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Abstract

This paper outlines a methodology aimed at com-
bating disinformation in Arabic social media, a
strategy that secured a first-place finish in tasks
2A and 2B at the ArAIEval shared task during
the ArabicNLP 2023 conference. Our team de-
veloped a hyperparameter-optimized pipeline cen-
tered around BERT-based models for the Arabic
language, enhanced by a soft-voting ensemble strat-
egy. Subsequent evaluation on the test dataset re-
veals that ensembles, although generally resilient,
do not always outperform individual models. The
primary contributions of this paper are its multi-
faceted strategy, which led to winning solutions for
both binary (2A) and multiclass (2B) disinforma-
tion classification tasks.

1 Introduction

The spread of disinformation across social media
platforms presents an omnipresent challenge that
transcends modalities, manifesting in text, audio,
and images (Shu et al., 2020). Within the sphere
of text, disinformation is not exclusive to one lan-
guage but spans many languages and dialects. Its
impact permeates several topics, including politics,
entertainment, sports, and finance. In our study,
we direct our efforts to detecting disinformation in
Arabic on Twitter as part of the Shared Task 2: Ara-
bic Deception Detection, at ArAIEval, ArabicNLP
2023 (Hasanain et al., 2023).

From a research standpoint, Arabic has been re-
ceiving an increasing amount of attention address-
ing several key problems (Farghaly and Shaalan,
2009). Investigations into disinformation in Arabic
can offer valuable insights into unique linguistic
and cultural aspects that influence the dissemina-
tion and impact of false information within Arabic-
speaking communities. In a social aspect, the
consequences of disinformation across all global

communities are profound. Specifically, Arabic is
spoken by hundreds of millions of people world-
wide and serves as a linguistic backbone for critical
geopolitical regions. While also not exclusive to
Arabic, disinformation can impact democratic pro-
cesses and public health (Wolfsfeld et al., 2013).
Research in this critical domain has real-world im-
plications that can influence policy decisions, gov-
ernance, and public well-being.

Arabic itself presents its own set of complexi-
ties; it is a rich language featuring intricate word
formations and variations (Alzanin et al., 2022).
This makes the language both highly derivational,
meaning words can be formed from root words
in various ways, and inflectional, indicating that
the form of words can change to convey different
meanings. These linguistic traits add an extra layer
of difficulty to the already challenging task of dis-
information detection.

Shared task 2 comprises two separate sub-tasks.
Task 2A is a binary classification challenge requir-
ing us to categorize whether a given tweet is disin-
formative. Task 2B, on the other hand, is a more
nuanced multiclass classification task, where the
objective is to identify fine-grained disinformation
classes such as hate speech, offensive content, ru-
mors, or spam (Mubarak et al., 2023b). With this
task, there are several open problems due to phe-
nomena including code-switching (Bentahila and
Davies, 1983), short texts, and lack of grammatical
structure in tweets. These issues lead to the dete-
rioration of the effectiveness of conventional ana-
lytical tools. Code-switching refers to the practice
of switching between languages within a conversa-
tion, or text. Tweets tend to mirror the linguistic
styles and variations spoken by individuals hailing
from a particular region. For example, Moroccan
tweets contain Moroccan Darija mixed with French,
English, or Spanish. This phenomenon can occur
for various reasons, including cultural exchange, or
historical factors such as colonization.
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In addressing disinformation detection in Ara-
bic, our multi-faceted strategy begins with spe-
cialized preprocessing, including handling code-
switching and incorporating tweet elements like
hashtags and URLs, which previous literature of-
ten neglects (Bennessir et al., 2022). We then uti-
lize large language models, specifically AraBERT
(Antoun et al., 2020), and experiment with a soft-
voting ensemble to improve performance. While
effective, these large models are computationally
expensive; we seek to mitigate this through opti-
mization pipelines, which in turn add their own
computational overhead.

2 Dataset and Tasks

In the ArAIEval shared task at ArabicNLP 2023,
participants are presented with two main tasks:
task 1 focuses on Persuasion Technique Detec-
tion, while task 2 aims at Disinformation Detec-
tion. Each of these primary tasks are further di-
vided into two sub-tasks. Our research specifically
concentrates on task 2, which consists of sub-task
2A and sub-task 2B. In sub-task 2A, the goal is
to classify tweets as either disinformative or not,
a binary classification problem. For sub-task 2B,
we must identify specific types of disinformation
within a tweet, which involves a multiclass classifi-
cation framework. The fine-grained labels that we
consider include hate speech, offensive language,
rumors, and spam (Hasanain et al., 2023)(Mubarak
et al., 2023a). Tables 1 and 2 represent the class dis-
tributions and total size of the training, validation,
and testing sets, for task 2A and 2B, respectively.

No Disinformation Disinformation Total
Training 11491 2656 14147

Dev 1718 397 2115
Test 2853 876 3729

Table 1: Class Distribution for Task 2A

Hate-Speech Offensive Rumor Spam Total
Training 1512 500 191 453 2656

Dev 226 75 28 68 397
Test 442 160 33 241 876

Table 2: Class Distribution for Task 2B

3 System

For tasks 2A and 2B, our approach adopts a spe-
cialized methodology using comprehensive prepro-
cessing which deals with code-switching and emoji

conversion. After which an intensive search for
optimal large language models and hyperparame-
ters is performed. Our decisions of which mod-
els to utilize were based on performance on the
validation set. The AraBERT-Covid19 model (An-
toun et al., 2020) surfaced as the best fit for task
2A. This model, an enhancement of the original
AraBERTv02, has been further refined through fine-
tuning on 1.5 million multi-dialect Arabic tweets.
These tweets, sourced from the extensive Arabic
Twitter dataset (Alqurashi et al., 2020), specifically
focused on Covid-19. Conversely, for task 2B,
we utilize AraBERTv02-Twitter, which was pre-
trained on approximately 60 million tweets span-
ning various Arabic dialects. Subsequently, we
employ a soft voting ensemble method, integrating
five AraBERTv02-Twitter models that have been
optimized. While each model maintains identical
hyperparameters and architecture, they differ solely
in terms of random initialization. For this process,
we utilized the TorchEnsemble library1. We op-
timize both AraBERTv02-Twitter and AraBERT-
Covid19 models leveraging the optimization frame-
work Optuna (Akiba et al., 2019). By the deadline
for task 2, only two optimized models were evalu-
ated: the AraBERT-Covid19 model for task 2A and
the AraBERTv02-Twitter ensemble for task 2B.

To ensure the best performance in regards to
our target metric, “micro f1”, we explored a vari-
ety of models. Our initial model candidate list in-
cluded the following: a) AraBERTv02-Twitter (An-
toun et al., 2020) b) Arabert-Covid19 (Alqurashi
et al., 2020) c) QCRI Arabic and Dialectal
BERT (QARiB) (Abdelali et al., 2021) d) MAR-
BERTV2 (Abdul-Mageed et al., 2021) e) and
CAMeLBERT-DA SA (Inoue et al., 2021). Post-
competition experimentation can be found in A.1.

3.1 Preprocessing

The Arab world has a rich and diverse history of lan-
guages, with many different dialects spoken across
different regions. We have analyzed the provided
data in both tasks using dialect identification, and
we have found that most tweets in the dataset origi-
nated from the Kingdom of Saudi Arabia (KSA),
Kuwait, and Egypt. We report these results in detail
in Appendix A.

1https://github.com/TorchEnsemble-Community/
Ensemble-Pytorch
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3.1.1 Code Switching
Arabic tweeters may use code-switching to express
themselves more effectively or to communicate
with a diverse audience. For example, users may
start a tweet in Arabic, switch to English in the
middle, and then finish it off in French. We now
describe the preprocessing techniques we applied
to the tweets to translate code-switched text to Ara-
bic. For each tweet, we automatically detect code-
switching fragments using “Lingua” 2 Python pack-
age, and we translate it to Arabic using Google’s
translation API.

3.1.2 Emoji Conversion
In tweets, emojis are typically used to convey emo-
tions or ideas. Mubarak et al. (2022) showed the
importance of emojis in the detection of Arabic
offensive language and hateful speech.

Instead of removing all emojis from tweets like
(Bennessir et al., 2022), we choose to convert them
to Arabic descriptive text since emojis might hold
meaning in the context of a short deceptive tweet
representing positive or negative sentiment. For
this we add Arabic language support to the “emoji”
3 Python package using normalized representations
from the latest release of Unicode Common Lo-
cale Data Repository (CLDR) 4 to avoid broken
Unicode. We create a dictionary of Arabic emoji
representation based on the emojiterra website.5

3.2 Hyperparameter Optimization

We use the Optuna framework (Akiba et al., 2019)
for hyperparameter optimization, primarily due to
its straightforward setup, versatility, and choices
of efficient sampling and pruning algorithms. For
tasks 2A and 2B, we opted for the Tree-Structured
Parzen Estimator (TPE) (Bergstra et al., 2011) as
our sampling method, as it offers superior effi-
ciency compared to traditional grid search tech-
niques. We began the optimization process with
multivariate and grouping settings, integrating a
Hyperband pruner (Li et al., 2018), stopping un-
promising trials early. This setup allowed each trial
to run for a duration ranging from two to twelve
epochs. The optimization process encompassed
100 trials aimed at maximizing the “micro-f1” met-
ric, the search space is detailed in Table 3, with

2https://github.com/pemistahl/lingua
3https://github.com/carpedm20/emoji/
4https://github.com/unicode-org/cldr/raw/

release-43/common/annotations/ar.xml
5https://emojiterra.com/copypaste/ar/

Parameter Value
Learning Rate 1e-05 - 5e-05
Batch Size 8, 16, 32, 64
Dropout 0.0 - 0.5
Max Length 32 - 128

Table 3: Optuna Search Space

the addition of the five candidate models outlined
in Section 3. Post-competition, we continued to
fine-tune individual models under the same con-
ditions, and these results, along with original task
hyperparameters, are located in tables 5, 6, 7, and
8 in Appendix A.1.

3.3 Voting Ensemble

Ensembling techniques, like hyperparameter op-
timization, come with computational expenses
and tuning complexities. The success of ensem-
ble methods hinges on several factors, including
the training process of the baseline models (Mo-
hammed and Kora, 2023). Our ensemble employs
a “soft voting” scheme, guided by the performance
of our top individual model identified through hy-
perparameter optimization. In this configuration,
we employ five AraBERTv02-Twitter models for
task 2A and five AraBERTv02-Covid19 models for
task 2B, each optimized according to the parame-
ters specified in Table 3. The ensemble is trained
for two epochs, which was found to be the point of
peak validation performance.

In the soft voting mechanism (Zhou, 2012), each
individual classifier, denoted as hi, generates a l-
dimensional vector (h1i (x)..., h

l
i(x))T for a given

instance x. Here hji (x) represents the estimated
posterior probability P (cj |x) and falls within the
range of [0, 1]. The final output for class cj is the
average of all individual outputs, represented as
follows:

Hj(x) =
1

T

T∑

i=1

hij(x)

3.4 Training Procedure

Our optimization and fine-tuning pipeline uses the
AdamW optimizer for effective parameter updates
and Cross Entropy as the loss function, given its
efficacy in classification problems. We use early
stopping with five epochs as a stopping criteria,
saving the model best last state. To expedite train-
ing without compromising model quality, we uti-
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Task Model Validation Test
Macro F1 Micro F1 Macro F1 Micro F1

Task 2A
AraBERT-Covid19 84.73% 91.06% 86.26% 90.48%
AraBERT-Covid19 Ensemble 84.31% 90.58% 85.84% 90.02%

Task 2B
AraBERTv02-Twitter 81.12% 84.89% 75.51% 84.36%
AraBERTv02-Twitter-Ensemble 82.19% 85.14% 75.41% 83.56%

Table 4: Micro F1 and Macro F1 scores are presented for each task, covering both validation and testing sets. The
highest values are highlighted in bold.

lize automatic mixed precision (AMP)6, reducing
both memory usage and training time. Notably,
we choose not to employ a learning rate sched-
uler, deviating from some traditional approaches.
As a safety measure, we also implement gradient
clipping with a maximum norm of 1.0 to ensure nu-
merical stability and avoid issues like the exploding
gradient problem.

4 Results and Discussion

The top two candidate models, identified through
hyperparameter optimization, were AraBERT-
Covid19 for task 2A and AraBERTv02-Twitter for
task 2B. These selections represented the only re-
sults submitted by the task deadline. Our results
presented in Table 4 reveal some compelling pat-
terns and anomalies. Specifically, task 2A favored
the single AraBERT-Covid19 model over its ensem-
ble counterpart. This approach led by a noticeable
margin of 0.48% macro f1 and 0.43% micro f1 with
the validation set.

Task 2B presents a more intricate challenge,
which utilizes AraBERTv02-Twitter as the pri-
mary model. While the AraBERTv02-twitter en-
semble performed better during the validation
phase, it was ultimately outperformed by the single
AraBERTv02-Twitter model in the test set by 0.1%
macro f1 and 0.8% micro f1. The drop in macro f1
scores from the validation to the test set in task 2B
suggests an issue with model generalization. This
might be attributed to the inherent complexity of
multiclass problems, which often require captur-
ing more nuanced relationships in the data. This
presents a challenging task compared to a binary
classification task like task 2A. Another challenge
for task 2B is the smaller dataset in comparison to
task 2A, which can be seen in Section 2, Table 2
and Table 1 respectively. With the unbalanced na-
ture of task 2 as a whole, the small dataset size,
and a more intricate class balancing issue, our ap-

6https://pytorch.org/docs/stable/amp.html

proach may have failed to learn minority classes,
overfitting to the majority classes.

It’s also important to highlight that we did not
fine-tune the ensemble’s hyperparameters, which
could have contributed to its less-than-optimal per-
formance against the single models. This supports
the idea that ensemble methods, while often robust,
require task-specific validation. In future work, op-
timization techniques specifically for ensembles
and not just the individual models may prove to be
beneficial, such as an varied amount of classifiers
in the ensemble or different weighting techniques.
The exploration of additional preprocessing tech-
niques to better handle code-switching could also
be a beneficial avenue.

Our results reiterate the importance of nuanced
model selection, especially given the challenges
posed by binary and multiclass classification tasks.
Our findings also pave the way for future work fo-
cused on improving computational efficiency and
generalization capabilities of disinformation detec-
tion models.

5 Conclusion

In this study, we tackled the nuanced problem
of disinformation detection in Arabic, a language
fraught with complexities like code-switching
and dialectal variations. We combined meticu-
lous preprocessing with hyperparameter-optimized
AraBERT models, effectively achieving first-place
performance in both binary and multiclass decep-
tion detection tasks at ArAIEval 2023. A notable
insight from our empirical analysis is that individ-
ual models occasionally outperform ensembles, in-
dicating the need for careful model selection. Our
results not only validate our comprehensive ap-
proach but also invite further research into opti-
mizing ensemble methods and addressing the chal-
lenges associated with code-switching and dialectal
variations in Arabic text. Future work should look
at refining these ensemble strategies and explor-
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ing additional preprocessing techniques, as we aim
to create universally effective tools for countering
disinformation.

Limitations

While our methodology is proven to work well for
the Arabic language and the disinformation detec-
tion task, it may not transfer as well to other lan-
guages or other domains. Further experimentation
on other languages and domains would be required
to evaluate the overall efficacy of our pipelines.
Lack of time with respect to the task did not allow
us to delve into ensemble optimization or explore
other possible ensembling techniques. The com-
putational complexity of hyperparameter optimiza-
tion with additional overhead from transformer ar-
chitectures and ensemble methods may lead to scal-
ing issues with larger datasets and other domains.

Ethics Statement

Our work complies with the ACL Ethics Policy.
We report details of the hyperparameters and archi-
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of other researchers.
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A Appendix

A.1 Experimental Results
In this section, we present our continued experi-
mentation. Instead of including all the models in
the search space, individual hyperparameter opti-
mizations were conducted on each model. This re-
sulted in hyperparameters that differed from those
in our original experiments. These results are dis-
played below in tables 5 and 6. Macro precision,
recall, F1-score, and accuracy are reported.

In task 2A, QARIB secures the second-highest
precision on the validation set and the highest
on the test set, suggesting its proficiency in ac-
curately identifying positive classes and minimiz-
ing false positives. AraBERTv02-Twitter leads re-
call for both validation and test sets, indicating
its strength in identifying actual positive instances.
Both QARIB and AraBERTv02-Twitter demon-
strate robust performance, leading in various met-
rics.

For task 2B, AraBERTv02-Twitter continues its
strong performance, showing the highest precision
on the test set. Meanwhile, AraBERT-Covid19
achieves the highest recall and F1-score across both
sets, indicating a balanced strength in precision and
recall, closely followed by MARBERTv2.

The results underscore that no single model con-
sistently outperforms across all metrics, suggesting
that model selection should consider the specific
performance metrics of interest. The varied leader-
ship in different metrics across both tasks implies
a lack of a universally superior model.

Ultimately, our findings revealed a distinct set
of optimal parameters divergent from those in our
original search space, which encompassed all can-
didate models. The specifics of these parameters
are detailed in tables 7 and 8. Interestingly, for task
2A, the AraBERT-Covid19 model exhibited supe-
rior performance with parameters derived from our
initial, more generalized search space, as opposed
to those obtained from a model-specific search.
In contrast, for task 2B, the AraBERTv02-Twitter
model demonstrated enhanced performance when
employing parameters from a search space tailored
for that specific model.

A.2 Dialect Language Identification

For Arabic dialect language detection, we used the
“bert-base-arabic” model (Inoue et al., 2021) pro-
vided by CAMel (Computational Approaches to
Modeling Language) Laboratory on the Hugging-
Face Hub 7 trained on MADAR (Bouamor et al.,
2018) Twitter dataset which contains Arabic dialect
tweets originating from 25 regions. We show in
Figure 1 and Figure 2 the distribution of dialects
in the Training and Development Sets for tasks 2A
and 2B.

The top three dialects used in the provided data
are from Saudi Arabia, Kuwait and Egypt. While

7https://huggingface.co/CAMeL-Lab/
bert-base-arabic-camelbert-msa-did-madar-twitter5
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Model
Validation Test

Prec. Recall F1 Acc. Prec. Recall F1 Acc.
AraBERT-Covid19 85.73% 83.31% 84.44% 90.83% 86.94% 84.10% 85.39% 89.89%

AraBERTv02-Twitter 83.72% 85.32% 84.48% 90.31% 86.99% 86.96% 86.98% 90.64%
QARIB 85.01% 82.79% 83.83% 90.45% 87.81% 84.77% 86.14% 90.43%

MARBERTv2 86.14% 81.52% 83.54% 90.59% 86.68% 82.66% 84.40% 89.38%
CAMeLBERT-DA SA 84.63% 81.37% 82.85% 90.02% 86.48% 83.51% 84.85% 89.54%

Table 5: Task 2A hyperparameter optimized models post-hoc comparison of macro validation and test metrics.
Highest values are in bold.

Model
Validation Test

Prec. Recall F1 Acc. Prec. Recall F1 Acc.
AraBERT-Covid19 83.15% 78.91% 80.79% 84.13% 73.36% 74.29% 73.55% 81.85%

AraBERTv02-Twitter 85.99% 75.30% 79.15% 83.88% 75.84% 71.39% 73.21% 82.65%
QARIB 85.40% 75.45% 78.49% 84.38% 73.97% 72.65% 71.92% 81.85%

MARBERTv2 83.51% 75.53% 78.27% 83.38% 74.79% 73.57% 73.54% 82.08%
CAMeLBERT-DA SA 78.78% 76.31% 76.90% 83.12% 70.14% 73.14% 70.28% 80.02%

Table 6: Task 2B hyperparameter optimized models post-hoc comparison of macro validation and test metrics.
Highest values are in bold.

Model Learning Rate Batch Size Dropout Max Length
AraBERT-Covid19 1.38e-05 32 0.325 115

AraBERT-Covid19 * 1.0e-05 8 0.375 78
AraBERTv02-Twitter 1.74e-05 64 0.0 79

QARIB 1.73e-05 32 0.15 94
MARBERTv2 1.03e-05 64 0.5 99

CAMeLBERT-DA SA 1.62e-05 16 0.0 67

Table 7: Task 2A best hyperparameters for each model, determined post-hoc. Models
marked with an asterisk (*) indicate the hyperparameters of the task submitted model.

Model Learning Rate Batch Size Dropout Max Length
AraBERT-Covid19 1.14e-05 8 0.25 88

AraBERTv02-Twitter 2.82e-05 32 0.2 100
AraBERTv02-Twitter* 5.0e-05 64 0.4 57

QARIB 2.00e-05 32 0.4 93
MARBERTv2 1.17e-05 8 0.1 60

CAMeLBERT-DA SA 1.32e-05 32 0.125 91

Table 8: Task 2B best hyperparameters for each model, determined post-hoc. Models
marked with an asterisk (*) indicate the hyperparameters of the task submitted model.

the top three represent about 65% and 64% of the
datasets for Task 2A, their percentage drops off
particularly in task 2B Development set to 60%
whereas the task 2B Training set is still at 65%.
Thus, dialect-wise task 2B showed much more vari-
ation. The high concentrations of specific dialects
imply that our models are significantly influenced
by the linguistic features of Saudi Arabia, Kuwait,
and Egypt. Upon reviewing the generalization er-
ror in Table 6, which compares the validation to

testing set metrics, we hypothesize that this dialect
variance may adversely affect model generalization.
Such variance can introduce additional complexity
and nuance to the classification task. When training
a language model on a dataset largely influenced
by three dialects and then tests it on a broader di-
alectal range, the model may find it challenging to
generalize effectively.
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(a) Training Set (b) Development Set (c) Test Set

Figure 1: Task 2A - Arabic Dialect Language Identification

(a) Training Set (b) Development Set (c) Test Set

Figure 2: Task 2B - Arabic Dialect Language Identification

501


