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Abstract

The remarkable capabilities of Natural Lan-
guage Models to grasp language subtleties has
paved the way for their widespread adoption
in diverse fields. However, adapting them for
specific tasks requires the time-consuming pro-
cess of fine-tuning, which consumes significant
computational power and energy. Therefore,
optimizing the fine-tuning time is advantageous.
In this study, we propose an alternate approach
that limits parameter manipulation to select lay-
ers. Our exploration led to identifying layers
that offer the best trade-off between time opti-
mization and performance preservation. We fur-
ther validated this approach on multiple down-
stream tasks, and the results demonstrated its
potential to reduce fine-tuning time by up to
50% while maintaining performance within a
negligible deviation of less than 5%. This re-
search showcases a promising technique for
significantly improving fine-tuning efficiency
without compromising task- or domain-specific
learning capabilities.

1 Introduction

Neural based Language Models are functions or al-
gorithms that are trained to predict the likelihood of
a sequence of words (Devlin et al., 2019; Radford
et al., 2019). These models were trained using large
volumes of textual content and are able to provide
an accurate approximation for language features
and structure. These models provide an important
tool for analyzing and understanding the nuance of
language, as well as for building applications that
rely on natural language understanding (Qiu et al.,
2020). Fine-tuning neural language models refers
to the process of further training a pre-trained lan-
guage model on a specific task or domain with a
smaller dataset. The pre-trained language model,
such as BERT or GPT, has already learned a signifi-
cant amount of knowledge about natural languages
from a large corpus of text. However, it may not
have been trained specifically for the task at hand or

on the specific domain of interest. Fine-tuning in-
volves updating the pre-trained model’s parameters
to optimize its performance on the given target so
it can learn more task-specific or domain-specific
information. Fine-tuning large language models
(LLMs) proved to be very effective and efficient to
achieve higher accuracy and state of the art num-
bers in many downstream tasks(Xiao et al., 2020).
Various techniques were suggested to ensure that
the resulting models achieve optimal accuracy. One
of the challenges faced during the fine-tuning of
language models is overfitting. Overfitting occurs
when the model performs well on the training or
fine-tuning data but poorly on new, unseen data.
This happens because the model has learned to fit
the noise in the training data rather than capturing
the underlying patterns. To address overfitting, sev-
eral regularization techniques were proposed in the
literature, such as weight decay and dropout. These
methods help prevent the model from memorizing
the training data and promote better generalization
to unseen data. Additionally, achieving optimal
results with fine-tuning involves hyperparameter
tuning, where efforts are made to select the best set
of hyperparameters for the model. Hyperparame-
ters, such as the learning rate and number of layers,
can significantly influence the model’s performance
and generalization capabilities. Properly tuning
these hyperparameters is essential for obtaining
the best possible results during fine-tuning (Mos-
bach et al., 2021; Yang and Ma, 2022). In this
research, we pursue a different direction for fine-
tuning language models by exploring a method-
ology that involves limiting backpropagation to a
specific number of layers. This approach offers
several benefits, including effectively addressing
the issue of over-fitting and significantly reducing
the fine-tuning time. Our primary objective is to
identify the most impactful layers that contribute
to achieving the best performance, and then ex-
tend this investigation to various pre-trained mod-
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els. The key contributions of this research are as
follows:

• We explore the impact of layer freezing on
pre-trained models with focus on application
on tasks in Arabic language.

• Evaluate the effect of layer freezing on dif-
ferent pre-trained models in terms of perfor-
mance and speed.

• Compare the performance of models using
the proposed approach.

• Contrast the time needed for fine-tuning in
both layer freezing and no-freezing settings.

The remainder of the article is structured as fol-
lows: In the next section, we provide background
information on the evolution of language models
and natural language processing. Subsequently, in
the third section, we present our methodology, in-
troducing the language models and tasks we will
be experimenting with. Following that, we present
the results and engage in a discussion in the fourth
section. Finally, in the fifth section, we present
our conclusions and outline the prospects for our
ongoing work.

2 Background

2.1 Natural Language Processing
Natural Language Processing (NLP) is an essen-
tial branch of artificial intelligence that delves into
the intricate realm of human language. Its primary
objective is to empower computers with the abil-
ity to comprehend, interpret, and manipulate text
and words in a manner that mirrors human under-
standing (Liddy, 2001). The definition of NLP
covers a variety of aspects: There are several com-
putational methods for NLP, and they essentially
fall into four categories; symbolic, statistical, con-
nectionist, and hybrid. Symbolic methods use a
deep analysis of linguistic phenomena,and they are
based on the explicit representation of linguistic
facts using well-known knowledge representation
schemes. Statistical approaches build models of
linguistic phenomena using a variety of mathemati-
cal techniques and a large text corpus. The major
source of evidence for these methods is observable
data, with no linguistic or general knowledge added.
The connectionist approach construct generalised
models using examples of linguistic phenomena,
and they employ also variety of representational

theories. The text being analysed must come from
a language that people use to communicate, and it
may be in any language,and in any format oral or
written.

In NLP, humans utilize various levels of lan-
guage to comprehend the content of a document.
These levels include Phonology (the study of
speech sounds), Morphology (the study of word
forms and structure), Lexical (the study of words
and their meanings), Syntactic (the study of sen-
tence structure), Semantic (the study of meaning in
language), Discourse (the study of how sentences
are connected and organized), and Pragmatic (the
study of language use in context). The more ca-
pable an NLP system is, the more of these levels
it will employ to understand and process language
effectively. For instance, a sophisticated NLP sys-
tem will take into account not only the words in
a sentence but also their meanings, how they are
arranged grammatically, and how the sentences re-
late to each other in a larger context. However, in
practice, current NLP systems often utilize separate
modules to handle different levels of language pro-
cessing. These modules work together to process
the language and extract meaningful information.

2.2 Techniques

Among the ground breaking techniques that
changed the field of NLP was the introduction of
Transformers (Vaswani et al., 2017). Its power to
handle sequential data made them dominate the
field in recent year. BERT (Bidirectional Encoder
Representations from Transformers) is a revolu-
tionary language model that has had a profound
impact on Natural Language Processing (NLP). It
is designed to understand the context of words in
a sentence by considering the surrounding words
on both sides, leading to a bidirectional learning
process. This innovative approach allows BERT to
capture deep contextual relationships and nuances
in language, making it exceptionally effective in
various NLP tasks. By pre-training on a large cor-
pus of text and then fine-tuning on specific down-
stream tasks, BERT exhibits remarkable versatility
and can be adapted to tasks like text classification,
named entity recognition, question answering, and
more. Its contextual embeddings have significantly
improved the accuracy of language-based applica-
tions, and BERT’s success has inspired numerous
follow-up models that continue to push the bound-
aries of NLP research and application.
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2.3 Freezing

Fine-tuning has become an integral component in
the training process, because is less expensive in
computational time than pre-training a mode. Ad-
ditionally, it could solve the problem of overfitting.
Limiting the number of layers "freezing" is a nat-
ural way to improve fine-tuning performance (Liu
et al., 2021). For BERT model, the initial layers
learn more general linguistic patterns. However,
the later BERT layers learn more task-specific pat-
terns (Clark et al., 2019; Sajjad et al., 2023).

3 Methodology

To explore the extent of the proposed method, we
limit the scope of our investigation to the following
pre-trained models and tasks, more models would
be worth of investigating in the future work.

3.1 Pre-trained models

AraBERTv0.2 Antoun et al. (2020) trained a
BERT base model using 200M sentences (77GB)
of both Modern Standard Arabic (MSA) and di-
alectal content mainly from Twitter data. The MSA
content includes Arabic Wikipedia Dumps, Arabic
Corpus (El-Khair, 2016) and the Open Source In-
ternational Arabic News Corpus (OSIAN) (Zeroual
et al., 2019), in addition to Arabic news content.

CAMelBERT Inoue et al. (2021) created and
distributed a pre-trained language model that com-
bined Modern Standard Arabic (MSA), dialectal
Arabic (DA), and classical Arabic (CA). The collec-
tion included over 167GB of text ( 17.3B tokens).

QARiB Abdelali et al. (2021) trained a model on
a collection of 420 Million tweets and 180 Million
sentences of text. The tweets contains both MSA
and DA, while the text content is mostly MSA.

MARBERT Abdul-Mageed et al. (2021) cre-
ated and distributed large-scale pre-trained masked
language model focused on both Dialectal Arabic
(DA) and Modern Standard Arabic (MSA). It was
trained on a dataset of 1 billion Arabic tweets from
an in-house dataset of about 6 billion tweets.

3.2 Tasks

Arabic Language Understanding Evaluation
(ALUE) (Seelawi et al., 2021) provides a total of
eight tasks that address a variety of Arabic dialects
and NLP/NLU issues. In this paper, four tasks are
used for experimental results.

Anger Detection The Affect in Tweets dataset
proposed in (Mohammad et al., 2018) consists of

five subtasks. We will only use the Emotion Classi-
fication task (SEC), in which a tweet is classified
as anger, anticipation, contempt, fear, joy, love, op-
timism, pessimism, sad, surprise, and trust. We
concentrate on the anger emotion, we detect if a
tweet contains that emotion or not.

Text Similarity In the Semantic Question Sim-
ilarity task (McCann et al., 2017), two questions
are considered to be semantically similar if they
have the exact same response and significance. The
dataset includes question pairings and the degrees
of similarity between them. There are two ques-
tions in each question pair. Each question pair’s
similarity score is shown as a value between 0 and
5, which was determined by human evaluations.

IDAT@FIRE2019 Irony Detection Task (FID)
The purpose of this task is to detect irony in Arabic
tweets (Ghanem et al., 2019). Each tweet is la-
beled with a "1" when it contains irony or sarcasm.
Otherwise, a label of "0" is assigned.

MADAR Shared Task Subtask 1 (Dialect De-
tection) The Multi Arabic Dialect Applications
and Resources (MADAR)1. The first MADAR’s
subtask was a parallel corpus of 25 Arabic city di-
alects in the field of travel (Bouamor et al.). The
MSA is given a 26th label. We focus only on two
classes; the dialects of Algiers and Amman.

OSACT4 Shared Task-A: offensive The task
(Mubarak et al., 2020) was designed for the pur-
pose of detecting offensive speech in Arabic tweets.
Each tweet is labeled with a ”1” when it contains
offensive speech. Otherwise, ”0”.

OSACT4 Shared Task-B: hate speech detec-
tion The purpose of this task is to detect hate
speech in Arabic tweets (Mubarak et al., 2020).
Each tweet is labeled with a ”0” when it contains
hate speech. Otherwise, a label of ”1” is assigned.

Cross-lingual Sentence Representations The
goal of this task is to use a dataset containing 7,500
pairs of sentences to classify them into one of
the following categories: “commitment,” “ambiva-
lence,” or “neutral.” (Conneau et al., 2018)

4 Results and Discusson

4.1 Optimal Settings

We investigate the optimal parameters for layer
freezing. To identify the best configuration, we
perform a comprehensive grid search, exploring
all possible combinations. Although this approach

1https://sites.google.com/nyu.edu/madar/
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may seem exhaustive, it allows us to evaluate all
layers efficiently. For this step, we use the MADAR
dataset, chosen as an exemplary task due to its large
size and multitude of labels. Specifically, this is a
multi-class classification with 26 class labels, each
representing the dialect associated with different
city. We explore a combination of freezing both
n top and m bottom layers while recording the
performance at each combination. Figure 1 repre-
sents the results of the exploration.The evidence
shows that unfreezing all layers leads to achieving
the state-of-the-art (SOTA) performance. However,
even by freezing up to 3 layers from the bottom
and four layers from the top, the model still attains
performance levels very close to the best perfor-
mance. Figure 1 shows the F1 results of freezing
all combinations on MADAR task.

Figure 1: Layers freezing results on MADAR.

4.2 Layer Freezing
Given the promising results obtained from the pre-
vious experiments. We further expand our experi-
mentation to benchmark an actual four downstream
tasks. Appendix Tables 1, 2, 3 4, 5, 6 and 7
show the performance of training and evaluation
of BERT models on different tasks, in terms of F1
and training time. While the performance loss in
all the seven tasks rarely surpassed 6%, the gain in
time reached up to 50%. In few instances, the per-
formance improved further see MARBERT models
results in table 6 and 7. The results summarized in
Figure 2 shows clearly the large difference between
the gain in runtime versus the performance loss.

4.3 Discussion
This research focuses on optimizing the computa-
tion time required for fine-tuning large language
models, considering the substantial impact of com-
putation costs across various applications and disci-
plines. To achieve this objective, we introduced the

"layers freezing" approach, which effectively re-
duced the runtime needed for fine-tuning. Through
our experiments, we observed remarkable results,
demonstrating a significant reduction of up to 50%
in fine-tuning time (See Appendix Table 4) com-
pared to traditional approaches. This substantial
improvement in efficiency offers new possibilities
for researchers, developers, and organizations, en-
abling them to deploy and fine-tune large language
models more rapidly and effectively.

Figure 2: F1 and Runtime averages cross tasks.

5 Conclusion and Future Work

Our results suggest that freezing limited numbers
of layers from the bottom in combination with top
layers provide an optimal performance. It success-
fully addressed the challenge of time-consuming
fine-tuning for large language models. This in-
dicate that the perturbation from the fine-tuning
can be controlled best using this approach; further,
the approach might generalized better for out of
domain data, as it keeps all the knowledge learnt
during the pre-training. By introducing the layers
freezing, we were able to achieve impressive time
savings that reached up to 50% of time required
for fine-tuning compared to conventional methods.
This achievement in computation time optimization
adds to the major advancement in the field of NLP
and deep learning in general. It not only empow-
ers researchers to conduct experiments and iterate
more swiftly but also enhances the practicality of
implementing large language models in real-world
applications. For future work, we plan to expand
this research to cover more tasks to ground these
findings. More models with different architecture
will be needed as well as applications in other lan-
guages. In other direction, we plan to explore the
impact of the approach on generalization to out of
domain and unseen data. Such explorations will
validate the approach and demonstrate its merits.
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A Appendix A

Detailed results for the selected tasks from ALUE.
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Table 1: Anger Detection

AraBERT CAMeLBERT QARiB MARBERT
F1 Runtime F1 Runtime F1 Runtime F1 Runtime

No Freeze 0.711 21.570 0.752 19.615 0.829 18.516 0.825 21.94
Freeze 0.648 16.389 0.756 14.314 0.814 13.702 0.831 16.80
∆ -8.86% 24.02% 0.53% 27.02% -1.81% 26.00% 0.73% 23.43%

Table 2: Question to Question Semantic Similarity (Shared Task 8)

AraBERT CAMeLBERT QARiB MARBERT
F1 Runtime F1 Runtime F1 Runtime F1 Runtime

No Freeze 0.548 124.112 0.580 101.875 0.577 120.702 0.591 106.683
Freeze 0.580 101.269 0.581 88.164 0.582 86.650 0.597 97.987
∆ 5.84% 18.41% 0.17% 13.46% 0.87% 28.21% 1.02% 8.15%

Table 3: Irony Detection

AraBERT CAMeLBERT QARiB MARBERT
F1 Runtime F1 Runtime F1 Runtime F1 Runtime

No Freeze 0.742 48.135 0.788 37.100 0.839 36.152 0.828 35.689
Freeze 0.786 38.107 0.768 28.242 0.836 27.824 0.835 27.73
∆ 5.93% 20.83% -2.54% 23.88% -0.36% 23.04% 0.84% 22.30%

Table 4: MADAR Shared Task Subtask 1 (Dialect Detection)

AraBERT CAMeLBERT QARiB MARBERT
F1 Runtine F1 Runtine F1 Runtine F1 Runtine

No Freeze 0.670 1453.080 0.707 1289.394 0.700 1298.000 0.696 156.771
Freeze 0.633 668.153 0.690 1010.240 0.687 1020.360 0.695 159.179
∆ -5.52% 54.02% -2.40% 21.65% -1.86% 21.39% -0.14% -1.54%

Table 5: Offensive Speech Detection

AraBERT CAMeLBERT QARiB MARBERT
F1 Runtime F1 Runtime F1 Runtime F1 Runtime

No Freeze 0.974 136.949 0.974 126.627 0.979 119.450 0.974 119.09
Freeze 0.976 108.939 0.976 100.423 0.982 94.322 0.980 94.99
∆ 0.20% 20.45% 0.20% 20.69% 0.30% 21.04% 0.62% 20.24%

Table 6: Hate Speech Detection

AraBERT CAMeLBERT QARiB MARBERT
F1 Runtime F1 Runtime F1 Runtime F1 Runtime

No Freeze 0.770 137.422 0.746 126.999 0.856 119.492 0.834 119.432
Freeze 0.767 109.245 0.759 100.671 0.847 94.768 0.854 95.17
∆ -0.39% 20.50% 1.74% 20.73% -1.05% 20.69% 2.40% 20.31%

Table 7: Cross-lingual Sentence Representations

AraBERT CAMeLBERT QARiB MARBERT
F1 Runtime F1 Runtime F1 Runtime F1 Runtime

No Freeze 0.525 98.101 0.599 91.603 0.521 92.475 0.448 94.110
Freeze 0.494 91.738 0.571 82.284 0.505 90.435 0.547 88.919
∆ -5.90% 6.49% -4.67% 10.17% -3.07% 2.21% 22.10% 5.52%
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