
Proceedings of the The First Arabic Natural Language Processing Conference (ArabicNLP 2023), pages 728–742
December 7, 2023 ©2023 Association for Computational Linguistics

TCE at Qur’an QA 2023 Shared Task: Low Resource Enhanced
Transformer-based Ensemble Approach for Qur’anic QA

Mohammed ElKomy, Amany Sarhan
Department of Computer Engineering, Faculty of Engineering

Tanta University, Egypt
{mohammed.a.elkomy,amany_sarhan}@f-eng.tanta.edu.eg

Abstract

In this paper, we present our approach to tackle
Qur’an QA 2023 shared tasks A and B. To
address the challenge of low-resourced train-
ing data, we rely on transfer learning together
with a voting ensemble to improve prediction
stability across multiple runs. Additionally,
we employ different architectures and learning
mechanisms for a range of Arabic pre-trained
transformer-based models for both tasks. To
identify unanswerable questions, we propose
using a thresholding mechanism. Our top-
performing systems greatly surpass the baseline
performance on the hidden split, achieving a
MAP score of 25.05% for task A and a partial
Average Precision (pAP) of 57.11% for task B.

1 Introduction

Ad hoc search is a fundamental task in Informa-
tion Retrieval (IR) and serves as the foundation
for numerous Question Answering (QA) systems
and search engines. Machine Reading Comprehen-
sion (MRC) is a long-standing endeavor in Nat-
ural language processing (NLP) and plays a sig-
nificant role in the framework of text-based QA
systems. The emergence of Bidirectional Encoder
Representations from Transformers (BERT) and its
family of transformer-based pre-trained language
models (LM) have revolutionized the landscape
of transfer learning systems for NLP and IR as a
whole (Yates et al., 2021; Bashir et al., 2021).

Arabic is widely spoken in the Middle East
and North Africa, and among Muslims worldwide.
Arabic is known for its extensive inflectional and
derivational features. It has three main variants:
Classical Arabic (CA), Modern standard Arabic
(MSA), and Dialectal Arabic (DA).

Qur’an QA 2023 shared task A is a passage
retrieval task organized to engage the commu-
nity in conducting ad hoc search over the Holy
Qur’an (MALHAS, 2023; Malhas and Elsayed,
2020). While Qur’an QA 2023 shared task B is

a ranking-based MRC over the Holy Qur’an, which
is the second version of Qur’an QA 2022 shared
task (Malhas et al., 2022; MALHAS, 2023).

This paper presents our approaches to solve
the two tasks A and B. For task A, we explore
both dual-encoders and cross-encoders for ad hoc
search (Yates et al., 2021). For task B, we in-
vestigate LMs for extractive QA using two learn-
ing methods (Devlin et al., 2019). For both tasks,
we utilize various pre-trained Arabic LM variants.
Moreover, we adopt external Arabic resources in
our fine-tuning setups (MALHAS, 2023). Finally,
we employ an ensemble-based approach to account
for inconsistencies among multiple runs. We con-
tribute to the NLP community by releasing our
experiment codes and trained LMs to GitHub 1.

In this work, we address the following research
questions 2:
RQ1: What is the impact of using external re-
sources to perform pipelined fine-tuning?
RQ2: How does ensemble learning improve the
performance obtained?
RQ3: What is the effect of thresholding on zero-
answer questions?
RQ4A: What is the impact of hard negatives on the
dual-encoders approach?
RQ5B: What is the impact of multi answer loss
method on multi-answer cases?
RQ6B: How is post-processing essential for
ranking-based extractive question answering?

The structure of our paper is as follows: Sec-
tions 2 and 3 provide an overview of the datasets
used in our study. In Section 4, we present the
system design and implementation details for both
tasks. The main results for both tasks are presented
in Section 5. Section 6 focuses on the analysis and
discussion of our research questions RQs. Finally,
Section 7 concludes our work.

1https://github.com/mohammed-elkomy/quran-qa
2A superscript at the end of a RQ refers to one of the tasks.

No superscript means the RQ applies for both tasks.

728

https://github.com/mohammed-elkomy/quran-qa


Split Training Development
# Question-passage

relevance pairs 972 160

# Questions

Multi-answer 105 (60%) 15 (60%)
Single-answer 43 (25%) 6 (24%)
Zero-answer 26 (15%) 4 (16%)

Total 174 25

Table 1: Task A dataset relevance pairs distribution
across training and development splits. We also include
the distribution of answer types per split.

2 Task A Dataset Details

Qur’an QA 2023 shared task A serves as a test col-
lection for the ad hoc retrieval task. The divine text
is divided into segments known as the Thematic
Qur’an Passage Collection (QPC), where logical
segments are formed based on common themes
found among consecutive Qur’anic verses (Malhas
et al., 2023; Swar, 2007). In this task, systems
are required to provide responses to user questions
in MSA by retrieving relevant passages from the
QPC when possible. This suggests there is a lan-
guage gap between the questions and the passages,
as the passages are in CA. Table 1 presents the
distribution of the dataset across the training and
development splits. The majority of questions in
the dataset are multi-answer questions, meaning
that systems can only receive full credit if they
are able to identify all relevant passages for these
queries. Additionally, Table 1 provides informa-
tion on zero-answer questions, which are unan-
swerable questions from the entire Qur’an. (More
information about the dataset distribution of topics
in Appendix A.1)

Task A is evaluated as a ranking task using the
standard mean Average Precision (MAP) metric.
(Additional information about the evaluation pro-
cess including zero-answers cases can be found in
Appendix A.2)

3 Task B Dataset Details

Qur’an QA 2023 shared task B is a ranking-
based SQuADv2.0-like MRC over the Holy Qur’an,
which extends to the Qur’an QA 2022 (Malhas
et al., 2022; Rajpurkar et al., 2016). The dataset
is also referred to as Qur’an reading comprehen-
sion dataset v1.2 (QRCDv1.2). The same questions
from task A are organized as answer span extrac-
tion task from relevant passages (Malhas and El-
sayed, 2020; Malhas et al., 2022). (See the dataset
distribution of topics in Appendix A.1)

Table 2 depicts the distribution of dataset pairs

Split Training Development
# Question-passage-answer

Triplets 1179 220

# Question-
passage

Pairs

Multi-answer 134 (14%) 29 (18%)
Single-answer 806 (81%) 124 (76%)
Zero-answer 52 (5%) 10 (6%)

Total 992 163

Table 2: Task B dataset pairs and triplets distribution
across training and development splits. For questions-
passage pairs, we show the distribution of answer types.

and triplets across the training and development
splits. In addition, the table presents the distribu-
tion of answer types for the dataset pairs.
Although zero-answer questions account for 15%
of the questions in task A test collection, they only
contribute to 5% of the question-passage pairs in
task B. Furthermore, task B has a limited num-
ber of unique questions in comparison to their cor-
responding question-passage pairs as seen from
Tables 1 and 2, respectively. As a consequence,
task B can have repeated questions and passages
among different samples and can be even leaked
among training and development splits (Keleg and
Magdy, 2022). Keleg and Magdy (2022) analyzed
this phenomenon and identified sources of leakage
in Qur’an reading comprehension dataset v1.1 (QR-
CDv1.1). In QRCDv1.1, leakage is defined as the
presence of passages, questions, or answers that are
shared among multiple samples (Keleg and Magdy,
2022). This can lead to LMs memorizing or over-
fitting leaked samples (Keleg and Magdy, 2022).
Keleg and Magdy (2022) categorized QRCDv1.1
into four distinct and mutually exclusive categories
based on the type of leakage: pairs of passage-
question, passage-answer, or just questions. (For
more information about leakage in task B, please
refer to Appendix A.4)

We extend the analysis made by Keleg and
Magdy (2022) for QRCDv1.2. Our main observa-
tion is that 90% of the samples with no answer be-
long to the trivial leakage group called D(1). This
group refers to samples with duplicate passage-
answer or question-answer pairs. This indicates
that zero-answer questions are not just less preva-
lent in task B but also present a greater challenge in
terms of generalization. Given the four groups de-
fined by Keleg and Magdy (2022), they proposed a
data re-splitting mechanism for QRCDv1.1 called
faithful splits. In this work, we extend their re-
splitting approach and create faithful splits for QR-
CDv1.2. (Please refer to Appendix A.4 for more
details about faithful splitting)

729



Task B is evaluated as a ranking task as well, us-
ing a recently proposed measure called pAP (Mal-
has and Elsayed, 2020; MALHAS, 2023). (More
details about this measure and zero-answer sample
evaluation can be found in Appendix A.3)

4 System Design

In this work, we fine-tune a variety of pre-trained
Arabic LMs, namely AraBERTv0.2-base (Antoun
et al., 2020), CAMeLBERT-CA (Inoue et al., 2021),
and AraELECTRA (Antoun et al., 2021). We uti-
lize transfer learning and ensemble learning for
both tasks. To determine zero-answer cases, we
apply a thresholding mechanism. (Additional infor-
mation on transfer learning and ensemble learning
can be found in Appendices B and C, respectively)

4.1 Task A Architecture

We examine two distinct approaches for neural
ranking in ad-hoc search: dual-encoders and cross-
encoders approaches (Yates et al., 2021).

In dual-encoders, documents and queries are
encoded separately into dense vectors, which
are then compared using a metric learning func-
tion, such as cosine distance. We utilize Stable
Training Algorithm for dense Retrieval (STAR)
with a batch size of 16 queries to train our dense
retrievers (Zhan et al., 2021; Yates et al., 2021).

In contrast cross-encoders involve encoding pos-
itive and negative pairs of documents and questions,
assigning a relevance score. This method packs a
document and a question into a single input for a
sentence similarity LM (Yates et al., 2021). Both
methods require negative relevance signals during
training. (Please refer to Figures 4a and 4b in Ap-
pendix for both approaches. Additionally, see Ap-
pendix D for more details about negative selection
criteria and zero-answer prediction)

Although cross-encoders have a higher compu-
tational overhead compared to dual-encoders when
used for ranking, the former has a quadratic com-
plexity while the latter has a linear complexity.
However, both methods are still feasible for low-
resource datasets (Yates et al., 2021). In both
approaches, we utilize the cumulative predicted
scores of the top K documents to calculate the like-
lihood of each question having an answer. We then
apply a threshold ζ to identify zero-answer ques-
tions.

4.2 Task B Architecture

We fine-tune pre-trained LMs for span prediction
as in SQuADv2.0 (Rajpurkar et al., 2018; Devlin
et al., 2019). We use two different fine-tuning meth-
ods: First answer loss (FAL) and Multi answer loss
(MAL). The FAL method focuses on optimizing
for the first answer in the ground truth answers,
which is the default approach in standard span pre-
diction implementations for SQuAD (Devlin et al.,
2019; Wolf et al., 2019). In contrast, MAL opti-
mizes for multiple answers simultaneously for the
multi-answer samples in QRCDv1.2. This helps
prevent the trained systems from being overly con-
fident in a single span and distributes the predicted
probability among different spans. (Refer to Ap-
pendix E for more information about these learning
methods)

It is worth noting that raw predictions from span
prediction LMs are suboptimal for ranking MRC,
as many of them have overlapping content. To
address this, we follow a post-processing mecha-
nism proposed by Elkomy and Sarhan (2022). (See
Appendix E.1 for implementation details)

Similar to task A, we perform thresholding by a
hyperparameter ζ to determine zero-answer sam-
ples using LM null answer [CLS] token probabil-
ity (Rajpurkar et al., 2018; Devlin et al., 2019).
(See Appendix E.2 for more details on zero-answer
cases)

5 Results

The results tables for both tasks use the follow-
ing notational format: We use short forms to refer
to combinations of LMs and their fine-tuning ap-
proaches using superscripts and subscripts.

The subscripts ∼ and ≈ denote direct fine-tuning
and pipelined fine-tuning, respectively. Addition-
ally, the arrows in model names subscripts indicate
the stages of pipelined fine-tuning, with the learn-
ing resources names listed. Superscripts are used
to denote the architectures employed for task A and
the learning methods for task B.

Tables 3 and 4 present our detailed results on
the development split for both tasks for single and
self-ensemble models. Table 3 shows the results
for cross encoder and dual-encoders for task A.
Our best single model, (ARB⊗

≈), achieved a MAP
of 34.83% and an MRR of 47.09%. (ARB⊗

≈) self-
ensemble achieved the best MAP of 36.70%. Ta-
ble 3 also presents the R@10 and R@100 metrics.
This represents the upper bound on the reranking

730



Short
Form Systems

Single Model Self Ensemble

MAP MRR R@10 R@100 MAP⋆
ζ

MAP (Question Type) MAP MAP⋆
ζZero Single Multi

Lexical Baseline
BM∼ BM25 18.43 26.40 19.98 19.98 26.40 25.00 16.67 17.39 N/A N/A

Dual-encoder

ARB⊚
∼ AraBERTv0.2-base

TASK A+ Random Neg 20.02 42.87 29.72 48.23 20.02 0.00 35.42 19.20 N/A N/A

ARB⊚
≈ AraBERTv0.2-base

TASK A+ Hard Neg 24.44 35.17 36.09 43.96 24.44 0.00 45.00 22.73 N/A N/A

Cross Encoder

ELC⊗
∼ AraELECTRA

TASK A 8.96 16.51 19.13 42.49 16.48 3.00 10.32 10.01 12.18 16.18

ELC⊗
≈ AraELECTRA

TyDi QAAR→Tafseer→TASK A 26.60 41.61 38.52 59.19 31.91 19.00 38.31 23.94 29.13 36.56

CAM⊗
∼ CAMeLBERT-CA

TASK A 23.16 33.52 37.06 55.12 27.45 13.00 36.92 20.36 27.57 32.02

CAM⊗
≈ CAMeLBERT-CA

TyDi QAAR→Tafseer→TASK A 29.34 42.17 39.93 57.23 33.81 18.00 51.40 23.54 32.77 36.77

ARB⊗
∼ AraBERTv0.2-base

TASK A 31.76 41.93 46.55 62.71 34.27 46.00 28.16 29.41 36.09 36.87

ARB⊗
≈ AraBERTv0.2-base

TyDi QAAR→Tafseer→TASK A 34.83 47.09 39.99 60.82 37.55 43.00 46.22 28.10 36.70 40.70

Table 3: Dev split evaluation results for task A. MAP means ζ is set to mark 15% of questions as unanswerable.
⋆ accompanied by ζ refers to applying the best ζ (see Appendix F). Average performance is reported for multiple
runs of single models. Superscripts ⊚ and ⊗ in short form refer to dual-encoder and cross encoder, respectively.
Subscripts ∼ and ≈ denote direct fine-tuning and pipelined fine-tuning, respectively.

stage performance that we can obtain (Yates et al.,
2021).

Table 4 summarizes the results for task B. Our
best performing model over the standard split,
(ELCM

≈), attained a pAP of 53.36% and 55.21%
for single model and self-ensemble models, respec-
tively. Table 4 also presents results for the faithful
validation split we defined previously. (ARBM

≈) is
our best performing single model for the faithful
split, achieving a pAP score of 54.19%.

Both tables present comprehensive results for
different question types, as well as the outcomes
for a manually set threshold ζ and ζ⋆, i.e., the
threshold that yields the best performance.
(See Appendix F for more details about ζ and opti-
mal ζ selection)

Considering the question types , experiments of
(ARB⊗

∼) and (ARB⊗
≈) obtains the best MAP perfor-

mance for zero-answer and multi-answer questions
for task A.

With regard to the hidden split, Tables 5 and 6
provide a summary of our official submissions.

In task A, as shown in Table 5, we made 3 cross-
encoder submissions: MIX⊗

≈, which is an ensemble
combining runs from CAM⊗

≈ and ARB⊗
≈ cross en-

coders. MIX⊗
≈ achieved a MAP of 25.05%. In

comparison, the TF-IDF baseline only achieved a
MAP of 9.03%.

On the other hand, in task B, we experimented
with our two best performing models in Table 4. As
shown in Table 6, (ARBM

≈) outperformed (ELCM
≈)

with a pAP of 57.11%. This result is consis-

tent with the findings from the faithful valida-
tion split (Keleg and Magdy, 2022) in Table 4
for (ARBM

≈) and (ELCM
≈). Specifically, the MAL

method outperformed FAL for all of our models in
the faithful validation split (underlined in Table 4).

6 Analysis and Discussion

Regarding RQ1, external resources always bring
significant improvements to the same LM for both
tasks. For task A, we have three stages of fine-
tuning as indicated by arrows in Table 3. For ex-
ample, when (ELC⊗

∼) is fine-tuned with external
resources into (ELC⊗

≈) the MAP performance im-
proves from 8.96% to 26.60% for single models as
in Table 3. In similar fashion for task B, (ELCM

≈)
outperforms (ELCM

∼) by almost 13% for the stan-
dard split in Table 4.

To answer our RQ2, ensemble learning consis-
tently outperforms single models for both tasks.
For instance, (CAM⊗

≈) ensemble surpasses its sin-
gle model by 3.5% for the MAP metric for task A.
Similarly, (ELCM

≈) ensemble outperforms its corre-
sponding single model by almost a pAP of 2% for
task B.

With regard to RQ3, the hyperparameter ζ af-
fects the zero answer type evaluation scores for
both tasks. We make best use of the available
data by employing a quantile method to determine
the threshold ζ for both tasks. However, (ARB⊗

≈)
model MAP performance improves by 3% when
the optimal ζ⋆ is employed for task A. This sug-
gests that there is a room for improvement for the

731



Short
Form

Systems Single Model Self Ensemble Model

Model Method
Faithful Standard Development Split

pAP pAPPost pAP pAPPost pAP⋆
ζ

pAP (Sample Type) pAP pAPPost pAP⋆
ζZero Single Multi

ELCF
∼ AraELECTRA

TASK B
FAL 34.97 41.23 38.27 44.40 39.26 18.67 41.51 31.18 41.16 46.50 41.72

ELCM
∼ MAL 37.44 42.63 40.55 45.56 41.48 14.67 43.69 36.04 42.01 47.21 43.90

ELCF
≈ AraELECTRA

TyDi QAAR→TASK B
FAL 52.76 55.45 49.76 53.70 51.99 10.33 54.36 43.69 50.66 55.35 52.75

ELCM
≈ MAL 53.15 55.43 53.36 56.42 55.10 18.33 56.61 51.55 55.21 58.38 57.05

CAMF
∼ CAMeLBERT-CA

TASK B
FAL 41.45 45.76 37.63 42.04 38.36 11.00 40.83 33.13 42.51 45.50 43.18

CAMM
∼ MAL 43.54 47.36 38.57 43.38 39.38 12.67 40.52 39.20 41.66 45.39 43.80

CAMF
≈ CAMeLBERT-CA

TyDi QAAR→TASK B
FAL 50.64 53.12 41.59 46.50 42.39 13.67 44.36 39.39 47.03 49.37 47.12

CAMM
≈ MAL 52.14 54.01 40.08 44.80 41.30 15.00 41.61 42.18 42.75 46.87 44.23

ARBF
∼ AraBERTv0.2-base

TASK B
FAL 44.81 48.93 45.66 49.34 46.60 23.67 49.29 37.74 49.38 53.05 50.01

ARBM
∼ MAL 47.41 50.62 45.71 47.69 46.85 25.67 48.43 41.03 49.69 52.03 51.28

ARBF
≈ AraBERTv0.2-base

TyDi QAAR→TASK B
FAL 52.97 55.86 50.62 54.43 51.28 35.33 53.78 42.39 52.20 55.77 53.45

ARBM
≈ MAL 54.19 56.55 50.51 53.32 51.35 31.33 53.22 45.54 52.13 54.94 52.94

Table 4: Dev split evaluation results for task B. pAP means fixing ζ to 0.8. Post subscript identifies post-processing.
⋆ accompanied by ζ refers to applying the best ζ (see Appendix F). Average performance is reported for multiple
runs of single models. Superscripts F and M in short form indicate FAL and MAL methods, respectively. Subscripts
∼ and ≈ denote direct fine-tuning and pipelined fine-tuning, respectively. Underlined values refer to the higher
performance when comparing the two learning methods.

Short
Form Self Ensemble Model MAP MRR

TF-IDF Baseline 9.03 22.60

CAM⊗
≈

CAMeLBERT-CA
TyDi QAAR→Tafseer→TASK A 23.02 47.06

ARB⊗
≈

AraBERTv0.2-base
TyDi QAAR→Tafseer→TASK A 24.64 49.39

MIX⊗
≈ CAM⊗

≈ + ARB⊗
≈ 25.05 46.10

Table 5: Results on the hidden split for task A. ζ is set
to mark 15% of questions as unanswerable.

ζ parameter. (Please refer to Appendix F for more
details about ζ selection and RQ3).

In Table 3, we experimented with dual-encoders
using both random and hard negatives (Zhan et al.,
2021) to address RQ4. (ARB⊚

≈) outperforms
(ARB⊚

∼) by almost 4.5% when we perform hard
negatives mining using a fine-tuned checkpoint
(ARB⊚

∼).
In Table 4, MAL learning method consistently

brings significant improvements to the final per-
formance for all models over the faithful split.
Moreover, it consistently outperforms FAL learn-
ing method for the multi-answer type of samples.
For instance, (ELCM

≈) performs better than (ELCF
≈),

achieving a pAP score of 51.55% compared to
43.69% achieved by (ELCF

≈) for the subset of multi-
answer samples. However, due to the fact that
multi-answer samples make up only 18% of the de-
velopment samples in the standard split (Table 2),
MAL does not always outperform FAL for the stan-
dard split overall performance. This finding ad-
dresses RQ5.

With regard to RQ6, the post-processing ap-
proach proposed by Elkomy and Sarhan (2022)

Short
Form Method Self Ensemble Model pAP@10

Full-passage Baseline 32.68

ELCM
≈

MAL

AraELECTRA
TyDi QAAR→TASK B 53.10

ARBM
≈

AraBERTv0.2-base
TyDi QAAR→TASK B 57.11

MIXM
≈ ELCM

≈ + ARBM
≈ 56.43

Table 6: Results on the hidden split for task B. ζ is set
to mark 5% of pairs as unanswerable.

always surpasses the raw prediction score for both
single and ensemble models. This is represented
by Post subscript in Table 4. For example, post-
processing improves (ARBM

≈) both single model
and self-ensemble pAP performance by almost 3%.

7 Conclusion

In this paper, we have presented our solution for
both task A and task B of Qur’an QA 2023 shared
tasks. We explored various Arabic LMs using dif-
ferent training approaches and architectures. Our
best performing systems are ensemble-based, en-
hanced with transfer learning using external learn-
ing resources. Lastly, we addressed a set of RQs
that highlight the main strengths of our work.

Limitations

In this paper, we have adapted conventional
learning-based architectures for Arabic QA tasks,
specifically for MRC and ad hoc search. How-
ever, we faced several challenges throughout our
study. One significant challenge was the scarcity
of training resources, along with the imbalanced

732



distribution of topics and question types. This was
particularly evident in the zero-answer cases. As a
consequence, our zero-answer thresholding mecha-
nism demonstrated high sensitivity to each individ-
ual model.

Additionally, we noticed significant performance
variations due to the small size of the datasets. In
order to tackle the problem of variations and noisy
predictions, we investigated an ensemble approach.
However, we still suggest that the results we ob-
tained during the development phase may not ac-
curately reflect the actual performance of learning
systems. Despite the effectiveness of faithful splits
for task B, we still suggest exploring n-fold cross-
validation for both tasks. However, our computa-
tion resources were significantly limited during the
competition phase.

For task B, our models trained for MRC were
found to be suboptimal for ranking tasks. Although
our post-processing technique improved the raw
predictions, this indicates the necessity for other
ranking-based MRC approaches. Furthermore, we
would like to explore the performance of large LMs
on this particular task.

Ethics Statement

The paper contains facts and beliefs that do not nec-
essarily reflect the views or opinions of the authors.
The information presented is based on objective
analysis and does not aim to promote or endorse
any particular religious interpretation.

Acknowledgements

We would like to extend our heartfelt appreciation
to Dr. Moustafa El Zantout for his invaluable sup-
port and insights during the course of this work.
We would also like to express our deep gratitude
to the organizers of Qur’an QA for their efforts in
promoting research in Arabic in general, and the
most significant Arabic text, the Holy Qur’an.

References
Wissam Antoun, Fady Baly, and Hazem Hajj. 2020.

Arabert: Transformer-based model for arabic lan-
guage understanding. pages 9–15. European Lan-
guage Resource Association.

Wissam Antoun, Fady Baly, and Hazem Hajj. 2021.
Araelectra: Pre-training text discriminators for arabic
language understanding. pages 191–195. Association
for Computational Linguistics.

Muhammad Huzaifa Bashir, Aqil M Azmi, Haq Nawaz,
Wajdi Zaghouani, Mona Diab, Ala Al-Fuqaha, and
Junaid Qadir. 2021. Arabic natural language process-
ing for qur’anic research: A systematic review.

Jonathan H Clark, Eunsol Choi, Michael Collins, Dan
Garrette, Tom Kwiatkowski, Vitaly Nikolaev, and
Jennimaria Palomaki. 2020. Tydi qa: A benchmark
for information-seeking question answering in ty-
pologically diverse languages. Transactions of the
Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. pages 4171–4186. Association for Computa-
tional Linguistics.

Mohamemd Elkomy and Amany M Sarhan. 2022. Tce
at qur’an qa 2022: Arabic language question answer-
ing over holy qur’an using a post-processed ensemble
of bert-based models. pages 154–161. European Lan-
guage Resources Association.

Siddhant Garg, Thuy Vu, and Alessandro Moschitti.
2020. Tanda: Transfer and adapt pre-trained trans-
former models for answer sentence selection. vol-
ume 34, pages 7780–7788.

Go Inoue, Bashar Alhafni, Nurpeiis Baimukan, Houda
Bouamor, and Nizar Habash. 2021. The interplay
of variant, size, and task type in arabic pre-trained
language models. Association for Computational
Linguistics.

Amr Keleg and Walid Magdy. 2022. Smash at qur’an
qa 2022: Creating better faithful data splits for low-
resourced question answering scenarios. pages 136–
145. European Language Resources Association.

Rana Malhas and Tamer Elsayed. 2020. AyaTEC: Build-
ing a Reusable Verse-based Test Collection for Ara-
bic Question Answering on the Holy Qur’an. ACM
Transactions on Asian and Low-Resource Language
Information Processing, 19(6):1–21.

Rana Malhas and Tamer Elsayed. 2022. Arabic Ma-
chine Reading Comprehension on the Holy Qur’an
using CL-AraBERT. Information Processing & Man-
agement, 59(6):103068.

Rana Malhas, Watheq Mansour, and Tamer Elsayed.
2022. Qur’an QA 2022: Overview of the First Shared
Task on Question Answering over the Holy Qur’an.
In Proceedings of the 5th Workshop on Open-Source
Arabic Corpora and Processing Tools (OSACT5) at
the 13th Language Resources and Evaluation Con-
ference (LREC 2022), pages 79–87.

Rana Malhas, Watheq Mansour, and Tamer Elsayed.
2023. Qur’an QA 2023 Shared Task: Overview
of Passage Retrieval and Reading Comprehension
Tasks over the Holy Qur’an. In Proceedings of the
First Arabic Natural Language Processing Confer-
ence (ArabicNLP 2023), Singapore.

733

https://aclanthology.org/2020.osact-1.2
https://aclanthology.org/2020.osact-1.2
https://www.aclweb.org/anthology/2021.wanlp-1.20
https://www.aclweb.org/anthology/2021.wanlp-1.20
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://aclanthology.org/2022.osact-1.19
https://aclanthology.org/2022.osact-1.19
https://aclanthology.org/2022.osact-1.19
https://aclanthology.org/2022.osact-1.19
https://aclanthology.org/2022.osact-1.17
https://aclanthology.org/2022.osact-1.17
https://aclanthology.org/2022.osact-1.17


RANA R MALHAS. 2023. ARABIC QUESTION AN-
SWERING ON THE HOLY QUR’AN. Ph.D. thesis.

Ali Mostafa and Omar Mohamed. 2022. Gof at qur’an
qa 2022: Towards an efficient question answering
for the holy qu’ran in the arabic language using deep
learning-based approach. pages 104–111. European
Language Resources Association.

Pranav Rajpurkar, Robin Jia, and Percy Liang. 2018.
Know what you don’t know: Unanswerable ques-
tions for SQuAD. In Proceedings of the 56th Annual
Meeting of the Association for Computational Lin-
guistics (Volume 2: Short Papers), pages 784–789,
Melbourne, Australia. Association for Computational
Linguistics.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. pages 2383–2392.
Association for Computational Linguistics.

Omer Sagi and Lior Rokach. 2018. Ensemble learn-
ing: A survey. WIREs Data Mining and Knowledge
Discovery, 8(4):e1249.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and
Hannaneh Hajishirzi. 2016. Bidirectional attention
flow for machine comprehension. arXiv preprint
arXiv:1611.01603.

Ahmed Sleem, Eman Mohammed lotfy Elrefai,
Marwa Mohammed Matar, and Haq Nawaz. 2022.
Stars at qur’an qa 2022: Building automatic extrac-
tive question answering systems for the holy qur’an
with transformer models and releasing a new dataset.
pages 146–153. European Language Resources As-
sociation.

Marwan N. Swar. 2007. Mushaf Al-Tafseel Al-
Mawdoo’ee. Dar Al-Fajr Al-Islami, Damascus.

Tanzil. 2007-2023. Tanzil - quran translations. https:
//tanzil.net/trans/. Electronic Quranic Re-
sources.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
and Jamie Brew. 2019. Huggingface’s transformers:
State-of-the-art natural language processing. CoRR,
abs/1910.03771.

Andrew Yates, Rodrigo Nogueira, and Jimmy Lin. 2021.
Pretrained transformers for text ranking: BERT and
beyond. In Proceedings of the 2021 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies: Tutorials, pages 1–4, Online. Association
for Computational Linguistics.

Jingtao Zhan, Jiaxin Mao, Yiqun Liu, Jiafeng Guo, Min
Zhang, and Shaoping Ma. 2021. Optimizing dense
retrieval model training with hard negatives. In Pro-
ceedings of the 44th International ACM SIGIR Con-
ference on Research and Development in Information

Retrieval, SIGIR ’21, page 1503–1512, New York,
NY, USA. Association for Computing Machinery.

Appendix

A Dataset Additional Details

AyaTEC is a dataset designed to evaluate the per-
formance of retrieval-based Arabic QA systems
over the Holy Qur’an. It contains 207 questions
and 1,762 corresponding answers, which are cat-
egorized into 11 topics covering different aspects
of the Qur’an. The dataset caters to the informa-
tion needs of two types of users: skeptical and
curious (Malhas and Elsayed, 2020). The dataset
includes single-answer and multi-answer questions,
as well as questions that have no answer. Both
Qur’an QA 2023 shared tasks are primarily based
on an adapted version of AyaTEC (MALHAS,
2023; Malhas et al., 2022). Figure 1 illustrates an
example from task A. The question asks whether
there is a reference in the Qur’an to the body part
used for reasoning. Four relevant Qur’anic seg-
ments are annotated to have an answer for this ques-
tion. Figure 2 depicts a question-passage-answer
triplet from task B. The question in this case is
about creatures capable of praising God, within the
context of the given passage.

A.1 Topic Distribution for tasks

AyaTEC covers 11 diverse topics referenced in the
Holy Qur’an. Figure 3 illustrates the imbalanced
nature of those different topics. Furthermore, the
representation of unique questions is significantly
limited in comparison to question-passage-answer
triplets. Additionally, it is evident that the ratio
of triplets to unique questions varies for each re-
spective topic. In task B, these factors give rise to
common questions across various passages. Con-
sequently, they result in data leakage between the
training and development splits (Keleg and Magdy,
2022). (Further information regarding this can be
found in Appendix A.4)

A.2 Task A Evaluation Measures

For this ranking task, systems are expected to re-
turn up to 10 Qur’anic passages for each question
when possible. If the system determines that the
question is unanswerable from the entire Qur’an,
a null document is only returned, indicated by -1.
The primary measure for the task is MAP, which
gives full credit only if all relevant documents are
retrieved at the top of the ranked answer list. For

734

https://aclanthology.org/2022.osact-1.12
https://aclanthology.org/2022.osact-1.12
https://aclanthology.org/2022.osact-1.12
https://aclanthology.org/2022.osact-1.12
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/P18-2124
https://doi.org/10.18653/v1/D16-1264
https://doi.org/10.18653/v1/D16-1264
https://doi.org/https://doi.org/10.1002/widm.1249
https://doi.org/https://doi.org/10.1002/widm.1249
https://aclanthology.org/2022.osact-1.18
https://aclanthology.org/2022.osact-1.18
https://aclanthology.org/2022.osact-1.18
https://tanzil.net/trans/
https://tanzil.net/trans/
http://arxiv.org/abs/1910.03771
http://arxiv.org/abs/1910.03771
https://doi.org/10.18653/v1/2021.naacl-tutorials.1
https://doi.org/10.18653/v1/2021.naacl-tutorials.1
https://doi.org/10.1145/3404835.3462880
https://doi.org/10.1145/3404835.3462880


Figure 1: A sample from shared task A. We highlight the most relevant part in each Qur’anic segment.

Figure 2: A sample from shared task B. We highlight the ground truth answers in the Qur’anic passage.

735



the zero-answer questions, full credit is given to
successful systems only when they are unable to
find any relevant Qur’anic passage to answer the
question, and return the null document. In addition
to MAP, mean Reciprocal Rank (MRR) is also re-
ported, which gives credit just for the first relevant
document from the ranked list (Yates et al., 2021).

In formal notation, we begin by defining the
function α(q, p), which is a binary relevance func-
tion that indicates whether a passage p is annotated
as relevant to a question q in the test collection.
Equ.(1) represents the function that calculates the
total number of relevant Qur’anic passages from
the QPC to q.

ψ(q) =
∑

p∈QPC
α(q, p) (1)

Zero-answer questions have a zero value for the
function ψ, and their MAP score is calculated in a
different way. Equ.(2) shows the evaluation mea-
sure for MAP for answerable questions. For a
ranked list R, we calculate the precision at each
possible cutoff @i at which a relevant document is
present (Yates et al., 2021).

MAP(R, q) =

∑
(i,p)∈R Prec@i(R, q) · α(q, p)

ψ(q)
,

(2)
Equ.(3) illustrates the combined MAP evaluation

measure for task A. In this measure, zero-answer
questions are given full credit only when R is the
null document, represented by −1 in the official
evaluation script 3 (MALHAS, 2023).

MAPA(R, q) =





1R≡[−1] if ψ(q) = 0

MAP(R, q) Otherwise
(3)

1C is an indicator function, which returns 1 if the
binary condition C holds and 0 otherwise.

A.3 Task B Evaluation Measures
Standard MRC tasks, like SQuADv2.0, are eval-
uated based only on the first prediction. In con-
trast, task B is evaluated as a ranking task against
a ranked list, rather than relying solely on the top
prediction. As in task A, systems are expected to
return up to 10 answer spans from a given Qur’anic

3The symbol ≡ signifies the equivalence operator between
two lists.

passage to answer a question when possible. The
primary evaluation metric for this task is pAP (Mal-
has and Elsayed, 2020; MALHAS, 2023). This
metric incorporates partial matching with the tradi-
tional rank-based Average Precision measure, i.e.,
MAP. In the case of unanswerable samples, the
system receives a full score if it only returns and
empty ranked list.

Formally, partial matching is performed over
token indexes of two substrings extracted from a
given supporting passage. Based on Malhas and
Elsayed (2020), F1 is used to calculate the simi-
larity between the two substrings Rk and g. Rk

represents the kth answer from a ranked list R, and
g refers to any ground truth answer from the set of
ground truth answers G.

F1

R
k = max

g∈G
{F1 (Rk, g)} (4)

In terms of Equ.(4), we can define a partial
matching version of precision at cutoff K, i.e.,
pPrec (Malhas and Elsayed, 2020; MALHAS,
2023).

pPrec@K(R) =
1

K

K∑

i=1

F1

R
i (5)

In their study, MALHAS (2023) introduced a
method for handling multi-answer samples. They
proposed a string splitting mechanism that ensures
only one correct answer is matched in each en-
try of R. Equ.(6) presents the pAP evaluation
metric for multi-answer ranking MRC in terms of
pPrec (Malhas and Elsayed, 2022), which stands
as a token-level partial matching version of Equ(2).

pAP(R) =

∑
i∈R pPrec@i(R) · β(R, i)

|G| , (6)

β(R, i) is a binary function that returns one if Ri

is a partially relevant answer. More specifically,

β(R, k) = 1F1
R
k >0 (7)

In similar fashion, Equ.(8) presents the complete
pAP evaluation measure for task B. In this mea-
sure, zero-answer samples are given full credit only
when R is an empty list (MALHAS, 2023).

pAPB(R) =





1R≡[ ] if |G| = 0

pAP(R) Otherwise

(8)

736



Pro
visi

on
s of

Is
la

m

Sto
rie

s of
Pro

phet
s

For
m

er
nat

io
ns

The
U

nse
en

U
niv

er
se

an
d

G
od

Cre
at

io
ns

W
or

sh
ip

in
g

Bat
tle

s an
d

W
ar

s

Pro
phet

M
oh

am
ed

(P
BU

H
)

Fai
th

in
G

od
an

d
Beli

ev
er

s

H
um

an
s/

M
an

kin
d

Lin
gu

ist
ics

of
Qura

n

Oth
er

0

50

100

150

200

250
C

o
u

n
t

175

227

71
63

189

112

92

252

89

52

32
4546 43

23
13 12 11 10 9 8 7 6 11

# Questions for task A

# Triplets of task B

Figure 3: Distribution of QRCDv1.2 over the 11 topics for task A questions and task B triplets.

A.4 Leakage in QRCDv1.2

Keleg and Magdy (2022) analyzed QRCDv1.1
and identified instances where passages and ques-
tions were repeated. They classified QRCDv1.1
into four logical mutually-exclusive categories ac-
cording to their complexity. Table 7 provides a
summary of the criteria used and the expected be-
havior of trained LMs for each category. Addition-
ally, symbols are employed to indicate the levels of
complexity within each category, as determined by
performance scores obtained by Keleg and Magdy
(2022). Based on their analysis, Keleg and Magdy
(2022) solely utilized D(3) ood + hard for their final
development split for QRCDv1.1.

In this work, we extend their approach for QR-
CDv1.2. We slightly modify this by considering
bothD(2) andD(3) for the development split. In ad-
dition, we employ disjoint set algorithm to find all
leakage groups inD(1). We use those groups to bal-
ance the zero-answer questions ratio in the devel-
opment split. This is because 90% of zero-answer
questions belong to the trivial leakage group D(1).

In their work, Keleg and Magdy (2022) also pro-
posed a resplitting approach for QRCDv1.1. They
reorganized training and development splits using
the four logical groups to create what they called
faithful splits for QRCDv1.1. Faithful splits aim
to create more representative evaluations for QR-
CDv1.1 dataset. Table 8 summarizes the modifi-

cations we made for performing evaluation using
faithful splits. Table 9 presents the distribution of
our faithful split for QRCDv1.2 based on our mod-
ified splitting strategy outlined in Table 8. It also
includes the distribution of zero-answer samples
within each group. As in Table 9, we preserve
the original ratio of training to development splits.
Additionally, the percentage of zero-answer sam-
ples within each split is preserved compared to the
original distribution in Table 2.

A.5 External Learning Resources

We leverage external resources to perform
pipelined fine-tuning for both tasks A and B.
For task A, we utilized interpretation resources
(tafseer) from both Muyassar and Jalalayn, ob-
tained from Tanzil (2007-2023). We created pairs
of QPC Qur’anic passages and their corresponding
interpretations, resulting in approximately 2.5K rel-
evant pairs. Additionally, we used the Arabic TyDI-
QA GoldP dataset (Clark et al., 2020) to generate
pairs of relevant questions and their supporting ev-
idence passages, resulting in 15K relevant pairs.
For task B, we solely relied on the Arabic subset
of the TyDI-QA GoldP MRC dataset (Clark et al.,
2020). This dataset consists of approximately 15K
question-passage-answer triplets.

737



Category Criteria Expected LM behavior

D(1) in+leakage
Samples with repeated passage-answer

or question-answer pairs
Memorize answers and overfit to

training data :

D(2) in+no leakage

Samples with repeated passages but
having unique answers which are

different from D(1) answers

Reasoning is required to find the
right answer ::::

D(3) ood + hard

Samples with unique passages but
having rarely repeated questions

(appearing 3 times or less)

Some reasoning is required to find
the right answer for rare questions @

D(4) ood + easy

Samples with unique passages but
having commonly repeated questions

(more than 3 times)

Lexical matching guides trained
LMs to find similar answers ::

Table 7: Description of the four categories introduced by Keleg and Magdy (2022) over QRCDv1.1 dataset. We
show the criteria for identifying each category and the expected behavior for a fine-tuned LM. We denote the
complexity of each category using symbols. For instance, :::: represents the most challenging set for learning systems,
while : refers the least challenging set.

Category Splitting Strategy by Keleg and Magdy (2022) Our Modified Splitting Strategy

D(1) in+leakage

For duplicate question-answer or passage-answer pairs,
choose only one sample for training and leave the rest

for the development set.

Use it entirely for training, this is due to the fact that
D(1) is trivial for development.

To balance the zero-answer questions ratio, we take entire
zero-answer leakage groups into the development set.

We employ disjoint-set algorithm for this purpose.

D(2) in+no leakage

Split randomly with a splitting ratio of 86.7%
for training and 13.3% for development,

which corresponds to the original ratio of the data.

Split them into two overlapping sets, as such, confusing examples
with the same passages are distributed among training and

development with different answers.

D(3) ood + hard
Only use it for the development set

(removed from training).
Same as Keleg and Magdy (2022)

D(4) ood + easy

Split randomly with a splitting ratio of 86.7%
for training and 13.3% for development,

which corresponds to the original ratio of the data.

Use it entirely for training, this is due to the fact that
D(4) is trivial for development.

Table 8: Description of our modified faithful splitting for QRCDv1.2 dataset over the four categories introduced
by Keleg and Magdy (2022). We also show their proposed splitting approach (Keleg and Magdy, 2022). Check
Table 7 for more details and reasons behind such splitting strategies.

... ... ... ... ... ... ... ... ...

... ...

... ... ... ... ... ... ... ... ...

... ...

... ... ... ... ... ... ... ... ...

Question

ε[CLS]T[CLS] ε[CLS]T[CLS]
... ... ... ... ... ... ... ... ...

... ...

... ... ... ... ... ... ... ... ...

... ...

... ... ... ... ... ... ... ... ...

Transformer
Based Encoder

Transformer
Based Encoder

Passage

Metric
Learning

(a) Dual-encoder generic architecture with metric learning for
neural ranking.

... ... ... ... ... ... ... ... ...

... ...

... ... ... ... ... ... ... ... ...

... ...

... ... ... ... ... ... ... ... ...ε[CLS] ε1 εn ε[SEP1] ε1 εm ε[SEP2]

ε[CLS] q1 qn p1 pm[CLS] [SEP]

Question Passage

ε[CLS]T[CLS]

Binary
Classifier

Similarity Score

Transformer Based Model

-- [SEP]T[SEP2]---- --

[SEP]

[SEP]T[SEP1]

(b) Cross-encoder generic architecture for an input pair of a
question and a passage with a predicted similarity score.

Figure 4: Diagrams for model architectures for task A.

738



Category Train Development Total
D(1) in+leakage 405 (49) 7 (7) 412 (56)
D(2) in+no leakage 290 (2) 95 (1) 385 (3)
D(3) ood + hard 0 (0) 62 (3) 62 (3)
D(4) ood + easy 296 (0) 0 (0) 296 (0)
Total 991 (51) 164 (11) 1155 (62)
Zero-answer % 5.15 % 6.71 % 5.37 %

Table 9: QRCDv1.2 dataset distribution of pairs for
our faithful splitting over the four categories introduced
by (Keleg and Magdy, 2022). Parenthesized values
refer to the number of zero-answer samples within each
category for each split.

B Transfer Learning

In order to overcome the limited training resources
for both tasks, we incorporate external QA and in-
terpretation resources (tafseer) (Tanzil, 2007-2023).
External resources enhance our learning systems in
general by leveraging transfer learning across multi-
ple fine-tuning stages (Garg et al., 2020; MALHAS,
2023). We use arrows in subscripts in Tables 3, 4, 5,
and 6 to refer to stages of fine-tuning. (More de-
tails about external learning resources and their
construction in Appendix A.5)

C Ensemble Learning

We utilize a voting self-ensemble technique for a
group of fine-tuned models trained with different
seeds (Sagi and Rokach, 2018). We use the raw
predictions without applying a zero-answer thresh-
old.

In task A, for an ensemble E we aggregate the
relevance scores for a Qur’anic passage p and a
question q assigned by a model φ. The ensemble
relevance score S between p and q is as follows:

S(q, p) =
∑

φ∈E
φ(q, p) (9)

In similar fashion for task B, we leverage a span
voting ensemble (Elkomy and Sarhan, 2022). For
each sample, we aggregate span scores for each
span s made by each predictor φ.

S(s) =
∑

φ∈E
φ(s) (10)

After that, we apply zero-answer thresholding to
the aggregated result.

D Additional System Details for task A

We summarize both architectures for task A in
Figures 4a and 4b for dual-encoders and cross-
encoders, respectively.

D.1 Implementation Details
In our STAR training process, we incorporate both
random in-batch negatives and hard negatives. Ran-
dom negatives involve randomly selecting irrele-
vant documents for each query, providing positive
and negative signals for learning systems (Yates
et al., 2021). On the other hand, hard negatives
refer to the most offending irrelevant examples pre-
dicted by an encoder similarity score (Zhan et al.,
2021). In a batch of size 16, we encode 16 dif-
ferent queries with their corresponding positive
documents; in addition, in-batch negatives are used
for all other queries. These negatives can be chosen
randomly or through STAR hard negative mining.
We use a learning rate of 5 × 10−5 for all of our
dual-encoder experiments. In the case of cross-
encoders, we generate question-document pairs.
These pairs have a ratio of one positive pair and
three randomly selected negative pairs. For all
of our cross-encoders, we use a learning rate of
1× 10−6 with a batch size of 16.

D.2 Zero-answer Prediction
We assign a likelihood for each question q to be
answerable using the total relevance scores for the
top returned passages R. φ refers to a general
relevance predictor between q and a passage p.

γ(q) = −
∑

p∈R
φ(q, p) (11)

The negative sign corresponds to the inverse propor-
tional relationship between high relevance scores
and the likelihood of unanswerability. We then nor-
malize those scores for all questions into γ̄(q) and
apply a no answer threshold ζ. We define a binary
threshold function, σ, which applies the threshold
to identify unanswerable questions.

σ(q) = 1γ̄(q)>ζ (12)

E Additional System Details for task B

In this work, we fine-tune LMs for extractive MRC
as span predictors (Devlin et al., 2019). The fine-
tuning process involves packing each question-
passage pair x together and feeding it to a LM
to predict the start and end token indices from the
passage, as shown in Figure 5. To achieve this, a
trainable randomly initialized start vector S and
end vector E are stacked on top of the LM, having
the ith token hidden-representation Ti. The final
model with the newly stacked layers has learnable
parameters θ.

739



... ... ... ... ... ... ... ... ...

... ...

... ... ... ... ... ... ... ... ...

... ...

... ... ... ... ... ... ... ... ...ε[CLS] ε1 εn ε[SEP1] ε1 εm ε[SEP2]

ε[CLS] q1 qn ε[SEP1] p1 pm[SEP][CLS] [SEP]

Question Passage

ε[CLS] -- -- ε[SEP1] T1 T1Tm[SEP]T[SEP1]T[CLS] [SEP][SEP]T[SEP2]

Ranked list of
 answer spans

Figure 5: Generic architecture illustration of a LM for ranking MRC.

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
0.5

0

0.5

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
0.5

0

0.5

(a) Standard (FAL)

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
0.5

0

0.5

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
0.5

0

0.5

(b) MAL

Figure 6: Illustration of Learning Methods.

0.00 0.20 0.40 0.60 0.80 1.00
Threshold

0.15

0.20

0.25

0.30

0.35

M
A

P
p

e
rf

o
rm

a
n

ce
(%

)

Figure 7: Thresholding effect against MAP performance for one of our fine-tuned models.

740



The dot product between S and Ti is chosen to
determine the score that the ith token is the start of
the answer span. These scores for all passage to-
kens are followed by a softmax layer that produces
the probabilities for individual tokens being the
start of the answer span (Seo et al., 2016; Devlin
et al., 2019). Equ.(13) depicts the probability that
the ith token is the start of the answer span.

P (i | x; θ) = eS·Ti

∑|T |
j eS·Tj

(13)

Under full-supervision, the training objective is
to optimize the log-likelihoods for both the ground
truth start and end positions. For a model with
learnable θ, an input x, and a single ground truth
answer span y, the log likelihood for the start token
position is as follows:

Lstart (θ | x, y) = − logP
(
y
s
| x; θ

)
(14)

where the subscript s in y
s

refers to the start posi-
tion of the answer span y.

If there are multiple answers for a sample x,
we rather have a set of plausible answer spans Y .
Elkomy and Sarhan (2022); Sleem et al. (2022);
Mostafa and Mohamed (2022) in Qur’an QA 2022
tackled this by considering any answer span from
Y by taking one at random or the first answer span,
namely, y1. We denote the ith answer from Y as
yi. We call this learning method First answer loss
(FAL). This can be formulated in terms of Y as
denoted below:

LFAL
start (θ | x,Y) = − logP

(
y1
s
| x; θ

)
(15)

Figure 6a illustrates this learning method. How-
ever, QRCDv1.2 task B considers a multi-answer
MRC scenario, this leads to discrepancy between
training and testing when FAL learning method is
employed for fine-tuning. Towards this end, we de-
fine MAL learning method. This learning method
takes the multi-answer cases in consideration by
optimizing for all answers altogether. Mathemat-
ically, this generalizes to any yi from the set Y
and takes the sum of the log likelihood losses for
multiple answers as shown in Equ.(16):

LMAL
start (θ | x,Y) = −

∑

yi∈Y
logP

(
yi
s
| x; θ

)
(16)

We show the MAL learning method in Figure 6b.

E.1 Implementation Details

To enhance LMs predictions, we employ a post-
processing approach. Elkomy and Sarhan (2022)
proposed an effective non-maximum suppression
post-processing approach at Qur’an QA 2022 (Mal-
has et al., 2022). They also proposed some oper-
ations for rejecting uninformative short answers.
For all of our models, we used a learning rate of
2× 10−5 and a batch size of 16.

E.2 Zero-answer Prediction

MRC for SQuADv2.0-like datasets uses null an-
swer [CLS] token probability to give a likelihood
for a question to have an answer within the sup-
porting passage (Rajpurkar et al., 2018; Devlin
et al., 2019). This works by finding the difference
between the null answer score of [CLS] token and
the non-empty answer span with the highest score.
φ is a general span extractor that operates on a
question q and a passage p.

γ(q, p) = φ(q, p)[CLS] − φ(q, p)MAX (17)

Upon calculating scores for all samples, we pro-
ceed to normalize them into γ̄(q) and then apply
a threshold value ζ to determine if there is no an-
swer. To identify unanswerable questions, we use
a binary threshold function σ,

σ(q) = 1γ̄(q)>ζ (18)

F ζ Selection and ζ⋆

In this work, we defined ζ hyperparameter for zero-
answer thresholding. This hyperparameter controls
the proportion of samples that are considered to be
zero-answer. Due to the small size of the dataset,
we used a quantile method to set ζ. This method
marks a proportion of the samples according to
the statistics of the dataset. Task B is less sensi-
tive to this parameter because almost 5% of the
samples are zero-answer. In contrast, task A is
highly sensitive to this parameter because of the
larger proportion of zero-answer cases compared
to task A. Additionally, We are interested in finding
the theoretical upperbound performance for ζ; this
is addressed by RQ3.

In Tables 3 and 4 we use ⋆ accompanied by ζ
to refer to the optimal performance of the binary
classification problem of has-answer vs. has-no-
answer, as explained in Appendices D.2 and E.2.
Figure 7 illustrates the thresholding effect against

741



fine-tuned model performance for task A; this an-
swers RQ3. As we can see, the ζ hyperparameter
can not be set arbitrarily. Instead, we can adjust it
by considering the outcomes obtained from trained
models on the training data. To find the optimal
threshold ζ⋆ for both tasks, we implemented a
greedy optimization algorithm for all possible lev-
els of thresholds made by a given model; check the
code for more details 4.

4In both code bases, this is performed by function
find_best_thresh. You may find this function under metrics
directory in compute_score_qrcd.py and helpers.py scripts for
tasks A and B, respectively.

742


