_Seq2seq (Char) 20.5% 0.178 15.4% 0.129 17.3% 0.152 22.7% 0.216

BSpell 97.6% 0.971 87.8% 0.873 91.5% 0.911 97.2% 0.97

Table 4: Comparing LSTM based variants with hybrid pretrained BSpell. FastText word representation has been
used with LSTM portion of each architecture.

BSpell
Variants

Synthetic Error
(Prothom-Alo)

Real-Error
(No Fine Tune)

Real-Error
(Fine Tuned)

Synthetic Error
(Hindi)

ACC F1 ACC F1 ACC F1 ACC F1
Original 97.6% 0.971 87.8% 0.873 91.5% 0.911 97.2% 0.97

No Aux Loss 96.3% 0.96 86.9% 0.865 90.5% 0.90 95.4% 0.949
No SemanticNet 94.5% 0.94 85.7% 0.848 89.2% 0.885 95.2% 0.95

No Hybrid Pretrain 94.7% 0.934 86.1% 0.859 90.1% 0.898 96.2% 0.96

Table 5: Comparing BSpell with its variants created by removing one of its novel features

Spell
Checker

Synthetic Error
(Prothom-Alo)

Real-Error
(No Fine Tune)

ACC F1 ACC F1
Phonetic 61.2% 0.582 43.5% 0.401

Clustering 52.3% 0.501 44.2% 0.412
BSpell 97.6% 0.971 87.8% 0.873

Table 6: Existing Bangla spell checkers vs BSpell

on word cluster formation, distance measurement
and correct word suggestion (Mandal and Hossain,
2017). Since these two SCs are not learning based,
fine tuning is not applicable for them. They do
not take misspelled word context into considera-
tion while correcting that word. As a result, their
performance is poor especially in Bangla real error
dataset (see Table 6). BSpell outperforms these
Bangla SCs by a wide margin.

5.7 Is BSpell Language Specific?

BSpell has originally been designed keeping the
unique characteristics of Sanskrit originated lan-
guages such as Bangla and Hindi in mind. Here
we see how this model performs on English which
is very different from Bangla in terms of struc-
ture. We experiment on an English spelling error
dataset published by Jayanthi et al. (2020). The
training set consists of 1.6 million sentences. The
authors created a confusion set consisting of 109K
misspelled-correct word pairs for 17K popular En-

glish words. 20% of the words of the training set
have been converted to spelling error based on this
confusion set. The authors created BEA-60K test
set from BEA-2019 shared task consisting of nat-
ural English spelling errors. The best correction
rate achieved by the authors was around 80% using
LSTM based ELMo model, whereas BSpell has
achieved a correction rate of 86.2%. We have also
experimented with BERT_Base model on this test
set where we have used byte pair encoding as word
representation. BERT_Base has achieved an error
correction rate of 85.6%. It is clear that BSpell and
BERT_Base do not have that much difference in
performance when it comes to English compared
to Bangla and Hindi.

5.8 Effectiveness of SemanticNet
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Figure 6: Visualizing SemanticVec representation of 10
popular words with their error variants

The main motivation behind the inclusion of
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SemanticNet in BSpell is to obtain vector repre-
sentations of error words as close as possible to
their corresponding correct words. We take 10 fre-
quently occurring Bangla words and collect three
real life error variations of each of these words.
We produce SemanticVec representation of all 40
of these words using SemanticNet. We use princi-
pal component analysis (PCA) (Shlens, 2014) on
each of these SemanticVecs and plot them in two
dimensions. Finally, we implement K-Means Clus-
tering algorithm using careful initialization with
K = 10 (Chen and Xia, 2009). Figure 6 shows
the 10 clusters obtained from this algorithm. Each
cluster consists of a popular word and its three er-
ror variations. In all cases, the correct word and its
three error versions are so close in the graph plot
that they almost form a single point.

6 Conclusion

In this paper, we have proposed a SC named BSpell
for Bangla and Hindi language. BSpell uses Seman-
ticVec representation of input misspelled words and
a specialized auxiliary loss for the enhancement
of spelling correction performance. The model ex-
ploits the concept of hybrid masking based pretrain-
ing. We have also investigated into the limitations
of existing Bangla SCs as well as other SOTA SCs
proposed for high resource languages. BSpell has
two main limitations - (a) it cannot handle acci-
dental merge or split of words and (b) it cannot
correct misspelled rare words. A potential research
direction can be to eradicate these limitations by
designing models that can perform prediction at
sub-word level which includes white space charac-
ters and punctuation marks.

7 Limitations

BSpell model provides a word for word correction,
i.e., number of input words and number of output
words have to be exactly the same. Unfortunately,
during accidental word merging or word splitting,
number of input and output words differ and so
in such cases BSpell will fail in resolving such er-
rors. This type of error is more common in Chinese
language. The advantage for us is that this type
of error is rare in Bangla and Hindi as the words
of these languages are clearly spaced in sentences.
So, people will rarely perform accidental merge or
split of words. Another limitation is that BSpell
has been trained to correct only the top Bangla and
Hindi words that cover 95% of the entire corpus.

As a result, this spell checker will face problems
while correcting spelling errors in rare words. For
such rare words, BSpell simply provides UNK as
output which means that it is not sure what to do
with these words. An advantage here is that most
of these rare words are some form of proper nouns
which should not be corrected and should ideally
be left alone as they are. For example, someone
may have an uncommon name. We do not want
our model to correct that person’s name to some
commonly used name.
An immediate research direction is to overcome
the limitations of the proposed method. A straight-
forward way of dealing with the word merge,
word split and rare word correction problem is to
model spelling errors at character level (sequence-
to-sequence type approach). We have taken this
trivial attempt and have failed miserably (see the
performance reported in the first row of Table 2).
Solving these problems while maintaining the cur-
rent spelling correction performance of BSpell can
be a challenge. Another interesting future direction
is to investigate on personalized Bangla and Hindi
spell checker which has the ability to take user
personal preference and writing behaviour into ac-
count. The main challenge here is to effectively uti-
lize user provided data that must be collected in an
online setting. Recently, deep learning based auto-
matic grammatical error correction has gained a lot
of attention in English language (Chollampatt and
Ng, 2018), (Chollampatt and Ng, 2017), (Stahlberg
and Kumar, 2021). SOTA grammar correction mod-
els developed for English can be trained and tested
on Bangla and Hindi spell checking tasks as part of
future research effort. Such benchmarking studies
can play a vital role in pushing the boundaries of
low resource language correction automation.
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