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Abstract

In this work, we approach the problem of
Qur’anic information retrieval (IR) in Arabic
and English. Using the latest state-of-the-art
methods in neural IR, we research what helps
to tackle this task more efficiently. Training
retrieval models requires a lot of data, which
is difficult to obtain for training in-domain.
Therefore, we commence with training on a
large amount of general domain data and then
continue training on in-domain data. To han-
dle the lack of in-domain data, we employed
a data augmentation technique, which con-
siderably improved results in MRR@ 10 and
NDCG @5 metrics, setting the state-of-the-art
in Qur’anic IR for both English and Arabic.
The absence of an Islamic corpus and domain-
specific model for IR task in English motivated
us to address this lack of resources and take
preliminary steps of the Islamic corpus com-
pilation and domain-specific language model
(LM) pre-training, which helped to improve the
performance of the retrieval models that use the
domain-specific LM as the shared backbone.
We examined several language models (LMs)
in Arabic to select one that efficiently deals
with the Qur’anic IR task. Besides transferring
successful experiments from English to Arabic,
we conducted additional experiments with re-
trieval task in Arabic to amortize the scarcity
of general domain datasets used to train the
retrieval models. Handling Qur’anic IR task
combining English and Arabic allowed us to
enhance the comparison and share valuable in-
sights across models and languages.

1 Introduction

Recent advances in Natural Language Processing
(NLP) have helped to improve search relevance and
retrieval quality. Nevertheless, deep-learning tech-
niques, specifically transformer-based approaches
(Vaswani et al., 2017), are hardly employed in
Quran’ic NLP (Bashir et al., 2023). In this work,
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Figure 1: Data augmentation technique that leverages
correlation of Qur’anic verses for training retrieval mod-
els in-domain.

we will utilize the latest state-of-the-art neural re-
trieval models to compare what works best for solv-
ing the IR task in the Islamic domain. Moreover,
we proposed a data-augmentation technique to gen-
erate data for in-domain training appropriate for
the IR task involving the Holy Qur’an (see Figure
D).

We experimented with Arabic and English lan-
guages. Arabic, more precisely one of its variants,
Classical Arabic (CA), is the language of the Holy
Qur’an and is an integral component in tackling
retrieval task using sacred scripture (Bashir et al.,
2023). English is another popular language used
for search in various domains, including the Islamic
domain. Addressing the problem using Arabic and
English allows for comparing the solutions and
sharing insights across languages. English is a high-
resource language with a great choice of corpora
and pre-trained LMs for diverse domains. At the
same time, depending on the domain, Arabic can
be considered a low- or medium-resource language
(Xue et al., 2021; Abboud et al., 2022). However,
Arabic is in more favorable conditions than English
in the Islamic domain; in the case of the Arabic lan-
guage, there are Islamic corpora like OpenITI (Ro-
manov and Seydi, 2019) and domain-specific LMs
(Malhas and Elsayed, 2022; Inoue et al., 2021).
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From this perspective, addressing Qur’anic IR in
English is more challenging as it requires a num-
ber of additional preparations, like preparing an
Islamic corpus and pre-training domain-specific
LM. This state of affairs with the English language
in the Islamic domain necessitates addressing it
alongside the Arabic language. Simultaneously,
another advantage of handling the problem in En-
glish is the abundance of datasets to train for a
general domain. Training on general domain data
can be a required step to prepare a retrieval model
that needs a substantial amount of data for training,
where in-domain data is scarce. Experimenting
with Qur’anic IR in English will allow us to learn
what works best and apply these approaches to
Arabic, where general domain data is insufficient.

Our main contributions are:

* We introduce an Islamic corpus and a new
language model for the Islamic domain in En-
glish.

* We conduct comprehensive experiments with
different retrieval models to see what works
best for efficient retrieval from the Holy
Qur’an in Arabic and English.

* We propose a data-augmentation technique
that helped to improve the retrieval models’
performance for both languages and set a new
state-of-the-art in Qur’anic IR.

The rest of the work is organized as follows: we
start with addressing the problem of Qur’anic IR
in English. We prepare the Islamic corpus and
domain-specific LM (Section 2). Section 3 applies
to both languages, English and Arabic, including
metrics choice, datasets for training and testing,
experimental details, and training procedure of the
retrieval models. Section 4 is dedicated to Qur’anic
IR in Arabic. Apart from applying successful ex-
periments that worked well with Qur’anic IR in
English, we executed more methods of preparing
retrieval models for Arabic language, including
teacher-student distillation and employing machine
translation. Model comparison and Final analysis
is performed in Section 5. The prior work done in
the field is highlighted in Section 6.
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Figure 2: Types of Islamic text that constitute Islamic
Corpus.

2 Domain-Specific Language Model as a
Backbone of In-Domain IR

2.1 Islamic Corpus in English

Preparing an Islamic Corpus in English is challeng-
ing due to the insufficient amount of Islamic Text
that is either translated from Arabic or other lan-
guages to English or initially written in English.
We collect text available online of the following
types (see Figure 2):

Islamic literature. These are Islamic books
written by Islamic scholars about Tafseer (Qur’an
exegesis), Hadith, Seerah, Figh (Islamic jurispru-
dence), and Ageedah (Islamic creed) (approx. 28M
words).

Islamic journals. Journals that are available
online and focus on discussing modern issues of
Islamic banking, Finance, Economy, and Islamic
Education (approx. 5.5 M words).

Fatwa counseling. Fatwas that are available
online from Fatwa centers (approx. 4.8M words)

Wikipedia. Articles related to Islam from the
Wikipedia Islam portal (approx. 5.6M words).

Common Crawl. We search for keywords and
collect files from Common Crawl on Islamic topics.
We perform additional filtering and preprocessing
of these articles (approx. 2.5 M words).

The total amount of words in the corpus is
around 47M words.

2.2 Adaptation of General Domain Language
Model for Islamic Domain

Pre-training starting from the existing checkpoint
of the model pre-trained for the general domain
helps reduce pre-training time (Gururangan et al.,
2020; Bommasani et al., 2022; Guo and Yu, 2022).
To account for the small size of the pre-training
corpus and perform domain adaptation effectively,
we continue pre-training the BERT model on the



Islamic corpus. To address the issue of the ab-
sence of domain-specific vocabulary during con-
tinued pre-training, we trained the WordPiece to-
kenizer (Song et al., 2021) on the Islamic corpus.
We find the intersection between Islamic vocabu-
lary and bert-base-uncased !, and for the tokens
inside this intersection, we assign the weights from
bert-base-uncased. For the tokens outside of the
intersection (Islamic tokens), we perform contex-
tualized weight distillation following (Pavlova and
Makhlouf, 2023) 2.

* In the first step, we find tokens of interest and
extract corresponding sentences from the Is-
lamic Corpus. We sample from one to twenty
sentences (Bommasani et al., 2020).

In the second step, we tokenize these sen-
tences using a bert-base-uncased tokenizer.
In that case, Islamic tokens are broken into
subtokens because they are absent from bert-
base-uncased vocabulary. We average the
contextualized weights of the corresponding
subtokens that the BERT model produces
(tagistilleq) and then compute aggregated repre-
sentation across sentences (fqggregated) for a
corresponding token of interest from Islamic
vocabulary:

tdistitled = f(t1, .., k)

f € {mean} W

Where k is the number of the subtokens that
make up the token of interest.

tagg'regated = g(tdistilled7 X3) tm)

g € {mean} @

And m is the number of sentences involved in
aggregated representation.

In order to avoid overinflating the vocabulary
with new tokens, which would require longer pre-
training and be prohibitive in the case of a small cor-
pus, we analyze the frequency of each token in our
corpus. Tokens with a count below threshold are fil-
tered out, resulting in 3992 new domain-specific to-
kens. Moreover, we remove [unused] tokens from
the bert-base-uncased vocabulary and add Islamic
tokens, resulting in 33511 total tokens in the BPIT
model’s final vocabulary (BPIT is the abbreviation
for BERT Pre-trained on Islamic Text).

1https://huggingface.co/bert—base—uncased
2https://github.com/rttl—ai/BIOptimus
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2.3 Pre-training Set-up

In order to accommodate the limited size of the pre-
training corpus, we schedule two-stage pre-training
akin to phases of Curriculum learning (Bengio
et al., 2009; Soviany et al., 2022). In the first stage,
we start with an easier task of predicting masked
tokens/subtokens, with a masking rate of 0.15 and
using the "80-10-10" corruption rule (Devlin et al.,
2019; Wettig et al., 2023). In the second stage,
we increase the complexity of the prediction task
by switching to predicting the whole words with
the same masking rate and using the corruption
rule. It is harder for a language model to predict
whole words than to predict tokens or subtokens
that might make up the word and give the LM more
clues and make the prediction task less challeng-
ing (Cui et al., 2021; Dai et al., 2022; Gu et al.,
2021). This pre-training approach introduces the
LM to a broader scope of language experience and
helps to gain more diversified knowledge of tex-
tual input (Mitchell, 1997), which is crucial in the
case of a small corpus that we use. Pre-training
hyperparameters can be found in Appendix A.

3 Preparing Neural IR Model to Retrieve
from the Holy Qur’an

3.1 Dataset for Testing Retrieval Models

To test our models, we converted the QRCD
(Qur’anic Reading Comprehension Dataset) (Mal-
has and Elsayed, 2022) to the IR dataset. We use
both train and development split as test data. We
do not include no-answer questions (Malhas and
Elsayed, 2020), which results in 169 queries in to-
tal for testing. Queries are accompanied by the
corresponding verses from the Holy Qur’an. Each
Qur’anic verse is treated as the basic retrieval unit
because it presents a more challenging task (see
Section 5) and has higher utilization factors. The
original dataset is in Arabic and was constructed
and annotated by experts in Islamic studies. For our
purposes of testing IR systems, we translate queries
to English and verify the validity and accuracy of
the translation with Islamic scholars. We use the Sa-
heeh International® translation of the Holy Qur’an
to express specific Qur’anic terms used in query
formulation. To retrieve answers, we use the same
Sahih International translation as a retrieval collec-
tion.

3https://tanzil.net/trans/
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3.2 Maetrics

Due to the complexity of the language of the Holy
Qur’an and the fact that some meanings can be ex-
pressed indirectly, the retrieval task using the Holy
Qur’an is quite difficult. Therefore, using several
metrics to estimate the retrieval model’s effective-
ness from a different perspective makes sense. We
use the MRR @10 (Mean Reciprocal Rate), the of-
ficial evaluation metric of the MS MARCO dataset
(Bajaj et al., 2018) that we extensively use to fine-
tune our retrieval models. Furthermore, we add
NDCG@5 (Normalized Discounted Cumulative
Gain) and Recall @100, used in the BEIR bench-
mark (Thakur et al., 2021b). This combination of
metrics lets us estimate our models with a deci-
sion support metric such as Recall, binary rank-
aware metrics such as MRR, and metric with a
graded relevance judgment such as NDCG (Wang
et al., 2013). For evaluation, we use the BEIR
framework® that utilizes the Python interface of the
TREC evaluation tool (Gysel and de Rijke, 2018).

3.3 Baselines

BM25 is a commonly used baseline to compare
retrieval systems. It is a sparse lexical retrieval
method based on token-matching and uses TF-IDF
weights. Though the lexical approaches suffer from
the lexical gap (Berger et al., 2000) due to the con-
straints of retrieving the documents containing ex-
act keywords presented in a query, BM25 remains a
strong baseline (Kamalloo et al., 2023). We also in-
clude a dense neural retrieval model, trained using
a sentence-transformers framework (Reimers and
Gurevych, 2019) referred to as SBERT- GD (gen-
eral domain), a late-interaction model ColBERT
(Khattab and Zaharia, 2020) (ColBERT-GD), and
Cross-Encoder-GD. All models were trained on the
MS MARCO dataset from the bert-base-uncased
checkpoint. This approach allows us to evaluate
their performance in a zero-shot setting for the
Islamic domain and compare them with the re-
trieval models trained using the domain-specific
BPIT model. More details on how SBERT-GD,
ColBERT-GD, and Cross-encoder-GD were trained
are presented in Section 3.4; hyperparameters de-
tails are listed in Appendix A.

*https://github.com/beir-cellar/beir/tree/
main
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3.4 Training a Domain-specific Model on
General Domain Data

To prepare the domain-specific model for the IR
task, we prepare and compare three approaches.

SBERT-BPIT. We use the sentence-
transformers framework, which employs a
Siamese network (Bromley et al., 1993) that

enables semantic similarity search. We train our
BPIT model using the architecture above on the
MS MARCO dataset that contains 533k training
examples (more details on MS MARCO dataset
are in Section 4.4), utilizing Multiple Negative
Ranking Loss (MNRL) (Henderson et al., 2017;
Ma et al., 2021; van den Oord et al., 2019). MNRL
is a cross-entropy loss that treats relevant pairs
{2,y M (where M is batch size) as positive
labels and other in-batch examples as negative, and
formally defined as:

JMNRL(9) =
D), foy™))

— 3 log
Z z®), fo(y)))

where o is a similarity function, in our case it
is a cosine similarity function; fy is the sentence
encoder. We use multiple hard negatives; these are
negative passages similar to the positive passage
but not relevant to the query and mined using cross-
encoder scores .

Cross-encoder-BPIT. In the case of a cross-
encoder, a pair of sentences are simultaneously
fed into a transformer-like model, and attention is
applied across all tokens to produce a similarity
score (Humeau et al., 2020). This approach does
not allow end-to-end information retrieval and en-
dure extreme computational overhead. However, in
many IR tasks, it performs superior to other meth-
ods and can be used for mining hard negatives,
data augmentation (Section 3.5), and reranking.
The model is trained with triples provided by MS
MARCO starting from the BPIT checkpoint under
a classification task, using Cross Entropy Loss.

CoIlBERT-BPIT. ColBERT computes embed-
dings independently for queries and documents
and, at the same time, can also register more fine-
grained interactions between tokens. Using the
same mined hard negatives constructed for the MS
MARCO dataset used to pre-train SBERT-BPIT,
ColBERT-BPIT is trained starting from the BPIT

eXPU (fo(at
S expo(fo(x

Shttps://huggingface.co/datasets/
sentence-transformers/msmarco-hard-negatives
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checkpoint by optimizing the cross-entropy loss ap-
plied to the score of the query and the positive pas-
sage against in-batch negatives (Santhanam et al.,
2022).

All models with the prefix BPIT are counter-
parts of GD models; for a fair comparison, they are
trained using the same dataset, objective function,
and hyperparameters (see Appendix A) with the
only difference that BPIT models initialized from
the BPIT checkpoint and GD models initialized
with the bert-base-uncased checkpoint.

3.5 In-domain Training of the
Domain-specific Model

The performance of dense retrieval systems wors-
ens when encountering a domain shift (Thakur
et al., 2021b); therefore, there is a great benefit
in training neural IR models on in-domain data.
The lack of domain-specific data is often solved by
augmenting training data: generating synthetic data
(dos Santos Tanaka and Aranha, 2019), paraphras-
ing using synonyms (Wei and Zou, 2019), sampling
and recombining new training pairs (Thakur et al.,
2021a), round-trip translation (Yu et al., 2018; Xie
et al., 2020) or involving denoising autoencoders
(Wang et al., 2021). These techniques involve data
distortion, which is suboptimal when dealing with
religious and heritage datasets. We propose a data
generation technique for in-domain training advan-
tageous for the retrieval task involving the text of
the Holy Qur’an (see Figure 1). Understanding
the text of the Holy Qur’an is closely related to the
meaning explained in the books of Tafseer written
by Islamic Scholars. Tafseer Ibn Kathir, one of
the established books of Qur’an exegesis, contains
ample verse relations references. Putting this into
use allows not only to perform data augmentation
but also to intertwine more meaning to Qur’anic
verses that need to be more explicit for a LM to
learn directly from the text of the verse.

Pairing. Let C; denote a collection of books of
Tafseer by Ibn Kathir. We start with extracting and
paring all verse relations mentioned in Tafseer Ibn
Kathir. That gives us V; that contains distinct pairs
{vg,vp} € Vi and |V;| ~ 11Kk pairs.

Filtering. Not all the pairs can be used for train-
ing the retrieval model because not all the verse
relation pairs will be interpreted by the model as a
signal of positive correlation due to meanings that
are expressed indirectly. We use the cross-encoder
model M. that was trained on a general domain
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to score ayah pairs s.e = Mc(vg, vp). We filter
out the pairs that were scored below the threshold,
leaving us with V that contains pairs with strong
positive correlations (¢, p*) € Vy and |Vy| = 2352
pairs.

Sampaling hard negatives. To prepare neg-
ative passages, we use the text of the Tafseer
Ibn Kathir without verses’ quotations. The text
is split into M passages to form a collection
C~ = {py,p;3,....,D;y} to sample negative pas-
sages. Sampling from the Holy Qur’an text is a
less favorable approach. Due to the relatively small
size of the Qur’anic corpus, mined negative pas-
sages may turn out to be false negatives (Qu et al.,
2021). At the same time, sampling from another
corpus would create easy negatives that are not
beneficial for training (Ren et al., 2021; Karpukhin
et al., 2020; Xiong et al., 2021), while the text of
the Tafseer Ibn Kathir contains passages that are
similar to the positive passages but not precisely
relevant to ¢ and are good candidates to play a role
of hard negatives. To choose hard negatives, we use
a retrieval model trained with a Seamise network
Mp and retrieve negative passages (p; , ..., p; ) re-
lated to Vg € Vy. We score each pair (¢, p~) with
the cross-encoder s.. = M¢(q,p~ ), and use these
scores in the next stage of training.

Continue training in-domain. We combine the
collection of verses from the Holy Quran C'* and
the collection of passages from Tafseer Ibn Kathir
C~ into one collection Cy,,4 for training, which to-
gether with selected positive pairs and mined hard
negatives forms new augmented dataset Dy for
in-domain training. We continue training SBERT-
BPIT and ColBERT-BPIT on new in-domain data
following the same procedure described for each
model in Section 3.4. The models that come out
as a result of this stage of training are SBERT-ID
(Islamic Domain) and ColBERT-ID.

3.6 Results and Discussion

The performance of all models on the test dataset
is collected in Table 1. All the models steadily
outperform the BM25 baseline on every metric.
In the category of the GD and BPIT models, the
best-performing model is ColBERT for all met-
rics. In contrast, in the category of ID models,
SBERT shows the best results at MRR @10, with
a considerable improvement in performance after
in-domain training on the augmented dataset (in-
creasing from 0.48 to 0.55).



Recall@100 MRR @10 NDCG@5

BM25 0.15 0.27 0.15
SBERT-GD 0.2 0.43 0.23
CoIBERT-GD 0.25 0.43 0.26
Cross-encoder-GD 0.19 0.37 0.22
SBERT-BPIT 0.28 0.48 0.28
ColBERT-BPIT 0.32 0.51 0.32
Cross-encoder-BPIT 0.17 0.3 0.16
SBERT-ID 0.32 0.55 0.33
CoIlBERT-ID 0.33 0.53 0.33

Table 1: Performance of retrieval models on the test
data (English).

Recall@100 MRR @10 NDCG@5

SBERT-ID (Saheeh Int.) 0.32 0.55 0.33
SBERT-ID (Yusuf Ali) 0.31 0.49 0.3
SBERT-ID (al-Hilali) 0.33 0.5 0.31
SBERT-ID (Pickthall) 0.29 0.48 0.29
ColBERT-ID (Saheeh Int.) 0.33 0.53 0.33
ColBERT-ID (Yusuf Ali) 0.28 0.46 0.27
ColBERT-ID (al-Hilali) 0.25 0.5 0.3
CoIBERT-ID (Pickthall) 0.27 0.47 0.28

Table 2: Comparison of the performance of the retrieval
models on the test data for different translations of the
Holy Qur’an into English.

Overall, all ID models demonstrate superior per-
formance, proving that training in-domain using
our data augmentation technique was beneficial.
Moreover, another important observation is con-
sistent progress for SBERT and ColBERT mod-
els when training using the domain-specific model
(BPIT) coupled with training on in-domain data.
We suppose that leveraging domain adaptation of a
LM that serves as a backbone for retrieval models
and subsequent training of retrieval models on large
general domain data before training on in-domain
data is an effective approach.

In Table 2, we included a comparison and anal-
ysis of the performance of the retrieval models for
different translations of the Holy Qur’an into En-
glish. We can see no significant degradation of
the models’ performance. The formulation of the
queries contains terms from Saheeh International
translation (Section 3.1), which proves that the
models can maintain search relevancy with differ-
ent semantics. With these results and insights, we
switch to exploring how to tackle IR tasks for the
Holy Quran in the Arabic Language.

4 Preparing a Retrieval Model to Extract
Relevant Verses from the Holy Qur’an
in Arabic

This section discusses how to address the same
problem of designing an efficient neural IR model
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for extracting relevant verses from the Holy Qur’an
in Arabic. Though the goal is essentially the same,
the resources to achieve it are quite different in the
case of the Arabic Language. The dataset for test-
ing is the same as the one described in Section 3.1.
We use the queries as they were initially formulated
in Arabic by the authors of QRCD (Malhas and El-
sayed, 2022). For the choice of the metrics, refer
to Section 3.2.

4.1 Choice of Arabic LM to Tackle IR Task in
the Islamic Domain

Due to a lack of manually crafted linguistic re-
sources, Arabic is considered a low- or medium-
resource language, depending on the domain of
application (Xue et al., 2021; Abboud et al., 2022).
Recent advances in Arabic NLP have brought a
number of LMs pre-trained on Arabic corpora and
new datasets translated into Arabic or initially cu-
rated in Arabic. Arabic is the language of the
Holy Qur’an and the source language of numer-
ous Islamic scholarly works. Moreover, the multi-
institutional initiative has offered the Arabic NLP
community an Open Islamicate Texts Initiative
OpenlTI (Romanov and Seydi, 2019), an excel-
lent source for pre-training a LM for the Islamic
domain. These advantageous conditions for the Is-
lamic domain in Arabic let us skip the preliminary
stage of corpus preparation and LM pre-training.

However, there is a benefit in comparing how var-
ious Arabic LMs can fit as the backbone of the IR
system for the Islamic domain. Table 3 compares
Arabic LMs’ efficiency in tackling IR task in the
Islamic domain out-of-the-box. We use a sentence-
transformers framework to compare LMs to avoid
a costly training stage. We add an averaging pool-
ing layer on top of BERT embeddings and convert
it into a fixed-sized sentence embedding (Reimers
and Gurevych, 2019). The same model is utilized
to create sentence embeddings for both queries and
Qur’anic verses, and then answers to the query are
found using the cosine similarity measure. The
models are not ready to efficiently handle IR tasks
without additional training, yet this approach let us
to compare LMs’ embeddings out-of-the-box. We
include in the comparison the bert-base-uncased
model and the BPIT model (evaluation is run on
the English translation of QRCD).

As we can see from the table, most of the mod-
els perform poorly. We can also observe that pre-
training on large amounts of data does not neces-



Number of tokens/ MRR@10 NDCG@5

Domain
bert-base-arabic-
camelbert-mix 17.3B/GD 0.01 0.01
(Inoue et al., 2021)
bert-base-arabic-
camelbert-ca 847M/ID 0.01 0.01
(Inoue et al., 2021)
bert-base-arabertv02
(Antoun et al., 2020) 8.6B/GD 0.01 0.01
bert-base-arabic
(Safaya et al., 2020) 8.2B/GD 0.06 0.02
bert-base-uncased 3.3B/GD 0.07 0.03

(Devlin et al., 2019)
CL-AraBERT
(Malhas and Elsayed, 2022)
BPIT

2.7B+1.05B/GD+ID 0.11

0.11

0.06

3.3B+50M/GD+ID 0.06

Table 3: Performance of LMs on the test dataset. GD
stands for General domain and ID for Islamic domain.

sarily lead to better performance in IR task. CL-
AraBERT performs significantly better than other
Arabic LMs, and its performance is similar to the
BPIT model. It is plausible that, as in the case of
CL-AraBERT (Malhas and Elsayed, 2022) and the
BPIT model, pre-training in a continued approach
on a domain-specific corpus with specialized vocab-
ulary starting from the general domain checkpoint
helps to tackle IR task in the Islamic domain more
efficiently. Another noteworthy observation is that
the BPIT model exhibits this performance while
pre-trained for a short period and with a small cor-
pus of less than 50M tokens. We assume that con-
textualized weight distillation might help boost the
efficiency during the pre-training stage. The sec-
ond best performing models are bert-base-uncased
and bert-base-arabic. Based on the result of Table
3, we choose CL-AraBERT as a backbone model
to conduct subsequent experiments with IR task in
Islamic Domain in Arabic.

4.2 Knowledge Distillation Approach to
Improve Performance of Arabic LM in IR
Task

The lack of manually crafted linguistic resources in
low-resource languages can be tackled by knowl-
edge distillation. Reimers and Gurevych (2020)
showed that it is possible to improve the perfor-
mance of sentence embedding models by mimick-
ing the performance of a stronger model. They
used parallel corpora to teach the student model to
produce sentence embeddings close to the embed-
dings of the teacher model. Their experiment uses
the English SBERT model to initialize the teacher
model, and multilingual XLM-RoBERTa (Conneau
et al., 2020) is used as a student model. Our ex-
periment uses the SBERT-BPIT (Section 3.4) as
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Recall@100 MRR @10 NDCG@5

Bilingual-distilled 0.12 0.26 0.15
SBERT-AR-NLI 0.21 0.38 0.21
SBERT-AR-MARCO 0.23 0.4 0.23
ColBERT-AR 0.28 0.47 0.29
SBERT-AR-ID 0.25 0.45 0.27
ColBERT-AR-ID 0.29 0.48 0.29

Table 4: Performance of retrieval models on the test
dataset (Arabic).

a teacher model and the bilingual EN-AR student
model. The student model combines the embed-
ding matrix of the CL-AraBERT for Arabic tokens
and the BPIT model for English tokens, and the en-
coder weights are borrowed from the BPIT model.
We use a combination of parallel datasets (EN-
AR) available on the OPUS website (Tiedemann,
2012): TED2020, NewsCommentary, WikiMatrix,
Tatoeba, and Tanzil, total size of training data is
around 1.1M sentences (for hyperparameters de-
tails, see Appendix A). Table 4 presents the eval-
uation results of this approach on the test dataset
(Bilingual-distilled-EN-AR model). We can see a
significant improvement compared to the results of
CL-AraBERT from Table 3, yet the performance
is practically twice lower than the performance of
the equivalent English model (SBERT-BPIT, Table
D).

4.3 Training on Arabic Natural Language
Inference Dataset to Improve Sentence
Embeddings

Another approach that can help to improve the
quality of the sentence embeddings is training
on the Natural Language Inference (NLI) dataset
(Reimers and Gurevych, 2019; Bowman et al.,
2015; Williams et al., 2018) . Conneau et al. (2018)
introduced Cross-lingual Natural Language Infer-
ence (XNLI) comprising 7500 examples for devel-
opment and test sets translated into 15 languages,
including Arabic. We train CL-AraBERT on XNLI
following Reimers and Gurevych (2019), using
400k machine-translated training examples that ac-
company XNLI development and test set (more
details in Appendix A). The performance of this
model (SBERT-AR-NLI, Table 4) is better than
Bilingual-distilled-EN-AR, yet lower than SBERT-
BPIT (Table 1).



4.4 Employing Machine-Translated Datasets
to Overcome The Lack of Large Training
Data

Although the quality of the machine-translated
dataset is inferior to human translation, the acces-
sibility of machine-translated text helps to gener-
ate a considerable training set which is essential
for preparing a retrieval model. The experiment
with training on the XNLI dataset from section
4.3 showed that training on a machine-translated
dataset can achieve competitive performance. This
motivates us to extend this experiment further to
the MS MARCO dataset. MS MARCO is a large
collection of datasets focused on deep learning in
search (Bajaj et al., 2018), including the IR dataset
that comprises more than half a million queries and
is accompanied by a collection of 8.8M passages
and 39M triplets for training. Another advantage
of using MS MARCO, besides a sizable training
set, is that it is more suitable for training IR sys-
tems, and we can experiment with both SBERT and
ColBERT approaches to prepare retrieval models
and compare their performance across languages.
Bonifacio et al. (2022) presented a multilingual
version of the MS MARCO dataset created using
machine translation comprising 13 languages. We
use the Arabic translation of MS MARCO and train
SBERT-AR-MARCO equivalently to SBERT-BPIT
and ColBERT-AR following the training procedure
of ColBERT-BPIT (Section 3.4). Table 4 demon-
strates that training on MS MARCO can give better
results compared to other training approaches de-
scribed in Sections 4.2 and 4.3.

4.5 In-domain Training of Retrieval Model
for Qur’anic IR in Arabic

In the last stage, we perform training on in-domain
data and repeat the successful experiment with
dataset augmentation in English. The steps to aug-
ment dataset are the same (see Section 3.5). We
use a cross-encoder trained on machine-translated
MS MARCO to score ayah pairs, which results in a
slightly different count of selected pairs (2723).
We continue training SBERT-AR-MARCO and
ColBERT-AR on in-domain data and produce
SBERT-AR-ID and ColBERT-AR-ID.

The performance of these retrieval models is
included in Table 4, and we can observe further
improvement after training on in-domain data. The
best-performing model is CoIBERT-AR-ID, and
it is plausible that the retrieval approach of the

&3

Recall@100 MRR @10 NDCG@5

SBERT-AR-ID 0.25 0.45 0.27
ColIBERT-AR-ID 0.29 0.48 0.29
SBERT-AR-ID (passages) 0.7 0.47 0.35
ColBERT-AR-ID (passages) 0.77 0.53 0.43

Table 5: Performance of Arabic retrieval models on the
passage retrieval task (Arabic).

ColBERT model that leverages more fine-grained
interactions between a query and a verse (Khattab
and Zaharia, 2020) is especially advantageous for
languages with complex morphological structures,
such as Arabic.

S Model comparison and Final analysis

W SBERT-D M ColBERT-ID M SBERT-AR-ID ColBERT-AR-ID
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Figure 3: Comparison of the retrieval models for the
Islamic domain (ID) for English and Arabic across all
metrics.
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Figure 4: Comparison of the retrieval models for the
Islamic domain (ID) for English and Arabic across all
metrics.

Figure 3 compares all the retrieval models for
the Islamic domain (ID) for English and Arabic
across all metrics. A noteworthy observation is
that all English retrieval models outperform their
Arabic equivalents, which can be explained by the
complexity of the Arabic language and the usage
of machine-translated data. Nevertheless, the re-
sults of Arabic retrieval models are not far apart
from English models, and specifically, with the em-



ployment of the ColBERT model, we can see a
competitive performance (0.48 for MRR @10 and
0.29 for Recall@100 and NDCG@5).

The radar chart (Figure 4) shows a more compre-
hensive comparison across all models. We can see
that the radar chart has a tapered shape overall, with
an MRR @10 axis being the most prolonged edge,
indicating that all models show the best results for
this metric. Moreover, NDCG @5 and Recall@100
are more proportionally placed against each other,
signifying that the performance for these metrics
is similar across all the models. SBERT-ID and
ColBERT-ID (magenta and green colors) are lo-
cated at the edge, showing the best performance.
They are followed by ColBERT-BPIT and SBERT-
BPIT (English models), and Arabic ColBERT and
SBERT models are located in the middle of the
chart. In the center, we can see BM25 and the
Bilingual-distilled model, these are models with
the lowest performance.

In addition, we conducted tests on two models,
ColBERT-AR-ID and SBERT-AR-ID (as shown in
Table 5), for the passage retrieval task (Malhas,
2023). We did not apply any passage or query ex-
pansion heuristics (Malhas, 2023). Our findings
indicate that this approach is less challenging and
increases the MRR @ 10 score, especially for the
ColBERT model. The NDCG@10 score grows by
0.08 for the SBERT model and by 0.14 for the Col-
BERT model. Moreover, the Recall@100 grows
by almost threefold.

6 Related work

Thakur et al. (2021a) proposed a data augmenta-
tion technique to train sentence transformers when
little data for in-domain training is available. Wang
et al. (2021) and Wang et al. (2022) experimented
with domain adaptation techniques for embedding
models.

The topic of the choice of hard negatives is dis-
cussed in works of: Qu et al. (2021), Ren et al.
(2021), Karpukhin et al. (2020), Xiong et al., 2021.

Bashir et al. (2023) wrote a detailed overview
of the state of Qur’anic NLP, including the present
state of search and retrieval technologies. Most
of the approaches described use keywords-based
or ontology-driven search. A few works employ
semantic search based on deep-learning methods:
Alshammeri et al. (2021) use doc2vec; Mohamed
and Shokry (2022) utilize word2vec. Malhas and
Elsayed (2022) pre-trained CL-Arabert on Open-
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ITI (Romanov and Seydi, 2019) starting from the
AraBERT checkpoint (Antoun et al., 2020). They
also introduced the first Qur’anic Reading Compre-
hension Dataset (QRCD) that we used as a test data
for the Qur’anic IR task.

7 Conclusion

In this paper, we employed state-of-the-art ap-
proaches in IR to analyze and compare what works
better to improve Qur’anic IR in English and Ara-
bic. The results show that retrieval models in En-
glish outperform their Arabic equivalents. The
inherent linguistic complexity of the Arabic lan-
guage may explain this performance gap; neverthe-
less, transferring successful experiments from En-
glish to Arabic, applying large machine-translated
datasets, and using the proposed data-augmentation
technique helped to enhance the results in Qur’anic
IR in Arabic.

One of the possible directions to take in the fu-
ture is to extend this work to encompass more lan-
guages. This would broaden the scope of the se-
mantic search for the Holy Qur’an, making it ac-
cessible to a larger audience. Moreover, research
conducted in a multilingual environment helps to
exchange insights among languages and enhance
the results in Qur’anic IR.

Another essential step is to extensively evaluate
real-world user queries to analyze models’ perfor-
mance in practice ©.
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A Appendix
A.1 Hyperparameter details

Computing Infrastructure 2 x NVIDIA RTX 3090 GPU
Hyperparameter Assignment
number of epochs 10
batch size 128
maximum learning rate 0.0005
learning rate optimizer Adam
learning rate scheduler None or Warmup linear
Weight decay 0.01
Warmup proportion 0.06
learning rate decay linear

Table 6: Hyperparameters for continual pre-training of
BPIT model.

For training SBERT and ColBERT models, we
follow training recommendations implemented by
the authors. To ensure fair comparison across
models and languages, all the hyperparameters for
SBERT models are identical, and the same applies
to ColBERT models.

Computing Infrastructure 2 x NVIDIA RTX 3090 GPU
Hyperparameter Assignment
number of epochs 10
batch size 64
learning rate 2e-5
pooling mean

Table 7: Hyperparameters for training SBERT models.

Computing Infrastructure 2 x NVIDIA RTX 3090 GPU
Hyperparameter Assignment
number of epochs 1
batch size 32
learning rate le-5

Table 8: Hyperparameters for training ColBERT mod-
els.

Computing Infrastructure 2 x NVIDIA RTX 3090 GPU
Hyperparameter Assignment
number of epochs 1
batch size 32
learning rate 2e-5

Table 9: Hyperparameters for training Cross-encoders.
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