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Abstract

We present ArTST, a pre-trained Arabic text
and speech transformer for supporting open-
source speech technologies for the Arabic lan-
guage. The model architecture follows the
unified-modal framework, SpeechT5, that was
recently released for English, and is focused on
Modern Standard Arabic (MSA), with plans
to extend the model for dialectal and code-
switched Arabic in future editions. We pre-
trained the model from scratch on MSA speech
and text data, and fine-tuned it for the following
tasks: Automatic Speech Recognition (ASR),
Text-To-Speech synthesis (TTS), and spoken di-
alect identification. In our experiments compar-
ing ArTST with SpeechTS5, as well as with pre-
viously reported results in these tasks, ArTST
performs on a par with or exceeding the current
state-of-the-art in all three tasks. Moreover, we
find that our pre-training is conducive for gen-
eralization, which is particularly evident in the
low-resource TTS task. The pre-trained model
as well as the fine-tuned ASR and TTS models
are released for research use.

1 Introduction

Large pre-trained transformer models are currently
at the forefront of speech and text technologies,
with applications in various text and speech recog-
nition and generation tasks (Devlin et al., 2019;
Raffel et al., 2020; Hsu et al., 2021; Baevski et al.,
2020). These models share several aspects: (1) they
are based on the transformer architecture (Vaswani
et al., 2017), which enables efficient training of
larger models and incorporating wider contexts, (2)
they are scaled in terms of model size, which has
been shown to correlate with performance (Alab-
dulmohsin et al., 2022; Hestness et al., 2017), and
(3) they generally use a self-supervised training ob-
jectives, such as next token prediction (Brown et al.,
2020), masked prediction (Devlin et al., 2019; Hsu
et al., 2021), and contrastive loss (Baevski et al.,
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2020), which enable the utilization of large unla-
beled datasets for multiple potential downstream
tasks. Pre-trained self-supervised models like
Wav2Vec2.0 (Baevski et al., 2020), and its multi-
lingual variant (Babu et al., 2022), have mostly
replaced traditional acoustic features like MFCCs
and filter banks in the speech domain. These pre-
trained models implicitly learn robust and gener-
alizable acoustic representations that consistently
improve performance in various supervised down-
stream tasks with acoustic inputs like Automatic
Speech Recognition (ASR). This is achieved by
simply adding a prediction layer and fine-tuning
the model using a suitable loss function, such as
CTC loss (Graves, 2012).

This pre-train-then-finetune framework is flex-
ible for a variety of applications, but most pre-
trained models are uni-modal and therefore are
limited to tasks that share the same input modality.
For instance, acoustic models like Wav2Vec2.0 are
not typically used in text-to-speech synthesis appli-
cations, where the input is text, and the output is
typically in the form of mel spectrograms. For this
reason, self-supervised pre-training has not been as
widely adopted in speech synthesis research. One
exception to this trend is the SpeechT5 model (Ao
et al., 2022), which accepts both text and speech
as input and output using modal-specific networks
in addition to the core encoder-decoder network.
The model is first pre-trained using self-supervised
objectives in both text and speech modalities, and
then fine-tuned on a variety of supervised tasks,
including speech transcription, speech synthesis,
and speech classification. SpeechT5 has been
trained only on English using more than 900 hours
of speech and 400 million sentences of text data.
While the model can technically be fine-tuned for
other languages, our preliminary evaluations of
Arabic fine-tuning show poor performance; the pre-
training seems to have biased the model severely
for recognizing and generating English speech.
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In this paper, we introduce Arabic Text and
Speech Transformer, ArTST', a project aiming
to push the boundaries for Arabic open-source
speech technology by providing various pre-trained
speech and text transformers. The Arabic language
exhibits significant dialectal variation and code-
switching, which introduce a layer of complexity
for speech recognition and generation tasks. We
believe this can be best addressed via methodi-
cal and focused development of self-supervised
models that target this linguistic landscape rather
than multi-lingual models that may compromise
mono-lingual performance for multi-lingual cov-
erage. The first release, as described in this paper,
is a direct adaptation of the SpeechT5 model, but
pre-trained from scratch using Modern Standard
Arabic data and evaluated on various downstream
tasks. Future versions will include dialectal Arabic,
as well as code-switched speech and text, by ex-
ploring the best architectural modifications for im-
proving coverage without sacrificing performance
for individual variants.

We demonstrate the performance of ArTST in
the following tasks: Automatic Speech Recogni-
tion (ASR), Text-To-Speech synthesis (TTS), and
spoken Dialect Identification (DID). The fine-tuned
models on each task achieved performance on a par
with or exceeding previously reported results on
our test sets, establishing a new state-of-the-art for
open-source models. For ASR, the model addition-
ally outperforms the large pre-trained ASR models,
Whisper (Radford et al., 2023), and MMS (Pratap
et al., 2023), which further demonstrates the ad-
vantage of focusing only on Arabic. Moreover, we
report some interesting findings in TTS fine-tuning,
as the model learns to synthesize speech without
explicit text diacritization in a way that generalizes
to unseen domains, which we believe is a result
of the unsupervised pre-training on large Arabic
speech data. Our main contributions are:

1. Releasing a pre-trained cross-modal trans-
former model capable of handling diverse
speech and text tasks, in addition to fine-tuned
ASR and TTS models for MSA?,

Demonstrating state-of-the-art performance
in ASR, TTS, and DID, using standard open-
domain datasets for MSA.

"Pronounced ‘artist’.
2https ://github.com/mbzuai-nlp/ArTST
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3. Demonstrating unique generalization capabili-
ties, such as speech synthesis without explicit
diacritization.

2 Related Works

To the best of our knowledge, there is no model
pre-trained on Arabic that can perform multiple
downstream speech-related tasks with different in-
put modalities. In the text domain, AraT5 (El-
madany et al., 2022) was implemented as an Arabic
version of the Text-To-Text Transfer Transformer
(T5) model (Raffel et al., 2020), which uses trans-
fer learning with a unified Transformer framework
for several downstream text generation tasks. In
the speech domain, multi-lingual acoustic models,
such as XLSR-R (Babu et al., 2022), Whisper (Rad-
ford et al., 2023), or MMS (Pratap et al., 2023),
include Arabic as one of many languages in super-
vised or self-supervised pre-training, but they can
only handle speech as input modality, and text as
output modality. ArTST is directly inspired from
the SpeechT5 model (Ao et al., 2022), which is a
pre-trained encoder-decoder transformer with addi-
tional modal-specific networks to handle both text
and speech modalities in the input and output. The
model was shown to be versatile as it can achieve
superior performance when fine-tuned for ASR,
TTS, and other speech related tasks. However, the
model was pre-trained only on English data, and
as a result, the internal representations seem to be
heavily biased towards English speech. By fine-
tuning the model for Arabic ASR and TTS, our
experiments indicate that it may be difficult to over-
come this bias without multi-lingual pre-training.
Several studies attempted to measure the effect
multi-lingual pre-training in acoustic models, with
mixed results (Yadav and Sitaram, 2022). Heigold
et al. (2013) compared models pre-trained on En-
glish only with models trained on multi-lingual
data using conventional HMM-DNN models, and
showed empirically that multilingual pre-training
is better than fine-tuning an English model on a
different target language. Huang et al. (2013) fur-
ther shows that multilingual pre-trained features
can generalize to unseen languages. Tong et al.
(2017) shows that multi-lingual ASR training is
worse than monolingual training in the target lan-
guage, but multilingual pre-training followed by
target language fine-tuning is better than monolin-
gual training. Language similarity likely plays a
role in generalization: Ram and Aldarmaki (2022)


https://github.com/mbzuai-nlp/ArTST

showed that acoustic word embeddings obtained
using Wav2Vec 2.0 features that are pre-trained
on English generalize to languages like French
and German, but don’t generalize as well for Ara-
bic. Furthermore, several studies show that multi-
lingual models generalize better using language
vectors or language adapters (Kannan et al., 2019;
Toshniwal et al., 2018; Shetty and NJ, 2020; Rad-
ford et al., 2023; Pratap et al., 2023), which indi-
cates that some language-specificity in the model
is preferable to crude multi-lingual training. Some
empirical evidence also suggests that performance
of some high-resource languages can potentially de-
grade in multi-lingual settings compared to monol-
lingual pre-training (Watanabe et al., 2017).

The above mentioned studies all focus on acous-
tic models where speech is the input rather than the
output. Text-to-speech synthesis models, on the
other hand, are generally more fragile and highly
depend on the quality and size of training data.
Generally speaking, TTS models require consistent
and clean recordings in order to synthesize natu-
ral and intelligible speech (Kulkarni et al., 2023).
Multi-lingual TTS synthesis is an emerging topic
of research, but these attempts are rare compared to
multi-lingual ASR and cover only a small subset of
languages due to shortage of resources suitable for
speech synthesis (Li et al., 2021; Cho et al., 2022).

3 ArTST

ArTST is a text and speech transformer optimized
for the Arabic language. Based on observations
from previous studies on multilingual and monolin-
gual ASR, TTS, and self-supervised pre-training,
we believe that training a model from scratch with
the Arabic language in mind would improve the
quality of the resulting models. Our strategy is
to start with a monolingual setting, and explore
the optimal settings for Modern Standard Arabic
(MSA) speech processing. In future iterations of
the model, we will explore how best to expand
it to handle various dialects as well as other lan-
guages that are often mixed with Arabic (i.e. En-
glish and French). We believe that an incremental
approach of this kind is more likely to lead to opti-
mal performance. Here, we describe the first stage
of this project, which focuses only on MSA. ArTST
is adapted from the transformer-based SpeechT5
model, which we briefly describe in this section.
For more details, please refer to Ao et al. (2022).
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Figure 1: Model architecture.

3.1 Model Architecture

Figure 1 shows the overall architecture of the
model. It consists of a main encoder-decoder
transformer network, similar to the architecture
employed in T5 (Raffel et al., 2020). This net-
work is shared for both speech and text modali-
ties. To account for the differences in pre- and
post-processing, additional modal-specific pre- and
post-nets are used to handle the text and speech
features.

3.2 Pre-training

The model is pre-trained using various self-
supervised objectives to account for both speech
and text modalities in the input and output:

Speech bidirectional masked prediction: Fol-
lowing the framework of HUBERT (Hsu et al.,
2021), discrete frame-level targets are employed
for masked prediction, where random spans of 10
steps from the output of the speech encoder pre-net
are masked across each utterance, and the model is
trained to predict the correct discrete labels via
cross-entropy. The discrete labels are obtained
from a pre-trained HuBERT model (Hsu et al.,
2021), where the hidden representations are clus-
tered into 500 classes using the k-means algorithm.
This training objectives can be a stepping stone
towards learning speech to text transformation as
the model is trained to map continuous speech fea-
tures into discrete units. This objective updates the
speech encoder pre-net as well as the main encoder.



Speech de-noising auto-encoder: This objective
trains the speech decoder pre-net, decoder, and
speech decoder post-net to reconstruct speech
features in the form of 80-dimensional log mel
filterbanks from the randomly masked utterances
as described above.

Text de-noising auto-encoder: Using unlabeled
text, the text encoder pre-net, encoder-decoder
network, and text decoder pre- and post-nets, are
all optimized using a denoising reconstruction loss.

Cross-modal loss: Vector-quantized embeddings
are used to implicitly align speech and text repre-
sentations through a shared code-book. During
training, 10% of the contextual embeddings
are replaced with the corresponding quantized
embeddings, and the cross-attention in the main
encoder-decoder transformer is calculated based
on this mixed representation. A diversity loss is
used to encourage sharing more codes between the
text and speech inputs.

In ArTST, each of the encoder and decoder com-
ponents are similar in size and configuration to
SpeechT5 (Ao et al., 2022). Speech pre/post-nets
and text pre/post-nets all have the same structure
as in the SpeechT5 model, with the only differ-
ence being in the text tokenizer which we initialize
using the characters in our training sets. We em-
ployed the official HUBERT model? to generate the
discrete labels for the bidirectional masked predic-
tion objective since a pre-trained Arabic HUBERT
model was not available for our perusal. In future
work, we will explore the potential of improving
this component using a model pre-trained on Ara-
bic speech.

3.3 Fine-Tuning

Task-specific fine-tuning is carried out by employ-
ing the encoder-decoder backbone in addition to
the relevant pre- and post-nets. For example, for
ASR, the speech encoder pre-net, and text decoder
pre- and post-nets are used to handle speech input
and text output. All relevant model parameters are
updated during fine-tuning.

Shttps://github.com/facebookresearch/fairseq/
blob/main/examples/hubert
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4 Training & Fine-Tuning Settings

4.1 Dataset

For training our MSA ArTST model, we utilize
the Multi-Genre Broadcast (MGB2) dataset (Ali
et al., 2016), which is collected from Aljazeera
TV recordings of Arabic speech, mostly in MSA.
This dataset is often used for benchmarking ASR
models for MSA, which enables fair comparison
with previous research. The original dataset con-
tains 1.4K unique speakers with ~1.2K hours of
transcribed speech data. We excluded overlapping
speech utterances from the set, which are tagged in
the corpus. Furthermore, to avoid high amount of
padding and maintain a balance between compu-
tational efficiency and effectiveness, we excluded
speech samples that exceeded a duration of 40 sec-
onds. The resulting dataset consists of roughtly
1K hours of speech. We also randomly extracted a
200 hr subset of MGB?2 for the purpose of perform-
ing preliminary experiments to evaluate SpeechTS
fine-tuning on ASR. Moreover, we extracted a ran-
dom subset from the QASR corpus (Mubarak et al.,
2021), a multi-dialectal broadcast speech corpus
from Aljazeera that includes MSA speech as well
as dialectal Arabic of different varieties. As we
are focusing mainly on MSA in this work, we
do not utilize this dataset for pre-training, but in-
stead utilize it to test the generalization potential
of the model. For TTS fine-tuning, we utilize open-
source Arabic datasets curated for speech synthesis,
namely: The Arabic Speech Corpus (ASC) (Halabi
et al., 2016) and Classical Arabic Text-to-Speech
Corpus (CIArTTS) (Kulkarni et al., 2023)*. We
also utilize these two datasets for evaluating the
ASR models. For all datasets, we use the prede-
fined test/dev splits if applicable. We summarize
all dataset statistics in Table 1.

4.2 Text & Speech Pre-Processing

All punctuation marks were removed with the ex-
ception of @ and %. Additionally, all diacritics were
removed, and Indo-Arabic numerals were replaced
with Arabic numerals to ensure uniformity. The
vocabulary is comprised of individual Arabic al-
phabets, numerals, and select English characters
from the training dataset, in addition to some spe-
cial characters like @ and %. For speech data, we
standardized the sampling rate to be 16 kHz across
all collected datasets.

“www.clartts.com
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Split # of Hours # of Words
MGB2-1K (train) 1005.39 6.96M
MGB2  \GB2-200 (train) 201.32 1.39M
test 9.57 64.38K
QASR QASR-267 (train) 267.91 2.00M
test 9.57 64.38K
ASC train 3.81 20.58K
test 0.28 1.40K
CIAFTTS train 11.16 76.27K
test 0.24 1.69K

Table 1: Datasets used in our experiments.

4.3 ArTST Pre-training

We pre-trained ArTST using the MGB2-1K subset.
Since the pre-training is unsupervised, aligned text
and speech data are not required at this stage. For
text pre-training, we employed the cleaned tran-
scriptions from the MGB2 dataset as unlabeled
data. We pre-trained ArTST using Adam optimizer
with a learning rate of 2 x 10~%, spanning 200K
updates, and a warm-up phase of 64K updates. The
maximum speech token length was set at 250K
(equivalent to 15.625 seconds), and the text tokens
were capped at 600 characters. The pre-training
was run on four A100 GPUs for 14 days.

5 Results & Evaluation
5.1 SpeechT5 Finetuning vs. ArTST

We conducted preliminary assessments of the
SpeechT5 model from Ao et al. (2022), which was
pre-trained and fine-tuned on English, to assess
the ability of cross-lingual transfer by directly fine-
tuning the model for Arabic ASR using various
Arabic speech datasets. We experimented with
both the original Arabic script as input, as well as
Buckwalter transliteration (Habash et al., 2007) in-
stead of Arabic script to account for the fact that the
model was pre-trained only on English characters.

For Arabic script, we augmented the original
character tokenizer to incorporate symbols that cor-
respond to Arabic letters and special symbols con-
tained in the fine-tuning set. The original tokenizer
contained approximately 80 symbols; after incor-
porating the Arabic letters and special symbols,
the extended tokenizer vocabulary increased to 130
symbols. Furthermore, we modified the input em-
beddings structure to align with the dimensionality
of the updated tokenizer. The embedding layer re-
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Train set / Testset Enc WER| CER|
Ar  78.07% 23.54%
SpeechT5 ASC/ASC
Bw  76.92% 22.02%
ArTST ASC/ASC Ar 458% 9.88%
Ar  3231% 6.88%
SpeechT5 CIArTTS / CIATTTS
Bw  2432% 5.12%
ArTST CIArTTS / CIATTTS  Ar 12.51%  3.60%
Ar  69.74% 26.47%
SpeechT5 MGB2-200/ MGB2
Bw  45.09% 17.55%
ArTST MGB2-200/ MGB2  Ar 16.56% 7.68%
Ar  72770% 26.27%
SpeechT5 QASR-267 / MGB2
Bw  53.19% 19.01%
ArTST QASR-267/MGB2 Ar 17.27% 9.99%
Table 2: Fine-tuned ASR resutls using English

SpeechT5 vs. ArTST in terms of Word Error Rate
(WER) and Character Error Rate (CER). Character En-
coding (Enc): Arabic (Ar), BuckWalter (Bw).

tains the weights from the earlier-trained SpeechT5
model for its initial 80 components. Meanwhile,
additional elements were initialized randomly. Sim-
ilarly, for Buckwalter transcriptions, we modified
the tokenizer accordingly. Since the transliteration
scheme contains mostly English alphabets in addi-
tion to some special ASCII characters, the extended
vocabulary in this setting was increased to 90 char-
acters. We start with the pre-trained English ASR
from SpeechT5> and fine-tune it on the specified
datasets until training and validation loss diverge.

Table 2 shows the results in terms of Word Error
Rate (WER) and Character Error Rate (CER) in all
different settings. The ArTST ASR model was fine-
tuned using our pre-trained ArTST using the same
tokenizer as the pre-trained model, which contains
Arabic script.

Effect of Input Encoding

We see from these experiments that SpeechT5
fine-tuning is improved using Buckwalter rather
than Arabic script. Since the transcription scheme
mostly results in mapping Arabic letters to similar-
sounding English letters, the learning objective
does not diverge greatly from the original En-
glish model, which results in improved perfor-
mance compared to using Arabic script. In our
analysis, approximately 85% of Arabic characters
were replaced with corresponding English charac-
ters, facilitating the continuation of fine-tuning for
SpeechT5’s ASR, even with limited data.

5huggingface .co/microsoft/speecht5_asr
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Model WER| CER|
From (Hussein et al., 2022):

HMM-DNN 15.80% —
E2E, CTC + LM 16.90% —
E2E, Attention + LM 13.40% —
E2E, CTC, Attention + LM  12.50% —
ArTST 13.42% 6.43%
ArTST + LM 12.78% 6.33%

Table 3: Comparing ArTST performance against models
reported in (Hussein et al., 2022), which include best
performing model previously reports on MGB2.

Effect of Pre-Training

We also observe large reductions in error rate us-
ing the same datasets for fine-tuning ArTST. The
difference in performance is evident in all cases,
but it’s particularly large for the ASC and MGB2-
200 subsets. SpeechT5 fine-tuned with Buckwalter
transcriptions on the CIArTTS corpus results in
relatively good performance of 24% WER com-
pared to 12.78% WER for ArTST. For the other
two datasets, the difference is roughly 30% abso-
lute WER in favor of ArTST. This could potentially
be resulting from two factors: CIArTTS is a con-
sistent and clean dataset that was curated for TTS,
compared to MGB2 which is extracted from TV
shows. ASC is also curated for TTS, and there-
fore consists of clean and consistent recordings,
but dataset size could have played a role in the high
WER for ASC, which is much smaller than the
CIACTTS dataset (~3.8 hrs compared to ~11.16
hrs). While MGB2 contains orders of magnitude
more data than CIArTTS, the error rates are higher
than CIArTTS for all models, including ArTST,
which is further evidence that dataset quality is
most likely playing a role in these results.

Finally, we also used a subset of QASR for
fine-tuning ASR models as a counterpoint for the
MGB?2 datasets because the latter was used in pre-
training and could have biased the results in favor
of ArTST. However, even in this set, we clearly
see that ArTST performs much better than the fine-
tuned SpeechT5, with error rates on a par with the
ones observed for MGB2.

5.2 Benchmarking ArTST for MSA

We fine-tuned ArTST on our MGB2-1K dataset,
and compared the performance against compara-
ble models trained and tested on MGB2. Since
2017, the lowest WER on MGB2 test set was re-
ported in Smit et al. (2017) as 13.2%. Recently,
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Hussein et al. (2022) explored the potential of an
end-to-end transformer model compared to conven-
tional ASR systems, and achieved state-of-the-art
performance in the MGB2 test set. The model
was trained on the MGB?2 dataset, so it’s compa-
rable to our model in that regard. Furthermore,
they utilize a language model for rescoring using
the MGB?2 transcriptions as well as the additional
130M words of text data provided in the MGB2
challenge. Our model consists of the speech pre-
net, encoder, and text pre/post-nets fine-tuned with
CTC loss. We also experiment with LM shallow
fusion using a transformer-based auto-regressive
character language model trained on the same sets.
We used the default LM setting from the Fairseq li-
brary®, and we trained the model for 300K updates
using the Adam optimizer, with 4K warm-up steps,
a learning rate of 0.0005, and 0.1 dropout rate.

The results are shown in Table 3. Our model
without LM fusion achieves 13.42% WER, which
is on a par with the transformer-based end-to-end
model with attention and LM rescoring reported
in Hussein et al. (2022). Furthermore, ArTST out-
performs the architecture most similar to it (E2E,
CTC + LM) by more than 3% absolute WER, with-
out incorporating a language model for inference.
The error rates are further reduced to 12.78% by
incorporating LM fusion, which is comparable to
the best model reported in Hussein et al. (2022);
the latter incorporates both Attention and CTC, as
well as LM rescoring with beam size of 20.

5.3 Comparing ArTST With Multilingual
Models

Recently, a few large multi-lingual pre-trained mod-
els have been released for ASR in multiple lan-
guages, such as Whisper (Radford et al., 2023),
and MMS (Pratap et al., 2023). Both models include
Arabic as one of many languages included in their
supervised pre-training. Training data, model archi-
tectures, training objectives, and model sizes vary
considerably between these models, so they are not
directly comparable, However, the fact that these
models are widely circulated and used necessitates
some kind of performance comparison with our
model.

Table 4 shows the WER/CER of these models in
Arabic ASR using our test sets. We also report the
number of parameters for each model.

6gi thub.com/facebookresearch/fairseq
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Test Set \ ArTST | Whisper,cgium | Whisperigrge | MMS,cgium | MMSjgge

| WER | CER | WER | CER | WER | CER | WER | CER | WER | CER
ASC 45.70% | 9.73% | 48.46% | 10.74% | 47.73% | 10.83% | 54.05% | 11.71% | 57.37% | 11.13%
CIArTTS | 13.52% | 3.90% | 2049% | 6.24% | 19.25% | 6.23% | 36.18% | 9.17% | 31.13% | 6.58%
MGB2 13.42% | 6.43% | 28.69% | 11.72% | 26.71% | 10.78% | 45.58% | 14.86% | 40.33% | 13.06%
QASR(1hr) | 26.08% | 16.65% | 36.54% | 17.45% | 32.32% | 15.56% | 52.79 % | 20.86 % | 47.81 % | 18.80%
# params | 155 M \ 769 M \ 1550 M \ 300M \ 965 M

Table 4: ArTST compared with large multi-lingual models: Whisper & MMS on our test sets. ArTST was fine-tuned
for ASR using MGB2-1k train set. Results are shown without LM fusion.

While Whisper performs relatively well com-
pared to MMS, ArTST outperforms both models,
including the large variant of each model, in all test
sets, while having a smaller number of parameters.
For instance, without LM fusion, ArTST achieved
13.5% WER on MGB?2 test set, while the large
variants of Whisper and MMS achieved 26.7% and
40.3% WER, respectively.

5.4 Qualitative Analysis of ASR Output

In Table 5, we show some examples of ASR outputs
from ArTST compared with the reference transcrip-
tions. These examples show the drawback of the
raw WER/CER metrics as they don’t account for
potential variations in spelling. In particular, we
observed several cases where English words are
transliterated or misspelled. Furthermore, numeric
expressions, like 80%, are in some cases written
in numeric format, and others spelled out in words.
Furthermore, the large error rates reported for ASC
are in a large part caused by intentional misspelling
in the reference ASC transcriptions, which are in-
tended to facilitate learning of TTS synthesis in
a low-resource setting. In the shown examples,
ArTST output is in fact the correct spelling. We
also show a couple of examples of ArTST, which
is fine-tuned on MGB2, generalizing to dialectal
Arabic utterances from QASR.

5.5 ArTST for TTS Synthesis

We experimented with TTS fine-tuning, compar-
ing ArTST pre-trained model with SpeechT5 TTS’
as a starting point. We fine-tuned each model us-
ing the CIArTTS and the ASC datasets, which
are two open-source datasets curated for Arabic
TTS. For the SpeechT5 model, we used Buckwal-
ter transcriptions for the text, as our experiments
in ASR demonstrated it to be more suitable for
this model. For both models, we fine-tuned the

7huggingface .co/microsoft/speecht5_tts
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Table 5: Sample ArTST ASR transcriptions (bottom)
vs. reference transcriptions (top). Highlighting differ-
ences or errors.

TTS model without using input diacritics, so no
automatic diacritizer is needed for inference. This
feature diverges from previous works in Arabic
TTS, where efforts are taken to include diacritiza-
tion in the input text. However, since this would
necessitate the use of text-based diacritizers for in-
ference, and as shown in Aldarmaki and Ghannam
(2023), text-based diacritizers have high error rates
when applied to the speech domain. We opted to
train undiacritized TTS instead, and let the model
implicitly learn the correct pronunciation.

The fine-tuning was carried out using the text
encoder pre-net, encoder/decoder backbone, and
speech decoder pre/post-nets. All model param-
eters were updated during fine-tuning. We used
the pre-trained HiFi-GAN vocoder® to convert the
output of each model to waveform.

8huggingface .co/microsoft/speecht5_hifigan
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Fine-tuning Data MOS 1

ASC 4.31
Ground Truth

CIAITTS 4.64

ASC 1.57
English SpeechT5

CIAITTS 1.88

ASC 293
ArTST

CIAITTS 4.11

ASC 3.44
ArTST*

CIAITTS 4.31

Table 6: Subjective listening tests in terms of Mean
Openion Score (MOS) for models fine-tuned using En-
glish SpeechT5 vs. ArTST, vs. ArTST* (variant of TTS
model pre-trained on MGB-2 data).

TTS Pre-Training

Since both ASC and CIArTTS are relatively small
datasets, we also experimented with TTS pre-
training using ASR data from MGB2. Generally
speaking, ASR data are not suitable for TTS train-
ing due to the high variability is speaking style and
presence of noise. On the other hand, ASR data are
available in abundance, and can potentially help
improve the model’s generalization potential. We
start by fine-tuning the TTS model on MGB2-1K
train set, and then fine-tune it again on the TTS
train sets. We refer to this variant as ArTST*.

TTS Evaluation

We conducted subjective evaluation through listen-
ing tests to assess the naturalness and intelligibility
of the synthesized speech from differnet models in
a single score from 1 to 5 (higher is better). We
selected random utterances from each test set, and
synthesized speech based on the corresponding text
transcription using the variants speechT5, ArTST
and ArTST*. Fifteen native Arabic speakers partic-
ipated in the evaluation. The Mean Openion Score
(MOS) for each model is shown in Table 6. The
audio samples used in the evaluation are available
here °. As seen from the table, and through the
provided samples, using the pre-trained SpeechT5
model as a basis for fine-tuning leads to very poor
speech synthesis. On the other hand, using the pre-
trained ArTST as a basis for fine-tuning results in
high-quality synthesis. Furthermore, pre-training
the TTS model using MGB2 ASR data further im-
proves the quality of the transcriptions. Moreover,
we observed through listening tests that the model
generalizes to unseen sentences from MSA, where

9https ://artstts.wixsite.com/artsttts
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Model Dev Test
E2E (softmax) (Shon et al., 2020) 83.00% 82.00%
HuBERT-17 (Sullivan et al., 2023) 92.23%  92.12%
XLS-R-300M-17 (Sullivan et al., 2023)  90.77%  90.20%
ArTST 95.08% 94.18%
MGB-5 Challenge (Ali et al., 2019) Top 2 Systems:

UKent 93.50% 93.10%
DKU [Single best system] 94.70%  93.80%
DKU [Fusion of 4 systems] 97.40% 94.90%

Table 7: Accuracy results for dialect identification on
the ADI17 set.

we synthesized speech from transcriptions obtained
from QASR'C. In particular, the model learns to
produce the correct pronunciation in spite of not
being provided with any diacritics.

5.6 Dialect Identification

To fine-tune ArTST for speech classification, we re-
cast the multi-class classification task as a speech
to text generation task. The decoder is then trained
to predict the dialect class at the first time step
(which is equivalent to a regular softmax classi-
fier). We fine-tuned all parameters using the Ara-
bic Dialect Identification for 17 countries (ADI17)
dataset (Shon et al., 2020). We compared our
model to previously reported results in Table 7. As
seen from these results, ArTST outperforms previ-
ous models, including the best single system sub-
mitted to the MGB-5 challenge (Al et al., 2016),
and is not far behind the top model which fuses
4 different system,; it is worth noting that the lat-
ter also incorporates data augmentation to further
improve performance, which we do not explore in
this work.

6 Conclusions & Future Work

We demonstrated the potential of ArTST in speech
recognition, synthesis, and classification, where we
achieved results on a par with or outperforming
previously reported results with relatively straight-
forward fine-tuning. What we have demonstrated
in this paper is only a subset of potential applica-
tions of this framework. As the model can handle
both text and speech modalities, it can potentially
be applied for text-to-text and speech-to-speech
applications, in addition to text classification and
generation tasks. We will explore these avenues
of application in future work. In this initial work,
we focused on MSA as the main variant of Arabic

10Samples are available in the same website.
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for pre-training. We explored the potential of the
model to generalize to dialectal Arabic using small
test sets that include dialectal Arabic, as well as
the dialect identification task. Future edition will
focus on expanding the coverage of the pre-trained
model to include various dialects, and potentially
code-switched speech, without sacrificing perfor-
mance on MSA. As demonstrated in this paper, our
model outperforms larger multi-lingual models like
Whisper and MMS, which we believe is a result of
focusing on the Arabic language as a basis of our
model from its inception. While multi-linguality
may be desirable for some applications, and could
be beneficial for low-resource languages, mono-
lingual models have a greater potential for high-
resource languages, and the Arabic language cur-
rently boasts large volumes of open-source datasets
that can be utilized to develop high-quality models
across various tasks.

7 Limitations

As this is a large on-going project comprising sev-
eral tasks and potential variations in pre-training,
there are several limitations that can be acknowl-
edged here. First, the model’s pre-training con-
sists of mainly MSA speech from a single dataset
(MGB2). While this dataset is large and compa-
rable to the pre-training conditions in SpeechT?5,
there are other datasets that could be incorporated
to potentially improve performance. Furthermore,
we did not focus on dialectal Arabic in this edi-
tion, and only alluded to potential generalization
to dialects through some experiments on ASR and
dialect identification. Given small amount of code-
switching in the MGB?2 set, the model does have
limited code-switching recognition, but it can be
improved by intentionally using code-switching
dataset for pre-training and fine-tuning. One more
limitation is the use of pre-trained HuBERT for
generating intermediate discrete labels in the pre-
training stage. While our model demonstrably
achieves excellent results in all tested tasks in spite
of that, we did not explore the possibility of op-
timizing HuBERT for Arabic, mainly due to the
additional computational load for training another
large model. Finally, we did not probe the internal
representations of the model to explore potential
architectural improvements. Further analysis of
these representations, and a thorough analysis of
the dialect identification model could shed light on
the properties of these representations.
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