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Abstract

The Wojood Named Entity Recognition (NER)
shared task introduces a comprehensive Ara-
bic NER dataset encompassing both flat and
nested entity tasks, addressing the challenge
of limited Arabic resources. In this paper, we
present our team LIPN approach to address-
ing the two subtasks of WojoodNER Shared-
Task. We frame NER as a span classification
problem. We employ a pretrained language
model for token representations and neural net-
work classifiers. We use global decoding for
flat NER and a greedy strategy for nested NER.
Our model secured the first position in flat NER
and the fourth position in nested NER during
the competition, with an F-score of 91.96 and
92.45 respectively. Our code is publicly avail-
able (https://github.com/niamaelkhbir/
LIPN-at-WojoodSharedTask).

1 Introduction

Named Entity Recognition (NER) plays a crucial
role in various Natural Language Processing (NLP)
applications, enabling the extraction and classifi-
cation of entities from unstructured text. These
entities span a wide range of categories, includ-
ing individuals, organizations, locations, and dates,
among others. While NER has witnessed signif-
icant progress, challenges persist, particularly in
contexts marked by resource scarcity and linguistic
complexity, such as the Arabic language.

In this context, the focus of Arabic NLP has pre-
dominantly revolved around flat entities (Liu et al.,
2019; Helwe et al., 2020; Al-Qurishi and Souissi,
2021; El Khbir et al., 2022; Affi and Latiri, 2022),
and the exploration of nested entity recognition in
Arabic NLP has been relatively limited, primar-
ily due to the scarcity of suitable nested Arabic
datasets.

To address these limitations, the WojoodNER
SharedTask 2023 (Jarrar et al., 2023) initiative
was launched with the goal of overcoming these

challenges. This initiative introduces the Wojood
corpus (Jarrar et al., 2022), an extensively an-
notated Arabic NER dataset comprising approx-
imately 550,000 tokens. It includes annotations
for 21 distinct entity types, covering both Modern
Standard Arabic (MSA) and dialectal variations, as
well as flat and nested entity annotations.

The shared task objective is twofold: firstly, to
encourage innovative solutions in flat NER, and
secondly, to tackle nested NER. For both tasks,
the aim is to develop models that can effectively
identify and classify entities while accounting for
complexities.

This paper outlines our strategy for tackling
these subtasks. Our approach relies on a span-
based methodology, employing token encoding,
span enumeration, and subsequent classification.
During inference, we employ global decoding for
flat NER and a greedy decoding strategy for nested
NER. Our contributions led us to achieve the top po-
sition in flat NER and the fourth position in nested
NER during the WojoodNER SharedTask 2023.

In the following sections, we provide detailed in-
sights into our methodology, experimentation, and
the results achieved, highlighting the efficacy of
our approach within the WojoodNER SharedTask
2023.

2 Related Work

Evolution of NER Approaches Early efforts in
NER relied on handcrafted rules and lexicons for
both flat (Zhou and Su, 2002) and nested enti-
ties (Shen et al., 2003; Zhang et al., 2004). Then,
machine learning techniques gained prominence.
Many studies focused on statistical models, such
as Conditional Random Fields (CRFs) and Sup-
port Vector Machines (SVMs). These models
demonstrated improved performance in identify-
ing entities by capturing contextual dependencies
and patterns within the data (McCallum and Li,
2003; Takeuchi and Collier, 2002). Deep learning
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techniques, particularly recurrent neural networks
(RNN5s) and recently, transformer-based architec-
tures like BERT (Devlin et al., 2019) and GPT
(Radford et al., 2019), revolutionized NER. These
models leverage contextual embeddings to capture
intricate relationships and dependencies, achiev-
ing state-of-the-art results in various languages
and domains for both flat (Xia et al., 2019; Zheng
et al., 2019; Arkhipov et al., 2019; Lothritz et al.,
2020; Yu et al., 2020; Yang et al., 2021) and nested
(Sohrab and Miwa, 2018; Katiyar and Cardie, 2018;
Dadas and Protasiewicz, 2020; Wang et al., 2020)
entities.

Approaches for NER Traditionally, NER tasks
have been framed as sequence labeling (Lam-
ple et al., 2016; Akbik et al., 2018), i.e., token-
level classification. Recently, innovative ap-
proaches have extended beyond token-level pre-
diction. Some methods have treated NER as a
question-answering problem (Li et al., 2020), while
others have employed sequence-to-sequence mod-
els (Yan et al., 2021; Yang and Tu, 2022). In this
work, we focus on span-based methods (Liu et al.,
2016; Sohrab and Miwa, 2018; Fu et al., 2021;
Zaratiana et al., 2022b), which involve enumerat-
ing all possible spans and then classifying them
into specific entity types.

3 Data
#Sentences #Tokens #F-Ent #N-Ent
Train 16817 394500 50032 62403
Valid 3133 55827 7141 8854

Table 1: Statistics on Train and Validation Splits of
Wojood Corpus.

The Wojood corpus is annotated for 21 different
entity types, and it offers two versions: Wojood
Flat and Wojood Nested. Both versions share iden-
tical training, validation, and test splits, differing
only in the way entities are labeled. In Wojood Flat,
each token receives a label corresponding to the
first high-level label assigned to that token in Wo-
jood Nested. Table 1 presents an overview of the
statistics for the train and validation splits, includ-
ing the number of sentences, tokens, flat entities
(#F-Ent), and nested entities (#N-Ent).

Furthermore, Table 2 provides a breakdown of
entity label counts for both flat and nested versions
within the train and validation splits.

To offer insights into the entity distribution based

Flat Nested

Label Train Val Train Val
CARDINAL 1245 182 1263 183
CURR 19 1 179 21
DATE 10667 1567 11291 1656
EVENT 1864 253 1935 267
FAC 689 85 882 111
GPE 8133 1132 15300 2163
LANGUAGE 131 15 132 15
LAW 374 44 374 44
LOC 510 63 619 76
MONEY 171 20 171 20
NORP 3505 488 3748 520
occC 3774 544 3887 551
ORDINAL 2805 410 3488 504
ORG 10737 1566 10737 1566
PERCENT 105 13 105 13
PERS 4496 650 4996 730

PRODUCT 36 5 36 5
QUANTITY 44 3 46 3
TIME 286 55 288 55
UNIT 7 - 48 3
WEBSITE 434 45 434 45

Table 2: Entity Label Statistics in Wojood Corpus.
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Figure 1: Entity count distribution by span length in the
Flat Wojood training data.

on span lengths, Figure 1 displays the entity count
distribution concerning span lengths within the Flat
Wojood training data. Note that for the sake of clar-
ity in visualization, we have excluded entity counts
for span lengths of 27, 29, 39, 43, and 124, each
of which occurs either once or twice. We have es-
tablished a maximum entity span length of 10 for
our span-based model. Any entities surpassing this
threshold are automatically excluded. Specifically,
the training set includes 140 such entities, predom-
inantly categorized as Website, Date, and Event.
Similarly, in the validation set, 19 entities exceed
the 10-span limit.

4 System

In this paper, we approach the named entity recog-
nition task as a span classification problem. Given
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an input sequence x = {z;}~_,, our goal is to clas-
sify all possible spans within the sequence, which
can be defined as:

L L
y:UUSijc

i=1j=i

)

where ¢, j, and c represent the start position, end
position, and span type respectively. The proba-
bility of a specific span classification y given the
input sequence x can be expressed as:

exp Y . ey Po(Sijel®)
Zp(x)

po(yle) = 2)

where ¢g(.) is the span scoring function and
Zy(x) is the partition function. During train-
ing, our objective is to minimize the negative log-
likelihood of the gold span classifications.

Decoding During inference, our aim is to deter-
mine:

y*=argmax »  ¢p(sijelz) (3

yey Sijc€Y

In other words, we seek to identify the span label-
ing configuration (y € )) that achieves the highest
score (sum of individual span (s;j. € y)). For un-
constrained span classification, a straightforward
approach is to assign the label with the highest
score to each individual span, as follows:

4

Sjjer = argmax ¢>9($z‘jc|$>
Cc

However, for both flat and nested NER, such a
decoding strategy is suboptimal as it can lead to
violations of structural constraints. For flat NER,
where overlapping entity spans are not allowed, an
efficient solution has been proposed in our previ-
ous works (Zaratiana et al., 2022c,a)!. This ap-
proach involves a two-stage decoding process: first,
spans predicted as non-entities are filtered out, and
then a maximum independent set algorithm is ap-
plied to the remaining spans to obtain the optimal
set of entity spans. In contrast, for nested NER,
where nesting is permitted but conflicting bound-
aries are prohibited, we employ a greedy algorithm
to achieve a valid span classification. This algo-
rithm iteratively selects the highest-scoring span
that does not conflict with already selected spans.

"https://github.com/urchade/
Filtered-Semi-Markov-CRF
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Flat NER

TEAM P R F1

LIPN (Ours) 92.56 91.36 91.96
El-Kawaref 9143 9248 91.95
ELYADATA 91.88 9196 91.92
Alex-U 2023 NLP 91.61 92.00 91.80
tdink NER 90.76 91.73 91.25

Nested NER

TEAM P R F1

ELYADATA 9399 9348 93.73
UMeé6P 9246 93.61 93.03
AlexU-AIC 92.10 93.13 92.61
LIPN (Ours) 92.31 92.59 9245
tdink NER 90.03 92.82 91.40

Table 3: Top 5 results for the Wojood flat/nested ner
shared task.

Token and Span Representations In our ap-
proach, the span score ¢g(s;jc|x) is computed as
a linear projection of the span representation, ob-
tained through a 1.D convolution of token represen-
tations from a BERT-based model:

®)

Sijc ‘= wZCOHV1Dk([hi; hi+1; ey h]])

where h; € RP is the token representation at
position i, k is the size of the convolutional filter
(j-i), and w, € RP is a learned weight matrix for
the span label c.

5 Results

Evaluation Metrics Following the shared task
guidelines, we assess the performance of our model
using precision, recall, and F1-score.

Settings and Hyperparameters For token rep-
resentation, we use bert-base-arabert (Antoun
et al., 2020) as a pretrained language model. Subse-
quently, we process the encoded tokens through a
bidirectional Long Short-Term Memory (bi-LSTM)
encoder to obtain the final representations. We set
a maximum span length of 10 for enumerating all
possible spans, which is a good balance between
recall and training speed (Refer to Limitations Sec-
tion).

Our model is trained with a batch size of 12 and
evaluated with a batch size of 32. We set a learning
rate of 5e-6 for BERT and 1le-3 for other model
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parameters. We use the Adam optimizer and train
our model for 50,000 steps, conducting evaluations
every 250 steps.

We ran our experiments on a server equipped
with v100 GPUs, and we estimated the needed
computational budget for training to be 50 GPU
hours.

Main results Eleven teams took part in the
shared task, but due to space limitations, we present
the results of the top 5 teams from the official
leaderboard, which includes our own, in Table 3.
The main results highlight the performance of our
model in both the flat and nested Named Entity
Recognition (NER) tasks. Our model achieved a
good balance between precision and recall in both
tasks, with a higher F-score in nested NER com-
pared to flat NER.

Results by Class Table 4 presents the F1-scores
associated with each label for both flat NER and
nested NER on the validation set. Our model
demonstrates high performance across both tasks
for various entity types, including CURR, DATE, GPE,
LAW, MONEY, ORDINAL, ORG, PERCENT, and PERS, all
of which achieve an F-score exceeding 92.00.

The worst performance is observed for PRODUCT
and WEBSITE, with F1-scores of 60.00 and 63.77,
respectively. We provide further insights into this
performance in section 6.2.

6 Discussion

6.1 Class Imbalance

One of the problems encountered in the Wojood
dataset is class imbalance, where certain classes
are significantly underrepresented in the training
set. For example, the classes CURR, PRODUCT,
QUANTITY, and UNIT constitute only 0.04%, 0.07%,
0.8%, and 0.01% of the training data, respectively.
In contrast to dominant classes like DATE (21.23%),
GPE (16.25%), and ORG (21.46%).

Such class imbalance can potentially skew eval-
uation results, especially when based solely on F-
scores for these minority classes. Further work
may involve sampling or data augmentation tech-
niques to rebalance the dataset and provide more
equitable representation and accurate assessment of
the performance on these underrepresented classes.

6.2 Analysis of Model Errors

In this section, we analyze the remaining errors of
our model in the validation set for flat NER.

Label Flat Nested
CARDINAL 89.44 87.98
CURR 100 100
DATE 96.20 96.46
EVENT 85.05 84.98
FAC 78.05 82.73
GPE 92.21 96.93
LANGUAGE 83.87 87.50
LAW 95.35 93.18
LOC 81.60 87.25
MONEY 95.00 91.89
NORP 79.25 79.20
OCC 89.66 89.99
ORDINAL 94.59 96.04
ORG 93.57 94.24
PERCENT 96.30 96.30
PERS 95.35 95.62
PRODUCT 60.00 66.67
QUANTITY 80.00 100
TIME 78.35 74.00
UNIT - 80.00
WEBSITE 63.77 66.67

Table 4: F1-Scores by Entity Labels

Correct Span Offsets, but Incorrect Label
Within this category, our model correctly identi-
fies the span offsets but assigns incorrect labels to
these spans. We identified a total of 68 instances
where the model demonstrated this behavior.

To gain deeper insights into these errors, we
provide in Figure 2 a visual representation of the
confusion matrix for entity labels.

Approximately 45% of these errors arise from
the ambiguity associated with certain entity la-
bels, notably LOC, ORG and GPE. These errors
often concern country or city names, such as
sa=dl WUY gl or & 5gll, which, depending on
the context, may belong to any of these categories.

Similarly, ambiguity between CARDINAL and
ORDINAL labels accounts for 7% of this error cat-
egory, while WEBSITE and ORG labels contribute
approximately 6%. Also, NORP and ORG labels ac-
count for 7%. The remaining errors on labels can
be found in Figure 2.

We observe comparable error patterns in the
nested NER task. In Figure 3, we provide the con-
fusion matrix for nested NER.

Span Boundary Errors with Correct Label
Within this category, our model correctly predicts
the entity label but fails to accurately identify the

792



Figure 2: Confusion Matrix of Entity labels for flat
NER.

start and end positions (span boundaries) of the
entity within the text. We identified 167 instances
where the model demonstrated this behavior. This
category can be further broken down into two sub-
types: (1) Span Start Error: The span start position
is correct but the end position is incorrect; and (2)
Span End Error: The span end position is correct
but the start position is incorrect. Some of these
errors seem to be annotation errors. See Table 5 for
concrete examples.

False Negatives with Novel Entities Another
type of error occurs when our model predicts spans
that are not included in the gold annotations. We
identified 305 instances where the model demon-
strated this behavior. Although we did not conduct
a precise quantification, a notable subset of these er-
rors can be categorized as "false negatives". These
false negatives are not part of the gold standard
annotations, but they may have legitimacy as valid
entities, thus the term "Novel Entities". Table 6 in
the Appendix provides some illustrative examples
of these errors.

7 Conclusion

Our approach to Arabic Named Entity Recogni-
tion in the WojoodNER Shared Task 2023 yielded
competitive results, securing first place in flat NER
and fourth in nested NER. This success highlights
the potential of span-based methods and advanced
decoding strategies. Moreover, we identified ar-
eas for improvement, including addressing class
imbalance and refining span boundary predictions.

Figure 3: Confusion Matrix of Entity labels for nested
NER.

Limitations

Span Length Limitation Errors: In addition to
the errors mentioned in Section 6.2, another type
of errors is due to the span length limitation. As
mentioned in Section 3, we have set a predefined
limit of 10 tokens for span lengths, thus exclud-
ing all entities above this threshold. This decision
was made to strike a balance between model com-
plexity and computational efficiency. Due to this
imposed constraint, our model cannot predict spans
that surpass the 10-token threshold resulting in a
reduced recall score. Particularly, with 140 and 19
spans surpassing the threshold in the training and
validation set respectively, the maximum attainable
recall score is 99.72 and 99.73 for the training and
validation set respectively.
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A Example of Remaining Errors

Table 5 and 6 present examples of errors related
to span boundaries and examples where the model
predicts spans that are not part of the gold standard
annotations, respectively.
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Table 5: Example of Span Boundary Errors from the validation set for flat NER. The model predicts the correct

label but fails to capture the gold span offsets.
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Table 6: Example of False Negatives with Novel Entities from the validation set for flat NER. These are entities
predicted by the model but not annotated in the dataset. All reported entities do not manifest any overlap with gold

ones.
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