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Abstract

In this paper, we study the transferability of
Named Entity Recognition (NER) models be-
tween Arabic dialects. This question is impor-
tant because the available manually-annotated
resources are not distributed equally across
dialects: Modern Standard Arabic (MSA) is
much richer than other dialects for which lit-
tle to no datasets exist. How well does a NER
model, trained on MSA, perform on other di-
alects? To answer this question, we construct
four datasets. The first is an MSA dataset ex-
tracted from the ACE 2005 corpus. The oth-
ers are datasets for Egyptian, Moroccan, and
Syrian which we manually annotate following
the ACE guidelines. We train a span-based
NER model on top of a pretrained language
model (PLM) encoder on the MSA data and
study its performance on the other datasets
in zero-shot settings. We study the perfor-
mance of multiple PLM encoders from the
literature and show that they achieve accept-
able performance with no annotation effort.
Our annotations and models are publicly avail-
able (https://github.com/niamaelkhbir/
Arabic-Cross-Dialectal-NER).

1 Introduction

The Arabic language, encompassing Classical Ara-
bic (CA), Modern Standard Arabic (MSA), and
various Dialects of Arabic (DA), stands out for its
linguistic diversity and intricate morphology. This
linguistic complexity presents a unique challenge
for Natural Language Processing (NLP) tasks, par-
ticularly in the field of named entity recognition
(NER). Modern Standard Arabic serves as the for-
mal reference, and many research efforts have been
dedicated to MSA NER. The literature on MSA
NER methods has witnessed an evolution from
rule-based methods, to machine learning models
based on hand-crafted features and subsequently
deep learning models incorporating rich contextual
representations. Notably, pretrained transformer-

based language models have recently driven signif-
icant advancements in Arabic NER.

Arabic, however, has more than 20 distinct di-
alects and around 100 regional variants, which are
widely used in everyday communication, particu-
larly in digital spaces. This emphasizes the urgent
need for NLP models capable of effectively han-
dling this linguistic diversity. However, these di-
alects exhibit significant linguistic variation, includ-
ing differences in spelling, morphology, and syntax,
making it exceptionally challenging to develop a
unified global modeling approach. Additionally,
there is no standardized spelling for these dialects.
In addition, the scarcity of annotated dialectal data
has been a major obstacle to progress in the field
of dialectal NER.

Our research is driven by the goal of bridging
the linguistic gap between MSA and Arabic di-
alects, specifically in the context of entity recog-
nition. Given the substantial time required for the
annotation process and leveraging the success of
cross-lingual transfer learning, our work focuses
on exploring knowledge transfer in the context of
NER, transferring knowledge from MSA to various
dialects.

Our contributions in this article are two-fold:

* We introduce a NER dataset manually anno-
tated for three dialects: Moroccan, Egyptian,
and Syrian. This dataset is used for evaluation
purposes;

* We propose an efficient span-based NER
model trained on already-available MSA data
and analyze its transferability to other dialects.

2 Dataset and Annotation

In this section, we introduce our datasets for Mod-
ern Standard Arabic and Arabic Dialects (Moroc-
can, Egyptian, Syrian), their construction, and an-
notation guidelines.
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2.1 Modern Standard Arabic Dataset

Our dataset for Modern Standard Arabic is sourced
from the Arabic Corpus ACE 2005 (Walker and
Consortium, 2005). The ACE corpus comprises a
rich collection of text data from diverse sources,
including newswires, broadcast news, and weblogs.
This corpus includes annotations for seven distinct
entity types, namely Persons (PER), Organizations
(ORG), Geographical/Social/Political Entities (GPE),
Locations (LOC), Facilities (FAC), Vehicles (VEH),
and Weapons (VEH). In addition to entity types,
it annotates three entity mention types: Names
(NAM), Nominal Constructions (NOM), and Pronouns
(PRO). The corpus offers annotations for both flat
and nested entities, further including coreference
information.

The MSA dataset we use in this work is based
on ACE 2005. In its construction, we make the
following choices:

* Focus on NAM and NOM entities: we opted
to concentrate exclusively on the recognition
of named entities and nominal constructions
while excluding pronouns. ACE 2005 is no-
table for its detailed annotation, including
pronouns, which is uncommon in the typical
named entity recognition task that primarily
deals with nominal entities and names. Pro-
noun usage exhibits considerable variation,
displaying nuanced distinctions not only be-
tween dialects but even within distinct regions
of the same dialect. Consequently, accurately
annotating pronouns across dialects presents
practical challenges and potential ambiguity,
due to their strong contextual reliance and
the absence of comprehensive dialect-specific
guidelines. The inclusion of pronouns is there-
fore left to future work. For clarity, named
entities include examples such as (y ¢> (John)

and aJl! f‘J (Ramallah), while nominal enti-
ties include examples like u‘\"‘l V (The lawyer)
and sl (Port). Pronominal entities, which
we chose to exclude, include terms such as o
(they), Ul (some), and () 5 J"Cf (many).

* Focus on flat entities: we opted to con-
centrate exclusively on flat entities, omit-
ting nested entities and coreference resolu-

tion. This choice simplifies the task signifi-
cantly by reducing complexity in both annota-

tion and modeling. Nesting and coreference,
while valuable areas of study, introduce intri-
cate challenges, especially in dialectal Arabic,
where linguistic variations are prevalent. Fo-
cusing on flat entities streamlines our research
process, making it more scalable for testing
across dialects.

Considering these two methodological decisions,
we constructed our MSA dataset from the ACE
2005 corpus by randomly selecting 500 sentences.
We provide detailed statistics about these sentences
in the first columns of Tables 1 and 2.

This dataset will be used to train a model and
study its transferability to other dialects. It will
also be used to evaluate models that are trained on
other dialects.

We also extracted an additional 350 MSA sen-
tences to train an MSA model and evaluate it on
the 500 sentences for reference. More details can
be found in the results section (5)

2.2 Annotation Guidelines for Dialects

We introduce concise yet comprehensive annota-
tion guidelines that were used in the annotation
of our dialectal datasets. These guidelines closely
follow the ACE guidelines that were used for the
MSA dataset. The detailed reference is provided by
the Linguistic Data Consortium (LDC) guidelines'.

1. PER (Person): This entity type is used for in-
dividual human beings. It includes:

e Names and surnames of individuals. Ex-
ample: _goy ; s (Mift Romney)

* Group of people. Example: {5\ (The

Sfamily).
* Saints and other religious figures. Exam-
ple: ) (God).

2. ORG (Organization): This entity type is used
for corporations, agencies, and other groups
of people defined by an organization structure.
It includes:

* Commercial organizations. Example:
Ao gy J,(:.a (Microsoft)
* Government organizations. Example:

LU & _=JV (Royal Navy).

"https://www.ldc.upenn.edu/collaborations/past-
projects/ace/annotation-tasks-and-specifications
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* Educational organizations. Example:
5, 92l dasl> (Stanford University).

* Political  parties.
Sl O A (Liberal Party).
* Media. Example: L.l U8y (ANSA
agency).

Example:

3. LOC (Location): This entity type is used for ge-
ographical entities such as mountains, rivers,
seas, and regions that aren’t politically de-

fined. Example: §<euSs g5 Ju* (Northern
New Mexico).

4. GPE (Geographical/Social/Political Entity):
This entity type is used for geographical re-
gions that have a political distinction. This in-
cludes countries, states, provinces, and cities.

Example: K.: J;‘ (America).

5. VEH (Vehicle): This entity type is used for
entities that are primarily designed for trans-
porting goods or people from one place to
another. Example: & s (vehicle).

6. WEA (Weapon): This entity type is used for
devices used with intent to inflict damage or
harm.

* Exploding. Example: };U3 (Bombs).
* Chemical. Example: 3\ (Gas).

 Underspecified. Example: CMM

(Weapon).

7. FAC (Facility): This entity type is used for
buildings or structures. It includes buildings,
houses, factories, stadiums, office buildings,
gymnasiums, prisons, museums, space sta-
tions, barns, parking garages and airplane
hangars, streets, highways, airports, ports,
train stations, bridges, and tunnels. Example:
LWl (The airporr).

We adhere to these guidelines by annotating
the smallest constituent of flat entities. For ex-
ample, consider the entity Samdl &LYoll
(United States champion). In this case, we an-
notate 5>l | LY (United States) as GPE and

JHas (champion) as PER. If our task involved

nested entities, we would have provided addi-
tional annotations for the entire nested entity

amill LYl ey as PER.

Stat MSA Mor. Egy. Syr
Sentences | 500 378 353 361

Tokens 14168 6780 6533 6034
Entities 3030 970 831 956

Table 1: Dialect Dataset Statistics. MSA: Modern Stan-
dard Arabic, Mor.: Moroccan, Egy.: Eyptian, Syr.:
Syrian.

Ent | MSA Mor. Egy. Syr.
FAC | 143 83 63 71
GPE | 923 249 229 331
Loc | 160 191 142 89
ORG | 413 112 77 109
PER | 1269 278 264 307
VEH | 52 45 50 41
WEA | 70 12 6 8

Table 2: Dialect Dataset Statistics by Entity Type. MSA:
Modern Standard Arabic, Mor.: Moroccan, Egy.: Eyp-
tian, Syr.: Syrian.

2.3 Annotation Process of the Dialect Datasets

Our dataset for Arabic Dialects is sourced from the
xP3x corpus (Muennighoff et al., 2022). The xP3x
corpus comprises a vast collection of prompts and
datasets across 277 languages, covering 16 distinct
NLP tasks. This corpus comprises pairs of sen-
tences and their translations in various languages.

3 Task Definition and Model

In this study, we opted to work with three distinct
Arabic dialects: Moroccan, Egyptian, and Syrian.
For each dialect, we selected randomly 500 sen-
tences from the xP3x corpus and tokenized them
by whitespaces before presenting them for annota-
tion. Notably, our annotation process was overseen
by a single annotator, a proficient Moroccan Arabic
speaker, with a deep understanding of Egyptian and
Syrian dialects as well. The limited dataset size
made the use of a single annotator optimal, as this
approach ensured consistency, coherence, and a
manageable workload, minimizing inter-annotator
discrepancies and maintaining unified annotation
styles.

In this study, we chose to investigate three dis-
tinct Arabic dialects: Moroccan, Egyptian, and Syr-
ian. We randomly selected 500 sentences from the
xP3x corpus for each dialect and tokenized them
using whitespace. Our annotation process, carried
out using Label Studio as the annotation tool, was
supervised by a single proficient annotator, fluent
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Dialect

Example

GPE

Moroccan

Lo 1 a1 iy gl daeilsa [t ] ool way oo folol gidl] gaiad 5 1 gand 5y e

Because they succeeded in manufacturing submarines, after the war, the Germans were not sure to take much of it

VEH

Syrian

s[5 a5 ] s iy 3905 255 5 T iy B s

Families with children are very rare, but some hostels give them private rooms

Egyptian

LugygS Ly ibgins Lgigudei m&a Digdaaldl ghill

Most of the objects buried with Tutankhamun are well preserved

PER

Figure 1: Example of annotations from our Dialect Dataset.

in Moroccan Arabic and possessing a strong grasp
of Egyptian and Syrian dialects. Given the lim-
ited dataset size, employing a single annotator was
advantageous for maintaining consistency, coher-
ence, and manageable workloads, thereby reducing
inter-annotator discrepancies and ensuring uniform
annotation styles.

After the annotation process, we only retained
sentences containing entities for our experiments.
For a comprehensive overview of the dataset’s
statistics, please consult Tables 1 and 2. To vi-
sualize examples from our dataset, please refer to
Figure 1.

Named Entity Recognition involves identifying
and categorizing named entities within text into
predefined entity categories. Formally, we frame
the task of NER as a span classification problem.
Given an input sequence: * = {z;}~ ,, our ob-
jective is to classify all potential spans within the
sequence, defined as:

L L
y=J U sije )
i=1j=i
Here, 1, j, and c correspond to the start position,
end position, and span type, respectively. The prob-
ability of a specific span classification y given the
input sequence x is represented as:

exp Y . ey Po(Sijel®)
Zy(x)

po(yle) = ()
In this equation, ¢y(.) is the span scoring func-
tion, and Zy(x) is the partition function. During
training, our objective is to minimize the negative
log-likelihood of the gold span classifications.

Training loss During training, our assumption
allows us to bypass the need to explicitly evaluate

the partition function Zy(x) to compute the loss.
The loss for a single sample (x,y) € T is simply
the sum of loss for all spans in the input:

L(w,y)=— ) logp(cilz) 3)
Cij €Y
where,

exp dg(cij|x)

p(cijlz) = 5 4)

This loss is minimized over the training set using
a stochastic gradient descent algorithm.

Decoding
mine:

During inference, our aim is to deter-

y* =argmax Y dg(sizelx) (5
yey Sijc€Y
In other words, we seek to identify the span la-
beling configuration that achieves the highest score.
For unconstrained span classification, a straight-
forward approach is to assign the label with the
highest score to each individual span, as follows:

Sijer = arg max ¢g(sijc|x) (6)
C

Nonetheless, this decoding approach is not op-
timal since it may result in structural constraint
violations. In our context of flat entities, overlap-
ping entity spans are strictly prohibited. A more
efficient solution, as presented in our prior research
(Zaratiana et al., 2022a,b)?, employs a two-stage
decoding process. Initially, spans predicted as non-
entities are filtered out, followed by the application
of a maximum independent set algorithm to the
remaining spans to determine the optimal set of
entity spans.

Zhttps://github.com/urchade/Filtered-Semi-Markov-CRF
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Token and Span Representations We compute
the span score ¢g(s;jc|x) by performing a linear
projection of the span representation, which is
derived from a 1D convolution applied to token
representations obtained from a transformer-based
model (eg. BERT):
Sije == wE Conv1Dg([his hivs. .. hj))  (7)
Here, h; € RY represents the token representa-
tion at position ¢, k signifies the size of the convo-
lutional filter (corresponding to the span length),
and w, € RP denotes a learned weight matrix
associated with span label c.

4 Experimental Setup

Token Encodings To encode our input tokens,
we use 8 diverse pretrained language models,
i.e trained on diverse dataset sources: Arabic
MSA dataset (ARBERTv2 and CAMeLBERT-
MSA), Arabic dialect dataset (MARBERTYV2 and
CAMeLBERT-DA), Mixture of MSA and Arabic
dialect (AraBERTVv2 and CAMeLBERT-Mix), and
multilingual dataset (nBERT and mDeBERTa).
We detail them below:

* ARBERTV2: (Abdul-Mageed et al., 2021): A
large-scale pretrained masked language model
for MSA with 12 attention layers, 12 heads,
768 hidden dimensions, and 163M parameters,
trained on 61GB of Arabic text.

* MARBERTV2 (Abdul-Mageed et al., 2021):
A large-scale pretrained masked language
model for both DA and MSA, trained on 1B
Arabic tweets (128GB text, 15.6B tokens), us-
ing the same architecture as ARBERT (BERT-
base) without next sentence prediction.

¢ AraBERTV2 (Antoun et al., 2020): The
dataset consists of 77GB Arabic text from
diverse sources. It uses the same architecture
as BERT-Base.

e CAMeLBERT-DA (Inoue et al., 2021): A col-
lection of pretrained BERT models for Arabic
dialects, trained on a diverse dataset of 54GB,
totaling 5.8 billion tokens.

* CAMeLBERT-Mix (Inoue et al., 2021): A col-
lection of pretrained BERT models for Arabic,
including MSA, DA, and CA, trained on a di-
verse dataset of 167GB, totaling 17.3 billion
tokens.

* CAMeLBERT-MSA (Inoue et al., 2021): A
collection of pretrained BERT models for
MSA, trained on a diverse dataset of 107GB,
totaling 12.6 billion tokens.

* mBERT (Devlin et al., 2019): The multilin-
gual version of BERT pretrained on the top
104 languages with the largest Wikipedia us-
ing a masked language modeling (MLM) ob-
jective.

* mDeBERTa: A multilingual version of De-
BERTa (He et al., 2020) trained with CC100
multilingual data.

Hyperparameters We train all our models up to
convergence. We use a training batch size of 12
and a validation batch size of 32. We employed a
learning rate of 2e-5 for the pre-trained parameters
and a learning rate of 3e-3 for the other parameters.
We used a batch size of 8 and trained all the models
to convergence (near O training loss). For testing,
we use the last model, given the limited availability
of validation data in our dataset. To manage the
complexity of the task, we impose a constraint on
the maximum span length, setting it to a maximum
width of K = 10. This constraint significantly
reduces the number of segments from L? to LK.
The pretrained transformer models were loaded
from HuggingFace’s Transformers library, we used
AllenNLP for data preprocessing. We trained all
the models on a server equipped with V100 GPUs.

Evaluation Metrics We adopt the standard NER
evaluation methodology, calculating precision (P),
recall (R), and F1-score (F), based on the exact
match between predicted and actual entities.

5 Results

The main results of our experiments are shown in
Figure 2. We conducted two primary experiments:
firstly, training on Modern Standard Arabic, and
evaluating on dialects, and secondly, reversing this
configuration, training on individual dialects and
assessing on MSA. For both scenarios, we used the
complete dataset outlined in Table 1. In addition,
we conducted MSA-to-MSA experiments, where
we evaluated our model on the MSA dataset speci-
fied in Table 1, while the training set consisted of
a random selection of 350 sentences drawn from
the original Arabic ACE dataset, using the same
preprocessing steps detailed in Section 2.1.
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Figure 2: Comparative performance of models across different training and testing settings in terms of F1 score.

MSA-to-MSA The performance metrics reveal
that MSA-to-MSA settings consistently yield the
highest accuracy across all tested configurations,
a result that aligns with expectations given that
Modern Standard Arabic often serves as the
benchmark for Arabic language tasks. Interest-
ingly, most backbone models such as ARBERTV2,
mDeBERTav3, CAMeLBERT-MSA (Inoue et al.,
2021), CAMeLBERT-Mix (Inoue et al., 2021),
AraBERTV2 and MARBERTV2 demonstrate com-
parable performance, suggesting that their archi-
tecture and training data are well-suited for MSA-
centric tasks. Two models, however, diverge from
this trend. CAMeLBERT-DA (Inoue et al., 2021)
exhibits an 8% drop in performance compared to
the other language models, which can be attributed
to its focus on dialectal data during training. This
specialization likely limits its ability to generalize
effectively to MSA. Similarly, mBERT performs
less well. As a multilingual model, mBERT may
suffer from language interference or tokenization
issues, given its training on a diverse corpus where
Arabic is not the dominant language.

MSA to Dialects When training models on the
MSA dataset, the observed performance metrics in-
dicate a hierarchical trend among the tested Arabic
dialects. The best performances are systematically
obtained with the Syrian dialect, followed by the
Egyptian dialect, and finally the Moroccan dialect.
This gradient could be indicative of the linguis-
tic similarities and differences between MSA and

Test Best Model Avg. F1
Egyptian CAMeLBERT-MSA  59.74
Moroccan AraBERTv2 55.24
Syrian ARBERTV2 68.10

Table 3: Best-Performing Language Model for test Di-
alect (F1-score).

Train Best Model Avg. F1
Egyptian MARBERTYV2 58.75
Moroccan MARBERTvV2 61.38
Syrian CAMeLBERT-MSA  63.24

Table 4: Best-Performing Language Model for train
Dialect (F1 score).

these dialects. The Syrian dialect may share more
syntactic and semantic features with MSA, allow-
ing models trained on MSA to generalize more
easily to Syrian. On the other hand, the Moroccan
dialect appears to be the most divergent from MSA
among the tested dialects, resulting in the lowest
performance scores. This could be due to unique
lexical, grammatical, or even phonological features
that are not adequately captured when a model is
trained solely on MSA data.

Dialects to MSA  Similar to the MSA to dialects
scenario, the best test performance on MSA is ob-
tained when models are trained on the Syrian di-
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alect, followed by the Egyptian dialect and finally
the Moroccan dialect. This pattern aligns well with
the earlier observation that models trained on MSA
perform best on the Syrian dialect, thereby suggest-
ing a mutual linguistic affinity between Syrian and
MSA. Models trained on Egyptian also perform
relatively well, reinforcing the notion of shared lin-
guistic features between Egyptian and MSA. Con-
versely, the Moroccan dialect, which was identified
as the most challenging for models trained on MSA,
also proves to be the least effective training data
for models tested on MSA. This consistent under-
performance across both scenarios could point to
a greater linguistic divergence between Moroccan
and MSA, which may involve lexical, syntactic, or
phonological differences not easily bridged by the
models in question.

Optimal Language Model for MSA Training
When training with an MSA dataset, AraBERTv2
emerges as the top-performing language model,
with an average score of 65.12 across various
Arabic dialects. The strength of this model can
be attributed to its well-balanced training regi-
men, which combines both MSA and dialectal
data, resulting in a harmonious blend of specializa-
tion and generalization. Models explicitly trained
on MSA, namely ARBERTv2 and CAMeLBERT-
MSA, closely follow in terms of performance,
underscoring the effectiveness of MSA-focused
training. In contrast, dialect-specific models like
MARBERTvV2 and CAMeLBERT-DA still deliver
respectable results, although falling behind their
MSA-centric counterparts. Interestingly, multilin-
gual models like mDeBERTav3 and mBERT rank
lower in performance, possibly due to language
interference issues. Overall, our data suggests that
a balanced training approach, as exemplified by
AraBERTYV2, offers the most effective strategy for
tasks involving MSA and its various dialects.

Optimal Language Models for Each Dialect
Our investigation underscores the significant im-
pact of the choice of language model on the perfor-
mance of dialectal NER tasks. We find that for the
Egyptian and Moroccan dialects, MARBERTv2
excels as the most effective model. This can be at-
tributed to its specialized training on dialectal data,
allowing it to capture the nuances specific to these
dialects and deliver superior results. In the case of
the Syrian dialect, CAMeLBERT-MSA takes the
lead. Interestingly, this model is primarily trained

Dialect Mixture Mono (Best)
ARBERTvV2 64.56 58.57 (Syr.)
AraBERTv2 58.61 55.92 (Syr.)
CAMeLBERT-DA 54.84 50.20 (Syr.)
CAMeLBERT-Mix 61.49 61.60 (Syr.)
CAMeLBERT-MSA  63.30 63.24(Syr.)

mBERT 58.60 56.05 (Syr.)
MARBERTvV2 66.10 61.38 (Mor.)
mDeBERTav3 60.27 55.92 (Syr.)

Table 5: Performance for MSA when training on a mix-
ture of dialects. We compare the result with the best
obtained result when training on a single dialect.

on MSA but appears to generalize well to the Syr-
ian dialect, perhaps due to linguistic similarities
between the two. This emphasizes the importance
of model-dialect congruence, where using a model
trained on the same or similar dialect as the dataset
can yield better performance.

Training on Mixture of Dialects In the context
of training on a mixture of Arabic dialects and
evaluating on the Modern Standard Arabic (MSA)
dataset, our analysis reveals intriguing insights into
the impact of dialectal diversity on MSA perfor-
mance. Remarkably, the performance metrics sug-
gest that training on a mixture of dialects consis-
tently yields competitive accuracy on the MSA
dataset. This shows that exposure to a diverse range
of dialects during training can enhance a model’s
adaptability and robustness, enabling it to perform
well on MSA.

Effect of Increased MSA Training Data While
training on a diverse range of dialects typically
enhances performance for Modern Standard Ara-
bic (MSA), it is important to note that training on
additional MSA data may not necessarily lead to
improved performance in dialects, as demonstrated
in Table 6.

6 Related Work

Named Entity Recognition for Modern Stan-
dard Arabic The development of Named En-
tity Recognition techniques in Modern Standard
Arabic has been a central focus within the Ara-
bic NLP community. Initially, rule-based NER
systems like those described in Shaalan and Raza
(2008); Abdallah et al. (2012) relied on manually
crafted grammatical rules and gazetteers. While
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Model ARBERTV2 MARBERTvV2 AraBERTv2 CAMeLBERT-DA CAMeLBERT-Mix CAMeLBERT-MSA mBERT mDeBERTav3
Egyptian 55.42 58.29 60.38 53.65 55.19 60.28 53.92 56.78
Moroccan 53.03 54.35 54.52 44.43 50.43 53.31 47.57 51.30
MSA 84.96 84.02 86.61 80.49 84.10 85.51 81.90 84.71
Syrian 65.51 64.45 66.87 57.68 62.81 66.47 59.82 63.36

Table 6: Effect of Increased MSA Data on Performance.

effective, these systems demanded extensive main-
tenance and lacked scalability. Subsequently, ma-
chine learning-based NER methods, as demon-
strated by Benajiba and Rosso (2007); Al-Qurishi
and Souissi (2021), treated NER as a classification
task, leveraging large annotated datasets. This era
also witnessed the fusion of rule-based and ma-
chine learning-based approaches through hybrid
systems (Oudah and Shaalan, 2012; Meselhi et al.,
2014), followed by the adoption of deep learning
techniques, which allowed for the automatic extrac-
tion of intricate features. Deep learning, character-
ized by neural networks processing word and char-
acter embeddings, marked a departure from manual
feature engineering, resulting in significantly im-
proved accuracy and a more streamlined approach
to Arabic NER. In recent years, pretrained lan-
guage models (PLMs) such as BERT (Devlin et al.,
2019) have opened up a new era in Arabic NER.
Arabic-specific PLMs, such as AraBERT (Antoun
et al., 2020) and AraELECTRA (Antoun et al.,
2021), have been meticulously developed and fine-
tuned for NER tasks, offering the advantage of
context-rich information. This evolution has given
rise to a multitude of high-performance systems
(Helwe et al., 2020; El Khbir et al., 2022).

Additionally, extensive annotation efforts have
led to the creation of high-quality MSA NER
datasets. ACE 2005 (Walker and Consortium,
2005) comprises a diverse text collection with an-
notations for seven entity types (PER, ORG, GPE,
LOC, FAC, VEH, WEA), three mention types (NAM,
NOM, PRO), and coreference information. ANER-
corp (Benajiba et al., 2007) comprises articles from
diverse sources. It includes traditional entity types
(ORG, LOC, PER) and introduces a MISC (miscel-
laneous) type. AQMAR (Mohit et al., 2012) com-
prises hand-annotated text extracted from Arabic
Wikipedia articles. It includes 28 articles catego-
rized by domain, each tagged with named entities
and custom entity classes. Wojood (Jarrar et al.,
2022) comprises text sourced from different do-
mains and manually annotated with 21 entity types,
including both flat and nested entities.

Datasets and Named Entity Recognition for Ara-
bic Dialects Few works addressed NER for Ara-
bic dialects. Zirikly and Diab (2014) introduced an
annotated dataset and a named entity recognition
system tailored to the Egyptian dialect. However,
their evaluation focused solely on two entity types:
PER and LOC. In a subsequent work, Zirikly and
Diab (2015) presented a gazetteer-free NER sys-
tem tailored to the Egyptian dialect, evaluated on
three entity types: PER, LOC, and ORG. Additionally,
Moussa and Mourhir (2023) introduced a manually
annotated NER dataset for the Moroccan dialect,
which comprises 4 entity types: PER, LOC, ORG and
MISC.

7 Conclusion and Future Work

In this work, we explore transfer learning for
named entity extraction, specifically from Mod-
ern Standard Arabic (MSA) to various Arabic di-
alects, employing a range of pretrained language
models. For this purpose, we annotated a dataset
including Moroccan, Syrian, and Egyptian dialects.
Our results showed that for both MSA-to-dialects
and dialects-to-MSA scenarios, Syrian data demon-
strated superior performance, which suggests a ro-
bust linguistic affinity between the Syrian dialect
and MSA. Similarly, Egyptian models exhibited
strong results. In contrast, models trained on the
Moroccan dialect consistently face challenges, in-
dicating substantial linguistic divergence between
Moroccan Arabic and MSA.

In future work, we plan to include a wider range
of Arabic dialects to better understand the nuances
and generalization of our results across different
dialectal variants. In addition, we plan to explore
the nested entity task.

Limitations

While our study provides valuable insights into
the transfer learning of named entity extraction be-
tween Modern Standard Arabic and Arabic dialects,
it is important to acknowledge certain limitations:

¢ We focus on three Arabic dialects: Moroccan,
Syrian and Egyptian. While they offer a rep-
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resentative sample of the diversity of Arabic,
extending our dataset to other dialect variants
would enable us to generalize our findings
more effectively.

* The annotation of our dataset relies on a sin-
gle annotator, which may be a potential source
of bias. Future work should consider the in-
volvement of multiple annotators to assess
inter-annotator agreement and ensure labeling
robustness.
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