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Abstract

This paper presents Arabic named entity recog-
nition models by employing single-task and
multi-task learning paradigms. The models
were developed by using character-based con-
textualized Embeddings from Language Model
(ELMo) in the input layers of the Bidirec-
tional Long-Short Term Memory (BiLSTM)
networks. The ELMo embeddings are quite
capable of learning the morphology and contex-
tual information of tokens in word sequences.
The single-task learning model outperformed
the multi-task learning model, achieving micro
F1-scores of 0.8751 and 0.8884, respectively,
ranking 10th and 7th in the shared task for flat
and nested NER.

1 Introduction

Named Entity Recognition (NER) is a Natural
Language Processing (NLP) task which aims at
identifying and extracting sub-sequences of the
text associated with Named Entities (NEs). These
NEs are subsequently categorized into different
semantic groups, such as names, places, organi-
zations, events and dates, etc. NER is consid-
ered a crucial preliminary task for the development
of different applications, such as, information re-
trieval (Popovski et al., 2020), text summarization
(Khademi and Fakhredanesh, 2020), machine trans-
lation (Vu et al., 2020), topic modeling and event
discovery (Feng et al., 2018), word-sense disam-
biguation (Al-Hajj and Jarrar, 2022) and others.
NER is a typical sequence labeling token classi-
fication task where each token is assigned a tag.
IOB labeling is a common method employed for
annotating datasets for NER.

Different machine and deep learning techniques
have been used to perform NER, such as, Con-
ditional Random Fields (CRF) (Patil et al., 2020;
Bhumireddypalli et al., 2023), Support Vector Ma-
chines (SVM) (Mady et al., 2022), template-based
(Cui et al., 2021), Recurrent Neural Networks

(RNN) (Ahmad et al., 2020), Bidirectional LSTM
(Tehseen et al., 2023), Transformer-based Models
(e.g. BERT) (Jarrar et al., 2022; Agrawal et al.,
2022) and others. On the other hands, the nested
NER has also been performed by employing LSTM
with CRF inference (Dadas and Protasiewicz,
2020), LSTM-based hierarchical layering model
along with contextual word representations (Wang
et al., 2020), bidirectional LSTMs with exhaustive
representations (Sohrab and Miwa, 2018), BERT
embeddings based LSTM-CRF (Straková et al.,
2019), fine-tuning pre-trained BERT model (Jarrar
et al., 2022) and others.

This paper presents model development and re-
sults of a shared task for Arabic NER (Jarrar et al.,
2023). The shared task has been divided into two
sub-tasks, flat NER1 and nested NER2. The flat
NER uses a conventional annotation scheme, how-
ever, the nested scheme provides a hierarchical
annotation within the NEs. For the shared task,
a different version of the Wojood dataset (Jarrar
et al., 2022) has been used which has 70% data for
training, 10% for development and 20% for eval-
uation purposes. The nested NEs are challenging
to predict as multiple output layers are required to
train. However, the nested annotation provides a
deeper insight of overlapping NEs.

We developed two models which are based on
single and multi-task learning. Both models are
based on long-short term memory networks. Fur-
thermore, transfer learning has been used to en-
hance the models’ learning capability. The contex-
tualized pre-trained ELMo embeddings have been
incorporated with word embeddings at the input
layers of the models. The ELMo embeddings sig-
nificantly enhanced the results as compared to the
Word2Vec and part of speech(POS) tagging. The
POS tags were used as encoding vectors which
were concatenated with token encoding vectors.

1https://codalab.lisn.upsaclay.fr/competitions/11740
2https://codalab.lisn.upsaclay.fr/competitions/11750
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Both single and multi-task learning models used
softmax non-linearity for multi-class token classi-
fication. The details of the proposed models are
discussed in the Section 3. The single task learning
model performed better than the multi-task learn-
ing model and produced competitive results as com-
pared to the baseline provided in the shared task.
Rest of the paper describes the dataset, proposed
single task and multi-task learning NER models,
results and conclusion.

2 Data

The shared task released a version of the dataset
from Jarrar et al. (2022). The training and devel-
opment sets have IOB labels whereas the test set
has been released without labels for evaluation pur-
poses. Table 1 shows the label-wise distribution
of NEs for training and development sets. Table 2
further presents the sentence and token distribution
among all three sets.

3 System

We developed neural models by using Bidirectional
Long-Short Term Memory (BiLSTM) networks.
The BiLSTM model has the ability to learn context
within token sequences for the token classification
tasks (e.g. named entity recognition). A bidirec-
tional model has two LSTM layers, the first layer
reads the tokens in the forward direction whereas
the second layer scans the tokens in the backward
direction. The two way scanning is helpful to at-
tain the contextual information within the token
sequences. The input sequence of N words x1,
x2,..., xn is given as the input. Equation 1 shows
the BiLSTM(x1:n,i) function which demonstrates
union of the forward and backward layers.

BiLSTM(x1:n, i) = LSTMf (x1:i) ◦ LSTMr(xn:i) (1)

The function shows the representation to a vec-
tor i by conditioning the previous context x1:i and
the forthcoming sequence xn:i. The models are
based on two implementation paradigms; i) Single
Task Learning (STL) and ii) Multi-Task Learning
(MTL).

3.1 The Proposed Single Task Learning Model
The proposed STL-based model is comprised of
word encodings, word embeddings, pre-trained
word representations, BiLSTM-based hidden lay-
ers, and a single output layer. Figure 1 shows the

architecture of our proposed STL model. The train-
ing and development samples have been converted
to word encodings which are concatenated with
embedding vectors at the input layer. The input
layer contains embedding layers along with pre-
trained ELMo embeddings vectors. Both embed-
ding vectors are concatenated and fed to the hid-
den BiLSTM layers. The hidden layers produce
contextual representations which are used to per-
form multi-class classification by employing soft-
max non-linearity function as shown in Equation 2.

oi = Softmax(Xhi + b) (2)

Where oi represents the output for ith instance,
hi shows hidden state of ith instance in the se-
quence along with the weights X and the bias b.
The model has a single output layer to produce one
label for each input token. The STL model has
been trained for both flat and nested NER. The flat
NEs are trained just like a standard sequence label-
ing task. However, for nested NER, we combined
the NE labels with a delimiter to make it a single
label. Section 4 presents the results of STL model
for flat and nested labeling.

We experimented with three hidden BiLSTM
layers. A Dropout layer is added after each hid-
den layer. The keras library has been used with
Tensorflow back-end in Python-3 for the imple-
mentation of both models. The dimensions of the
internal embeddings are set to 256 whereas the
pre-trained ELMo embeddings have 1024 projec-
tion dimensions. Section 3.3 further describes the
ELMo embeddings and transfer learning. Each
hidden LSTM layer has 256 units with a dropout
value of 0.2(20%). Root Mean Squared Propaga-
tion (RMSprop) optimizer has been used with a
learning rate of 0.001. The loss function was the
categorical cross-entropy for all the experiments.
The sequence length has been set to have 256 to-
kens for each sentence. The models are trained for
15 epochs with a batch size of 128 samples. All the
models have been trained using GPU servers avail-
able at the Scientific Compute Cluster (SCCKN)3.

3.2 The Proposed Multi-task Learning Model

For the nested NER, a single entity can be anno-
tated to have multiple layers of tags. Therefore, the
multi-task learning is a suitable method. The MTL
models hold a prominent position in the realm of re-
search for conducting various NLP tasks including

3https://www.scc.uni-konstanz.de
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IOB label

CARDINAL
CURR
DATE
EVENT
FAC
GPE
LANGUAGE
LAW
LOC
MONEY
NORP
OCC
ORDINAL
ORG
PERCENT
PERS
PRODUCT
QUANTITY
TIME
UNIT
WEBSITE
Total

Train set
CountFlat CountNested Total

1,245 18 1,263
19 160 179
10,667 623 11,290
1,863 71 1,934
689 191 880
8,133 7,167 15,300
131 1 132
374 0 374
510 109 619
171 0 171
3,505 242 3,747
3,774 113 3,887
2,805 683 3,488
10,731 2,444 13,175
105 0 105
4,496 498 4,994
36 0 36
44 2 46
286 2 288
7 41 48
434 0 434
50,025 12,365 62,390

Dev set
CountFlat CountNested Total

182 1 183
1 20 21
1,567 89 1,656
253 14 267
85 26 111
1,132 1,031 2,163
15 0 15
44 0 44
63 13 76
20 0 20
488 32 520
544 7 551
410 94 504
1,566 303 1,869
13 0 13
650 80 730
5 0 5
3 0 3
55 0 55
0 3 3
45 0 45
7,141 1,713 8,854

Table 1: Entity-wise statistics of train and development sets.

Category No. of Sentences No. of Tokens
Train set 16,817 394,499
Dev set 3,133 55,826
Test set 5,989 111,951
Total 25,939 562,276

Table 2: Number of sentences and tokens in train, devel-
opment and test sets.

NER (Jarrar et al., 2022; Yan et al., 2023; Du et al.,
2022; Fang et al., 2023). Figure 2 shows the archi-
tecture of the proposed MTL model. The proposed
MTL model has 21 output layers associated with
each NE label. The softmax non-linearity function
is used for each output layer. The softmax func-
tion performs multi-class classification to predict
an NE label or ‘O’ label. The MTL model has been
trained for both flat and nested NER. The model
performed better for the nested dataset because a
single token may have multiple NE labels due to the
nested nature of the text. We further performed
MTL for flat NER by converting the flat dataset
into 21 columns. The outputs from multiple output
layers were then combined into a single label for

each token. However, for flat NEs, it is challenging
to find a single most appropriate label because the
MTL model can predict multiple labels for a single
token. The model setup and hyper-parameters are
similar to the STL model.

3.3 Transfer Learning

Deep learning based models require larger datasets
to produce state-of-the-art results. Mostly, the an-
notation of large datasets is not feasible. Therefore,
the transfer learning is a suitable approach by train-
ing word embeddings on huge unannotated datasets.
We have used ELMo embeddings which have been
pre-trained on a large Arabic textual data (Che et al.,
2018; Fares et al., 2017)4. Context-free word em-
beddings (Pennington et al., 2014; Mikolov et al.,
2013; Bojanowski et al., 2017) provide a single
word vector for each token irrespective of the con-
text. However, contextual ELMo word embeddings
(Peters et al., 2018) generate the vectors with re-
spect to the character-based contextual informa-
tion in a sentence. The ELMo model contains three
neural network layers. First character-based convo-

4https://github.com/HIT-SCIR/ELMoForManyLangs
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Figure 1: Architecture of the single task learning-based model.
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Figure 2: Architecture of multi-task learning-based
model.

lutional layer, the second and the third layers are bi-
directional LSTM networks to learn the contextual
representations. Due to the character convolutions,
the ELMo embeddings are quite capable to produce
vectors for Out-Of-Vocabulary words. Both STL
and MTL models have been trained by incorporat-
ing the ELMo vectors achieved from the third layer
of the model showing significant improvements in
the NER results.

4 Results and Discussion

The micro-F1 score has been computed for the
evaluation of the models by using seqeval Python

package5. The results for the flat and nested NER
on the 20% test set are shown in Tables 3 and 4.

Models Pre. Rec. F1

Baseline – – 0.8681
Our STL model 0.8745 0.8758 0.8751
Our MTL model 0.8647 0.8806 0.8726

Table 3: Flat NER results (micro F1-score).

Table 3 shows the comparison of the proposed
single and multi-task learning models with the base-
line score for flat NER. Our proposed STL model
performed better than the MTL and the baseline.
However, there is a subtle difference in our models
due to the nested nature of the dataset as a single to-
ken can have multiple IOB labels. The MTL model
may produce multiple labels for flat NER against a
single token therefore, for the selection of a single
label, a naive approach has been used which selects
the left-most label among multiple NE labels.

Models Pre. Rec. F1

Baseline – – 0.9047
Jarrar et al. (2022) 0.8772 0.8909 0.8840
Our STL model 0.8845 0.8923 0.8884
Our MTL model 0.8900 0.8793 0.8846

Table 4: Nested NER results (micro F1-score).

Table 4 shows the results for nested NER from
the proposed STL and MTL models and compares
with the baseline and the F1-score from Jarrar et al.
(2022). While our results fall short of the baseline
model, which is a transformer-based model, they
outperform Jarrar et al. (2022). The STL model
performs better than the MTL model for the nested

5https://pypi.org/project/seqeval

786



NER. For the nested NER to be trained on the
STL model, we combined the labels by using a
delimiter (∼) and trained the dataset like flat la-
bels. This label combination resulted in a total
of 298 distinct labels. Beside the contextualized
word embeddings, we also experimented by incor-
porating part of speech(POS) tags and Word2Vec
embeddings. POS tagging has not shown any im-
provements for NER (Tehseen et al., 2022, 2023)
and the F1-score remained around ∼0.78. We used
the Stanford POS tagger (Toutanova et al., 2003)
to tag the Wojood NER dataset and concatenated
the POS encoding vectors with the word encoding
vectors at the input layers of the models. The Ara-
bic Word2Vec (Soliman et al., 2017) improved the
results but the F1-scores still remained under 0.82.
The ELMo emeddings showed significant improve-
ments by producing competitive results for Arabic
NER.

5 Conclusion

This paper presents the description of the models
and their performances for two shared tasks; i) flat
NER and ii) nested NER for Arabic. We proposed
Bidirectional LSTM-based single and multi-task
learning models for both types of datasets. The in-
corporation of character-based contextualized word
embeddings produced competitive results as com-
pared to the baseline provided in the shared task.
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