
Proceedings of the The First Arabic Natural Language Processing Conference (ArabicNLP 2023), pages 1–11
December 7, 2023 ©2023 Association for Computational Linguistics

Violet: A Vision-Language Model for Arabic Image Captioning with
Gemini Decoder

Abdelrahman Mohamedξ Fakhraddin Alwajihλ El Moatez Billah Nagoudiλ

Alcides Alcoba Inciarteλ Muhammad Abdul-Mageedλ,ξ

λ Deep Learning & Natural Language Processing Group, The University of British Columbia
ξDepartment of Natural Language Processing & Department of Machine Learning, MBZUAI

{fakhr.alwajih,moatez.nagoudi,muhammad.mageed}@ubc.ca

Abstract

Although image captioning has a vast array of
applications, it has not reached its full potential
in languages other than English. Arabic, for
instance, although the native language of more
than 400 million people, remains largely under-
represented in this area. This is due to the lack
of labeled data and powerful Arabic generative
models. We alleviate this issue by presenting a
novel vision-language model dedicated to Ara-
bic, dubbed Violet. Our model is based on a
vision encoder and a Gemini text decoder that
maintains generation fluency while allowing
fusion between the vision and language compo-
nents. To train our model, we introduce a new
method for automatically acquiring data from
available English datasets. We also manually
prepare a new dataset for evaluation. Violet
performs sizeably better than our baselines on
all of our evaluation datasets. For example, it
reaches a CIDEr score of 61.2 on our manually
annotated dataset and achieves an improvement
of 13 points on Flickr8k.

1 Introduction

Captioning images involves describing the visual
elements of a picture using natural language. This
requires a system that combines the strengths of
two models: one that can represent the visual ele-
ments of an image, and another that can translate
this representation into natural language. The lat-
ter employs a language model to produce fluent
(i.e., grammatically accurate) and adequate (i.e.,
capturing sufficient semantic information) descrip-
tions. In recent years, research on vision language
models (VLMs) and their applications has boomed
(Alayrac et al., 2022; Wang et al., 2022; Huang
et al., 2023). Owing to the rapid advancements in
large language models (LLMs), the performance
of VLMs has improved dramatically. More con-
cretely, VLMs have progressed from merely pro-
viding descriptions that vaguely resemble a given
image (Vinyals et al., 2015) to accurately describ-
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Figure 1. Examples of captions generated by our model.

ing complex visual cues within the image. The
pretraining-then-finetuning paradigm also plays a
significant role in achieving such impressive results,
as it allows models to first grasp general language
structures and then specialize in the specific task of
image captioning (Gan et al., 2022).

Progress in VLMs, however, has been witnessed
thus far primarily on English Awais et al. (2023).
This leaves behind a large number of other lan-
guages for which no sufficient image captioning
data or language models exist. Arabic is a case
in point where image captioning lags far behind
(Elbedwehy and Medhat, 2023). Similar to other
low-resource languages, progress in Arabic image
captioning has been hampered by the lack of pub-
licly available datasets and limited efforts in cre-
ating any such data. Manual creation of image
datasets, after all, requires a huge amount of time
and labor. Again, the unavailability of powerful
Arabic language models that understands the struc-
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ture of the language and can capture its rich mor-
phology has also caused a delay in the development
of VLMs. Given the rapid progress in vision lan-
guage technologies and their wide applications in
society, limited progress in this area can have nega-
tive consequences for the Arabic-speaking world.

Figure 2. Performance of our model compared to previous
works on Flickr8k using CIDEr metric.

To address this important issue, we introduce a
novel Arabic image captioning model dubbed Vi-
olet. Our new model is comprised of two main
components: a vision encoder and a text decoder.
For the vision encoder, we employ an object de-
tector network based on FasterRCNN (Ren et al.,
2015) to extract visual features that are then passed
to a compact transformer encoder. At the decoder
side, we leverage the recently developed genera-
tive pretrained model JASMINE (Nagoudi et al.,
2022). Taking inspiration from (Yu et al., 2022),
we split our text decoder into two halves: the first
half functions as a text decoder, whereas the sec-
ond incorporates cross-attention layers, effectively
serving as a fusion decoder. Given the dual nature
of our decoder, we refer to it as Gemini. Drawing
parallels with VisualGPT (Chen et al., 2022) and
the meshed transformer (Cornia et al., 2020), we
also adopt a meshed connection between the trans-
former vision encoder and the text decoder to foster
enhanced communication between the encoder and
decoder layers.

The other major challenge we face in our work
is the unavailability of native Arabic captioning
data. We alleviate this challenge by introducing a
method for automatically acquiring captions that
is based on first employing a powerful machine
translation model followed by a quality assurance
mechanism for removing poor captions. For evalu-
ation, in addition to reporting on Arabic translated
dataset, we task five human annotators to manually
caption an image dataset. Compared to previous
works and baselines, our novel model excels in cap-
tioning images in fluent Arabic. Figure 1 offers
four examples of fluent Arabic captions generated
by our novel model. Figure 2 shows a comparison
of our model performance with prior research on

Flickr8k in CIDEr score.
In summary, our contributions are as follows:

• We present a novel image captioning model
that employs an effective pretrained Arabic
decoder capable of outputting rich captions.

• Our model achieves competitive performance
for Arabic image captioning on both the
MSCOCO (Lin et al., 2014) and Flicker8k
(Jia et al., 2014) datasets, establishing a new
state-of-the-art in this area.

• In the process of developing our new model,
we release a translated version of MSCOCO
dataset that has gone through our quality assur-
ance pipeline. Our released dataset can help
further advance research in Arabic VLMs.

• We also release our manually captioned
dataset, a subset of MSCOCO test set, that
we dub AraCOCO.

2 Related Work

Image captioning. Early methods for im-
age captioning involve either retrieving descrip-
tions (Karpathy et al., 2014) or using template fill-
ing combined with manually designed natural lan-
guage generation techniques (Yang et al., 2011; Li
et al., 2011). However, modern image captioning
primarily relies on deep learning models. In early
work, image captioning is framed as an image-
to-sequence task using encoder-decoder models,
with Convolutional Neural Networks (CNNs) as en-
coders and Recurrent Neural Networks (RNNs) as
decoders while incorporating attention mechanisms
(Xu et al., 2015; You et al., 2016; Huang et al.,
2019). Soon after, using a transformer architecture
of a vision encoder with a text decoder became the
defacto direction towards solving the problem of
image captioning (Stefanini et al., 2022). Some
approaches use a detection model to extract vi-
sual features and then pass it to a transformer text
decoder as in Oscar (Li et al., 2020; Chen et al.,
2022), while others like CoCa (Yu et al., 2022) train
a transformer vision encoder with a text decoder
from scratch on a large-scale dataset.

More recently, there has been a shift towards
using pre-trained LLMs and vision models. Gener-
ative Image-to-text Transformer (GIT) (Wang et al.,
2022) is a decoder-only transformer that utilizes
a CLIP (Radford et al., 2021) visual encoder to
incorporate both visual and textual inputs. An-
other method to consider is VisualGPT (Chen et al.,
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Figure 3. The architecture and output generated by our model. We use an object detection network to extract K object features
(K equal 50 in our case) from an image. After projecting to a lower dimension, the features are fed to an L-layer (three-layer in
our architecture) transformer encoder. Meshed connection is employed between the encoder and decoder layers, where each
encoder layer contributes to the cross-attention output. Our text decoder is split into two halves, the first half is the standard
frozen pretrained text decoder layers, while the second half has cross-attention layers inserted after each self-attention layer. We
call this design a Gemini decoder. We employ a gating mechanism through πt and πm that controls the flow of information from
the vision and language sides. The final input to the feed forward network in each cross-attention layer is the weighted sum of
each encoder-decoder attention controlled by the α parameters.

2022) which uses a pretrained FasterCNN to ex-
tract visual features that it passes to a small vision
encoder. For the decoder side, it uses the text-
pretrained model GPT2 (Radford et al., 2019).
Arabic image captioning. Arabic poses signifi-
cant challenges to image captioning. This is due
to the lack of native Arabic captioning datasets in
the public domain, the morphological complexity
of Arabic, and the large number of diverse dialects
(Attai and Elnagar, 2020). However, a number of
Arabic image captioning works exist. For instance,
approaches such as root-word based RNNs and
deep neural networks are used for direct Arabic
caption generation (Jindal, 2017). Al-Muzaini et al.
(2018) employ a generative merge model with three
components: an LSTM-based language model, a
CNN-based image feature extraction model, and
a decoder that processes outputs from the first
two models. ElJundi et al. (2020) introduce an
Arabic captioning model trained on a translated
Flickr8K dataset, discussing issues related to trans-
lation. Afyouni et al. (2021) present AraCap, a
hybrid design that combines a CNN with object de-
tection using attention mechanisms and produces
captions through an LSTM. They train their model
on MSCOCO and Flickr30k (Plummer et al., 2015)

datasets and test on an Arabic translated subset of
MSCOCO. Lasheen and Barakat (2022) propose
an encoder-decoder structure, incorporating atten-
tion mechanisms with CNN encoding and LSTM
decoding. In another study (Emami et al., 2022),
various Arabic image captioning models are for-
mulated and assessed using standard metrics. The
authors use transformers pretrained on diverse Ara-
bic datasets following the architecture and training
method introduced in OSCAR (Li et al., 2020).
Elbedwehy and Medhat (2023) present a model
employing transformers for both encoding and de-
coding. It uses feature extraction from images in
the encoding stage and a pretrained word embed-
ding model in the decoding stage, all tested on the
Arabic-translated Flickr8k dataset in ElJundi et al.
(2020). This work is closest to ours in that we also
utilize transformer encoders and decoders. How-
ever, we use a GPT-styled decoder that endows our
approach with high Arabic fluency.

3 Approach

3.1 Model Architecture

Our model is a vision-encoder-decoder architecture.
For the vision encoder part, we employ an object

3



detection network (Anderson et al., 2018) and a
three-layer transformer. For the text decoder, we
use the pretrained transformer decoder JASMINE
(Nagoudi et al., 2022). To align visual and textual
features, we utilize cross-attention. In standard
attention, also known as self-attention, the attention
output is computed using three matrices derived
from the same input: the query matrix Q, the key
matrix K, and the value matrix V . More concretely,
given an input sequence represented as a matrix
St, where each row corresponds to a vector in the
sequence, the attention is calculated as:

Attn(St) = softmax
(
StWq(StWk)

T

√
dk

)
StWv (1)

Where Wq, Wk, and Wv are the learnable
weight matrices for the query Q, key K, and value
V respectively. dk is the dimensionality of the
query/key vectors. The division by

√
dk is a scal-

ing factor to ensure the dot products don’t grow too
large as the dimensionality increases.

In the case of cross-attention, the query is de-
rived from the output of the text decoder’s self-
attention, while the key and value are sourced from
the vision encoder. Mathematically, given image
visual features output Sm, and the textual features
St, the formula becomes:

XAttn(St, Sm) = softmax
(
(StWq)(SmWk)

T

√
dk

)

× SmWv

(2)

Now that the attention mechanism foundations are
laid out, we describe our vision encoder and text
decoder in detail.

3.1.1 Vision Encoder
Our vision encoder consists of two components: a
pretrained object detection network, and a three-
layer transformer encoder. For the object detection
network, we employ bottom-up attention network
(Anderson et al., 2018). In our initial experiments,
it results in superior visual features compared to
using the vanilla FasterRCNN model (Ren et al.,
2015). Previous works (Li et al., 2020; Cornia
et al., 2020; Chen et al., 2022) also show the ef-
fectiveness of this network in feature extraction.
The transformer encoder, on the other hand, is a
three-layer standard transformer architecture that
takes the output of the detection network to further
refine the visual features. For each image, the de-
tection network detects the potential objects and

extracts the visual features from their bounding
boxes.1 These visual features are passed through
a projection layer and then fed to the three-layer
transformer encoder as input. We adapt meshed
connection (Cornia et al., 2020) in our architecture
between the encoder layers and the text decoder.
This allows all the encoder layers to contribute to
the input of the cross-attention rather than using
only the output of the last encoder layer. The con-
tribution of each encoder layer is determined by
the learnable parameters matrix α. For each layer
i, αi is calculated as:

αi = σ(Wi[St ∥ XAttn(Smi , St) + bi]) (3)

Where St is the input sequence of each decoder
layer, σ is the sigmoid activation function, Wi is a
learnable weight matrix, bi is a bias term and ∥ in-
dicates concatenation. This measures the relevance
between the input for each decoder layer St, and
the output of each encoder layer.

3.1.2 Gemini Decoder
We employ the pretrained Arabic decoder JAS-
MINE (Nagoudi et al., 2022) as our text decoder.
JASMINE is a decoder-based transformer that fol-
lows GPTNeo architecture (Black et al., 2021).
JASMINE models range in complexity from 300
million to 13 billion parameters and are trained on
a text dataset of approximately 400GB, covering di-
verse Arabic varieties from multiple domains. We
utilize the JASMINE base variant in our architec-
ture, which is a 12-layer transformer decoder with
a 768-dimensional embedding.

Although the meshed connection introduced
in Cornia et al. (2020) proved to have positive im-
provements on performance due to the richer visual
features, calculating the cross-attention of each en-
coder layer with each decoder layer is computation-
ally expensive. Inspired by Yu et al. (2022), we
split our pretrained text decoder into two parts. The
first part acts as a vanilla text decoder, while the sec-
ond part acts as a fusion decoder that aligns visual
and textual features. This design choice serves two
purposes. First, it reduces the computations and the
number of parameters by removing cross-attention
layers and the mesh connections in the first half
of the decoder. Second, having its first half intact
acting as a vanilla text decoder, allows our decoder
to keep its innate generative capabilities, while also
enabling smoother convergence.

1A bounding box is a region in the image that contains the
object.
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As shown in Figure 3, the first half has only
the pretrained self-attention layers of JASMINE.
While the second half got cross-attention blocks
inserted in-between each layer, acting as a fusion
decoder. To ensure maintaining the functionality of
our pretrained decoder, we freeze the first part that
acts as the text decoder. This modification not only
decreases computational cost but also positively
impacts overall performance. In order to further
enhance the quality of the features generated by
both the vision encoders and the text decoder, we
employ self-resurrecting activation unit (SRAU)
introduced in Chen et al. (2022). The process of
generating a caption relies on visual cues to convey
the image’s content and textual cues to provide
relationships between words for a coherent and
fluent output. To allow the important information to
flow without distortion, SRAU selectively permits
the activation above a certain threshold through
a gating mechanism. This effectively filters out
any weak signal produced by either the vision or
language part.

Concretely, as shown in Figure 3, for each
encoder-decoder connection, the output Zi to the
feedforward layer is calculated as:

Zi = πm ⊗XAttn(St, Smi) + πt ⊗Attn(St), (4)

in which πm is the gating parameter for the vision
part and πt for the text part, calculated as:

πm = σ(An)1(σ(An) > τ), ∀n ∈ Attn(St)

πt = (1− σ(An))1(1− σ(An) > τ) ∀n ∈ Attn(St)

where σ is the sigmoid function, An is an element
in the attention matrix, 1 is an indicator function
that equals one if the condition is true and zero
otherwise, and τ is a hyperparameter. This negates
any disturbance caused by weak activations below
the threshold τ by zeroing them out. The final out-
put Z to the feedforward layer will be the sum of
each encoder-decoder connection weighted by the
learned parameter α introduced earlier, mathemati-
cally:

Z =
1√
L

L∑

i=1

αiZi (5)

Where L is the number of encoder layers, set to
three in our architecture.
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A street full of motorcycles and their riders

Some dogs stick their heads out the car window.

Computer monitor and accesories sitting on a desk.

A dog herding sheep at a herding event.

شارع مليء بالدراجات الناریة وركوبھم

.بعض الكلاب تلتصق رؤوسھم خارج نافذة السیارة

.مراقبة الكمبیوتر ومراسلات الجلوس على مكتب

.غنم رعي كلب في حدث رعي

شارع مليء بالدراجات الناریة وركابھا

بعض الكلاب تخرج رؤوسھا من نافذة السیارة

شاشة الكمبیوتر وملحقاتھا جالسة على مكتب

كلب یراعي الخراف في حدث رعایة

Figure 4. A comparison between the translations produced
by Google translate API and NLLB for MSCOCO dataset.
Unlike NLLB, Google API tends to give literal translations
without incorporating the context.

3.2 Data Collection

Owing to the unavailability of high-quality Ara-
bic captioning training data, we first start by cre-
ating a training dataset for our model. Manu-
ally labeling and creating a new dataset would
be both time-consuming and expensive; therefore,
we opt for translating the commonly used caption-
ing dataset Microsoft Common Objects in Context
(MSCOCO) (Lin et al., 2014). There are two fa-
mous training/validation splits for this dataset, the
2014 Karpathy’s split, and the 2017 split. Both
splits contain the same images and only differ in
the split ratio. The dataset covers around 80 dif-
ferent objects in a total of 123k images with 5 cap-
tions per image. The dataset is annotated manually,
which makes it suitable for evaluation. We create
our dataset in two steps, (i) translating the English
MSCOCO, followed by (ii) a quality assurance step
to filter poor translations.

3.2.1 Machine Translation

In all of the previous attempts at Arabic image
captioning pretraining (ElJundi et al., 2020; Sabri,
2021; Emami et al., 2022), Google translate API
(Google, 2023) was used for translating the datasets.
However, the quality of the translations produced
by it is not satisfactory. In Sabri (2021) it is re-
ported that from a random sample of 150 exam-
ples, a whooping 46% of the translations obtained
by Google API are unintelligible. Motivated by
that, we investigate Meta’s No Language Left Be-
hind model (NLLB) model (Costa-jussà et al., 2022)
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for translation. Figure 4 illustrates a comparison
between the translations produced by the Google
Translate API and NLLB for four sentences sam-
pled from MSCOCO dataset.

We conduct our comparison between the two
translation models, Google Translate API2 and
NLLB, on two aspects. First, we manually check
the quality of 200 sentences translated by both mod-
els. Second, we calculate the perplexity of the
translations of both models using our JASMINE
decoder. Perplexity calculates the probability of a
given sequence, providing insight into the fluency
of the output translations. Lower perplexity scores
indicate better fluency, while higher scores indicate
poor fluency. This metric helps us to quantitatively
gauge how good the translations are, supplement-
ing our manual evaluation to offer a comprehensive
understanding of the models’ performance. Sub-
sequently, our observations reveal that the Google
API tends to provide a more literal translation in
comparison to NLLB. Empirically speaking, we
find that 42% of Google’s translations are unin-
telligible, a stark contrast to the mere 15% from
NLLB. Interestingly, this observation is consistent
with findings presented in Sabri (2021). Further-
more, when pitted against ChatGPT (Ouyang et al.,
2022), the latter displays an impressive error rate
of only 7% in its translations. However, we opted
for NLLB due to its open-source nature.

Sim Translated CaptionOriginal Caption

0.08 m m m m m m m m mmm m m mلا ، لا ، لا ، لا ، لا ، لا 
m 

0.03 AN older man smiles while holdingأنَْتَ أبَوُ بكَْرٍ؟
his luggage

0.51 صالون " صحون " بیضاء وذھبیة فیھا " أي "
. " الفاكھة " مرتبة

white and gold plates with various
arranged fruits

0.57 This is a thing that isھذا شيء واضح وواضح
straightforward and plain. 

0.19 ستارة حمام حمام حمام حمام حمام حمام حمام
حمام حمام حمام حمام حم ـــــــــ

Red and white shower curtain in
household bathroom.

0.19 A teddy bear with a pacifier and aدب بـ (مـا) و (مـا) و (مـا)
baby bottle.

0.26 AN IAMGE OF A BATHROOMحلم حمام مع مرحاض ومستحمام
WITH A TOILET AND A SHOWER 

0.31 Two doge have their paws out in anدوجیان یرفعان كفیھما في صورة مفرطة
overexposed picture.

Figure 5. Examples of the rejected translations from the
dataset and their semantic similarity to the English caption.
Where orange highlighting refers to poor translation, and red
highlighting refers to poor original caption.

3.2.2 Data Quality Assurance
Although NLLB in general provides better transla-
tions compared to that of Google API, it can still

2The Google Translate API, integrated into Google Sheets,
was used to translate the subset of data utilized in the compar-
ison.

output ‘hallucinations’ and ultimately poor transla-
tions. This can be seen in the orange highlighted
instances in Figure 5. Moreover, our manual inspec-
tion reveals that some English captions in the orig-
inal dataset are indeed incorrect. The MSCOCO
training set can have incomprehensible samples,
typos, and even unrelated captions. Examples high-
lighted in red in Figure 5 illustrate these poor cases.
To mitigate this issue, we employ a simple method
based on semantic similarity that allows us to iden-
tify and reject any such examples.

The semantic similarity of two sentences, as the
term suggests, is an indicator of the extent to which
these two sentences align. A simple comparison
between the embeddings of the two sentences can
be obtained by passing each of them through a
model and a metric such as cosine similarity can
be calculated to determine how alike the two em-
beddings are. The smaller the angle between the
two vectors, the higher the similarity score, indi-
cating that the sentences are closer in meaning.
When the sentences are in different languages, it
is crucial to employ a multilingual model to gen-
erate accurate embeddings, ensuring the semantic
comparison remains valid across languages. In our
experiments, we employ sentence-BERT (Reimers
and Gurevych, 2019) to calculate the semantic sim-
ilarity between each original caption and its trans-
lation. We empirically chose a similarity score
threshold of 0.6, rejecting all captions below that
threshold. This results in removing a total of 60K
samples from the whole dataset, which amounts to
approximately 10% of the data.

3.2.3 AraCOCO Evaluation Dataset
Evaluating the performance of an Arabic caption-
ing model presents a significant challenge due to
the limited availability of human captioned data.
To tackle this issue, we manually annotate a subset
of 500 images from the MSCOCO test set, dubbing
our resulting dataset AraCOCO. For each of the
500 images, we acquire five distinct captions. To
ensure diversity of image descriptions, we acquire
captions from five native Arabic-speaking annota-
tors. The human labeling process is carried out
using Label Studio, a platform designed for such
tasks. Each annotator is presented with the same
set of images and is asked to write an Arabic cap-
tion describing the image given a unique English
caption as a reference. We encourage annotators
to provide an Arabic caption that is more descrip-
tive whenever possible. That is, in cases where the
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English Caption NLLB Translation AraCOCO

An airport with large jetliners and a bus
traveling on a tarmac.

�éÊ 	̄ Agð �èQ�
J.» �H@Q
KA£ ©Ó PA¢Ó
h. PYÖÏ @ úÎ« Q 	̄ A���

	àA�KQ�
J.» 	àA�KQ
KA£ éK. PA¢Ó ÐAÓ


@ ÉJ
 	j	JË @ PAm.�

��
@

. �éJ
»ñºÓ �HC 	̄ Agð H. A¿QÊË
a group of buses driving around at the
airport

PA¢ÖÏ @ ú

	̄ Q�
��� �HC 	̄ AmÌ'@ 	áÓ �é«ñÒm.× Èñj. �J�K �HC 	̄ AmÌ'@ 	áÓ �é«ñÒm.×

PA¢ÖÏ @ ú

	̄

Airplanes sit at the gate as transportation
vehicles move about.
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A busy runway with buses and luggage
carts driving around
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An airplane and busses are lined up at
the airport.

�éÒ 	¢�J 	JÓ �HC 	̄ Agð �èQ
KA£
PA¢ÖÏ @ ú


	̄
�éÒ 	¢�J 	JÓ �HC 	̄ Agð �èQ
KA£
PA¢ÖÏ @ ú


	̄

Table 1: A comparison between original MSCOCO captions (first column), their NLLB translations (second
column), and AraCOCO captions (third column) for the image in Figure 6.

Figure 6. A sample from MSCOCO included in our Ara-
COCO.

English caption is not capturing all details in the
image, annotators are encouraged to capture these
lacking details in their Arabic captions. Each an-
notator gets to provide only one caption per image,
This approach ensures having multiple perspectives
to the captions on the same image. We provide an
example image from AraCOCO in Figure 6, along
with five different captions each acquired from one
annotator in Table 1.

4 Experiments

We analyze the performance of three variations
of our architecture: (i) using the normal decoder
with cross-attention in each layer, (ii) using Gem-
ini decoder without freezing the text part, and (iii)
using Gemini decoder while freezing the text part.
As a baseline, we train a VisualGPT model (Chen
et al., 2022) on the English MSCOCO training set
then translate output into Arabic using NLLB. Our
trained VisualGPT achieves a 117.8 CIDEr score
on the English MSCOCO validation set. We con-
duct our experiments on three datasets, as follows:
(i) Our translated MSCOCO: Following the
Karpathy split, our translated and filtered
MSCOCO contains 543, 817 samples for training

(Train), 22, 845 samples for validation (Dev), and
22, 912 samples for testing (Test). We refer to this
dataset as MSCOCO.
(ii) Translated Flickr8K: Similar to the orig-
inal Flickr8k, the translated dataset introduced
in ElJundi et al. (2020) consists of 6, 000 images
for Train, 1, 000 images for Dev, and 1, 000 for
Test. Each Image has three captions, all translated
using Google translate API. We refer to this dataset
simply as Flickr8K.
(iii) AraCOCO: As described in Section 3.2.3,
AraCOCO consists of 500 images from Karpathy
test split. Each image has five captions, all obtained
from human annotators.

4.1 Implementation Details

We use JASMINE base (300m) as our text decoder.
While for the detection network, following pre-
vious works (Li et al., 2020; Cornia et al., 2020;
Chen et al., 2022), we employ bottom-up attention
network (Anderson et al., 2018) based on Resnet-
101 backbone (He et al., 2016) with 2, 048 output
features. We also limit the maximum number of
detections per image to 50 bounding boxes. The
three-layer transformer encoder contains 12 atten-
tion heads per layer with 768 embeddings dimen-
sion.

As we utilize the JASMINE decoder (Nagoudi
et al., 2022), we adopt its byte-pair encoding
(BPE) vocabulary where frequent character pairs
are merged to form subwords. This vocabulary
encompasses 63, 999 tokens. For data preprocess-
ing, we employ a custom normalizer that removes
punctuation and repeated characters.

For the optimization part, in all experiments, we
use AdamW Loshchilov and Hutter (2019) with a
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Model BLEU-1 ↑ BLEU-4 ↑ Rouge ↑ CIDEr ↑

VisualGPT 56.2 21.4 44.1 82.1

Violet (w/o Gemini) 45.1 11.3 34.1 41.2

Violet (w/ Gemini) 59.2 21.5 46.3 83.2

Violet (w/ Gemini) � 60.3 24.8 47.2 84.9

Table 2: Results on the translated MSCoco test set. VisualGPT is trained by us on the MSCOCO dataset, and the
outputs were translated using NLLB (Costa-jussà et al., 2022). (w/o Gemini) means using a normal text decoder
with meshed cross-attention in each layer. � indicates freezing the first part of the text decoder.

learning rate of 1e−4, and empirically set τ to 0.3.
The model is trained using a batch size of 60 for
20 epochs while employing early stopping with a
patience of 5 on the validation loss. For Flickr8k,
we use our MSCOCO-pretrained model and only
finetune it for one epoch on Flickr8k’s training data.
We employ a cross-entropy loss and train the model
in an auto-regressive manner, where the decoder
predicts the next token given the visual features
and the previously generated textual tokens.

4.2 Results and Discussion
We evaluate the performance of our models against
previous methods on the popular evaluation met-
rics BLEU (Papineni et al., 2002), ROUGE (Lin,
2004), and CIDEr (Vedantam et al., 2015). The
results of our models on our MSCOCO dataset are
displayed in Table 2. Our Gemini decoder with six
frozen layers (last row in Table 2) achieves better
performance while having fewer computations than
the unfrozen counterpart. Furthermore, it achieves
around three points higher CIDEr score compared
to the translated VisualGPT outputs (first row in
Table 2). The poor performance observed using
the full decoder with cross-attention layers (sec-
ond row in Table 2), compared to other variants
may be due to sensitivity of the decoder parameters
which end up being changed significantly with full
cross-attention across all its layers.

Model BLEU-1 BLEU-4 Rouge CIDEr

Elbedwehy and

Medhat (2023)

58.7 16.5 38.0 46.9

Emami et al. (2022) 39.0 09.0 33.4 42.3

Violet 44.2 13.0 38.4 60.1

Table 3: Results on Flickr8k test set from (ElJundi et al.,
2020). The results are taken from the respective papers.

To compare our Arabic captioning model with

previously published Arabic models, we evaluate
our model on the Flickr8k test set from (ElJundi
et al., 2020). As shown in Table 3, our model
achieves 2 points better score on the ROUGE met-
ric, while having a substantial improvement over
previous published results in the CIDEr metric. Our
model scores 13 points higher than the best model
of the two previous models. On the other hand, our
model falls behind in BLEU score against Elbed-
wehy and Medhat (2023). It is worth noting, how-
ever, that we are only comparing to published re-
sults of Elbedwehy and Medhat (2023) since their
model is not available (i.e., not released). They
have also used the validation set of Flickr8k in their
training, and applied self-critical (Rennie et al.,
2017) with no mention of the target data, thus giv-
ing their model an advantage over our own model.
Regardless, for image captioning, it is known that
the CIDEr (where our model excels) is a more rel-
evant evaluation metric than BLEU. Finally, we

Model BLEU-1 BLEU-4 Rouge CIDEr

VisualGPT 52.7 17.6 40.2 58.5

Violet 54.5 19.0 41.8 61.2

Table 4: Results of our model against translated outputs
of VisaulGPT on AraCOCO.

score our model on our manually annotated dataset,
AraCOCO. As shown in Table 4, our model again
exhibits sizeable gains compared to our baseline
model (i.e., the translated output of VisualGPT).
This means that we cannot expect a satisfactory
performance by simply taking output from a VLM
trained on English data and translating it into Ara-
bic, further corroborating our previous findings and
motivating future work on developing VLM mod-
els that natively tailored to Arabic language.
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5 Conclusion

In this paper, we introduced Violet, an Arabic im-
age captioning model leveraging the pretrained text
decoder JASMINE. Our results demonstrated the
efficacy of our Gemini decoder in enhancing per-
formance while simultaneously reducing the num-
ber of model parameters and computations. We
also presented a new method that is effective for
acquiring Arabic captioning data from available
English data. In addition, we manually annotated a
new dataset for evaluating Arabic image captioning
models. Our model outperforms all of our base-
lines and promises to enable benchmarking in this
area. We will release our model and datasets to
advance Arabic vison-language research.

6 Limitations

Similar to other image detection-based captioning
models, the dependence on an external network to
provide the visual features introduces an additional
layer of complexity to the model. Since the model
is not trained end to end, during inference, the vi-
sual features must first be obtained from the detec-
tion network before passing it to the vision encoder.
Another limitation arises from the constraints of
the training data. Since MSCOCO focuses solely
on 80 class objects, the model’s applicability in
real-world scenarios is restricted. In our future
work, we aim to address both of these limitations
to enhance Arabic models’ efficiency and broaden
their practical usage.

7 Ethics Statement and Broad Impact

Bridging the Gap in Multilingual Image Cap-
tioning. Image captioning serves as a crucial
bridge between vision and language, with its appli-
cations touching numerous domains such as acces-
sibility, education, and search engines. For a long
time, the privilege of these advancements has been
constrained to a handful of languages, primarily
due to the lack of necessary datasets and dedicated
research in other languages. Arabic, with its vast
speakers and rich history, has unfortunately been
left behind in this domain. Our work with Violet
seeks to rectify this disparity, providing a robust
foundation for Arabic image captioning. By releas-
ing Violet and the datasets, we aim to invigorate
research in this direction, promoting inclusivity
and equal opportunity in NLP and computer vision
advancements across languages.

Automated Data Acquisition and Transparency.
To overcome the challenge of limited labeled data
for Arabic image captioning, we employed a novel
method for data acquisition using available English
datasets. While this approach provides a solution,
it also warrants a discussion on the accuracy, bias,
and quality of the automatically acquired data. We
emphasize that while our method provides a foun-
dational dataset, manual annotations and human
evaluations remain paramount for ensuring data
quality and avoiding propagation of errors.

Acknowledgment of Data Sources and Fair
Credit. Similar to ensuring proper credit assign-
ment for benchmarking tasks, we emphasize the
importance of acknowledging the original data
sources we leveraged, especially in the context of
automated data acquisition. Users and researchers
utilizing our datasets and model are encouraged
to cite and acknowledge the original datasets and
sources. This practice ensures that original creators
receive the recognition they deserve and promotes a
culture of transparency and fairness in the research
community.
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