Qamosy at KSAA-RD shared task: Semi Decoder Architecture for Reverse
Dictionary with SBERT Encoder

Serry Sibaee
Serrytowork @ gmail.com

Vian Sabeeh
Middle Technical University
viantalal@mtu.edu.iq

Samar Ahmad
Samar.sass6 @gmail.com

Ahmed Bahaaulddin
Middle Technical University
ahmedbahaaulddin@mtu.edu.iq

Ibrahim Khurfan
ibraheemkhurfan @gmail.com

Hanan M. Belhaj
The Libyan Academy
h.belhaj@it.Jam.edu.ly

Abdullah 1. Alharbi
King Abdulaziz University
aamalharbe @kau.edu.sa

Abstract

A reverse dictionary takes a descriptive phrase
of a particular concept and returns words with
definitions that align with that phrase. While
many reverse dictionaries cater to languages
such as English and are readily available online
or have been developed by researchers, there is
a notable lack of similar resources for the Ara-
bic language. This paper describes our partici-
pation in the Arabic Reverse Dictionary shared
task. Our proposed method consists of two
main steps: First, we convert word definitions
into multidimensional vectors. Then, we train
these encoded vectors using the SemiDecoder
model for our target task. Our system secured
2nd place based on the Rank metric for both
embeddings (Electra and Sgns).

1 Introduction

A reverse dictionary takes a phrase describing a spe-
cific concept as input and provides words whose
definitions match that entered phrase. In con-
trast, a regular or common (forward) dictionary
function contains word-to-meaning or definition
mappings, which represents a useful solution for
readers when encountering unfamiliar words in a
text. For example, a forward dictionary would
tell the user that (als (i< - He felt compassion
for him) means (4«7, 5 ads il (o> 7 - have mercy
on him) whereas a reverse dictionary allows the
user to input the phrase (o7, ads Cilani (o> -
have mercy on him) and would likely produce the
word(as A< - He felt compassion for him) along
with other words having similar meanings as the
output.

Reverse dictionaries offer significant practical
value; primarily, they are highly effective in re-
solving the tip-of-the-tongue phenomenon which
we encounter every day; people have difficulties

finding the precise word to convey their thoughts,
despite being on their tongue tip. As a result, they
use phrases to explain the word or the concept. This
challenge could stem from memory retrieval issues
or a limited understanding of a particular language.
Such a predicament is widespread, especially when
someone is endeavoring to learn a new language
and has a restricted number of vocabulary words
or people who write frequently and seek a word
that precisely matches their intended thought or
expression.

Regarding natural language processing (NLP),
reverse dictionaries serve various purposes. One
of these is assessing sentence representation qual-
ity. Additionally, they prove advantageous in tasks
related to text-to-entity mapping, such as question
answering and information retrieval. Moreover, Re-
verse dictionaries consider not only the individual
meanings of words but also how those meanings
change when combined. Many words have syn-
onyms, making determining the exact match for a
given definition difficult. For instance, the input
"to come together" could correspond to various op-
tions like "meet," "gather," "assemble," and more.
Consequently, reverse dictionaries offer several po-
tential word options rather than one possible word.

nn

Numerous reverse dictionaries have been avail-
able online or have been created by researchers
catering to different languages like English,
Japanese, Turkish, French, and Persian. However,
a noticeable absence of equivalent resources can
be observed in the Arabic language. This shortage
could stem from the lack of appropriate or substan-
tial datasets containing words and their respective
definitions which entails significant efforts in col-
lecting and structuring language data. This paper,
outlines our contribution to the Arabic Reverse
Dictionary shared task. Our approach involves two

467

Proceedings of the The First Arabic Natural Language Processing Conference (ArabicNLP 2023), pages 467-471
December 7, 2023 ©2023 Association for Computational Linguistics

phases: first, transforming word definitions into
multidimensional vectors, and then training these
vectors with the Simi-Decoder model for the in-
tended task.

2 Related Work

Previously, researchers used a traditional approach
for tackling the reverse dictionary problem, called
semantic analysis using WordNet (Méndez et al.,
2013). To determine how similar two words are,
they made use of semantic similarity measurements.
They used similarity between a word and an in-
put phrase using a distance-based similarity mea-
sure. This measurement was considered necessary
to determine connections between the term and
the input words in the graph (Thorat and Choud-
hari, 2016). Recently, many researchers have been
using embedding techniques in conjunction with
neural networks and Deep learning(DL) to improve
the generation of reverse dictionaries. Pilehvar
(2019) used a combination of Bidirectional Long
Short-Term Memory (BiLSTM) and cascade for-
ward neural network (CFNN) to improve the neural
reverse dictionary (NRD’s) performance; outper-
forming a commercial reverse dictionary system
(OneLook!) in various metrics. To find whether
a proposed neural network framework is univer-
sally effective across all languages, Bendahman
et al. (2022) used sequential models with a variety
of neural networks, such as embedding networks,
denser networks and Long Short-Term Memory
LSTM networks. In (Chen and Zhao, 2022), the
authors present a model that can be seen as a neural
dictionary with two-way indexing and querying,
embedding both words and definitions within a
common semantic space. Their approach involves
separate encoder and decoder networks for words
and definitions. These networks are complemented
by a shared layer that aligns them within the same
representation space. In (Agrawal et al., 2021),
they combine Continuous Bag-of-Words (CBOW)
model and recurrent neural network (RNN) to em-
ploy a reverse dictionary that considers both word
order and context. Another group of researchers
focused on the concept of attention to better un-
derstand the context and meaning of the text. In
(Hedderich et al., 2019), they used attention mech-
anisms to integrate multi-sense embedding using
LSTM and contextual word embedding (Bidirec-
tional Encoder Representations from Transformers

"https://www.onelook.com/thesaurus/

(BERT) to enhance performance in the reverse dic-
tionary task. As for (Malekzadeh et al., 2021), they
utilised different models to simulate the functional-
ity of a reverse dictionary. These included a Bag of
Words (BOW) model, an RNN model with additive
attention, and a BiLSTM model. Each of these
was used to map a descriptive phrase to their cor-
responding words. Others (Qi et al., 2020; Zhang
et al., 2020) used a sentence encoder based on a
BiLSTM with an attention mechanism along with
four characteristic predictors. These predictors as-
sist in identifying the part-of-speech, morphemes,
word category, and other relevant information.

3 Methodology

In this section, we will start describing the dataset
used for our work. Then, we will explain our ap-
proach, divided into two primary steps. The first
is to represent or encode the inputs (the definitions
of the words) as multidimensional vectors. The
second stage is to train the encoded inputs using a
Simi-Decoder model for our downstream task.

3.1 Data Description

The used dataset is created and released by the
shared task’s organizers. They were chosen from
the LMF Contemporary Arabic dictionary > and
subsequently revised and refined by our annotation
team. The total entries for all sets are 58,010 (Train:
45200, Dev: 6400 and Test: 6410). The datasets
are in JSON format, comprising multiple exam-
ples. Each example within this dataset has six main
elements. The "id" element indicates a language-
specific unique identifier for a target "word". The
"gloss" element provides a traditional dictionary
definition, which is the source for the RD task.
"enld" links to an identifier in the English dictio-
nary. The remaining elements, namely "sgns" and
"electra", represent different types of embeddings
given as float arrays. Specifically, "sgns" relates to
word2vec’s skip-gram embeddings, while "electra"
is tied to Transformer-based embeddings. Both can
be targets in the RD task.

3.2 Encoder: encoding the input

In the first part of the work, we used the Sentence
Transformer (SBERT) (Reimers and Gurevych,
2019) to represent the input (words’ definitions).
SBERT is a framework designed for generating

Zhttps://lindat.cz/repository/xmlui/handle/11372/LRT-
1944MNocale-attribute=en

468

Model NO. hl h2 h3 h4 Activation Output Dropout Epochs
1 1024*6 1024*6 - - ReLU 256 - 100
2 512*%8 512*%4 512%2 512 GELU 256 - 300
3 512*%8 512%4 512%2 512 GELU 256 - 1000

Electra 4 512*%8 512*%4 512*%2 512 GELU 256 - 2000
5 512*%8 512%6 512%4 512 GELU 256 0.65 4000
6 512*8 512*%4 512*%2 512 LeakyReLU 256 - 2000
7 512*%8 512%6 512%4 512 GELU 256 0.60 1000

sgns 1 1024*%6 1024*6 - - ReLU 300 - 100
2 512*%8 512*%4 512*%2 512 GELU 300 - 1000

Table 1: Arciticture Semi-Decoder MLP

fixed-length embeddings for sentences, optimizing
for semantic similarity and efficiency over tradi-
tional BERT models. It is optimized for processing
multiple sentences simultaneously, ensuring faster
results. Its training structure prioritizes semantic
similarity, meaning similar sentences have close
vector representations. Furthermore, SBERT offers
a range of pre-trained models for different tasks
and languages, including Arabic.

Using SBERT in our task, the size of the encoded
inputs is (d=512) for every definition of the words.
This approach helped to make the training easier
and more efficient by not worrying about the in-
put size. We used The ’distiluse-base-multilingual-
cased’ model, which has proven effective in gener-
ating dependable embeddings across multiple lan-
guages (Reimers and Gurevych, 2020), making it
an ideal choice for our focus on Arabic. The output
of this step is encoded inputs that will be passed to
the next stage, as can be seen in Figure 1.

3.3 Decoder: Semi-Decoder MLP

In the second part of the work, we use many Multi-
Layer Perceptron(MLP) architecture (summarized
in Table 1 as a decoder model to transform the in-
puts with the outputs (which have two dense vector
dimensions for them (Electra =265 d) and (sgns =
300 d). Due to the limited time and resources, We
started our experiments with Electra embeddings,
and then we selected the best-performing architec-
ture to employ them with Sgns embeddings. The
semi-decoder is a Deep Neural Network with four
hidden layers where the first hidden layer has 8
times the input, the second has 4 times, the third
has 2 times, and the fourth has the same as the input
that will be projected to the size of the output. The
dropout mentioned rate is between every hidden
layer before the activation.

Figure 1 illustrates the main idea behind our
proposed framework. The process can be explained
mathematically as follows:

ey

where the Z(j,pu) € R5'2 and the Y(output) €
R° where o € {256,300} the dimensions of the
two types of outputs (electra and sgns). F'is a
neural network with 4 hidden layers (this is the
defult design while we also trained two networks
with 2 hidden layers). z is the input vectors and g
is the predicted vector (d 256 or 300)

F T (input) —* ?/J\(output)

BE(t) =)

F is a function representing the encoder model and
t is the tokens, where E/ will do the following:

1. tokenize the text
2. feed the encoder the tokens IDs

3. output S7="(¢;) (max polling where 7 is the
maximum number of tokens and if less it will
be padded

H§12><512*m (3)
(2
H is the size of hidden layer.
m € {8,4,2,1} “)

The Znpus 1s output of a pre-trained encoder model
called "SBERT" as follow:
Then the semi-Decoder:

D(z) =y (5)

D is a function representing the semi-decoder
model

then the loss function L(y,y) which is
MSE(y,y) will update the weights of the network

469

encoder(text) = z

A

Encoder
SBERT

—>» I I —>

decoder(z) = g
—

—>Q

semi-Decoder

MLP I Loss(y, ym.r;nu)

N embnu tput

Figure 1: An example of a word’s definition as input and a target word as output to show the overview of our

proposed framework.

4 Result

We began our initial experiments with the devel-
opment dataset. Afterward, we selected the most
efficient method to produce predictions for the test
dataset. Our evaluation relied on the official eval-
uation metric supported by the event organizers:
Mean Square Error (MSE), Cosine similarity, and
Rank, which evaluates the model’s ability to order
predictions in relation to actual values. The primary
evaluation metric is Rank. If models yield similar
results based on this metric, the mean squared error
(MSE) is then employed as a secondary measure.
In cases where further differentiation is required,
cosine similarity serves as the tertiary metric.

To clarify, we experimented with seven different
architecture setups to train the model, taking into
account the number of embedding layers and drop-
off. We chose the best model on Electra (Model
NO. 3) to apply them to Sgns, in addition to the
baseline model (Model NO. 1). Table 2 presents the
results on the test dataset. It can be seen that Model
number 3 has the highest performance (Rank =
28.05%) followed by the models 7 and 4. As for
Sgns embeddings, model 2 achieved the best result
with Rank of 30.78%.

The concept behind our approach is modifying
the standard encoder-decoder architecture by trun-
cating its latter section, which we have called the
’semi-decoder’. Due to the extensive scale of our
model, an epoch range of 100-300 was inadequate
for training. When the epochs exceeded 2000, over-
fitting issues emerged with our test data. This ob-
servation led us to conclude that the optimal epoch
range is between 1000 and 2000. Specifically, the
2000-epoch mark resulted in a semi-overfitting’ sit-

Model No. MSE COS SIM Rank
Electra
1 18.89% 54.83% 50.00%
2 26.59% 21.91% 50.01%
3 23.56% 51.94% 28.05%
4 17.03% 59.08% 33.31%
5 17.85% 55.57% 48.15%
6 74.20% -7.98% 37.97%
7 3233% 46.07% 28.92%
Sgns
1 6.59% 21.90% 50.01%
2 6.50% 39.36% 30.78%

Table 2: Performance results for different models on the
test set using three evaluation metrics.

uation that delivered the most promising outcomes.

4.1 Error Analysis

During the training process, a notable range of
effective epochs emerged, spanning from 300 to
2000, wherein discernible patterns were success-
fully learned. Preceding this pivotal interval, the
model’s proficiency in capturing intricate patterns
appeared limited. However, the subsequent epochs
saw an escalated tendency towards overfitting. The
employment of the GELU activation function ex-
hibited superior performance. Conversely, the
ReLU activation function demonstrated commend-
able potential for generalization, specifically in con-
texts characterized by diverse conditions ("sgns").
Nonetheless, for ranking tasks, its efficacy ap-
peared akin to a stochastic outcome. Conversely,
the Leaky ReLU activation function exhibited a
subdued impact, potentially owing to the specificity

470

of the problem domain. Notably, the application of
dropout regularization yielded moderate influence
on the model’s performance. The chosen model
architecture, designed to encapsulate definitions,
demonstrated inherent promise, warranting a finer
calibration to further explore the nuances of the
Arabic language.

5 Conclusion

Our methodology encompasses two fundamental
stages. Initially, we encode the word definitions,
translating them into multidimensional vector rep-
resentations. Subsequently, we subject these en-
coded vectors to training via the Simi-Decoder
model to address our designated task. Our sys-
tem secured a 2nd place based on Rank metric for
both embeddings (Electra and Sgns).

Future work could involve collecting more data
for training or validation, or providing the service
online for public access. Improving our model’s
performance might be achieved by adopting the
BERT or transformer model for training, known
for efficient parallel processing and capturing long-
term dependencies.

References

Aarchi Agrawal, KS Ashin Shanly, Kavita Vaishnaw,
and Mayank Singh. 2021. Reverse dictionary using
an improved cbow model. In Proceedings of the 3rd
ACM India Joint International Conference on Data
Science & Management of Data (8th ACM IKDD
CODS & 26th COMAD), pages 420-420.

Nihed Bendahman, Julien Breton, Lina Nicolaieff,
Mokhtar Boumedyen Billami, Christophe Bortolaso,
and Youssef Miloudi. 2022. BI. research at semeval-
2022 task 1: Deep networks for reverse dictionary
using embeddings and Istm autoencoders. In Pro-
ceedings of the 16th International Workshop on Se-
mantic Evaluation (SemEval-2022), pages 94—100.

Pinzhen Chen and Zheng Zhao. 2022. A unified
model for reverse dictionary and definition modelling.
AACL-1JCNLP 2022, page 8.

Michael A Hedderich, Andrew Yates, Dietrich Klakow,
and Gerard de Melo. 2019. Using multi-sense vector
embeddings for reverse dictionaries. In Proceedings
of the 13th International Conference on Computa-
tional Semantics-Long Papers, pages 247-258.

Arman Malekzadeh, Amin Gheibi, and Ali Mohades.
2021. Predict: persian reverse dictionary. arXiv
preprint arXiv:2105.00309.

Oscar Méndez, Hiram Calvo, and Marco A Moreno-
Armendariz. 2013. A reverse dictionary based on

semantic analysis using wordnet. In Advances in
Artificial Intelligence and Its Applications: 12th Mex-
ican International Conference on Artificial Intelli-
gence, MICAI 2013, Mexico City, Mexico, November
24-30, 2013, Proceedings, Part I 12, pages 275-285.
Springer.

Mohammad Taher Pilehvar. 2019. On the importance of
distinguishing word meaning representations: A case
study on reverse dictionary mapping. In Proceedings
of the 2019 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and
Short Papers), pages 2151-2156.

Fanchao Qi, Lei Zhang, Yanhui Yang, Zhiyuan Liu, and
Maosong Sun. 2020. Wantwords: An open-source
online reverse dictionary system. EMNLP 2020, page
175.

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert:
Sentence embeddings using siamese bert-networks.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing. Associa-
tion for Computational Linguistics.

Nils Reimers and Iryna Gurevych. 2020. Making
monolingual sentence embeddings multilingual us-
ing knowledge distillation. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing. Association for Computational
Linguistics.

Sushrut Thorat and Varad Choudhari. 2016. Implement-
ing a reverse dictionary, based on word definitions,
using a node-graph architecture. In Proceedings of
COLING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, pages

2797-2806.

Lei Zhang, Fanchao Qi, Zhiyuan Liu, Yasheng Wang,
Qun Liu, and Maosong Sun. 2020. Multi-channel
reverse dictionary model. In Proceedings of the
AAAI conference on artificial intelligence, volume 34,
pages 312-319.

471

https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/1908.10084
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813
https://arxiv.org/abs/2004.09813

