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Abstract

This paper introduces an approach which oper-
ationalizes the role of discourse connectives
for detecting argument stance. Specifically,
the study investigates the utility of masked lan-
guage model probabilities of discourse connec-
tives inserted between a claim and a premise
that supports or attacks it. The research focuses
on a range of connectives known to signal sup-
port or attack, such as because, but, so, or al-
though. By employing a LightGBM classifier,
the study reveals promising results in stance
detection in English discourse. While the pro-
posed system does not aim to outperform state-
of-the-art architectures, the classification ac-
curacy is surprisingly high, highlighting the
potential of these features to enhance argument
mining tasks, including stance detection.

1 Introduction

The task this paper addresses is argument stance
detection in English discourse. More concretely,
based on the definition of argument following es-
tablished terminology (Stab and Gurevych, 2017;
Stede and Schneider, 2018), where an argument
consists of a claim, a controversial statement, and
a premise, a statement supporting or attacking the
claim, we want to automatically decide whether the
premise supports (label: 1) or attacks (label: 0) the
claim. This task has been modeled in a number of
approaches already (Schiller et al., 2021; Hardalov
et al., 2021). In contrast to these approaches, we
aim at operationalizing the role of connectives with
the following simple idea: We insert one-word con-
nectives, i.e., linking words such as because, but,
so, or although, between the claim and the candi-
date premise and use a language model (LM) to
quantify acceptability. Connectives include coor-
dinators (such as and, or but), subordinators (such
as because, or while), as well as linking adverbs
(such as therefore, or however; Dorgeloh and Wan-
ner 2022). They can express support, attack, or

other types of relations. The underlying hypothesis
is that features obtained from an LM’s probability
for inserting certain connectives between a claim
and premise can improve stance detection. Put
differently, our research question is whether we
can verify whether a premise is a support for or
an attack against a given claim based on explicit
discourse connectives. We show that using proba-
bilities of connectives as features, we obtain a sig-
nificant improvement in stance detection compared
to a majority and a random baseline. This indicates
that, although we do not aim at a competitive argu-
ment mining system in this paper, integrating these
features into argument mining has the potential to
improve existing approaches. We use English data
but we assume that a similar approach should also
work for other languages.1

2 Motivation and Related Work

The expression of stance is linked closely to argu-
mentative structures in discourse since arguments
by definition involve stance, and stance markers are
known to facilitate the processing of argumentative
relations (Stein and Wachsmuth, 2019; Wei et al.,
2021). Besides a variety of other stance markers
(Gray and Biber, 2014), connectives play a crucial
role in that respect. Work on various languages has
shown that the discourse function of connectives is
closely related to that of other linguistic elements
expressing stance or subjectivity in their role for
argumentative discourse. In particular, there seems
to be a “division of labor,” where the presence
of stance markers makes an explicit connective
less expected while fewer stance markers make the
use of specific connectives more likely (Wei et al.
2020). Such a trade-off between connectives and
other cues for stance suggests that markers of one
kind may be omitted if there are cues in the con-
text that make the information of those markers

1The code and results are available at https://
github.com/rstodden/stance-detection .

https://github.com/rstodden/stance-detection
https://github.com/rstodden/stance-detection
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already predictable (Uniform Information Density
Hypothesis; Torabi Asr and Demberg 2015), which
motivates here our expectation that discourse con-
nectives also mark argument stance.

Masked LMs (MLMs), e.g., BERT (Devlin et al.,
2019) or RoBERTa (Liu et al., 2019), are bidirec-
tional encoders which are mostly trained on mas-
sive data to solve the task of language modeling.
The intention of language modeling is similar to a
cloze test; the model is trained on extensive unla-
beled data, wherein random tokens (at any position
of a sequence) are masked, enabling the model to
learn how to predict them (Devlin et al., 2019). The
pre-trained MLMs return probabilities for any word
of the vocabulary at the position of the masked to-
ken; the higher the probability the more suitable
the word in the sequence. In recent years, MLMs
are also often used for stance detection.2 Following
Schiller et al. (2021), the current state-of-the-art
model (called MT-DNMDL) across multiple stance
detection datasets is a BERT model (bert-large-
uncased with an additional classification layer; De-
vlin et al. 2019), initially fine-tuned on the GLUE
benchmark (Wang et al., 2018) and subsequently
fine-tuned concurrently on several stance detec-
tion datasets . In contrast to MT-DNMDL and re-
lated models, in our approach we do not predict
the stance based on the weights of an MLM but
make use of the knowledge of MLMs with respect
to connectives as stance markers.

Methodologically, the present study builds on
existing approaches which tackle the problem of
classifying implicit discourse relations by using
masked LMs to explicitate the relations. Specifi-
cally, the models predict how likely a given con-
nective is in sentence pairs without an overtly ex-
pressed discourse relation. For example, Kishi-
moto et al. (2020) experiment with additionally
pre-training and fine-tuning MLMs on texts with
masked connectives (called connective prediction
task), finding that only the first technique provides
gain. Kurfalı and Östling (2021) use a pipeline
approach to classify unlabeled, implicit discourse
relations, where explicit data – a set of 65 candidate
connectives – is concatenated with two sequences
and then fed into an explicit discourse relation clas-
sifier. Recently, Zhou et al. (2022) have tackled
the problem by using a prompt learning method.
Given a template that arises from natural language

2For an overview of existing stance detection datasets and
approaches see Schiller et al. (2021); Hardalov et al. (2021).

use (e.g. ‘Arg1: Arg1. Arg2: Arg2. The conjunc-
tion between Arg1 and Arg2 is <mask>.’), they
select the most frequent and least ambiguous pre-
dicted connective as the answer word to replace the
mask token. We do not use prompting or causal
LMs as we are interested in the probabilities of the
connectives. Masked LMs, in contrast to genera-
tive LMs, are capable of giving the probabilities
of a word at any position of a sequence based on
the left and right context (and not only at the end
of a sequence). To the best of our knowledge, our
work is the first approach to use probabilities of
discourse connectives of masked LMs as features
and to combine them with stance detection.

3 Methods

Our method comprises four components:
1. the concatenation of claims and premises with

a masked token (see subsection 3.2),
2. an LM that estimates the likelihood of a given

connective in the concatenated sequence (see
subsection 3.1 and subsection 3.3),

3. a feature vector which comprises all the proba-
bilities of the connectives (see subsection 3.3),

4. and a binary classifier which, based on the fea-
ture vector, learns whether the premise supports
or attacks the claim (see subsection 3.4).

We hypothesize that the LMs have learned argu-
mentative structures and the usage of connectives.
Therefore, we anticipate that the model will as-
sign higher probabilities to support connectives and
lower probabilities to attack connectives for sup-
port premises, and vice versa for attacks. For ex-
ample, in Example 1, the premise attacks the claim,
and we expect lower probabilities for support con-
nectives like because or since as they would render
the argument incoherent. For attack connectives
like but or although we expect higher probabilities
as they are in line with the attack relation.

(1) [Masking should be mandated]C [MASK]
[it infringes on personal freedoms.]P

3.1 Connectives

We selected connectives from DimLex-Eng (Das
et al., 2018), a lexicon of discourse markers
which contains 100 connectives from the Penn
Discourse Treebank (PDTB; Prasad et al. 2008)
plus 42 from RST-SC (Das and Taboada, 2018),
all annotated with discourse relations. Out of
all 79 single-token connectives, we selected
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those with relevant PDTB relations3: For the
support relation we chose connectives marked
with Contingency.Cause.Result or
Contingency.Cause.Reason (n=18, e.g.
therefore, because), since relations in the con-
tingency class “involve an implication relation,
and hence can be classified as causal” (Sanders
et al., 2021, 21). For the attack relation
we chose Comparison.Contrast and
Expansion.Alternative.Disjunctive
(n=30, e.g. but, however), as they correlate
with the attack relations of undercut and rebut
(Hewett et al. 2019). Finally, some connectives
were excluded as the LMs tokenized them into
subwords (e.g., however: how and ever).4 Table 1
summarizes the resulting 12 support-indicating
and 18 attack-indicating connectives for which
probabilities could be extracted.5 Six connectives
are labeled with the relations of both groups.

For more information on the connectives, we cal-
culated how often a connective is tagged with the
chosen PDTB relations divided by the number of
all occurrences of the connective in DimLex-Eng.
Based on this percentage, we grouped the connec-
tives as follows: Group 1: all attack/support connec-
tives (>0%, n=24), Group 2: not predominatly at-
tack/support connectives (>34%, n=12), i.e., those
which were used in up to 66% of occurrences in
some other PDTB relation, and Group 3: predom-
inantly attack/support connectives (>66%, n=5),
i.e., those which were used in up to 34% of occur-
rences in some other PDTB relation.

3.2 Data & Preprocessing
In comparison to Hardalov et al. (2021) and
Schiller et al. (2021), we reduce the selection of cor-
pora to the following three corpora: ibmcs (Bar-
Haim et al., 2017), perspectrum (Chen et al.,
2019), and argmin (Stab et al., 2018).6 All
corpora (except argmin) have full sentences as

3We excluded all multi-token connectives as the applied
fill-mask pipeline can predict only one token at a time.

4We do not employ Huggingface’s fallback strategy, which
is using subwords instead of the full word, as it could result in
overly general word fragments (e.g., how for however).

5We also extracted all connectives which do not belong to
any of the groups (n=13), henceforth called other. For Dis-
tilBERT and BERT, probabilities of more connectives could
be extracted. However, we found out that using the proba-
bilities of more connectives (n=42) of both LMs as features
could not outperform using fewer connectives of RoBERTa or
XLM-RoBERTa. Hence, we only report results on the reduced
connective set (n=24) for all LMs.

6An overview of the datasets’ meta data can be found in
Table 1 and 2 of Hardalov et al. (2021).

attack support
conn. order % G conn. order % G
unless C-LW-P 98.95 1,2,3 for C-LW-P 100.0 1,2,3
but C-LW-P 73.28 1,2,3 so P-LW-C 100.0 1,2,3
while C-LW-P 52.50 1,2 because C-LW-P 99.53 1,2,3
yet P-LW-C 52.48 1,2 with C-LW-P 60.00 1,2
still P-LW-C 50.53 1,2 since C-LW-P 52.17 1,2
although C-LW-P 47.87 1,2 given C-LW-P 33.33 1
though C-LW-P 47.50 1,2 as C-LW-P 28.53 1
rather P-LW-C 23.53 1 and C-LW-P 2.17 1
except C-LW-P 10.00 1 when C-LW-P 2.02 1
nor C-LW-P 3.23 1 then C-LW-P 1.47 1
instead C-LW-P 2.68 1 if C-LW-P 0.08 1
until C-LW-P 1.85 1 but C-LW-P 0.03 1
or C-LW-P 1.02 1
and C-LW-P 0.70 1
if C-LW-P 0.41 1
then C-LW-P 0.29 1
when C-LW-P 0.20 1
as C-LW-P 0.13 1

Table 1: Connectives with their order (claim-connective-
premise or premise-connective-claim) and usage in
PDTB as attack (left) or support (right). G shows the
group of the connectives for the analysis. Connectives
in italics are both attack as well as support.

claims (= topics) and have (balanced) binary stance
labels.7 For argmin, we changed the one-word
topics to sentences (e.g., for topic “cloning”:

“cloning should be permitted.”).
During preprocessing, we remove any given

punctuation mark at the end of the first argument
component and lower-case the beginning of the sec-
ond part. We then concatenate each pair of premise
and claim with a masked token, e.g., “<mask>,”
that indicates the place for a potential connective.
For every argument, we create the concatenation in
the following two orders, because not all connec-
tives require the same order of claim and premise
(see Table 1): i) claim - masked token - premise
(order C-LW-P), or ii) premise - masked token -
claim (order P-LW-C). Some examples of the con-
catenated sequences are provided in the Appendix,
Table 5. We do not tokenize the data or do any
other preprocessing beyond what has already been
mentioned (or is provided in the original corpus).

3.3 Feature Extraction

We then use these concatenated sequences as input
for a masked LM, e.g., BERT (Devlin et al., 2019).
As output, the LM returns word-probability pairs,
where words with higher probabilities are more
likely to be a suitable fit within the sequence.

We use the pipeline fill-mask of the Python
package transformers (Wolf et al., 2020) to
extract the probabilities of the connectives for

7For our experiments, we used the original train, validation,
and test splits provided by the authors of the datasets.
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the following large LMs: i) DistilBERT-base-un-
cased (Sanh et al., 2019), ii) BERT-base-uncased
& -large (Devlin et al., 2019), iii) RoBERTa-base &
-large (Liu et al., 2019), as well as iv) xlm-RoBER-
Ta-base & -large (Conneau et al., 2020).

The probabilities of either one of those LMs or
of all LMs were then used as features for a clas-
sifier.8 The LMs were not explicitly trained on
argumentative data or structures and they were not
fine-tuned on any other data or task; rather, we use
them in their original form as provided on Hug-
gingFace (Wolf et al., 2020).

3.4 Classifier
To find the best classifier and its best parameters
for stance detection on all three datasets, we built
up a search space of parameters9 and applied meth-
ods of the optuna package (Akiba et al., 2019)
to find the best hyperparameter combination for
each validation set. Based on the best parameter
combination for all probabilities of all LMs with
all attack and support connectives, we averaged
the parameters per validation set. The resulting
parameters were then used for all experiments on
the test sets. LightGBM turned out to be the best
classifier out of six classifiers10, hence, we are re-
porting only the results with LightGBM using the
best hyperparameter setting (see Appendix A).

3.5 Evaluation
For the evaluation protocol, we mostly follow
Schiller et al. (2021); Hardalov et al. (2021):
We evaluate our approaches by calculating the
macro F1-Score, and we report a majority base-
line (always returns the most frequent label) and
a random baseline (randomly returns one label
of the two labels). As further comparison, we
also report results of four state-of-the-art models
(SOTA): i) BERT-large with a classification head
(BERTSDL), ii) BERT fine-tuned on GLUE bench-
mark with a classification head (MT-DNNSDL),
iii) MT-DNNSDL additionally trained on ten
stance detection data sets (MT-DNNMDL; Schiller
et al. 2021), and iv) RoBERTa-base with do-
main expert functions and a classification head
(MoLe; Hardalov et al. 2021).

8An example of probabilities for given sequences is pro-
vided in the Appendix, Table 5.

9For the entire search space per classifier see the code.
10We have also experimented with the following classifiers

and search spaces for them:i) a support vector machine, ii) a
decision tree classifier, iii) a random forest classifier, iv) a
neural multi-layer perceptron, and v) a XGBoost classifier.

4 Results

We first validated our main assumption by measur-
ing Spearman’s correlation coefficient ρ between
the probabilities of the connectives and the stance
per each sample of each dataset. Appendix B sum-
marizes all correlations and significance levels. For
all three datasets, we found that the probabilities of
nearly all connectives significantly correlate with
stance (p-level at least < 0.1; all except with, if, and
when). As expected, the probabilities of the attack
connectives show a negative correlation, whereas
those of the support connectives show a positive
correlation, and the ambiguous connectives show
a mixed picture. However, most correlations are
weak (i.e., ρ < 0.3) except for five moderate (i.e.,
0.3 ≤ ρ < 0.5; except, unless, until, yet, and three
strong ones (i.e., ρ ≥ 0.5; although, though, but).
To sum up, our assumption was validated across
all three datasets. Therefore, we can now turn to
our results on stance detection based on the con-
nectives’ probabilities.

All our models using all connectives (Group 1)
can outperform the two baselines. The best model
with all probabilities (Group 1) of only one LM is
RoBERTa-large (see bold row in the third part of
Table 2). As expected, DistilBERT achieves the
worst results compared to all other LMs, and all
large versions outperform their base versions. We
can infer that the larger the model and the more
data the model was trained on, the more knowl-
edge it has about connectives and, therefore, the
more valuable the connective features are for stance
detection and, hence, the higher the macro F1-
Score. However, the multi-lingual data on which
xlm-RoBERTa is trained seems to reduce the score,
which might be due to its larger vocabulary size
and less distinct probabilities for the connectives.
Further analysis is required to justify this finding.
Overall, combining the probabilities of all 24 con-
nectives (Group 1) of all LMs achieves a higher
macro F1-Score than using the Group 1 probabili-
ties of only one LM (see bold row in the last part
of Table 2). This model outperforms all SOTA
models on argmin and is on par with the SOTA
model on the other two datasets. Comparing all
models based on BERT-large (i.e., BERTSDL, MT-
DNNSDL, MT-DNNMDL, and our BERT-large),
our model achieves similar scores as the other mod-
els on the argmin dataset, although it classifies
just on the probabilities of 24 connectives of neither
fine-tuned nor otherwise preprocessed LMs.
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Further, we analyzed the ablation of some am-
biguous connectives (see results of Group 2), e.g.,
and or when, and not predominant connectives, e.g.,
instead or given (see results of Group 3).

As can be seen in the last six lines of Table 2 (or
also for all other LMs in the Appendix, Table 6),
the ablations reduce the scores. The more support
and attack connectives (or features), the better the
result. It can be argued that not only distinctive
connectives, such as because or yet, are helpful
for stance detection, but also the presence of other
connectives. Yet, adding additionally the proba-
bilities of all other connectives (n=12), slightly
reduces the F1-Score on argmin and ibmcs (see
last row in Table 2), whereas it increases the score
on perspectrum. Hence, the selection of the
connectives is also important. For example, replac-
ing the 24 support and attack connectives by 24
randomly chosen connectives (12 other and 12 ran-
domly chosen support or attack connectives) the
score drops on average of 5 runs. Further, includ-
ing only the probabilities of the other connectives
(n=12) reduces the score even more.

Also, the combination of attack and support con-
nectives seems to be helpful for stance detection
(see Appendix C). For all datasets, the F1-Score
drops when removing support connectives (by less
than 0.01 points) as well as, more noticeably, when
removing attack connectives (between 0.01 and
0.35 points). When using only connectives which
are in both lists (n=6), the score even drops by one
more 0.01 point. This effect might be due to the
decreasing number of features, as the analysis of
the connectives of Group 3 with the same num-
ber of features (i.e., connectives most often used
for attack or support, n=5) also show a clear drop
in performance. An additional observation is that
some connectives (e.g., and, when) appear in both
groups, indicating that their interpretation as sup-
port or attack is inferred. This highlights that the
role of connectives in signaling stance does not
necessarily demand the explicit expression of the
semantics of the claim-premise relation.

5 Conclusion and Future Work

In this paper, we performed stance detection based
only on the masked LM probabilities of discourse
connectives that are assumed to indicate support or
attack. The classifiers we trained on these features
performed surprisingly well, given that the aim was
not at all to develop a competitive argument mining

models argmin ibmcs perspectrum
majority 0.3383 0.3406 0.3466
random 0.4998 0.4864 0.5011
BERTSDL 0.6167 0.5347 0.8012
MT-DNNSDL 0.6019 0.7066 0.8480
MT-DNNMDL 0.6174 0.7772 0.8374
MoLe 0.6373 0.7938 0.8527
DistilBERT 0.5233 0.5499 0.6079
BERT-base 0.5718 0.5500 0.6442
BERT-large 0.6104 0.5810 0.6828
RoBERTa-base 0.6218 0.5961 0.6890
RoBERTa-large 0.7204 0.7633 0.8274
xlm-RoBERTa-base 0.5830 0.5456 0.6130
xlm-RoBERTa-large 0.6601 0.7247 0.7475
all-LMs (Group 1, n=24) 0.7467 0.7885 0.8314
all-LMs (Group 2, n=12) 0.7218 0.7638 0.8185
all-LMs (Group 3, n=5) 0.6861 0.7449 0.7897
all-LMs (other, n=12) 0.6792 0.6676 0.7539
all-LMs (random, n=24) 0.7286 0.7710 0.8286
all-LMs (all, n=36) 0.7423 0.7850 0.8456

Table 2: First part baselines, second SOTA, third own
models per LM features (Group 1), and last combination
of all feature groups of all LMs. Results of SOTA are
copied from corresponding paper. F1 macro scores.

system. From our results one can conclude that
connectives, i.e. different kinds of linking words,
can help to automatically verify if a premise is
related to a given claim and, with that, also aid
stance detection. Connectives should thus play an
even more prominent role in argument mining.

In future work, we plan to also experiment with
additional punctuation marks between the first part
and the linking word. This is a promising avenue
because some connectives occur more naturally at
a sentence beginning and not between two clauses,
e.g., therefore, or require a preceding comma, e.g.,
but. Furthermore, we plan to integrate features
based on the MLM probabilities of connectives, as
used in this paper, with state-of-the-art approaches
to stance detection that use input embeddings rep-
resenting the actual text of claim and premise. Fi-
nally, we will investigate whether additional pre-
processing of the LMs in the form of fine-tuning
on argumentative data or data with explicit con-
nectives before extracting the MLM probabilities
increases stance detection performance.

Acknowledgments

We would like to thank the anonymous reviewers
for their helpful comments. We would also like to
thank NVIDIA for access to GPUs, which enabled
a fast calculation of the probabilities.



16

References
Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru

Ohta, and Masanori Koyama. 2019. Optuna: A next-
generation hyperparameter optimization framework.
In Proceedings of the 25th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery & Data
Mining, KDD ’19, page 2623–2631, New York, NY,
USA. Association for Computing Machinery.

Roy Bar-Haim, Indrajit Bhattacharya, Francesco Din-
uzzo, Amrita Saha, and Noam Slonim. 2017. Stance
classification of context-dependent claims. In Pro-
ceedings of the 15th Conference of the European
Chapter of the Association for Computational Lin-
guistics: Volume 1, Long Papers, pages 251–261,
Valencia, Spain. Association for Computational Lin-
guistics.

Sihao Chen, Daniel Khashabi, Wenpeng Yin, Chris
Callison-Burch, and Dan Roth. 2019. Seeing things
from a different angle:discovering diverse perspec-
tives about claims. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long and Short Pa-
pers), pages 542–557, Minneapolis, Minnesota. As-
sociation for Computational Linguistics.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
cross-lingual representation learning at scale. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online. Association for Computational Lin-
guistics.

Debopam Das, Tatjana Scheffler, Peter Bourgonje, and
Manfred Stede. 2018. Constructing a lexicon of En-
glish discourse connectives. In Proceedings of the
19th Annual SIGdial Meeting on Discourse and Dia-
logue, pages 360–365, Melbourne, Australia. Associ-
ation for Computational Linguistics.

Debopam Das and Maite Taboada. 2018. RST Sig-
nalling Corpus: A Corpus of Signals of Coherence
Relations. Language Resources and Evaluation,
52(1):149–184.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota. Association for
Computational Linguistics.

Heidrun Dorgeloh and Anja Wanner. 2022. Discourse
Syntax: English Grammar Beyond the Sentence.
Cambridge University Press.

Bethany Gray and Douglas Biber. 2014. Stance markers.
In Karin Aijmer and Christoph Rühlemann, editors,
Corpus Pragmatics: A Handbook, chapter 8, page
219–248. Cambridge University Press.

Momchil Hardalov, Arnav Arora, Preslav Nakov, and
Isabelle Augenstein. 2021. Cross-domain label-
adaptive stance detection. In Proceedings of the
2021 Conference on Empirical Methods in Natural
Language Processing, pages 9011–9028, Online and
Punta Cana, Dominican Republic. Association for
Computational Linguistics.

Freya Hewett, Roshan Prakash Rane, Nina Harlacher,
and Manfred Stede. 2019. The utility of discourse
parsing features for predicting argumentation struc-
ture. In Proceedings of the 6th Workshop on Argu-
ment Mining, pages 98–103, Florence, Italy. Associa-
tion for Computational Linguistics.

Yudai Kishimoto, Yugo Murawaki, and Sadao Kuro-
hashi. 2020. Adapting BERT to implicit discourse
relation classification with a focus on discourse con-
nectives. In Proceedings of the Twelfth Language
Resources and Evaluation Conference, pages 1152–
1158, Marseille, France. European Language Re-
sources Association.

Murathan Kurfalı and Robert Östling. 2021. Let’s be
explicit about that: Distant supervision for implicit
discourse relation classification via connective pre-
diction. In Proceedings of the 1st Workshop on Un-
derstanding Implicit and Underspecified Language,
pages 1–10, Online. Association for Computational
Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Rashmi Prasad, Nikhil Dinesh, Alan Lee, Eleni Milt-
sakaki, Livio Robaldo, Aravind Joshi, and Bonnie
Webber. 2008. The Penn Discourse TreeBank 2.0.
In Proceedings of the Sixth International Conference
on Language Resources and Evaluation (LREC’08),
Marrakech, Morocco. European Language Resources
Association (ELRA).

Ted J.M. Sanders, Vera Demberg, Jet Hoek, Merel C.J.
Scholman, Fatemeh Torabi Asr, Sandrine Zufferey,
and Jacqueline Evers-Vermeul. 2021. Unifying di-
mensions in coherence relations: How various anno-
tation frameworks are related. Corpus Linguistics
and Linguistic Theory, 17(1):1–71.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter. In 5th
Workshop on Energy Efficient Machine Learning and
Cognitive Computing @ NeurIPS 2019.

Benjamin Schiller, Johannes Daxenberger, and Iryna
Gurevych. 2021. Stance detection benchmark: How

https://doi.org/10.1145/3292500.3330701
https://doi.org/10.1145/3292500.3330701
https://aclanthology.org/E17-1024
https://aclanthology.org/E17-1024
https://doi.org/10.18653/v1/N19-1053
https://doi.org/10.18653/v1/N19-1053
https://doi.org/10.18653/v1/N19-1053
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/2020.acl-main.747
https://doi.org/10.18653/v1/W18-5042
https://doi.org/10.18653/v1/W18-5042
https://doi.org/10.1007/s10579-017-9383-x
https://doi.org/10.1007/s10579-017-9383-x
https://doi.org/10.1007/s10579-017-9383-x
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.1017/9781108557542
https://doi.org/10.1017/9781108557542
https://doi.org/10.1017/CBO9781139057493.012
https://doi.org/10.18653/v1/2021.emnlp-main.710
https://doi.org/10.18653/v1/2021.emnlp-main.710
https://doi.org/10.18653/v1/W19-4512
https://doi.org/10.18653/v1/W19-4512
https://doi.org/10.18653/v1/W19-4512
https://aclanthology.org/2020.lrec-1.145
https://aclanthology.org/2020.lrec-1.145
https://aclanthology.org/2020.lrec-1.145
https://doi.org/10.18653/v1/2021.unimplicit-1.1
https://doi.org/10.18653/v1/2021.unimplicit-1.1
https://doi.org/10.18653/v1/2021.unimplicit-1.1
https://doi.org/10.18653/v1/2021.unimplicit-1.1
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://www.lrec-conf.org/proceedings/lrec2008/pdf/754_paper.pdf
https://doi.org/doi:10.1515/cllt-2016-0078
https://doi.org/doi:10.1515/cllt-2016-0078
https://doi.org/doi:10.1515/cllt-2016-0078
https://www.emc2-ai.org/assets/docs/neurips-19/emc2-neurips19-paper-33.pdf
https://www.emc2-ai.org/assets/docs/neurips-19/emc2-neurips19-paper-33.pdf
https://doi.org/10.1007/s13218-021-00714-w


17

robust is your stance detection? KI - Künstliche
Intelligenz, 35(3-4):329–341.

Christian Stab and Iryna Gurevych. 2017. Parsing Ar-
gumentation Structures in Persuasive Essays. Com-
putational Linguistics, 43(3):619–659.

Christian Stab, Tristan Miller, Benjamin Schiller, Pranav
Rai, and Iryna Gurevych. 2018. Cross-topic argu-
ment mining from heterogeneous sources. In Pro-
ceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pages 3664–
3674, Brussels, Belgium. Association for Computa-
tional Linguistics.

Manfred Stede and Jodi Schneider. 2018. Argumenta-
tion Mining. Synthesis Lectures on Human Language
Technologies. Morgan & Claypool Publisher.

Benno Stein and Henning Wachsmuth, editors. 2019.
Proceedings of the 6th Workshop on Argument Min-
ing. Association for Computational Linguistics, Flo-
rence, Italy.

Fatemeh Torabi Asr and Vera Demberg. 2015. Uniform
surprisal at the level of discourse relations: Nega-
tion markers and discourse connective omission. In
Proceedings of the 11th International Conference on
Computational Semantics, pages 118–128, London,
UK. Association for Computational Linguistics.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. GLUE:
A multi-task benchmark and analysis platform for nat-
ural language understanding. In Proceedings of the
2018 EMNLP Workshop BlackboxNLP: Analyzing
and Interpreting Neural Networks for NLP, pages
353–355, Brussels, Belgium. Association for Com-
putational Linguistics.

Yipu Wei, Jacqueline Evers-Vermeul, and Ted J.M.
Sanders. 2020. The use of perspective markers
and connectives in expressing subjectivity: Evidence
from collocational analyses. Dialogue & Discourse,
11:62–88.

Yipu Wei, Jacqueline Evers-Vermeul, Ted M. Sanders,
and Willem M. Mak. 2021. The Role of Connectives
and Stance Markers in the Processing of Subjective
Causal Relations. Discourse Processes, 58(8):766–
786.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Remi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander Rush. 2020. Trans-
formers: State-of-the-art natural language processing.
In Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 38–45, Online. Association
for Computational Linguistics.

Hao Zhou, Man Lan, Yuanbin Wu, Yuefeng Chen, and
Meirong Ma. 2022. Prompt-based connective pre-
diction method for fine-grained implicit discourse
relation recognition. In Findings of the Association
for Computational Linguistics: EMNLP 2022, pages
3848–3858, Abu Dhabi, United Arab Emirates. As-
sociation for Computational Linguistics.

A Hyperparameter of classifiers

Best hyperparameter: {"classifier": "Light-
GBM", "lambda_l1": 0.0001, "lambda_l2": 0.002,
"num_leaves": 220, "feature_fraction": 0.9, "bag-
ging_fraction": 0.8, "bagging_freq": 2}

B Correlation Connectives’ Probabilities
and Stance

argmin ibmcs perspectrum
although -0.24*** -0.54*** -0.53***
except -0.26*** -0.49*** -0.44***
instead -0.13*** -0.36*** -0.28***
nor -0.15*** -0.23*** -0.24***
or -0.04*** -0.12*** -0.10***
rather -0.14*** -0.18*** -0.22***
still -0.20*** -0.27*** -0.22***
though -0.22*** -0.53*** -0.52***
unless -0.2*** -0.35*** -0.36***
until -0.18*** -0.34*** -0.32***
while -0.11*** -0.37*** -0.21***
yet -0.29*** -0.45*** -0.41***
because +0.04*** +0.17*** +0.08***
for +0.07*** +0.07*** +0.13***
given +0.02* +0.07** +0.04***
since +0.07*** +0.18*** +0.06***
so +0.08*** +0.05* +0.03***
with +0.00 -0.13*** +0.01
and +0.09*** -0.13*** +0.09***
as +0.06*** +0.14*** +0.12***
but -0.32*** -0.54*** -0.58***
if -0.01 -0.09*** -0.08***
then -0.02* -0.21*** -0.12***
when -0.02 -0.28*** -0.13***

Table 3: First block attacking connectives, second sup-
porting connectives, and third which are classified as
both. The asterisks indicate the level of significance
(*: p < 0.1, **: p < 0.05, ***: p < 0.01). The bold
face numbers indicate a strong, significant correlation
(ρ ≥ 0.5), underlining a moderate, significant correla-
tion (ρ ≥ 0.3) and the gray numbers are not significant.

C Results per Connective Type

argmin ibmcs perspectrum
attack+support (n=24) 0.7467 0.7885 0.8314
attack (n=18) 0.7305 0.7872 0.8288
support (n=12) 0.7265 0.7531 0.8164
both (n=6) 0.7132 0.7513 0.8058

Table 4: Results per connective set for all LMs.
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ID stance claim-connective-premise because but premise-connective-claim so yet
Train-23 0 [Nuclear energy should be permitted]C [MASK] [it

should be banned from Australia. If terrorists come
they can target the power plant and it would kill
heaps of people .]P

0.000010 < 0.009026 [It should be banned from Australia. If ter-
rorists come they can target the power plant
and it would kill heaps of people]P [MASK]
[nuclear energy should be permitted]C

0.002439 < 0.00033800

Train-2874 1 [Nuclear energy should be permitted]C [MASK]
[nuclear plants also provide stability to the electrical
grid , as their output is constant and reliable .]P

0.000584 > 0.000067 [Nuclear plants also provide stability to the
electrical grid , as their output is constant and
reliable]P [MASK] [Nuclear energy should be
permitted .]C

0.000018 > 0.00000037

Train-9125 0 [Cloning should be permitted]C [MASK] [when we
consider cloning , we must not blindly overlook its
negative implications .]P

0.000005 < 0.002498 [When we consider cloning , we must not
blindly overlook its negative implications]P
[MASK] [cloning should be permitted .]C

0.000014 < 0.00001765

Train-7226 1 [Cloning should be permitted]C [MASK] [a cloned
child could actually enhance the family relationship
for otherwise childless couples .]P

0.000880 > 0.000026 [A cloned child could actually enhance the
family relationship for otherwise childless
couples]P [MASK] [cloning should be per-
mitted .]C

0.000061 > 0.00000006

Table 5: Cherry-picked examples of the argmin dataset including masking input and probabilities of connectives
in both claim-premise orders. The < and > signs show the expected relation between the support and attack
connectives in examples with positive and negative stance. The examples represent the opinions of the annotators
and not necessarily those of the authors of this paper.

Group 1 (n=24) Group 2 (n=12) Group 3 (n=5)
argmin ibmcs perspectum argmin ibmcs perspectum argmin ibmcs perspectum

DistilBERT 0.5233 0.5499 0.6079 0.5120 0.5373 0.5753 0.5006 0.5331 0.5690
BERT-base 0.5718 0.5500 0.6442 0.5448 0.5314 0.5939 0.5213 0.5316 0.5593
BERT-large 0.6104 0.5810 0.6828 0.5705 0.5898 0.6366 0.5610 0.5494 0.6154
RoBERTa-base 0.6218 0.5961 0.6890 0.6019 0.5842 0.6508 0.5757 0.5709 0.6152
RoBERTa-large 0.7204 0.7633 0.8274 0.7080 0.7670 0.8021 0.6683 0.7422 0.7677
xlm-RoBERTa-base 0.5830 0.5456 0.6130 0.5678 0.5473 0.5899 0.5455 0.5530 0.5608
xlm-RoBERTa-large 0.6601 0.7247 0.7475 0.6171 0.7082 0.7287 0.6070 0.6921 0.7149
all_LMs 0.7467 0.7885 0.8314 0.7218 0.7638 0.8185 0.6861 0.7449 0.7897

Table 6: Results per LM and feature set.


