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Introduction

Welcome to ALTA2023, the 21st Annual Workshop of the Australasian Language Technology Asso-
ciation. We’re thrilled to have you join us in Melbourne, Australia, from November 29 to December
1, 2023. After several years of hybrid format due to COVID, this year ALTA will largely operate as an
offline event with limited online capability, so as to encourage the community to come together in person.

ALTA is the premier workshop for natural language processing or computational linguistics in the Austra-
lasia region (despite being downgraded to C by CORE2023) and it is now indexed by Scopus (after efforts
by the ALTA executive committee). This year the programme includes 3 keynote talks (with 1 more joint
keynote with AI@Melbourne Connect Symposium), 1 tutorial, 1 panel discussion, 5 oral sessions and
1 poster/demo session. In addition to long/short academic papers, shared task papers and non-archival
abstract presentations, we’ve introduced a new category of submission — industry demonstrations — to
foster greater industry involvement. In terms of submission statistics, we received 25 long/short papers,
6 shared task papers, 6 abstract presentations and 2 industry demonstrations, and accepted 17 long/short
papers (breakdown: 10 long and 7 short) and all submitted shared task papers, abstract presentations and
industry demonstrations. Our acceptance rate for long/short papers (68%) aligns with last year’s figures.
Note that all long/short papers went through the double-blind peer-review process (shared task papers,
abstract presentations and industry demonstrations, however, did not).

2023 has been an interesting year. We saw large language models breaking into mainstream consciou-
sness, and within a year (ChatGPT was released on 30 November 2022) they have transformed the field
in both academia and industry. This is reflected in our keynote talks, panel discussion and industry de-
monstrations, which all feature large language models to some extent. One of the accepted papers even
credits a large language model as a co-author.

This workshop could not have happened without the help and enthusiastic participation of many parties,
and we would like to give a big ‘thank you’ to all of them. Specifically, we want to thank our keyno-
te speakers — Reza Haffari (Monash), Heng Ji (Illinois Urbana-Champaign) and Terrence Szymanski
(SEEK) — for their inspiring talks. Special thanks to the organising and program committee whose hard
work made ALTA a reality. Lastly, we want to express our appreciation to our sponsors: Melbourne
Connect and Telstra (Platinum); The University of Melbourne AI Group, Google and Defense Science
and Technology Group (Gold); SEEK (Silver); and Redenlab and Commonwealth Bank (Bronze). 2023
financially hasn’t been the best year, and we’re incredibly thankful for the support you’ve provided.

Welcome to Melbourne! Our submissions have come from many places, and we look forward to a rich
and rewarding time together.

Jey Han Lau

Program Chair
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Keynote Talk: Towards Effective NLP Systems: Cultural
Norms, Explainability, and Reasoning Enhancement

Reza Haffari
Monash University

2023-11-30 09:00:00 – Room: The Forum, Superfloor, Melbourne Connect

Abstract: Effective real-world NLP systems need to be trustworthy and take users’ contexts into ac-
count. As such, they need to recognise and adhere to cultural norms, be able to explain their outcomes,
and be capable of complex reasoning with certified knowledge. In this talk, we describe our research
towards these goals. First, we discuss the challenges of adhering to socio-cultural norms in cross-cultural
and multilingual communications. We present our work on assistive dialogue systems that can identify
and address norm violations. Second, we highlight the importance of explaining the outcomes of NLP
models while considering the user context. We present methods for generating fast, high-quality, and
context-aware explanations. Finally, we look into the limitations of large language models (LLMs) in
knowledge hallucination and complex reasoning. We propose a systematic approach to assess LLMs’
knowledge using knowledge graphs and enhance their complex reasoning capabilities for improved ac-
curacy and trustworthiness.

Bio: Gholamreza (Reza) Haffari is a Professor in the Department of Data Science and Artificial Intelli-
gence (DSAI), Monash University, Australia. He is an Australian Research Council (ARC) Future Fellow
and the Director of the Vision and Language Group. Reza’s research has been supported by awards and
grants from government and industry, including ARC, Google Research, Amazon Research, eBay Re-
search, and Adobe Research. His research is in the intersection of Natural Language Processing, Deep
Learning, and Machine Learning.
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Keynote Talk: SmartBook: An AI Prophetess for Disaster
Reporting and Forecasting

Heng Ji
University of Illinois Urbana-Champaign

2023-11-30 12:00:00 – Room: The Forum, Superfloor, Melbourne Connect

Abstract: History repeats itself, sometimes in a bad way. Preventing natural or man-made disasters re-
quires being aware of these patterns and taking pre-emptive action to address them. Effective response to
emerging events like the COVID pandemic and the Ukraine Crisis require a time-sensitive comprehensi-
ve understanding of the situation. Automated generation of situation reports can significantly reduce the
time, effort, and cost for domain experts when preparing their official human-curated reports. However,
AI research toward this goal has been very limited, and no successful trials have yet been conducted to
automate such report generation and “what-if” disaster forecasting. In this talk I present SmartBook, a
novel framework that cannot be solved by ChatGPT, to consume large volumes of news data and produce
a structured situation report with multiple hypotheses (claims) summarized and grounded with rich links
to factual evidence through claim detection, fact checking, misinformation detection and factual error
correction. SmartBook can also serve as a novel news event simulator or an intelligent prophetess when
given “What-if” conditions and dimensions elicited from a domain expert user concerning a disaster sce-
nario.

Bio: Heng Ji is a professor at Computer Science Department of University of Illinois Urbana-Champaign.
She is an Amazon Scholar. She is the Founding Director of Amazon-Illinois Center on AI for Interactive
Conversational Experiences (AICE). She received her B.A. and M.A. in Computational Linguistics from
Tsinghua University and her M.S. and Ph.D. in Computer Science from New York University. Her resear-
ch interests focus on Natural Language Processing, especially on Multimedia Multilingual Information
Extraction and Knowledge-enhanced Large Language Models. Some awards include “Young Scientist”
by World Laureates Association in 2023; “Young Scientist” and a member of the Global Future Council
on the Future of Computing by the World Economic Forum in 2016 and 2017; “Women Leaders of Con-
versational AI” (Class of 2023) by Project Voice; “AI’s 10 to Watch” Award by IEEE Intelligent Systems
in 2013, NSF CAREER award in 2009; Best Demo Paper Awards at ACL2020 and NAACL2021.
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Keynote Talk: The commoditisation of NLP in industry
Terrence Szymanski

SEEK
2023-12-01 09:00:00 – Room: The Forum, Superfloor, Melbourne Connect

Abstract: Is NLP becoming a commodity? In 2023, thanks to a thriving ecosystem of open-source li-
braries and commercial services, building applied NLP solutions is easier than it ever has been before.
The barrier to entry is low, and NLP technology which previously would have required a team of ex-
perts is now accessible to a vast audience of data scientists, developers, and enthusiasts. Even the most
cutting-edge developments in large language models are readily accessible, and consumers can pick and
choose between different models and nearly interchangeable service providers. In my talk, I will share
some of my experiences building applied NLP services at SEEK, as well as some of my observations on
how the “commoditisation of NLP” has (and has not) impacted the way that these services are currently
developed and deployed. I will also offer my perspectives on some broad questions raised by the com-
moditisation of NLP: What new opportunities are unlocked? What new risks and challenges do we face?
And what does this mean for the NLP community and the future of NLP?

Bio: Terrence Szymanski is a Principal Data Scientist at SEEK, where he leads a team of data scientists
responsible for the Selection and Standout domains. His team build and deploy ML models to match
jobs and candidates; NLP models to extract and normalise information from unstructured documents;
deep learning models to learn fine-tuned representations of text; and multiple other related AI services.
Terrence obtained his PhD in Linguistics from the University of Michigan, and he performed postdoctoral
research at University College Dublin. His research has spanned diverse areas such as morphological
inference, computational historical linguistics, and text analytics. He has been practicing data science
in industry since 2016, working at ANZ bank before joining SEEK. He is a founder and organiser of
the NLP Reading Group at SEEK, a winner of hackathons inside and outside of SEEK, and a regular
attendee (and occasional organiser) of data-science-related Meetups around Melbourne.
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BanglaClickBERT: Bangla Clickbait Detection from News Headlines using
Domain Adaptive BanglaBERT and MLP Techniques

Saman Sarker Joy, Tanusree Das Aishi, Naima Tahsin Nodi, Annajiat Alim Rasel
Department of Computer Science and Engineering

BRAC University, 66 Mohakhali, Dhaka-1212, Bangladesh
{saman.sarker.joy, tanusree.das.aishi, naima.tahsin.nodi}@g.bracu.ac.bd

annajiat@bracu.ac.bd

Abstract
News headlines or titles that deliberately per-
suade readers to view a particular online con-
tent are referred to as clickbait. There have
been numerous studies focused on clickbait de-
tection in English language, compared to that,
there have been very few researches carried out
that address clickbait detection in Bangla news
headlines. In this study, we have experimented
with several distinctive transformers models,
namely BanglaBERT and XLM-RoBERTa. Ad-
ditionally, we introduced a domain-adaptive
pretrained model, BanglaClickBERT. We con-
ducted a series of experiments to identify the
most effective model. The dataset we used
for this study contained 15,056 labeled and
65,406 unlabeled news headlines; in addition
to that, we have collected more unlabeled
Bangla news headlines by scraping clickbait-
dense websites making a total of 1 million un-
labeled news headlines in order to make our
BanglaClickBERT. Our approach has success-
fully surpassed the performance of existing
state-of-the-art technologies providing a more
accurate and efficient solution for detecting
clickbait in Bangla news headlines, with poten-
tial implications for improving online content
quality and user experience.

1 Introduction

The Internet has led to a surge in the use of online
news media, which provides users with easy access
to information at any time. However, news web-
sites use clickbait headlines that can be misleading
and frustrating to users. These headlines are de-
signed to attract users and create suspense, contain-
ing exaggerated information that does not match
the content. Clickbait headlines aim to lure users
into clicking on them but ultimately cause frustra-
tion. Pengnate et al. concluded a research and
found that clickbait headlines can lead to higher
click-through rates, but may lead to negative user
experiences such as frustration and disappointment.
Examples of clickbait headlines in Bangla are in

খােলর মােঝ টানা জাল িদেতই উঠেলা
িবশাল বড় িচতই মাছ, �জেলেদর মাছ ধরার
িভিডও ভাইরাল
As the nets drag in the canal, big tuna catfish,
the fishing video went viral! - Type: Formatting

আমার �ী �াইমারী �ুেলর �টচার একিদন
রােত িডনােরর �শেষ ...

My wife is a primary school teacher, one
night at dinner... - Type: Curiosity Gap/Teasing

িরমাে� যােদর িবষেয় ���পূণ � তথ� িদেলই
পরীমিন

Porimoni gave important information about
those on remand - Type: Ambiguous

Figure 1: Examples of Bangla clickbait news headlines
with its corresponding English translation and type of
clickbait

Figure 1. The core differences between clickbait
and non-clickbait is described in Appendix A.

The use of online news media has increased
rapidly in Bangladesh, with an estimated 66.3 mil-
lion internet users1 and 14 million online readers of
Prothom Alo (Correspondent, 2022), one of the top
newspapers in the country. However, the increasing
number of clickbait titles on news websites has be-
come a significant issue, leading to frustration and
disappointment among users. While research has
been conducted on clickbait detection in English,
very little has been done in Bangla, a language
spoken by millions of people in Bangladesh and
other countries. In English, for The Clickbait Chal-
lenge 2017, Webis Clickbait Corpus 2017 (Potthast
et al., 2018b) was created which had a total of
38,517 sentences from major US news publishers.
In Bangla, Mahtab et al. have constructed a Bangla
clickbait detection dataset containing 15,056 la-
beled news articles and 65,406 unlabelled news
articles. In this paper, we present BanglaClick-
BERT, a pretrained model for clickbait detection in

1https://www.cia.gov/
the-world-factbook/countries/bangladesh/

1

https://www.cia.gov/the-world-factbook/countries/bangladesh/
https://www.cia.gov/the-world-factbook/countries/bangladesh/


Bangla news websites. We use the labeled dataset
for training and validating our model and scrape
clickbait-dense websites to gather more unlabelled
news article headlines, increasing the number of
unlabelled news headlines to around 1 million. We
use this to pretrain the BanglaBERT (Bhattachar-
jee et al., 2022) model, which we then pretrain to
create BanglaClickBERT.

The main contributions of this paper can be sum-
marized as follows:

• We scrape clickbait-dense websites and cre-
ate an unlabelled news headlines dataset
of around 1 million which we use to pre-
train BanglaBERT model converting it to
BanglaClickBERT.

• We experiment with different machine learn-
ing models, deep neural network models, and
transformers models like BanglaBERT, XLM-
RoBERTa, and our BanglaClickBERT to de-
velop a Bangla Clickbait Detection model for
Bangla news headline data. We compare the
performance of our model using different met-
rics.

2 Literature Review

The roots of clickbait can be found in tabloids,
a form of journalism that has existed since the
1980s (Bird, 2008). The three primary sources
from which clickbait identification attributes may
be generally retrieved are (1) the related article
that the post text wants the user to visit, (2) meta-
data for both, and (3) the connected article (Munna
and Hossen, 2021). Potthast et al. and Biyani
et al. additionally took into account metadata, re-
lated content, and handcrafted elements in addi-
tion to the post-text analysis. They used meth-
ods like Gradient Boosted Decision Trees (GBDT)
and assessed the TF-IDF similarity between the
headline and article content. Potthast et al. in
another paper also mentioned the Clickbait Chal-
lenge 2017, which invited the affirmation of 13
detectors were presented as the clickbait detectors
for screening, realizing considerable enhancements
in detecting performance above the prior state of
the art. Zhou first used a self-attentive RNN to
choose the crucial terms in the title before build-
ing a BiGRU network to encode the contextual
information for the 2017 Clickbait Challenge. On
the contrary, Thomas used an LSTM model for
the clickbait challenge that included article con-
tent. To create the word embedding of clickbait

titles, Rony et al. applied the continuous skip-gram
model. Nevertheless, Indurthi et al. were the first
to study the use of transformer regression mod-
els in clickbait identification and won the clickbait
challenge. Additionally, Hossain et al. produced
the first dataset of Bengali newspapers for Bengali
false news detection of around 50K Bangla news
articles in an annotated dataset. Besides Bangla,
we have explored about clickbait detection tech-
niques in news and social media in other languages.
Genç and Surer used Logistic Regression (85% ac-
curacy), Random Forest (86% accuracy), LSTM
(93% accuracy), ANN (93% accuracy), Ensemble
Classifier (93% accuracy), and BiLSTM (97% ac-
curacy) on 48,060 headlines from news sources
pulled from Twitter for Turkish clickbait detection.
Moreover, Razaque et al. used Long short-term
memory, Word2vec and compared their models
with Naive Bayes classifier for clickbait detection
on social media. Bronakowski et al. achieved 98%
accuracy in recognizing clickbait headlines by us-
ing thirty distinct types of semantic analysis and six
different machine-learning approaches, both indi-
vidually and in groups. The suggested models can
be used as a model for creating useful programs
that swiftly identify clickbait headlines. Farhan
et al. used Gated Recurrent Unit (GRU) and Con-
volutional Neural Network (CNN)-based ensemble
model for sarcasm detection for Bangla language
achieving 96% F1-score and accuracy. It gave us
an insight on what type of work can be done using
NLP and for gathering knowledge and examples
related to our work. Additionally, Beltagy et al.
created SciBERT which is a pretrained language
model, based on BERT used unsupervised pretrain-
ing on scientific articles, providing us knowledge
about domain-adaptive BERT which can help en-
hance efficiency on a range of scientific NLP tasks
and produce cutting-edge results. Moreover, Ja-
han et al. created BanglaHateBERT, which is a
retrained version of the pre-existing BanglaBERT
model, and trained it having a widespread corpus of
hostile, insulting, and offensive Bengali language,
and outperformed the generic pretrained language
model in various datasets. So, to sum up with,
we have analysed about the origins of clickbait,
checked different datasets on different languages,
learned about differnet NLP methods, and observed
the potentials of specialized transformers models
like SciBERT and BanglaHateBERT.
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3 Problem Statement

We approach the task of clickbait detection
as a decision-making challenge; a binary clas-
sification task problem with two main cat-
egories C = {clickbait, non − clickbait}.
Given a set of Bangla news headlines T =
{t1, t2, t3, . . . , tN}, our objective is to predict la-
bels Y = {y1, y2, y3, . . . , yn} for these headlines.
Here, yi assumes the value 1 if title ti is classified
as clickbait and 0 if it is classified as non-clickbait.
The problem can be formulated as,

< C, Y >= {non− clickbait : 0, clickbait : 1}

4 Dataset Description

The dataset (Mahtab et al., 2023) we used consists
of two sets: an annotated set and an unannotated
set of clickbait news information. The information
with our augmentation is shown in Table 1.

4.1 Annotated Dataset

The annotated dataset comprises 15,056 articles,
each labeled with one of two categories: Clickbait
as 1 and Non-clickbait as 0. The articles in this
subset cover a diverse range of topics. For our
task, we focus only on the columns "Headlines"
and "Labels" as they are essential. This dataset will
be used for the classification task.

4.2 Unannotated Dataset

The unannotated dataset consists of 65,406 Bangla
articles with clickbait titles. These articles were
gathered from clickbait-dense websites. However,
since 65k unlabelled samples may not be sufficient
for our task, we expanded the dataset by scraping
more clickbait-dense websites using Selenium2 li-
brary. This effort resulted in a total of 1,078k or 1
Million unlabelled clickbait headlines. This unan-
notated dataset will be used for the pretraining.

Information Value
Crawling Period Feb 2019 - June 2023
Total Clickbait 5,239
Total Non-clickbait 9,817
Total Unlabelled Before 65,406
Total Unlabelled After 1,078,234

Table 1: Information of both the annotated and unanno-
tated datasets

2https://www.selenium.dev/

5 Methodology

We have used some Statistical Models and Deep
Learning Models and then we have implemented
Transformers models Like BanglaBERT, XLM-
RoBERTa and Domain Adaptive BanglaClick-
BERT with several variations. Based on these vari-
ation, we try to come up with the best model.

5.1 Statistical Models

For statistical models, we will employ Logistic and
Random Forest classifiers on a combination of var-
ious features like TF-IDF (term frequency–inverse
document frequency) of the word and character n-
grams, Bangla pretrained word embeddings, punc-
tuation frequency, and normalized Parts-of-Speech
frequency.

5.2 Deep Learning Models

When it comes to deep learning models, there are
several powerful techniques that can be employed
e.g. Long Short-Term Memory (LSTM), Bidirec-
tional LSTM (BiLSTM) and ensemble methods.
These models have shown great success in vari-
ous natural language processing tasks, including
sentiment analysis and text classification.

5.3 Transformer Models

5.3.1 BanglaBERT
BanglaBERT (Bhattacharjee et al., 2022) is a
BERT-based Natural Language Understanding
(NLU) model pretrained specifically on Bangla
using a massive 27.5GB pretraining corpus.
BanglaBERT has demonstrated remarkable perfor-
mance in achieving state-of-the-art results across
diverse NLP tasks.

5.3.2 XLM-RoBERTa
XLM-RoBERTa (Conneau et al., 2020), a large-
scale multilingual language model based on Face-
book’s RoBERTa (Liu et al., 2019). XLM-
RoBERTa undergoes pretraining on an extensive
2.5TB dataset of filtered CommonCrawl data.

5.3.3 Domain Adaptive Pretraining
We also propose to further pretrain BanglaBERT
using a large number of headlines extracted from
clickbait-filled websites. Gururangan et al. finds
that tailoring pretrained language models to spe-
cific domains through adaptive pretraining tech-
niques leads to significant improvements in task
performance.
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Figure 2: Workflow of BanglaClickBERT Creation

6 Creation of BanglaClickBERT

Language models like BERT have revolutionized
the field of NLP by introducing context-aware
learning and significantly improving performance
across various NLU tasks. However, applying these
models to low-resource languages such as Bangla
requires specialized adaptation to achieve optimal
results. To address this challenge, we propose the
development of BanglaClickBERT by further pre-
training BanglaBERT with a vast dataset of click-
bait news headlines. A workflow of this is shown
in Figure 2.

6.1 Reason for Pretraining
Gururangan et al. investigated whether it is still
helpful to tailor a pretrained model to the domain of
a target task. From their research, it was found that
a second phase of pretraining in-domain (domain-
adaptive pretraining) leads to performance gains,
in both high and low-resource settings. Also, in the
BanglaHateBERT paper (Jahan et al., 2022), we
found performance gains after pretraining.

6.2 Pretraining Data
We collected a diverse set of clickbait news head-
lines mentioned in Section 4, comprising 1 million
samples from various online sources. These head-
lines were chosen to cover a wide range of click-
bait headlines, ensuring the model’s adaptability to
different contexts like news on lifestyle, entertain-
ment, business, viral videos etc.

6.3 Training Strategy
The retraining process was carried out using the
Masked Language Model (MLM) approach. Dur-
ing training, we masked 15% of the tokens in
each sequence, forcing the model to predict these
masked tokens and thus gain contextual understand-
ing. Additionally, we set the model to accept up

to 128 sentence tokens to capture more extensive
contextual dependencies. BanglaClickBERT was
pretrained for 10 epochs, on an NVIDIA GeForce
RTX 3070. It took us almost 28 hours to pretrain for
10 epochs. We adopted the Adamw (Loshchilov
and Hutter, 2019) optimization solver, known for
its computational efficiency and memory-friendly
characteristics, with a learning rate of 5e-5. The
maximum sequence length was set to 32 as there
was no sentence bigger than 30 shown in Figure
3. The pretrained models are uploaded on Hug-
ging face website.3. The unannotated dataset of
clickbaits will also be provided on request.4.

Figure 3: Frequnecy of all the sentences in the unanno-
tated corpus. It shows that all the sentence lengths are
less than 30.

7 System Overview

7.1 Statistical Models

We used two Statistical models: Logistic Regres-
sion and Random Forest. Logistic Regression and
Random Forest both are widely used classification
algorithms that are particularly well-suited for bi-
nary classification tasks. We used TF-IDF vectors.

3https://huggingface.co/samanjoy2/
banglaclickbert_base

4https://tinyurl.com/
BanglaClickBERTdata
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Figure 4: BanglaBERT and XLM-RoBERTa concatenation of the last layer + MLP Architecture

This captures the sequential patterns of characters
in the text using character n-grams of lengths 1, 2,
3, 4 and 5. For example, for n=3, the word "hello"
would be represented as [hel, ell, llo]. These char-
acter n-grams can capture important linguistic in-
formation and patterns in the text, such as common
prefixes, suffixes, and other recurring character se-
quences.

7.2 Deep Learning Models

We used two deep learning models: the Bi-LSTM
Network model and Ensemble of Convolutional
neural network + Gated recurrent unit (Farhan
et al., 2023) both with Bengali GloVe Embeddings
(Sarker, 2021). Bengali GloVe Pretrained Word
Vectors was pretrained with Wikipedia and crawled
news articles with 39 million tokens and has a 0.18
million vocab size. We used the 300d vector ver-
sion.

7.3 Transformer Models

Throughout our experimentation, we have explored
various architectural configurations for these trans-
former models. To illustrate the general architec-
ture that we employed, we present an example in
Figure 4.

7.3.1 BanglaBERT / XLM-RoBERTa /
BanglaClickBERT (last layer) + MLP

In this setup, the last layer of the BanglaBERT and
XLM-RoBERTa base models are used as the input.
The last layer contains contextualized information
learned from pretraining on the Bangla and mul-
tilingual data, respectively. These representations
are then passed through additional linear layers and
fine-tuned on the specific task or dataset during the
training phase. This allows the model to adapt to

the task while benefiting from the pretrained lan-
guage representation capabilities of BanglaBERT
and XLM-RoBERTa.

7.3.2 BanglaBERT / XLM-RoBERTa /
BanglaClickBERT (average of all layers)
+ MLP

Instead of using only the last layer, this setup takes
the average of all layers in the BanglaBERT and
XLM-RoBERTa base models. By doing so, the
model can incorporate information from various
depths of the transformers, capturing different lev-
els of context and features. The averaged represen-
tations are then fed into linear layers and fine-tuned
for the specific task.

7.3.3 BanglaBERT / BanglaClickBERT and
XLM-RoBERTa concatenation of the
last layer + MLP

In this approach, the outputs from the last layers
of BanglaBERT and XLM-RoBERTa are concate-
nated together. This allows the model to combine
the representations learned by each transformer in-
dependently. The concatenated representations are
then fed into an MLP (multi-layer perceptron) with
fully connected layers before producing the final
output, which is the prediction for the given task.

8 Experimental Setup

8.1 Prepossessing

The dataset already underwent comprehensive pre-
processing, removing HTML tags, URL links, new-
line escape sequences and emojis. They also pre-
served all syntactically correct punctuation in the
titles and removed punctuation that appeared in the
middle of words.
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SL Model Names Precision Recall F1-Score Accuracy
1 Logistic Regression (with TF-IDF 1-5 n-grams) 0.6540 0.3745 0.4763 0.7102
2 Random Forest (with TF-IDF 1-5 n-grams) 0.6789 0.4509 0.5419 0.7317
3 Bi-LSTM Network (with GloVe Embeddings) 0.6544 0.5877 0.6192 0.7457
4 Ensemble of CNN + GRU (with GloVe Embeddings) 0.6774 0.6103 0.6421 0.7606

(Farhan et al., 2023)
5 GAN-BanglaBERT (Mahtab et al., 2023) 0.7545 0.7481 0.7512 0.8257
6 BanglaBERT last layer + MLP 0.7377 0.7241 0.7308 0.8088
7 BanglaBERT Large last layer + MLP 0.7349 0.7328 0.7338 0.8124
8 XLM-RoBERTa last layer + MLP 0.7038 0.7505 0.7264 0.8134
9 Domain Adaptive BanglaClickBERT last layer + MLP 0.7802 0.7081 0.7424 0.8094

10 BanglaBERT avg of all layers + MLP 0.7293 0.7138 0.7214 0.8018
11 XLM-RoBERTa avg of all layers + MLP 0.6962 0.6474 0.6709 0.7596
12 Domain Adaptive BanglaClickBERT avg of all layers + MLP 0.7717 0.7343 0.7525 0.8214
13 BanglaBERT + XLM-RoBERTa + Embeddings concatenated. 0.7821 0.7153 0.7472 0.8138

Before concatenating passed through one linear layer.
Followed by MLP

14 Domain Adaptive BanglaClickBERT + XLM-RoBERTa + 0.7896 0.7234 0.7551 0.8197
Embeddings concatenated. Before concatenating passed
through one linear layer. Followed by MLP

Table 2: Performance comparison of different Models. Precision, Recall and F1-Score are for the clickbait class.

We, furthermore, for our research, extended the
preprocessing paradigm by using the Abugida Nor-
malizer and Parser for Unicode Texts (bnunicode-
normalizer)5, enhancing the overall data quality
and compatibility. This advanced technique played
a pivotal role in fine-tuning later on.

8.2 Experimental Settings

We will be using Statistical models and Deep learn-
ing models for Baseline Creation. Then we will
be using transformer models. Our main focus is
on using Transformer. We have used Transform-
ers with several variations. Based on this variation
we try to come up with the best model. For the
statistical models, we used TF-IDF vectors and n-
grams length from 1 to 5. For the deep learning
models, we used 300d Bangla GloVe embeddings.
We used a variation of transformers models which
we described earlier. We have chosen to mainly
use the base (12 layers) versions of these models,
as the large (24 layers) models will be computa-
tionally expensive and unnecessary for our task.
We experimented with BanglaBERT Large model,
however, it was providing similar results (discussed
in section 9) to the BanglaBERT base model. So,
for further experimentation, we continued with the
base models. For hyperparameters, we have taken

5https://pypi.org/project/
bnunicodenormalizer/

the number of epochs for training as 20, the learn-
ing rate is 1e-5, maximum length is 32, batch size
of 128, the loss function is Cross Entropy Loss
and the optimizer is AdamW (Loshchilov and Hut-
ter, 2019) in all the models. The labeled dataset
is divided into three distinct subsets: the training
set, test set, and validation set. This allocation was
thoughtfully proportioned, with 70% (10839 head-
lines) of the data reserved for training, 20% (3012
headlines) for testing, and 10% (1205 headlines)
for validation purposes. We used the same data
splits used in (Mahtab et al., 2023) that helps us
to compare with this technique properly. We have
used the precision, recall, macro F1-Score and ac-
curacy as measures of evaluation.

9 Results and Analysis

As depicted in Table 2, the statistical models,
namely Logistic Regression and Random Forest,
failed to identify the clickbait articles fruitfully and
exhibited unsatisfactory performance. The deep
learning model; The Bi-LSTM model achieved an
F1-score of 61.92%. The Ensemble of CNN + GRU
(Farhan et al., 2023) performed even better with an
F1-score of 64.21%. This highlights the advantages
of using word embeddings and sequence modeling
for clickbait detection in Bangla. However, there
is still considerable room for improvement, as the
overall F1-scores remained relatively low.
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Figure 5: Visualization of last layer hidden representations using t-SNE (van der Maaten and Hinton, 2008) for
BanglaBERT (Left) and BanglaClickBERT (Right) without any fine-tuning. 0 represents non-clickbait and 1
represents clickbait in both figures.

Figure 6: Visualization of last layer hidden representations using t-SNE (van der Maaten and Hinton, 2008) for
BanglaBERT (Left) and BanglaClickBERT (Right) with fine-tuning. 0 represents non-clickbait and 1 represents
clickbait in both figures.

We then from (Mahtab et al., 2023) paper found
that, their approach GAN-BanglaBERT achieved a
82.57% accuracy which is the highest accuracy
among all the models we described or experi-
mented with. However, this high accuracy does not
give us the whole picture as the dataset is imbal-
anced and a proper evaluation should be according
to the macro F1-score which in its case is 75.12%
for clickbait class.

Transformer models; BanglaBERT, XLM-
RoBERTa and BanglaClickBERT demonstrated
consistent improvements over all other approaches.
In particular, using only the last layer in conjunc-
tion with MLP yielded excellent results. Notably,
both BanglaBERT base and BanglaBERT Large
performed similarly, 73.08% and 73.38%, indicat-
ing that increasing the model’s parameters did not

contribute significantly to this specific clickbait de-
tection task. On the other hand, the Domain Adap-
tive BanglaClickBERT exhibited better than that
of BanglaBERT and XLM-RoBERTa, respectively,
with F1 score of 74.24%. This underscores the
effectiveness of pretraining the model with domain-
adaptive data for clickbait detection.

Considering the average of all layers proved to
be both advantageous and disadvantageous as it
captured more informative representations. The
F1-score of BanglaBERT and XLM-RoBERTa de-
creased, whereas, it proved to be beneficial for
Domain Adaptive BanglaClickBERT as taking the
average of all its layer increased the F1-score by
1.01%. It again proves that pretraining the layers of
BanglaBERT has helped all its layers to understand
more about clickbait sentences.
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Model Names Attention Weighted Words
BanglaBERT [CLS] এক িমস ##কল ##�◌ই মধুর স�ক� সব �নাশ ত�ণীর [UNK] . �দখুন (িভিডও) [SEP]  

BanglaClickBERT [CLS] এক িমস ##কল ##�◌ই মধুর স�ক� সব �নাশ ত�ণীর [UNK] . �দখুন (িভিডও) [SEP]  

Raw Headline এক িমস কেলই মধুর স�ক� সব �নাশ ত�ণীর. �দখুন (িভিডও) 

Translated Headline One missed call destroys the sweet relationship of the young woman. Watch (Video)

Table 3: Comparison between finetuned BanglaBERT and finetuned BanglaClickBERT. A clickbait sentence is
chosen and both the model predict it as clickbait. Each word is highlighted according to their attention weights.

Moreover, concatenating the embeddings from
two pretrained language models further enhanced
performance, illustrating that combining related
models could capture complementary information
for clickbait detection in Bangla. The combination
of Domain Adaptive BanglaClickBERT and XLM-
RoBERTa achieved the highest F1-score of 75.51%
for the clickbait class surpassing other models we
discussed about including the GAN-BanglaBERT
(Mahtab et al., 2023).

In terms of precision, recall, F1-score, and ac-
curacy, the Domain Adaptive BanglaClickBERT
model proved to be more consistent to all other
models. However, since the F1-scores were tightly
clustered within the range of 0.74 to 0.75, to sup-
port our claims, we ran each model ten times with
different seeds and conducted a statistical test. The
model, labeled "Domain Adaptive BanglaClick-
BERT + XLM-RoBERTa + Embeddings concate-
nated. Before concatenating passed through one
linear layer. Followed by MLP" outperforms all
other models, and the difference in performance
is statistically significant (p < 0.05) according to
McNemar’s test (Dietterich, 1998)."

This finding is further supported by the t-SNE vi-
sualization depicted in Figure 5 and Figure 6. The
t-SNE visualization effectively shows how these
models, even without fine-tuning of the training
data, group their predictions. It becomes evident
that BanglaClickBERT exhibits better clustering
than BanglaBERT, underscoring the idea that train-
ing BanglaClickBERT can enhance the learned rep-
resentations and subsequently improve overall per-
formance. This can be shown more prominently in
Figure 6 that BanglaClickBERT managed to cluster
the embeddings of clickbait headlines better than
BanglaBERT.

Additionally, as illustrated in Table 3, using the
Transformers Interpret (Pierse, 2021) we tried to
analyse how the models predict their predictions.
Green highlights indicate supportive words for the
prediction, while red highlights show opposing

words. Brightness reflects the strength of their con-
tribution or opposition. We can see that, finetuning
the BanglaBERT and BanglaClickBERT models
results in different attention patterns for words. In
particular, BanglaClickBERT allocates greater at-
tention to words related to clickbait, a characteristic
that BanglaBERT does not achieve.

In conclusion, the results suggest that
BanglaClickBERT, proves to be highly effective
for clickbait detection in Bangla. If more and better
labelled data is used to finetune this, this approach
will perform better than other approaches.

10 Conclusion

In conclusion, this study represents a significant
advancement in the field of clickbait detection, par-
ticularly for the Bangla language, where research
has been limited. While clickbait detection in En-
glish has been extensively studied, the Bangla news
headlines have been largely overlooked. To address
this gap, we conducted a comprehensive analysis
using state-of-the-art transformer models, such as
BanglaBERT, XLM-RoBERTa, and the newly de-
veloped BanglaClickBERT. We enhanced the per-
formance of these models by incorporating MLP
methods to achieve the best results. To bolster
the research, we augmented the dataset by includ-
ing an additional 1 million unlabeled Bangla news
headlines, sourced from clickbait-dense websites.
This expanded dataset significantly empowered the
BanglaClickBERT model. Through rigorous ex-
perimentation and testing, our approach showed
better results compared to existing state-of-the-art
techniques. Our work not only contributes to the
improvement of clickbait identification in Bangla
news headlines but also fills the void in research
in this language domain. As clickbait continues
to impact the way information is consumed, our
findings will be valuable for media organizations,
content creators, and platforms to promote respon-
sible and reliable information dissemination in the
Bangla-speaking community.
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A Appendix

A.1 Distinguishing between clickbait and
non-clickbait

The following examples shows the differences
between clickbait headlines and non-clickbait
headlines:
Examples 1:

বুেড়া হেয় �গেলন �েসন�জত, উেঠ �গেছ
মাথার চ�লও

নায়েকর �চেয়ও �বিশ টাকা আয় কেরন
এই কেমিডয়ান ! জােনন কত… ?

দীিপকার ব�ােগ যা থােক! (িভিডও)

Translated: This comedian earns more money than
the hero! Do you know how much...?

Examples 2:

বুেড়া হেয় �গেলন �েসন�জত, উেঠ �গেছ
মাথার চ�লও

নায়েকর �চেয়ও �বিশ টাকা আয় কেরন
এই কেমিডয়ান ! জােনন কত… ?

দীিপকার ব�ােগ যা থােক! (িভিডও)

Translated: What’s in Deepika’s bag! (video)

Examples 3:
বিলউেডর িফ�েফয়ার অ�াওয়াড� �পেত
যাে�ন বাংলােদেশর ত�ী

Translated: Bangladesh’s Tanvi is going to receive
Bollywood’s Filmfare Award

In the above mentioned examples we can
observe that clickbait headlines have distinguish
patterns. In the Example 1, the headline does
not immediately reveal who the more-earning
comedian is. Instead, it keeps the reader in
suspense, prompting them to click in order to
satisfy their curiosity and uncover the answer.

Example 2, the headline uses the "Curiosity
Gap" technique by teasing an intriguing element
of the story without giving away the full details.
Moreover, the excessive use of punctuation or
other symbols, such as exclamation points, is often
used to heighten the reader’s curiosity and create a
sense of urgency or excitement.

On the other hand, Example 3 falls into the
category of non-clickbait due to its straightforward
and informative headline. It effectively commu-
nicates the content and purpose of the article,
leaving no room for curiosity or teasing. This
type of headline is transparent and does not rely
on sensationalism or misleading tactics to attract
readers, making it a clear example of non-clickbait.
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Abstract

Retelling a story is one way to develop narra-
tive skills in students, but it may present some
challenges for English as Second Language
(ESL) students who are learning new stories
and vocabularies at the same time. The goal
of this research is to develop a dialogue mod-
ule for story co-telling for ESL students in or-
der to help students to co-narrate an English
story and enhance their narrative skills. How-
ever, story co-telling is a relatively underex-
plored and novel task. In order to understand
the story content and select the right plot to
continue the story co-telling based on the cur-
rent dialogue, we utilize open domain informa-
tion extraction techniques to construct a knowl-
edge graph, and adopt multi-agent reinforce-
ment learning methods to train two agents to
select relevant facts from the knowledge graph
and generate responses, jointly accomplish-
ing the task of story co-telling. Compared to
models that reply on chronological order, our
model improves the performance from 67.01%
to 70.81% through self-training with reward
evaluation, achieving an increase of approxi-
mately 3.8%.

1 Introduction

Story retelling is one of the methods to enhance stu-
dents’ narrative abilities. However, due to weaker
language proficiency, difficulty in organizing com-
plex plots, or encountering obstacles in expressing
ideas and emotions, not every student can fully
elaborate on a story independently. To address this
issue, we propose the task of Story Co-telling based
on the concept of Scaffolding Theory (Wood et al.,
1976) to assist students in story retelling. The no-
tion of Scaffolding Theory draws an analogy from
construction, where temporary support is provided
during building construction, and it is removed
once the construction is complete or learning is
mature. Similar to training wheels when learning
to ride a bicycle, Story Co-telling offers necessary

support to students when needed and gradually re-
duces assistance as their narrative skills improve.

The objective of this study is to develop a Story
Co-telling dialogue module aimed at assisting ESL
students in collaboratively narrating lengthy En-
glish stories to foster narrative abilities. To refine
the study’s focus, we constrain the dialogue mod-
ule to engage only in conversations related to story
co-telling, rather than purposeless chitchat. Thus,
our dialogue module is designed as a Supportive
Story Chatbot, which, based on the student’s ongo-
ing narrative, determines the next plot to be told,
achieving the collaborative narration of the story
between two participants.

Story Co-telling is a relatively less explored and
novel task, distinct from common story generation
tasks. While story generation concentrates on gen-
erating logical subsequent plots, story co-telling is
grounded in the content of the original story. This
difference necessitates a reconsideration of model
design and training methods. Since story co-telling
is an interactive process between two participants,
we anticipate employing reinforcement learning
techniques to implement the Story Co-telling mod-
ule.

However, designing a story Co-telling dialogue
system based on reinforcement learning presents
four primary challenges. First, it can be time-
consuming and costly if we would train a dia-
logue system through online reinforcement learn-
ing, where the system learns from actual interac-
tions with people. Second, utilizing offline rein-
forcement learning requires suitable dialogue cor-
pora for Story Co-telling, which currently do not ex-
ist, necessitating the generation of relevant datasets.
Third, the efficacy of reinforcement learning mod-
els hinges on well-defined reward functions. The
task of determining how to establish appropriate
environmental rewards for each dialogue round
constitutes a significant challenge. Finally, when
dealing with long story texts, how the agents can
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comprehend the entire content and choose the next
coherent story plot or event is a significant chal-
lenge.

Inspired by the research by Andrus et al. (2022),
we develop a Story Co-telling dialogue module
based on an open-domain information extraction
to condense the content of lengthy story texts,and
introduce Multi-Agent Reinforcement Learning
(MARL) technology to enhance the coherance and
relevance of the story co-telling task. MARL in-
volves two agents making optimal responses based
on dialogue history and the Knowledge Graph built
on OpenIE.

We further leverage the power of large-scale lan-
guage models (LLM) to design reward functions to
evaluate the quality of narratives. Specifically, we
can train the reward function by carefully prepar-
ing the training data: assuming that the story high-
lights summarized by the LLM represent good sto-
rytelling, then modifying the story highlights by
removing and adding irrelevant storylines can rep-
resent poor narrative.

By using the subjects, predicates and relation-
ships extracted by OpenIE as the agent’s action set,
our model can make more informed choices across
different decision contexts. Through self-trained
reward evaluation, we observe that our model’s per-
formance improves from 67.01% to 70.81%, a gain
of approximately 3.8%, as compared to responding
solely in chronological order. This improvement
indicates the feasibility of our model.

2 Related Work

The application of dialogue robots in education has
garnered widespread attention. Various educational
practitioners hold diverse expectations for the roles
and functionalities that educational robots should
embody.

For instance, the education team at the Univer-
sity of California, Irvine developed a system named
StoryBuddy that accompanies parents and children
in reading stories together. During the reading pro-
cess, this system integrates question-and-answer
interactions to enhance parent-child engagement
(Zhang et al., 2022). They introduced the Fairy-
TaleQA dataset (Xu et al., 2022) and employed
Question Answer Generation (QAG) to address
the challenge of generating questions for parents.
Through experiments, it was found that implement-
ing companion-based reading through questioning
and answering enhances children’s comprehension

when responding to questions (Xu et al., 2021).
On the other hand, Chu and Min (2021) devel-

oped a dialogue robot specifically for retelling ele-
mentary school English storybooks. This dialogue
robot assists learners in retelling stories by asking
questions and utilizes rule-based mechanisms to
determine whether each scene has been accurately
recounted. For instance, if the first scene has been
correctly mentioned, the robot prompts the student
to narrate subsequent scenes. If a scene hasn’t been
correctly mentioned, the student is asked to retell it.
Through this iterative process, students are guided
step by step to independently retell the entire story.
The aforementioned approach demonstrates the po-
tential of story dialogue robots in promoting parent-
child interactions, cultivating reading interests, and
enhancing narrative skills.

Continuing with the theme of enhancing chil-
dren’s narrative abilities, recent research has also
focused on utilizing information extraction tech-
niques to comprehend and analyze long-text nar-
ratives. These techniques aim to transform un-
structured textual data into structured informa-
tion. For instance, Xu et al. (2023) developed
a Document-level Narrative Event Chain Extrac-
tion Toolkit (NECE). This approach employs tech-
nologies such as Semantic Role Labeling (SRL) to
extract relevant information about characters and
events from stories. Furthermore, a specific TF-
IDF algorithm is used to identify the most impor-
tant events. Through this framework, the narrative
structure within lengthy textual stories can be effec-
tively parsed, enabling the extraction of essential
elements like characters and events.

Similarly, Andrus et al. (2022) address the chal-
lenge of understanding long-text narratives using
dynamic knowledge graphs. Unlike static common-
sense knowledge graphs that involve real-world
information, Andrus et al. (2022) utilize OpenIE
(Open Information Extraction) technology to con-
struct dynamic knowledge graphs. These dynamic
knowledge graphs are then applied to tasks such
as question answering and story completion. This
approach proves effective in overcoming the limita-
tions imposed by language model input constraints
when dealing with lengthy documents, and its ef-
fectiveness has been demonstrated.

3 Method

The MARL structure for story co-telling based on
knowledge graph construction is shown in Figure
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Figure 1: Architecture of the Story Co-telling Module via Reinforcement Learning and Knowledge Graph

1. We will start from how to convert a long text
story into a knowledge graph and introduce how
the agent uses conversation history and knowledge
graph to select the plot to be told next. Secondly,
we explain how to construct a dialogue history
evaluation model for evaluating the current perfor-
mance of story co-telling. Finally we will explain
how to use reinforcement learning to integrate the
above parts into a story sharing dialogue module
that can make decisions based on the current dia-
logue history.

3.1 Long Text to Knowledge Graph

The purpose of constructing knowledge graphs is
to distill information from lengthy text narratives
and transform unstructured data into a structured
form. This enables our model to effectively com-
prehend the storyline of the narrative. We utilize
Stanford CoreNLP toolkit, the OpenIE (Open Infor-
mation Extraction) framework (Angeli et al., 2015),
version 4.5.4, to extract structured fact triples (i.e.
subject, relation, and object) from text.

For example, consider the sentence "After a time
there was another feast, and the Many-furred Crea-
ture begged the cook as at the last one to let her go
and look on." Even though this sentence describes
"the Many-furred Creature begged the cook to let
her go and look on, just like the last time," due
to the constraints of the triple representation, the
second object, time, location, and other words need
to be separately recorded. Hence, the preceding
sentence can be represented by three fact triples:
[many furred creature, begged, the cook], [many
furred creature begged the cook, adv, as at the last

one], and [many furred creature begged the cook,
arg2, to let her go and look on]. These triples are
then visualized as a directed graph, as depicted in
Figure 2.

Figure 2: Example of Constructing Knowledge Graph
Using OpenIE

To mitigate potential redundancy in the fact
triples produced by open-domain information ex-
traction models, we remove duplicate triples and
retain longer ones to preserve more information.
Additionally, we also employ Coreference Resolu-
tion (Recasens et al., 2013) to process the text and
replace pronouns with the nouns they refer to.

In practice, in addition to the subject, relation,
and object triples, we also record the sentence in-
dex sidx of each fact triple in the original story to
understand the context of the fact triples. Addition-
ally, we also keep a status indicator for each fact to
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record whether it has been mentioned in the con-
versation. This helps prevent repeated references
to the same fact during the narrative.

3.2 Agent

In this paper, we employ Deep Q-Learning for de-
signing the conversational agent. The agent makes
decisions based on the current state St, takes the
next action At, and adjusts its decisions accord-
ing to the feedback rewards Rt generated by the
environment. Here, St is a vector composed of
various pieces of information, including the con-
versation history D = [u0, u1, ..., ut], and candi-
date responses Ct = [ct0, c

t
1, ..., c

t
k] generated by

corresponding strategies A = [a0, a1, ..., ak]. We
use Sentence Transformer (Reimers and Gurevych,
2019) to convert these text fragments into vectors
expressing their underlying information. After
passing through Deep Q Learning, the agent se-
lects the candidate response to be used for the reply,
which determines the next action At = i, where
i ∈ [0, k]. We will now introduce the action de-
sign of the agent and the methods for generating
candidate responses. The details of the reinforce-
ment learning will be discussed in the subsequent
sections.

Action Design
To ensure coherence in the co-told story, the agent,
based on the latest utterance ut in the conversation
history, utilizes the Sentence Transformer to find
the top three relevant facts on the knowledge graph
G as reference points p of the interlocutor’s cur-
rent narration. Subsequently, using these reference
points, four distinct strategies are employed to ex-
tend the conversation, thereby generating candidate
responses. Each strategy is treated as an action ai.
Here’s a brief description of each action:

• a0: Select subsequent events from the refer-
ence point. In other words, choose facts f
where f.sidx is greater than p.sidx.

• a1: Choose facts with subjects similar to the
subject of the reference point p.

• a2: Choose facts with relations similar to the
relation of the reference point p.

• a3: Choose facts with objects similar to the
object of the reference point p.

• a4: Declare the end.

Response Generation
We can utilize the story sentences, along with their
corresponding fact triples obtained using OpenIE,
to prepare training data for T5 model training, i.e.
create an input-output mapping using the facts
triples and story outline as input and the sentence
that contributes the fact triples as output. By fine-
tuning, we enable the T5 model to generate results
similar to the original sentences based on the given
fact triples and the story outline. An example input
format is depicted in Figure 3.

Figure 3: Fine-tuning the T5 Model for Knowledge
Graph to Text Generation

3.3 Environment: Reward Function Design

The reward function is mainly divided into two
parts: dialogue history assessment and entity con-
nection assessment. The former provides an overall
rating of the dialogue up to the current point, while
the latter calculates the connection rating between
the current turn and the previous sentence.

Dialogue History Assessment
To evaluate the effectiveness of the co-told story
dialogue history D, we require both positive and
negative co-telling examples along with their rat-
ings. These examples can be used to train a regres-
sion model for automatically assessing the quality
of co-told stories.

Due to the lack of readily available co-telling di-
alogue datasets, we utilize ChatGPT to generate a
specified number of bullet-pointed story highlights
for each story. As shown in Table 1, we design
a prompt to guide ChatGPT in generating the de-
sired number of story highlights H for the story
text. To facilitate further processing, the generated
results are output in JSON format. Considering
ChatGPT’s generation diversity, the same prompt
can lead to various outcomes.

We generated story highlights using ChatGPT
and subsequently performed actions such as re-
placement or deletion to create lower-quality story
highlights. This approach of generating story high-
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Input
<|Plots|> = number of plots that you want to generate
<Story_text> = story corpus
Prompt
Please summarize the following Story by outlining
<|Plots|> plot points in JSON format in order. (exam-
ple: [{“plot_id": 1, “plot_point": first plot point}, {“id":
2, “plot_point": second plot point}]) Do not provide
additional information or comment.
–
Story: <Story_text>

Table 1: Prompt Format for Generating Story High-
lights Using ChatGPT

lights can be seen as generating poor examples in
co-telling, as they may disrupt the integrity and
logic of the story. Depending on the number of re-
placements or deletions, we assign different scores.

As the impact of replacement and deletion on
the quality of story highlights differs, we have for-
mulated separate adjustment formulas and evalua-
tion formulas for these two actions. The formula
for deleting story highlights is presented in Eq.(1),
while the formula for replacing story highlights is
shown in Eq.(2).

score = e
(−1.6× n

|Plots| ) × 9 + 1 (1)

score = e
(−4× n

|Plots| ) × 10 + 1 (2)

Here, n represents the number of modifications,
and |Plots| represents the original number of story
highlights. We believe that replacing an existing
story highlight with another storyline has a greater
impact on the overall quality compared to deleting
a single story highlight. As a result, replacing a
larger number of story highlights will receive a
lower score compared to deleting the same number
of story highlights (see Figure 4).

Figure 4: Score vs. # of edit operations

Dialogue history assessment is essentially a re-
gression problem, as illustrated in Figure 5. We

input both the dialogue history D and the story out-
line H into the same RoBERTa (Liu et al., 2019)
model, and extract the hidden state of the CLS to-
ken from the model. Subsequently, the two hidden
states are concatenated and fed into a neural net-
work. This network outputs a score DH(D,H)
between 0 and 10 to evaluate the quality of the
co-told story.

Figure 5: Architecture of the Dialogue History Assess-
ment Model

Entity Relationship Evaluation
The purpose of entity relationship evaluation is to
assess whether the current reply (R) is related to
the entities (E) mentioned in the previous sentence
of the story. We utilize OpenIE to parse these two
sentences and employ BFS graph algorithm to de-
termine if these two entities can be connected in
the knowledge graph. If the two entities are link-
able in the knowledge graph, we consider there is
an entity relationship between these two sentences
and provide quantitative rewards as feedback.

We compute the score DHt = DH(Dt, H) for
dialogue history assessment and the entity connec-
tion assessment score ECt = EC(Rt, Et−1) for
each round t. Since dialog history assessment is an
accumulated score, we thus take the score differ-
ence of two subsequent rounds along with the entity
connection score as the reward Rt for this round as
indicated in Eq. (3). This reward is subsequently
fed back to the agent.

Rt = DHt−1 −DHt + ECt (3)

3.4 Multi-Agent Reinforcement Learning
Finally, we apply Deep Q Learning (DQL) and
Multi-Agent Reinforcement Learning (MARL)
methods to enable two agents to collaboratively
perform the task of co-telling a story (see Figure 1).
Through the guidance of reward scores, the agents
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turn history score turn history score
... ... ... ... ... ...

6 The Princess falls asleep in a hollow tree and
is discovered by the King’s huntsmen.

7.37 6 The Princess falls asleep in a hollow tree and
is discovered by the King’s huntsmen.

7.37

7 The King’s huntsmen bring the Princess to
the palace and she is assigned to work in the
kitchen as the Many-furred Creature.

7.34 7 The Emperor takes Confucius’ shoes and
staff as a joke, but the tablet’s warning
comes true and he dies soon after.

6.34

8 The Many-furred Creature lives in poverty and
works in the kitchen doing all the dirty work.

7.79 8 The cock gets the garland and trades it for
red silk from the brook.

4.82

9 The Many-furred Creature attends a feast at the
palace and enchants the King with her beauty.

7.95 9 The jackdaws and magpie eat the leftover
pie-crust and gravy.

2.74

10 The Many-furred Creature cooks soup for the
King and hides a gold ring in it.

8.06 10 The Many-furred Creature cooks soup for the
King and hides a gold ring in it.

2.17

... ... ... ... ... ...
14 The King and the Princess live happily ever

after.
8.02 14 The King and the Princess live happily ever

after.
6.21

Final Score=8.02, Gold=9.09 Final Score=6.21, Gold=7.38

Table 2: Examples of conversation history evaluation model. The left table shows high-quality storyline highlights
(which received a score of 9), while the right table shows cases where the inclusion of irrelevant content resulted
in a drop in reward points.

learn how to continue the story. While the story
co-telling agent will only focuses on a single story
during the interaction with the user, updating the
model based on a single story is dangeous because
the model is likely to forget what it has learned in
the past. Therefore, We choose to adopt experience
replay mechanism to avoid catastrophic forgetting.

Our objective is to enable two agents to collab-
oratively co-tell a story. In each dialogue turn,
the agents take turns transmitting the selected re-
sponse through the environment, without sharing
their respective knowledge graph states. This im-
plies that each agent can only understand the co-
told story and make appropriate responses based
on the co-telling conversation history. If one of
the agents terminates prematurely, the entire dia-
logue also ends, followed by subsequent analysis
and evaluation. This design simulates real-world
human-machine interaction scenarios, challenging
the agents’ understanding and response decision-
making abilities.

Before the training begins, we will initialize each
environment and model (lines 1 to 5). In each
epoch (line 6), we engage in a dialogue for each
story (line 7), simultaneously initializing the envi-
ronment state before the co-telling begins (lines 8
to 11). In lines 12 to 23, it can be observed that
the two agents take turns generating candidate re-
sponses, connecting their vectors with the dialogue
history vector to form the current state representa-
tion (lines 13 to 14). Subsequently, the agents use
their own Q Network to decide which candidate
response to select (lines 15 to 16). Following this,

we employ the Dialogue Evaluation Model and En-
tity Compare to generate rewards (lines 17 to 19),
while also producing the next state (lines 20 to 21).
Finally, the tuples of state transition, action, next
state, and corresponding reward (s, a, st+1, rt+1)
are stored in their respective memories (line 22),
for subsequent learning and updating processes.

4 Experiment

In this study, we chose stories from FairytaleQA
(Xu et al., 2022) as the designated story set for
story co-telling. These stories are classic fairy tales
suitable for readers below the ninth grade, with
clear narrative structures. The average text length
of stories used in FairytaleQA exceeds one thou-
sand words. Additionally, with the pre-designed
question-answer pairs available in FairytaleQA,
we can evaluate the diversity of co-telling content
through question answering.

To ensure the effectiveness of agent training, we
set some termination conditions for the environ-
ment. Firstly, by limiting the conversation rounds
to be no more than 20, we avoid resource wastage
and increased training time caused by excessively
lengthy dialogues. Additionally, when one of the
participants introduces an ending keyword, it sig-
nifies an appropriate endpoint for the conversation.
Furthermore, we set the exhaustion of all facts in
the knowledge graph as one of the ending condi-
tions. This configuration ensures efficient utiliza-
tion of information during the conversation and
prevents the repetitive use of the same facts.
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Algorithm 1: Story Co-telling MARL
Data:
I = [(O1, G1), (O2, G2), ...] Story info.;
Oj = Story outline;
Gj = Story knowledge graph;
Function:
µ = State embedding model;
Φ = Candidate response generate func.;
Θ = Dialogue evaluation model;
Ξ = Entity compare func.;
Training:

1 Initialize Agnet1 and Agnet2;
2 Initialize Q Network Q1 and Q2;
3 Initialize epsilon ε;
4 Initialize replay memory M1 and M2;
5 Initialize environment E1 and E2;
6 foreach epoch do
7 foreach (Oj , Gj) in I do
8 Reset dialogue history D;
9 Reset environment E1 and E2 by

(Oj , Gj);
10 t = 1;
11 Scoret = 0;
12 while (E1 is not done) and (E2 is

not done) do
13 Ct ← Φ(D,G);
14 st ← {µ(D), µ(Ct)};
15 at ← argmax(Qt%2(st, ε));
16 dt ← Ct[at];
17 Append dt to D;
18 Scoret+1 ←

Θ(Oj , D) + Ξ(Gj , D);
19 rt+1 ← Scoret+1 − Scoret;
20 Ct+1 ← Φ(G);
21 st+1 ← {µ(D), µ(Ct+1)};
22 Append (s, a, st+1, rt+1) to

Mt%2;
23 t = t+ 1;

end
24 Update Q1 by M1;
25 Update Q2 by M2;

end
26 Update ε;

end

4.1 Dialogue History Evaluation Model

During the training of the dialogue history evalua-
tion model, we set the batch size to 1 and conducted
20 training epochs. Across these training sessions,
the loss value on our training set was 0.0197, indi-

cating a strong fit of the model to the training data
(Figure 6). The best validation set loss was 0.0299,
demonstrating satisfactory performance on unseen
data. Additionally, we computed the Pearson cor-
relation coefficient between the scoring values and
the dialogue history evaluation model, yielding a
value of 0.8313, indicating a positive correlation
between the data labels (given by Eq. (1), (2)) and
the model’s outputs.

Figure 6: Training of the Dialog History Assessment
Model in Figure 5

Table 2 presents the scoring results provided by
the dialogue history evaluation model on two con-
versation history examples. The “score" column
displays the cumulative score from the first utter-
ance up to the current turn, and the gold score for
the entire conversation are marked at the bottom.
As shown in the example, when the input contains
high-quality story focus, the model’s output results
closely match the default scores. This indicates
that our dialogue history evaluation model can ac-
curately assess story focus and assign appropriate
scores. If irrelevant story focus is inserted into the
story, the scores given by the dialogue history eval-
uation model significantly decrease. This further
demonstrates the effectiveness and feasibility of
our dialogue history evaluation model, as it can
identify relevant story focus and provide appropri-
ate evaluations for them.

4.2 Effectiveness of Story Co-Telling Models

Secondly, we conducted a performance compari-
son with rule-based responses, which involves re-
sponding solely based on chronological order, i.e.
a0. Figure 7 illustrates our training results, demon-
strating that both single-environment reinforcement
learning (1Env) and multi-environment reinforce-
ment learning (2Env) outperform the rule-based
responses. The performance of multi-environment
reinforcement learning is the best. According to
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the feedback values from our trained dialogue his-
tory evaluation model, the performance of multi-
environment reinforcement learning has improved
by approximately 3.8%, from 67.01% to 70.81%,
compared to responses based on chronological or-
der, i.e. choose action a0.

Figure 7: Comparison of Results from Story Co-Telling
Trained with Different Methods

This result indicates the feasibility of multi-agent
reinforcement learning methods in the story co-
telling task. Compared to rule-based responses
that rely solely on chronological order, our model,
trained through the interaction of multiple agents,
can better comprehend dialogue history and gener-
ate responses based on the knowledge graph. This
enables our model to provide more coherent and
relevant replies, further enhancing the quality and
experience of the conversation.

4.3 Comparison of Reward Function Design

Next, we investigate the effect of incorporating en-
tity connection EC reward on the model’s action
selection. As shown in Figure 8, we can observe
that both the average EC and DH reward increase
over the course of training. Furthermore, in compar-
ison to using only the dialogue history evaluation
model as the sole reward (DialogueEvaluation), un-
der the encouragement of entity relationship evalu-
ation (DialogueEvaluation + EntityCompare), the
model tends to choose actions related to entities
(as shown in Figure 9). This indicates that the ap-
proach of introducing entity comparison into the
dialogue history evaluation model has a certain
impact on the model’s decision-making process.

4.4 Discussion: Evaluation of Co-told Stories

Finally, we try to evaluate whether the co-told
stories are good or bad. One possible way is to

Figure 8: Stacked Area Chart of Entity Relationship
Reward during Training Process

Figure 9: Change of Action Selection (in Section 3.2)
Histogram

use question answering to test whether the story
hightlights can answer the pre-designed questions.
We conducted experiments using a fine-tuned T5
question-answering model (Christian Di Maio,
2022) based on the story summaries. We replaced
the story paragraphs corresponding to questions
in FairytaleQA with the story summaries to evalu-
ate whether the story summaries could effectively
answer questions from the stories.

The experimental results are presented in Table
3. The performance of this fine-tuned T5 model
on story summaries is not ideal. This is mainly
because the story summaries are relatively short,
lacking details and context, which makes it difficult
for the question-answering model to provide accu-
rate answers. Additionally, the story summaries
might contain implicit information, requiring the
model to possess stronger reasoning abilities to
handle such implied content.
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Question Types
Train Val Test

F1 EM F1 EM F1 EM
character 24.11 16.53 27.33 18.69 20.41 11.65
action 11.85 2.19 13.64 3.00 13.27 2.54
setting 15.50 6.50 23.64 6.67 14.34 3.23
feeling 4.60 3.28 3.26 1.06 7.97 4.72
causal relationship 15.87 0.12 17.19 0.00 19.10 0.36
outcome resolution 12.18 0.12 14.22 1.03 17.39 0.00
prediction 16.34 3.55 19.23 1.82 16.30 0.00
All 14.09 3.46 15.93 3.51 15.63 2.78

Table 3: Performance of Fine-Tuned T5 Model on
FairytaleQA under Story Summaries

5 Conclusion and Future Work

In this study, we designed a dialogue module for
story co-telling with the aim of enhancing ESL stu-
dents’ English narrative abilities. By training two
agents to select optimal responses from the knowl-
edge graph based on dialogue history, our model
is capable of making wiser choices among candi-
date responses generated by different decision ac-
tions. Through self-training reward evaluation, we
observed that our model’s performance improved
from 67.01% to 70.81% compared to responding
based solely on chronological order.

For future work, the knowledge graph is still
limited by the completeness and coverage of ope-
nIE performance. Therefore, we can try chatGPT
to enhance information extraction. Furthermore,
while our current approach centers on action design
guided by coherence, alternative strategies, such
as considering story coverage, could also be em-
ployed to shape these actions. Overall, there is still
a lot of room for improvement in this research.
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Abstract

We present a cross-linguistic study in which
the open source C-LARA platform was used to
evaluate GPT-4’s ability to perform several key
tasks relevant to Computer Assisted Language
Learning. For each of the languages English,
Farsi, Faroese, Mandarin and Russian, we in-
structed GPT-4, through C-LARA, to write six
different texts, using prompts chosen to obtain
texts of widely differing character. We then fur-
ther instructed GPT-4 to annotate each text with
segmentation markup, glosses and lemma/part-
of-speech information; native speakers hand-
corrected the texts and annotations to obtain er-
ror rates on the different component tasks. The
C-LARA platform makes it easy to combine
the results into a single multimodal document,
further facilitating checking of their correctness.
GPT-4’s performance varied widely across lan-
guages and processing tasks, but performance
on different text genres was roughly compara-
ble. In some cases, most notably glossing of
English text, we found that GPT-4 was consis-
tently able to revise its annotations to improve
them.

1 Introduction and motivation

As soon as ChatGPT became available in Novem-
ber 2022, it was obvious that there were huge im-

∗* Authors in alphabetical order.

plications for the field of Computer Assisted Lan-
guage Learning (CALL): here was an AI which
could produce many different kinds of text, quite
well, in all common and many fairly uncommon
languages. It could write stories and poems, hold a
conversation, explain grammar and translate, with
all functionalities seamlessly integrated together.
The first impression was that the CALL problem
had been solved. However, a little more experi-
mentation revealed that things were not quite as
magical as they had seemed. In fact, even in well-
resourced European languages like French and Ger-
man, ChatGPT made some mistakes; in smaller
and poorly-resourced languages, it made a lot of
mistakes. Requests which involved relating two
languages to each other, for example to gloss a text,
were typically not successful. Performance im-
proved substantially with the release of ChatGPT-4
in March 2023: in particular, ChatGPT-4 is much
better at multilingual processing. Nonetheless, it
is clear that it is still far from completely reliable.
In small languages, e.g. Icelandic (Simonsen and
Bédi, 2023) and Irish (Nı Chiaráin et al., 2023),
ChatGPT-4 is often highly unreliable. The authors
of the second paper conclude that, in its present
form, it should not be used in the Irish classroom;
the Irish it produces is seriously incorrect, and
it makes elementary mistakes when asked about
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basic Irish grammar. This contrasts sharply with
its performance in English, where it is rare to see
ChatGPT-4 produce language that is less than ade-
quate.

Given the wide variability in ChatGPT-4’s perfor-
mance, we were curious to obtain a more nuanced
understanding of the issues involved. In this paper,
we use the open source C-LARA platform (Bédi
et al., 2023b) to carry out an initial cross-linguistic
study. C-LARA, a reimplementation of the earlier
LARA (Akhlaghi et al., 2019; Bédi et al., 2020),
uses the underlying GPT-4 model to create mul-
timodal texts designed to support learner readers,
performing all the key operations: it writes the L2
text, segments it into lexical units, glosses it in the
designated L1, and adds lemma and part-of-speech
tags. Support is provided so that the user can easily
edit the output and compare different versions. It
is thus straightforward to get an initial estimate of
ChatGPT’s ability to perform several key CALL-
related tasks, in the context of building potentially
useful learning resources.

The rest of the paper is organised as follows.
Section 2 briefly describes C-LARA. Section 3
presents the experiments and results, and Section 4
discusses their significance. The final section con-
cludes and suggests further directions.

2 C-LARA

C-LARA (“ChatGPT-based Learning And Read-
ing Assistant”; (Bédi et al., 2023a,b)) is an inter-
national open source project initiated in March
2023 and currently involving partners in Australia,
China, Iceland, Iran, Ireland, Israel and the Nether-
lands. The goal was to perform a complete reimple-
mentation of the earlier LARA project (Akhlaghi
et al., 2019; Bédi et al., 2020), keeping the same ba-
sic functionality of providing a flexible online tool
for creating multimodal texts, but adding ChatGPT-
4 as the central component. ChatGPT-4 is used
in two separate and complementary ways. In the
form of GPT-4, it appears as a software component,
giving the user the option of letting it perform the
central language processing operations; it also ap-
pears as a software engineer, working together with
human collaborators to build the platform itself. As
described in the initial C-LARA report (Bédi et al.,
2023b), the software engineering aspect has proven
very successful, with ChatGPT not only writing
about 90% of the code, but greatly improving it
compared to the earlier LARA codebase. In the

present paper, however, our concern will be exclu-
sively with ChatGPT’s performance as a language
processing component.

C-LARA is a web app implemented in
Python/Django.1 An initial deployment for test-
ing and development purposes is currently hosted
on the Heroku cloud platform,2 and was used to
perform the experiments described here. The func-
tionality which will primarily concern us is that
used in the sequence of operations which create
and annotate a new piece of multimedia content.

As outlined in Appendix A of (Bédi et al.,
2023b), the user starts by opening a new project.
They then move to a screen where they provide a
prompt instructing ChatGPT-4 to produce the plain
text. The following screens are used to add annota-
tions to the plain text, in the sequence segmentation,
followed by glossing and lemma/part-of-speech
tagging. We describe each of these operations.

In the segmentation phase, C-LARA passes the
plain text to GPT-4, together with instructions re-
questing it to be divided into sentence-like seg-
ments, with words further divided when appropri-
ate into smaller units. The prompt used to make
this request is created from a template, which is in-
stantiated with both the text to be segmented and a
list of few-shot examples primarily illustrating how
words are to be split up. The templates and sets
of examples can be made language-specific. For
example, in Swedish they show how compound
nouns should be split into smaller components, and
in French they show how clitics should be split off
verbs. For Mandarin, where text is normally written
without interword spaces, segmentation is an impor-
tant and well-studied problem (Wu and Fung, 1994;
Huang et al., 2007; Hiraoka et al., 2019; Chuang,
2019), and C-LARA also includes an integration of
the popular Jieba Chinese segmentation package.3

In the glossing phase, C-LARA passes the seg-
mented text to GPT-4, formatting it as a JSON-
encoded list and requesting a response in the form
of a list of ⟨Word, Gloss⟩ pairs. The request is
again created from a template instantiated with the
list to be processed and a few-shot set of exam-
ples. The lemma-tagging phase is similar, with a
JSON-formatted list passed to the AI and a list of
⟨Word, Lemma, POS-Tag⟩ triples returned, where
the POS-tag is taken from the Universal Depen-
dencies v2 tagset (Nivre et al., 2020). Post-editing

1https://www.djangoproject.com/
2https://www.heroku.com/
3https://pypi.org/project/jieba/
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Plain text: They lived with their mother in a sand-bank.

Segmented text: They lived with their mother in a sand-|bank.||

Glossed text: They#Ils# lived#vivaient# with#avec# their#leur#
mother#mère# in#dans# a#un# sand#sable#-bank#banque#.||

Lemma-tagged text: They#they/PRON# lived#live/VERB# with#with/ADP#
their#their/PRON# mother#mother/NOUN# in#in/ADP# a#a/DET#
sand#sand/NOUN#-bank#bank/NOUN#.||

Figure 1: Toy example showing the notations used to present text for post-editing. English glossed in French.

Table 1: Prompts used to create texts. For English, “LA” was modified to refer to the French language instead.

Label Prompt

FO Write a passage of about 250 words in [your language], presenting an exciting description of
a fictitious football match.

BI Write an essay of about 250 words in [your language], describing a passage from the Bible,
the Quran, or another holy book familiar to speakers of [your language], and touching on
its moral relevance to the world today.

NE Write a short, quirky news story in [your language] about 250 words long, suitable for use
by an intermediate language class.

LA Write a passage of about 250 words in [your language], briefly describing how speakers of
[your language] view the English language.

CH Write a passage of about 250 words in [your language], describing a traditional children’s story
well known to speakers of [your language].

PO Write a fanciful romantic poem in [your language], in which an AI declares
its love for another AI.

is performed on human-readable versions of the
plain, segmented, glossed and lemma-tagged texts,
as shown in Figure 1.

For all three of the annotation phases, C-LARA
offers the alternatives of performing the basic AI-
based annotation operation, post-editing the result,
or sending the current annotated text back to the
AI with a request to improve the annotation.4 In-
terestingly, the “improvement” operation, which
does not exist in most conventional annotation sys-
tems, can in some cases yield a substantial gain.
Examples are given in §4.5.

3 Experiments and results

Using the C-LARA infrastructure outlined in the
previous section, we created six short annotated
texts in each of the languages English, Faroese,

4For Mandarin segmentation, there is the additional option
of using Jieba.

Farsi, Mandarin and Russian. In all languages, the
texts were generated by the prompts shown in Ta-
ble 1. The intention was to produce types of text
differing in terms of both style and content, to gain
some insight into whether GPT-4 found some gen-
res harder than others. English was glossed in both
French and Swedish, and all the other languages in
English.

In some cases, we also experimented with us-
ing the “improvement” operation. Due to limited
time (hand-correcting the texts is quite laborious),
we concentrated on three operations where “im-
provement” appeared to be having a positive effect,
or the original error rate was high: English gloss-
ing, Faroese segmentation, and Farsi writing. All
experiments were carried out in August and early
September 2023, using the versions of GPT-4 cur-
rent at the time.

In all the experiments, a native speaker of the text
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Table 2: Word error rates for GPT-4-based writing, segmenting, glossing and lemma-tagging of the six stories. For
Mandarin, “Seg/J” refers to segmentation using the Jieba package, provided for comparison, and “Seg/G” refers to
segmentation using gpt-4. English was glossed in both Swedish (S) and French (F); other languages were glossed in
English. Text labels as in Table 1.

Task FO BI NE LA CH PO Task FO BI NE LA CH PO

English Farsi

Write 0.0 0.0 0.4 0.0 0.0 0.0 Write 9.4 19.2 24.6 21.4 2.5 33.7
Seg 0.0 1.0 9.8 0.8 1.5 8.0 Seg 6.3 6.0 17.7 1.9 4.9 16.5
Glo/S 20.6 16.3 26.2 9.1 29.2 5.8 Glo 34.8 49.6 44.3 31.4 45.0 44.4
Glo/F 32.9 5.9 13.9 18.1 16.3 17.1 Lemm 29.4 37.1 39.7 36.4 26.8 31.8
Lemm 4.9 8.0 3.1 6.2 11.9 0.9

Faroese Mandarin

Write 32.8 27.0 40.2 20.9 28.7 25.2 Write 0.0 0.0 0.0 0.0 0.0 0.0
Seg 18.5 12.2 12.3 6.0 8.4 6.0 Seg/J 21.6 25.9 18.6 16.9 23.6 23.4
Glo 30.9 15.9 12.1 9.0 20.5 8.5 Seg/G 14.6 13.2 14.4 4.9 12.8 17.2
Lemm 9.6 9.1 11.4 5.5 11.4 7.0 Glo 7.6 6.0 12.5 6.6 2.7 3.9

Lemm 3.9 3.3 5.0 3.8 2.2 4.7

Russian

Write 8.5 5.6 3.2 7.7 0.0 14.4
Seg 3.3 3.1 4.9 8.3 2.0 5.1
Glo 1.7 4.2 6.5 19.5 4.4 2.2
Lemm 0.6 0.0 0.0 0.0 0.0 0.5

language with strong knowledge of the glossing
language(s) hand-edited the results of each stage
before passing the edited text to the following one.
Editing was done conservatively, only correcting
clear mistakes, so that the difference between the
original and edited results could reasonably be in-
terpreted as an error rate. Thus for the original
generated text, words were only corrected when
they represented definite errors in grammar, word-
choice or orthography, and not when e.g. a stylis-
tically preferable alternative was available. Simi-
larly, segmentation was only corrected when word
boundaries clearly did not mark words, glossing
was only corrected when a gloss gave incorrect in-
formation about a text word, and lemma tagging
was only corrected when the lemma and POS tag
attached to a word were not correct.

The most contentious phase in this respect
was glossing; it is sometimes impossible to say
either that a gloss is categorically correct or
that it is categorically incorrect. Two important
borderline cases are multi-words and grammatical
constraints, where we made choices in opposite
directions. We marked glosses as incorrect when
they did not respect intuitive classification of

words as components of multi-word expressions.
Thus for example in the EN/FR glossing a#un#
classic#classique# fairy#conte de
fées# tale#histoire# we considered the
gloss histoire added to tale as wrong and
corrected it to conte de fées; this is a French
phrase that means “fairy tale”, and thus needs to
be attached to both fairy and tale. In contrast,
since glossing is not translation, we considered
that we did not need to require glosses to respect
all potentially applicable grammatical constraints,
as long as they conveyed meaning correctly. So
in the example a#un# cozy#confortable#
little#petite# house#maison# we
accepted the gloss un on a, even though un is
the masculine form, and in a translation would
be required to agree with feminine petite and
maison. Of course, it is clearly preferable here to
gloss a with the feminine form une. We return to
these issues in Sections 4.4 and 4.5.

The core results are presented in Table 2, show-
ing error rates for the five languages, six texts and
four original processing operations of writing, seg-
menting, glossing and lemma-tagging. The results
for the “improvement” experiments are shown in
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Tables 3 to 5. In the five comparison experiments,
statistical significance of differences was tested
using both a paired t-test and a non-parametric
Wilcoxon signed-rank test for comparison. The re-
sults in Table 3 showed statistically significant im-
provements for glossing of English in both Swedish
and French (t-test: p = 0.02; Wilcoxon signed-
rank: p = 0.03); for Mandarin segmentation (Ta-
ble 2), the improvement from Jieba to gpt-4 was
also statistically significant (t-test: p < 0.002;
Wilcoxon signed-rank: p = 0.03). Improvement of
Faroese segmentation (Table 4) was just short of
significant (p = 0.06), but improvement of Farsi
writing (Table 5) was not statistically significant
(p = 0.2 for both tests).

Table 3: Improvement in GPT-4 word error rates for the
English glossing task: glossing in both Swedish (S) and
French (F). Text labels as in Table 1.

Task FO BI NE LA CH PO

Original

Glo/S 20.6 16.3 26.2 9.1 29.2 5.8
Glo/F 32.9 5.9 13.9 18.1 16.3 17.1

Improved

Glo/S 6.4 8.3 13.5 8.6 14.1 2.5
Glo/F 7.6 3.2 7.0 8.7 5.5 4.6

Table 4: Improvement in GPT-4 word error rates for
segmenting the six Faroese stories. Glossing in English.
text labels as in Table 1.

Task FO BI NE LA CH PO

Original

Segment 18.5 12.2 12.3 6.0 8.4 6.0

Improved

Segment 0.0 9.6 0.0 4.4 0.0 6.7

4 Discussion

We divide up the discussion under a number
of headings: variation across languages, vari-
ation across genre, variation across process-
ing phase, types of problems, the “improve-
ment” operation, random variability, and language-
specific/qualitative aspects.

Table 5: Improvement in GPT-4 word error rates for
writing the six Farsi stories. Text labels as in Table 1.

Task FO BI NE LA CH PO

Original

Write 9.4 19.2 24.6 21.4 2.5 33.7

Improved

Write 7.9 17.3 5.6 19.0 2.5 33.7

4.1 Variation across languages

Performance varies a great deal across languages.
Looking first at the lines in Table 2 marked “Write”
(i.e. composing the plain text), we see that Man-
darin gets a perfect score, and English an almost
perfect score. It is well known that GPT-4 is very
good at writing English, but less well known that
it is also very good at writing Mandarin. At the
other end, the error rates in the “Write” lines are
high for Faroese and Farsi. Faroese is a small, low-
resourced language, so this is unsurprising. Farsi,
in contrast, is a large language, but one spoken
primarily in Iran: we tentatively guess that poor
performance reflects politico-economic rather than
linguistic issues. Performance in writing Russian,
while much better than in Faroese and Farsi, is
still surprisingly poor for a large, well-resourced
language. Again, one is inclined to suspect a expla-
nation in terms of politics and economics.

Performance on the glossing and lemma-tagging
tasks was again good for Mandarin. It may at first
glance seem surprising that English does so badly
at glossing, until one realises that all the other lan-
guages are glossed in English, while English is
glossed in French and Swedish. (We used two
glossing languages to investigate whether there was
anything special about the first one). English is gen-
erally assumed to be ChatGPT’s best language, and
glossing is challenging: ChatGPT-3.5 can hardly
do it at all. It seems reasonable to believe that the
poor performance in English glossing says more
about the choice of glossing language.

As previously noted, Mandarin segmentation is
a special case: unlike all the other operations con-
sidered here, it is a standard problem which has
received a great deal of attention. Comparing the
lines “Seg/J” and “Seg/G”, we see that GPT-4 is do-
ing considerably better at this task than the widely
used Jieba package. Jieba is far from state-of-the-
art (Chuang, 2019), but we still find this a striking
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result.5

4.2 Variation across genre

We do not see any clear evidence of differences
across the six text assignments. This came as a
slight surprise; before we started, we had expected
GPT-4 to find the poem consistently more challeng-
ing than the others, but the results do not support
this hypothesis. The AI did indeed have trouble
composing the poem in Russian and Farsi; how-
ever, in English and Mandarin it appeared to find it
one of the easier assignments. Anecdotally, many
people use ChatGPT to write poetry, and perhaps
the model has been tuned for performance on this
task.

4.3 Variation across processing phase

Before starting, we had expected that glossing
would be the most challenging operation for the
AI, but the results again fail to support the initial
hypothesis. In terms of error rates, glossing is in-
deed the worst operation for the high-performing
language English and also for the low-performing
language Farsi. However, for the high-performing
language Mandarin, the error rates for segmenta-
tion are considerably worse than those for glossing.
For the low-performing language Faroese, the error
rates for the writing task are worse than those for
glossing, and for the middle-performing language
Russian they are comparable.

In general, different languages found different
processing phases challenging. We discuss some
possible explanations in the next section.

4.4 Types of problems

Inspecting the errors made by the AI, we in particu-
lar find two types which occur frequently: we could
call these “displacement” and “multi-words”. Both
occur in the glossing and lemma-tagging phases,
where annotations are attached to words.

The “displacement” type of error occurs when
the two parallel streams, words and annotations,
appear to go out of sync: the annotations are at-
tached to the wrong words. Most often, there is a
span of a few words where the annotation stream
is systematically displaced one word forwards or

5The error rates we get for Jieba are substantially higher
than the ones reported in (Chuang, 2019). We do not think
this reflects any special properties of our texts, and are more
inclined to explain it in terms of the common observation that
annotators’ intuitions about the correct way to segment Chi-
nese text differ widely. All the texts here were annotated by the
same Chinese native speaker, so a comparison is meaningful.

backwards. It can also happen that annotations are
scrambled in some other way. We guess that the is-
sue may be due to some kind of low-level problem
in DNN-based token generation.

The “multi-word” issue, in contrast, is primarily
linguistic, and involves expressions where two or
more words intuitively form a single lexical unit.
The most common example is phrasal verbs, for
example English “end up” or “fall asleep”. Here,
the prompts explicitly tell the AI to annotate these
expressions as single units; for example, “ended
up” should be lemma-tagged as ended#end
up/VERB# up#end up/VERB#, but we usu-
ally failed to obtain such taggings. Similar consid-
erations apply to glossing: thus “ended up” should
be glossed in French as something like ended#a
fini par# up#a fini par#, but again the
AI most often glosses each word separately.

Contrasting the lemma tagging data for Russian
and Farsi provides indirect evidence suggesting
the importance of the multi-word issue. The error
rates for lemma-tagging in Russian are remarkably
low. Phrasal verbs hardly exist in Russian, while
reflexive verbs are always created using an affix
rather than a reflexive pronoun, and hence are not
multi-words either. Farsi is linguistically at the
opposite end of the scale — notoriously, Farsi verbs
are more often phrasal than not. The error rate for
lemma tagging in Farsi is by far the highest in
the sample, and hand-examination of the results
does indeed confirm that phrasal verbs are often
the problem.

4.5 “Improvement”
As noted in Section 2, the AI-based annotation
framework offers the unusual option of sending
annotated text back to the AI with a request to im-
prove the annotation. We experimented with this
feature. Most often, the result was inconclusive,
with the “improved” text changed but about the
same in quality. However, in cases where a gross
error had been made in the initial annotation, “im-
provement” could often correct it. For example, it
could generally correct “displacement” problems,
and it could add glosses or lemma tags that had sim-
ply been omitted in the first pass. In many cases, it
could also correct issues related to multi-words.

A striking example of how improvement can
help is in the French glosses (cf. Table 3). In the
original annotations, GPT-4 in most cases ignores
gender and number, so the glosses for nouns, ad-
jectives, determiners and verbs typically do not
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Figure 2: Example (paragraph from the football story, English glossed in French) showing the effect of the
“improvement” operation on glossed text. Deletions in red, insertions in green.

agree. This is not, strictly speaking, incorrect, but
is perceived as unpleasant and distracting by the
francophone reader. The improved version, in con-
trast, corrects most of these problems.

Figure 2 illustrates, using a paragraph from the
“football” story. We see for instance in the sec-
ond line an example of inserting a missing gloss
(“NO_ANNOTATION”), in the third line correct-
ing glossing of the phrasal verb “count down” (lit-
eral and wrong compté bas changed to correct a
compté), and in the third/fourth line correcting both
word choice and agreement in the glossing of “the
final seconds” from ungrammatical le final secon-
des (“the-MASC-SING last-MASC-SING seconds-
FEM-PLUR”) to grammatical les dernières secon-
des (“the-PLUR last-FEM-PLUR seconds-FEM-
PLUR”).

We also obtained strong gains using “improve-
ment” on Faroese segmentation (Table 4). How-
ever, despite getting an excellent result for the
“Writing” task on the Farsi news story (Table 5),
this was not duplicated on the other Farsi texts. The
improvement operation clearly needs further study.

4.6 Random variability

Many errors seem purely random, with no obvious
cause. For example, in one text the English seg-
mentation was done using an underscore to mark
segment breaks, rather than the vertical bar that had
been requested; the vertical bar was correctly used
in the other five texts. This is again unsurprising. It
is well known that GPT-4 displays this kind of ran-
dom variability in most domains, including ones as
elementary as basic arithmetic, with the variability
changing over time (Chen et al., 2023).

4.7 Language-specific and qualitative aspects

The above subsections focused primarily on quan-
titative and generic aspects of the texts. It is not

enough for texts to be linguistically correct: they
also need to be engaging and culturally appropriate.
In this subsection, we briefly describe language-
specific and qualitative aspects.

English As previously noted, the general stan-
dard of the English texts is high. Qualitatively,
they respond well to the requirements given in the
prompts. The quirky news story, about a raccoon
found unconcernedly riding the Toronto subway,
is amusing. The Bible passage, on the subject of
the Golden Rule, quotes Matthew 7:12 appropri-
ately and displays what in a human author would be
called religious feeling. The football match comes
across as a typical piece of hyperbolic sports jour-
nalism. The “language” piece is sensible and fac-
tual, and the “children’s story” text a competent
summary of “Goldilocks”. The poem comes across
more as a parody of a love poem than as an actual
love poem, but this is a valid way to interpret the
request. In general, the language is almost perfect,
and only one small correction was made.

Faroese As seen in table 2, GPT-4 struggles with
generating original Faroese text. After a native
speaker has manually corrected the grammatical
and lexical mistakes, the English glossing and PoS-
tagging perform reasonably well on Faroese. How-
ever, for Faroese, there are not only grammatical
and lexical errors in the texts, but the content is of-
ten nonsensical. The quirky news story was about
a lamb literally "swimming in sun rays" and go-
ing viral on social media. The famous Faroese
children’s story is a made up story about a real
Faroese teacher and poet, Mikkjal á Ryggi, who is
described as having magical powers and playing
a flute on a mountain. The passage about English
required the least editing, but still resulted in fairly
high error rate, because GPT-4 consistently used
the wrong Faroese word for "English" — a word
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repeated several times in the passage. GPT-4 seems
to be confusing Faroese for Icelandic a lot of the
time. Therefore, when hand-correcting Faroese
text written by ChatGPT, it helps to be proficient
in Icelandic. Faroese is a small language and it is
not known how much Faroese text was included in
the training of GPT-4, but it was likely very little
compared to Icelandic. This might also explain
why ChatGPT is not familiar with Faroese culture.
The most common glossing and lemma tagging
errors were also related to Icelandic, for example
ChatGPT suggesting Icelandic lemmas for Faroese
word forms, such as sauður, (‘sheep’, Icelandic)
instead of seyður, (‘sheep’, Faroese)

Farsi The high error rates occurring even after
improving “Write”, as shown in Table 5, are mostly
due to not considering writing style rules such as
replacing spaces with semi-spaces when necessary:
issues of this kind would not have a serious ef-
fect on reading comprehension or on the mean-
ing. That considered, all six texts make good sense
in most cases and are occasionally quite creative
when it comes to coining words. The “quirky news
story” about a stray cat and how people are used
to have him around in the neighbourhood empha-
sises the impact that animals have on our life. In
this text, a few words, although syntactically well
written, make no sense considering the whole sen-
tence. GPT-4 makes an exact interpretation of the
“Quran passage”, quoting Al-Hujurat 13, in which
humans are considered united as a whole and are
encouraged to resist discrimination, racism, and
sexism to achieve equality. The “football match”
evocatively describes the weather, the fans’ emo-
tions and the game itself. In the “language” text,
although unnecessary, GPT-4 replaced some words
when “improvement” was applied. The text gives
some facts about the key role of the English lan-
guage, the professional/educational opportunities it
can bring to Farsi speakers’ lives and the obstacles
the learner might encounter such as lack of access
to resources. The “children’s story” refers to one
of the most famous poems from Rumi’s Masnavi,
narrating the story The Rabbit and The Lion: in
order to save himself, the rabbit tricks the lion and
makes him jump into a well, reminding the readers
that mental strength and intelligence can overcome
challenging situations. The text was very well writ-
ten except for two incorrectly chosen words. The
“poem” generated by GPT-4 is surprisingly roman-
tic. Considering that there are different styles in

Farsi poetry—some having rhymes and some not—
GPT-4 seems to have combined two styles: the
writing format from Old poetry (two-verse stanzas)
and no rhymes from New poetry. We note that
writing Old poetry, which has rhymes, would be
challenging even for modern Farsi native speaker
poets. There were also a few mistakes on subject-
verb agreement. One interesting point common to
all six texts is how GPT-4 uses them as metaphors
to give readers a life lesson.

Mandarin The Mandarin stories are very good.
In contrast to the other non-English languages, the
writing is flawless without grammar or word choice
errors. Although a few phrases give an unnatural
sense that suggest an AI generated the paragraph,
the Mandarin stories are not influenced by English
overall. The “quirky news story” was about a dog
that is good at painting and is about to open its
exhibition. The story is fluent, fun, and gives a
warm feeling after reading, though the topic itself
is irregular. The LA paragraph provides accurate in-
sights into the English position and people’s views
in the general Mandarin society. The poem follows
a structure of the modern Chinese style, and the
content is very romantic overall.

Based on the evaluation shown in Table 2 and
careful inspection of the results, GPT-4 consis-
tently makes some errors in Mandarin segmenta-
tion, where it often mistakenly separates words
from their particles. However, these results are bet-
ter than those we obtained from the Jieba package.
Regarding the other two annotation tasks, GPT-
4 shows great capability in glossing and lemma-
tagging from Mandarin to English.

Russian GPT-4 is a good tool for glossing and
PoS-tagging Russian. As mentioned earlier, GPT-4
is very good at generating stories in some domains
while facing challenges in others. The simplest task
for Russian involved describing a traditional chil-
dren’s story. GPT-4 selected a well-known tale,
“Masha and the Bear”, and composed an essay
about the typical occurrences in such stories. The
“quirky news story” revolved around a bar owner’s
innovative offering – a service enabling lonely cus-
tomers to rent a cat for company while drinking.
This example highlights the remarkable creativity
of GPT-4, capable of generating such imaginative
narratives. The fictitious football game, which re-
quired some plain text editing, was about a world
championship football match, where the heroes
in blue and white uniforms won the match. The
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Bible passage also underwent some editing. The
piece about English language needed revision dur-
ing glossing. The item which demanded most time
was the Russian romantic poem about AI. The pri-
mary challenge was that the plain text generated
by GPT-4 was composed in a poem-like style but
lacked rhyme. After several re-prompts, the final
version was chosen. This version necessitated sub-
stantial manual text editing and rephrasing, particu-
larly the replacement of words at the end of lines to
achieve rhyme. The glossing of the poem, however,
was comparatively straightforward.

5 Conclusions and further directions

In general, C-LARA seems to be a good environ-
ment for investigating aspects of GPT-4’s linguistic
performance more complex than simply writing
text. A publicly available version of the platform,
hosted at the University of South Australia, will be
released before the date of the conference.

The material presented in this paper should only
be considered a preliminary study: obviously, one
would ideally use more than five languages and
multiple annotators. But given the rapid evolution
of ChatGPT, it seemed more important to prioritise
speed, and quickly gain some insight into the large-
scale patterns. We summarise what we consider
the main results.

The study examined the four tasks of writing,
segmenting, glossing and lemma-tagging, all of
which are key to a wide variety of text-based CALL
systems. There is a great deal of variation across
languages, and a great deal of random variation
in general. However, for languages given a high
enough priority by OpenAI, GPT-4 can write engag-
ing, fluent text with an error rate of well under 1%,
and perform the glossing and lemma-tagging tasks
with average error rates in the mid single digits. En-
glish is not the only language in the high-priority
group: Mandarin appears to be another. It is im-
portant to note that there are no generally available
packages that can perform these tasks well, since
they do not take proper account of multi-words, of
key importance in CALL applications. We gen-
erated texts in six widely different domains, with
roughly equal results cross-domain. This suggests
that GPT-4’s abilities are quite wide-ranging. For
some tasks, including the common and important
one of glossing English, it is possible to improve
performance substantially by instructing GPT-4 to
revise its output.

5.1 Further directions
Looking ahead, one obvious way to extend the
work would be to repeat the experiments with a
larger set of languages. It would probably be
most useful to do this after using the data from
the present study to further tune the system.

In particular, if we identify the common errors
that GPT-4 is making in the annotation, we can
try to adjust the prompt templates and/or few-shot
prompt examples so as to reduce or eliminate the
errors, either in the original annotation or in the
“improvement” phase. To take a simple example,
we found that the most common error in English
segmentation was failing to split off elided verbs
(“it’s”, “we’ll” etc). It may be possible to address
this by just adding one or two prompt examples. A
related case in the opposite direction comes from
Mandarin segmentation: here, the most common er-
ror is that aspectual and possessive particles are in-
correctly split off verbs and nouns, and once again
adjusting the prompts is a natural way to try to
solve the problem. The “improvement” operation
clearly merits further study.

A problem when carrying out evaluation like
the one described here is that the annotation pro-
cedure is extremely time-consuming and tedious,
and people are rarely willing to do more than small
amounts. Once the public deployment of C-LARA
is available, we hope it may be practicable to crowd-
source a similar evaluation using multiple annota-
tors, recruited through social media. We are tenta-
tively planning an exercise of this kind for 2024.

Role of the AI coauthor

It is still unusual for an AI to be credited as the
coauthor of a paper, and we briefly justify doing
so. ChatGPT-4 is, as previously noted, the main
implementor on the C-LARA project team, and
responsible for a large part of the software design;
further details are given in (Bédi et al., 2023a,b).
Here, it has been involved throughout in discussing
and planning all aspects of the experiment, read the
paper, contributed some passages, and made useful
suggestions. In particular, the statistical analysis in
Section 3 was performed in response to an explicit
suggestion from the AI.
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Abstract

Determining causal directions in sentences
plays a critical role into understanding a cause-
and-effect relationship between entities. In
this paper, we show empirically that word oc-
currences from several Internet domains re-
semble the characteristics of causal directions.
Our research contributes to the knowledge of
the underlying data generation process behind
causal directions. We propose a two-phase
method: 1. Bayesian framework, which gen-
erates synthetic data from posteriors by in-
corporating word occurrences from the Inter-
net domains. 2. Pre-trained BERT, which
utilises semantics of words based on the con-
text to perform classification. The proposed
method achieves an improvement in perfor-
mance for the Cause-Effect relations of the
SemEval-2010 dataset, when compared with
random guessing.

1 Introduction

Understanding causality is critical for various tasks
including Question Answering. Singer et al. (1992)
provide a great example: Dorothy poured water on
the fire. The fire went out. Subsequently, if it is
followed by the question did she put out the fire?,
the answer is yes because poured water on implies
that the two sentences are causally linked.

When provided with two entities, namely e1 and
e2, in the sentence that are known to have a causal
relation, the causal direction tells us which one is a
cause and which one is an effect. In the previous
example, poured water on is the cause whereas
fire went out is the effect. Therefore, the causal
direction in this case is poured water on → fire
went out.

In this study, we show that word occurrences
resemble the characteristics of causal directions.
Our research contributes to the knowledge of the
underlying data generation process behind causal
directions. To achieve this, we propose a semi-

supervised classification method1 for determining
a causal direction if its causal relation is known to
exist in the sentence. The GitHub page2 is available
for reference purposes.

2 Related Work

In this section, we provide a brief overview of two
approaches for identifying causal relations. The
first approach, Pointwise Mutual Information, is
designed to eliminate the need for corpus creation.
The second approach, Data Augmentation, clearly
involves the need of creating a corpus.

Pointwise Mutual Information. If e1 and e2
are causally related, it is expected that they will fre-
quently appear together (Kroeger, 2005). Pointwise
Mutual Information (PMI) (Glickman et al., 2005)
is a notable measure used to assess co-occurrence.
However, it should be noted that PMI is commu-
tative and therefore it cannot distinguish between
the causal directions e1→ e2 and e2→ e1. Let us
say two entities, e1 and e2. Suppes (1973) points
out e1 is a possible cause of e2 if e2 is mentioned
more frequently with e1 than by itself.

P (e2 | e1) > P (e2) (1)

We rewrite Equation (1) as follows:

P (e2 ∩ e1)
P (e1)P (e2)

> 1 (2)

Equation (2) is elegant if e1 and e2 establish a
causal relation, but it fails to determine its causal
direction. For example, if e2 is a cause of e1, we
have

P (e1 | e2) > P (e1) (3)
1Utilizing word occurrences to infer causal directions can

be regarded as a form of supervised learning although it may
be considered as a semi-supervised learning because labels
are not annotated.

2https://github.com/kingtaojasonng/Causal_
Direction
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After a couple of algebraic manipulations, we
end up with

P (e1 ∩ e2)
P (e2)P (e1)

> 1 (4)

Equations (2) and (4) are now identical. That is,
we cannot distinguish e1→ e2 from e2→ e1 us-
ing PMI. This means that the same PMI equation is
obtained regardless of the causal direction. Despite
this limitation, PMI is commonly employed in the
identification of causal relations (Moghimifar et al.,
2020).

Data Augmentation. This is a prevalent strategy
employed by many language models to address
the difficulties posed by scenarios where there is a
limited amount of labelled training data. To illus-
trate, Li et al. (2021) leverage external sources like
CausalBank and ConceptNet to incorporate causal
knowledge into pre-trained language models. It is
worth noting that, even though they capture causal
knowledge, there remains a need for human anno-
tation in this process. The use of word occurrences,
which is unannotated data, is a more cost-effective
approach that can generalise to various scenarios.

3 Dataset

For our study, we use the SemEval-2010 (Task
8) dataset (Hendrickx et al., 2010). This dataset
focuses on a multi-class classification task. How-
ever, for the purpose of our study, we narrow our
attention to the specific category labelled as Cause-
Effect in the dataset.

A sentence is considered as Cause-Effect if two
entities, which are marked as <e1> and <e2>, show
a causal relation.

"<e1 >Suicide </e1> is one of the leading
causes of <e2>death </e2> among pre -
adolescents and teens , and victims
of bullying are at an increased risk
for committing suicide ."

Cause -Effect(e1,e2)

Example 1: A sample sentence. The last line indicates
suicide→ death.

The Cause-Effect category comprises a total of
1,331 instances, divided between the training and
test data. In the training data, there are 1,003 in-
stances labelled as Cause-Effect, with 659 of them
demonstrating the relationship e2→ e1. In the test
data, out of the 328 Cause-Effect instances, 134
exhibit the e1→ e2 relationship. There are no bidi-

Datasets SemEval-2010 (Task 8)
Raw Count Percentage

Training
e1→ e2 344 34.30%
e2→ e1 659 65.70%
Total 1,003 100.00%

Test
e1→ e2 134 40.85%
e2→ e1 194 59.15%
Total 328 100.00%

Table 1: The distribution of SemEval-2010 (Task 8) is
shown.

rectional causal relations3 in the dataset. Table 1
provides a summary of the SemEval-2010 (Task 8)
dataset and Example 1 shows an example, which is
taken from the training data.

4 Method

In order to gain insights into the similarity between
word occurrences and causal directions, we sim-
ulate a semi-supervised classification setup and
exclude the training data from our analysis. The
motivation behind examining word occurrences is
that if two words frequently collocate, this linguis-
tic clue can be used to infer a causal direction. For
instance, if the words smoking and lung cancer
frequently collocate, this pair suggests a potential
causal direction, the direction of which we need to
determine. Our method consists of two phases —
Bayesian framework, and Pre-trained BERT.

4.1 Phase 1: Bayesian Framework

We propose a Bayesian framework that incorpo-
rates word occurrences from several Internet do-
mains as priors. By leveraging the externally
sourced data, this framework can generate synthetic
data that exhibits similarities with causal directions.

Given two entities, namely e1 and e2, the direc-
tion of causality will be either e1→ e2 or e2→ e1.
We formulate the problem definition into a hypoth-
esis test by specifying the null and alternative hy-
potheses in the framework as shown in (5):

H0 :

Model 1︷ ︸︸ ︷
f(e1→ e2 | X) >

Model 2︷ ︸︸ ︷
f(e2→ e1 | X)

Ha : Otherwise
(5)

where X is the training data, and f represents a
3An illustration of bidirectional causal relations is the-

chicken-or-the-egg causal dilemma, which states chickens
hatch from eggs and eggs are laid by chickens.
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probability distribution4. The null hypothesis H0

states that the density of f(e1 → e2 | X) mostly
centres at an upper end of probability relative to
f(e2 → e1 | X). Using the Bayes’ rule, as
shown in (6) and (7):

f(e1→ e2 | X) =
f(X | e1→ e2)f(e1→ e2)

f(X)
(6)

f(e2→ e1 | X) =
f(X | e2→ e1)f(e2→ e1)

f(X)
(7)

we re-write the null hypothesis as (8):

H0 : f(X | e1→ e2)f(e1→ e2) >
f(X | e2→ e1)f(e2→ e1)

(8)

Because no training data X is provided, we fur-
ther simplify the null hypothesis as (9):

H0 : f(e1→ e2) > f(e2→ e1) (9)

This means that the posterior distributions are
effectively the priors.

4.1.1 Priors
Since we exclude the training data, it is necessary
to find a proxy for the causal direction. Broadly
speaking, priors can be any type of information
that conveys the knowledge of f(e1 → e2) and
f(e2→ e1).

We use word occurrences from several Internet
domains as priors to model causal directions. As
SemEval-2010 (Task 8) is mainly extracted from
Wikipedia, we select a wide range of the Internet
domains, as shown in Table 2. These include media
outlets, since Wikipedia often references news ar-
ticles for the news; educational institutions which
Wikipedia cites as learning resources; government
entities, which Wikipedia references to gather in-
formation about agencies and policies; scientific
publishers, which Wikipedia references for scien-
tific knowledge; online resources that often link to
Wikipedia pages for additional information; jour-
nals, where Wikipedia may reference the works
of researchers and scholars; and general reference.

4A probability distribution is a mathematical function that
describes the likelihoods of all possible outcomes that a ran-
dom variable can take. Probability distributions not only allow
us to quantify uncertainty but also provide a comprehensive
view of all possible values and their associated probabilities.
Hence, we employ Bayesian statistics as opposed to frequen-
tist statistics in hypothesis testing to harness these advantages.

abc.net.au au.news.yahoo.com bbc.com
economist.com edu gov.au
imdb.com mit.edu nationalgeographic.com
ncbi.nlm.nih.gov nejm.org nytimes.com
oreilly.com skynews.com.au smh.com.au
springer.com time.com wikipedia.org
wiley.com

Table 2: The Internet domains used for extracting word
occurrences.

Figure 1: When searching for the word suicide, 83,500
results are shown.

We use Google search to determine word occur-
rences by restricting the search to these chosen
Internet domains. For example, to look for the
word suicide in the ABC News, the search com-
mand would be suicide site:abc.net.au, as
shown in Figure 1. A number of search results (i.e.,
83,500), which we consider occurrences, is shown
before actual results are displayed. Figure 1 is for
illustration purposes only. In practice, we searched
Google programmatically.

To compute P (e1→ e2), which is a single prob-
ability, we use Google to estimate the frequency
count of the occurrences of both e1 and e2 in a
domain, C(e1, e2), and divide it by the frequency
count of the occurrences of e1 alone in the same
domain, C(e1). P (e2 → e1) is calculated using
the same method. This will result in unnormalised
versions, which will be normalised as described
below.

P ′(e1→ e2) =
C(e1, e2)

C(e1)
(10)

P ′(e2→ e1) =
C(e1, e2)

C(e2)
(11)

In (10) and (11), C(e1) 6= 0 and C(e2) 6= 0 to
avoid zero counts5. To normalise Equations (10)

5Haldane (1956) suggests adding 0.5 to every count if
C(e1) = 0 or C(e2) = 0. However, we did not experience
zero counts during the experiments.
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and (11), both are divided by their sum.6

P (e1→ e2) =
P ′(e1→ e2)

P ′(e1→ e2) + P ′(e2→ e1)
(12)

P (e2→ e1) =
P ′(e2→ e1)

P ′(e1→ e2) + P ′(e2→ e1)
(13)

Equations (12) and (13) are effectively conditional
probabilities. We apply Equations (12) and (13) re-
peatedly for each domain outlined in Table 2. This
process results in two distinct lists of probabilities.
Each of these lists provides a complete range of
likelihoods. A probability7 is assigned to each like-
lihood, effectively quantifying the uncertainty. As
a result, we have f(e1→ e2) and f(e2→ e1).

Prior Specification
Prior specification is a process of selecting and
defining a prior distribution in the Bayesian frame-
work. More specifically, it involves choosing a type
of distributions and its parameters to fit f(e1→ e2)
and f(e2→ e1) given the experimental values ob-
tained from the Internet domains. We employ the
Sum of Square Error (SSE) as the criterion that de-
termines the best-fitting among the following types
of distributions:

• Normal distribution is the most commonly
used distribution.

• Cauchy distribution: One characteristic of
the Cauchy distribution is its heavy tails. In
other words, it has a higher probability of ex-
treme values.

• Exponential distribution: The exponential
distribution is often used to model the time be-
tween events. Certain words such as machine
learning may appear more often through time,
so it becomes an excellent choice.

• Gamma distribution: The gamma distribu-
tion is more flexible than the exponential dis-
tribution due to the fact it has two parameters
whereas the exponential distribution has one.

• Inverse-gamma distribution: The inverse-
gamma distribution is a probability distribu-
tion of the inverse of a random variable that
follows a gamma distribution.

6Bayesian statistics is inherently subjective in the sense
that it allows individuals to express their beliefs through pri-
ors. Whether someone articulates e1 → e2 or e2 → e1
as expressed in Equations (12), (13), or any other forms, it
remains an expression of their subjective belief.

7In Bayesian statistics, a probability can be interpreted as
a measure of uncertainty.

• Log-normal distribution: The log-normal
distribution is often used to model data that is
positively skewed, but taking the logarithm of
the data results a normal distribution.

• Student’s t-distribution: The student’s t-
distribution is a continuous probability distri-
bution that is similar to the normal distribution
in shape but with heavier tails.

Given that we do not know the underlying distri-
butions of word occurrences, our expectation is that
if word occurrences exhibit specific characteristics,
at least one of the pre-selected distributions will be
able to capture distinctive features. Furthermore,
all of them are often used as a prior distribution
in Bayesian statistics. If a probability distribution
fits the experimental values obtained from the In-
ternet domains, simulated samples from the prob-
ability distribution should look indistinguishable
compared with these experimental values. Hence,
the probability distribution that has the least SSE is
deemed as the best distribution. Indeed, the fitter
package8 returns the best distribution based on the
smallest SSE and its parameters that describe the
chosen distribution.

Prior Predictive Checks
After choosing a probability distribution as de-
scribed in Section 4.1.1, we still need to check
whether the chosen distribution is a good fit. We
use Prior Predictive Checks (PPC) (Kruschke,
2015; Lambert, 2018) as a guide to judge the fit.

The concept is as follows: If we cannot tell
which data is generated from the probability distri-
bution and which one comes from the experimen-
tal values, we can conclude it is a good (enough)
fit. Many statisticians use the maximum or mini-
mum value as the criterion. In our specific case,
we utilize the maximum criterion for assessing
f(e1 → e2) and the minimum for evaluating
f(e2 → e1). That is, it is anticipated that half
of the time (i.e., 50%) the maximum or minimum
value will come from simulated samples, and the
other half it will come from experimental values
if the chosen distribution fits best. Nevertheless,
requiring an exact 50% would be overly strict, so
we have extended the range to 50% ± 1% to ac-
commodate some variability.

Algorithm 1 shows the pseudocode. M is the
total number of runs that we ask the probability
distribution to simulate samples; N is how many

8https://fitter.readthedocs.io/en/latest/
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Algorithm 1 Prior Predictive Checks
Require: m ≥ 0, n ≥ 0, i ≥ 0

1: M ← m
2: c← 0
3: while M 6= 0 do
4: N ← n
5: i← 0
6: while N 6= 0 do
7: p← pdf(θ)
8: S[i]← p
9: i← i+ 1

10: N ← N − 1
11: end while
12: j ← max(S) {Or min(S)}
13: k ← max(P ) {Or min(P )}
14: if j ≥ k then
15: c← c+ 1
16: end if
17: M ←M − 1
18: end while
19: return c/M

simulated samples we need for each run. Once N
samples are generated, we retrieve the maximum
or minimum value and store it in j. We also re-
trieve the maximum or minimum value from the
experimental values and store it in k. If j ≥ k
holds, we increment c by 1. Thus, c/M , which is
the last line in Algorithm 1, is the percentage of
times the maximum or minimum values come from
simulated samples across M runs.

4.1.2 Posteriors
To approximate posterior distributions, we use the
Stan open-source probabilistic programming lan-
guage9 (Kruschke, 2015; Lambert, 2018). Given
Example 1, Figure 2 shows the posteriors of
f(suicide → death | X) and f(death → suicide |
X). These posteriors indicate that suicide→ death
is more likely since its posterior density is skewed
toward the higher end of probabilities, making it
more likely than death→ suicide.

4.1.3 Bayes Factor
Given that both Model 1 and Model 2 in Equa-
tion (5) are posterior distributions, we use Bayes
Factor (BF) (Lambert, 2018; McElreath, 2015) to
reject either the null (i.e., Model 1) or alternative
(i.e., Model 2) hypothesis. If BF is greater than 1,
we opt for Model 1; Otherwise, we select Model 2.

9https://mc-stan.org

Figure 2: Both posteriors f(death → suicide | X) and
f(suicide→ death | X) are shown.

BF Interpretation

BF < e−300 Decisive evidence for Model 2
e−300 < BF < e300 Reject Option (Neither)
BF > e300 Decisive evidence for Model 1

Table 3: Thresholds are used for the study.

However, it is important to note that BF tends
to favour one model over the other even when
both have reasonable likelihoods. Hence, Mur-
phy (2013) suggests a threshold. By enforcing the
threshold, we allow BF to make a choice only if it
is confident enough. Table 3 provides a guideline
about how we choose the model. When BF lies on
an extreme, either a positive infinity (in which case
we consider as e300) or close to 0 (in which case we
consider as e−300), it is very confident one model is
preferred over the other. Otherwise, as a Reject Op-
tion (Bishop, 2007; Murphy, 2013), neither model
is chosen10. That is, the Bayesian framework pre-
dicts a causal direction either e1 → e2, e2 → e1,
or neither. Predicted directions that fall outside
the Reject Option will be fed to the next phase —
Pre-trained BERT, as discussed in Section 4.2.

4.2 Phase 2: Pre-trained BERT

While the Bayesian framework is capable of iden-
tifying causal directions, a lack of understanding
semantics means its capability is rather limited.
Therefore, we turn to BERT (Devlin et al., 2019).
Although BERT has many variants, we stick to the
BERT uncased base model. Our implementation is
largely based on a Jupyter notebook made available

10Strictly speaking, the Bayesian framework still predicts
either e1 → e2 or e2 → e1 with BF falling between e−300

and e300.
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Figure 3: The first three rows of the labelled dataset is
shown.

by Rothman (2021)11.

"The dramatic <e1>streaks </e1> we see in
the sky are caused by <e2>particles

</e2 > that incinerate before they
hit the ground ."

Example 2: A sample sentence.

In this phase, we refine the performance of
BERT, which was originally trained and made avail-
able through Hugging Face12, by using the sen-
tences from the test data that have causal direc-
tions predicted from the previous phase. More
specifically, for each sentence in the test data,
the Bayesian framework predicts either e1 → e2,
e2→ e1, or neither. When the framework predicts
either e1→ e2 or e2→ e1, we include the corre-
sponding sentences as input to BERT, along with
the predictions. Given that the Bayesian framework
inherently considers uncertainty, not all sentences
from the test data are passed to BERT (i.e., some
have neither). Hence, we rely on BERT to predict
those that the Bayesian framework labels neither.
During the dataset construction process, the place-
holders <e1> and <e2> are removed from sentences.
label serves as the target variable, with 0 repre-
senting the direction e2 → e1 and 1 representing
the direction e1→ e2. Let us take Example 2 as an
example. According to the Bayesian framework, in
this instance, the predicted causal direction is par-
ticles→ streaks because BF < e−300. Hence, we
include this sentence and its predicted direction in
the dataset to BERT. We continue the dataset con-
struction process for the rest of predicted directions,
as depicted in Figure 3.

5 Experiments

To evaluate our method, we have two experimental
set-ups: (a) Random and (b) Bayesian + Pre-trained
BERT.

11https://github.com/PacktPublishing/
Transformers-for-Natural-Language-Processing/
blob/main/Chapter02/BERT_Fine_Tuning_Sentence_
Classification_DR.ipynb

12https://huggingface.co

To the best of our knowledge, there are no ex-
isting semi-supervised models for detecting causal
directions. Thus, the random approach serves as
the baseline, which blindly guesses causal direc-
tions. While one might argue that a baseline should
always predict e2 → e1 since it is the majority
direction, it is important to note that the proposed
method does not leverage such information. Hence,
the random approach is more appropriate for our
evaluation.

Given the SemEval-2010 (Task 8) dataset is well
known, it might be tempting to consider using an
established supervised model as a baseline. Using a
supervised model as a baseline in a semi-supervised
classification scenario is not recommended for sev-
eral reasons. Firstly, supervised models are trained
on labelled data whereas semi-supervised mod-
els lack annotated labels. This difference renders
any experimental results incomparable: using a
supervised model as a baseline can have unreal-
istic expectations for the performance of a semi-
supervised model. Lastly, the primary objective
of our study is to demonstrate the resemblance be-
tween word occurrences and the characteristics of
causal directions. Using a supervised model as a
baseline may distract from this objective.

(a) Random In this set-up, we simulated a prob-
ability from Uniform(0, 1). If it was greater than
0.5, we would classify as e1 → e2. Otherwise,
e2→ e1. We ran this set-up for 10,000 times and
averages were recorded.

(b) Bayesian + Pre-trained BERT In this partic-
ular set-up, we ran the two-phase method described
above. That is, we used the predicted directions
generated from the Bayesian framework and fed
them into pre-trained BERT, which made predic-
tions on the rest of test data. This set-up was run
10 times.

We conducted the experiment under two distinct
settings in the Bayesian framework. In the first
setting, we examined whether the priors were sat-
isfied with PPC (referred to as PPC+), resulting
in predictions for 7 out of 328 cases. In the sec-
ond setting, we did not apply any prior checks
(referred to as PPC−), and this yielded predictions
for 281 out of 328 cases. This allows us to gain
insights into the quality of the data generated by
the Bayesian framework. Because there were not
enough predicted directions generated in the PPC+
setting, primarily due to a substantial number of
the priors being rejected by PPC (for a detailed
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Set-Up Precision Recall F1 Accuracy
(SDa) (SD) (SD) (SD)

a. Random 40.81% 49.99% 44.90% 49.95%
(2.71%) (4.32%) (3.18%) (2.74%)

b. Bayesian+Pre-trained BERT 46.00% 44.93% 44.89% 55.98%
(PPC+) (2.56%) (10.83%) (6.22%) (2.18%)
Bayesian+Pre-trained BERT 46.82% 52.09% 49.10% 56.31%
(PPC−) (1.85%) (7.86%) (4.14%) (1.39%)

Table 4: All the experimental set-ups results are sum-
marised.
aSD is short for Standard Deviation.

explanation, refer to Section 8), we augmented
data by using ContextualWordEmbsAug from
nlpaug.augmenter before running pre-trained
BERT (Tunstall et al., 2022).

6 Results

Table 4 provides a summary of the results from
all experimental set-ups (See Appendix A.1 for
individual runs). In the second set-up, when the
Bayesian framework creates data and feeds it into
pre-trained BERT, the two-phase method yields
two distinct outcomes based on the presence or ab-
sence of PPC. With Bayesian+Pre-trained BERT
(PPC+), this setting achieves comparable perfor-
mance to the baseline, with an F1 score of 44.89%
compared to 44.90%; without PPC (i.e., PPC−),
it outperforms significantly better compared with
the baseline, achieving an F1 score of 49.10% ver-
sus 44.90%. To sum up, the two-phase method
performs best when PPC is de-activated. PPC is
necessary for assessing the trustworthiness of pri-
ors even if it led to worse performance.

7 Discussion

Although the Bayesian framework is inherently sta-
tistically sound, it is not immune to failure when
confronted with certain word occurrences used in
constructing the priors. In this section, we explore
the Bayesian framework more comprehensively,
aiming to understand the rationale behind the spe-
cific predictions made by the Bayesian framework,
especially two cases from the test data where the
predictions were incorrect.

1. rain→ cancellation The first case, as shown
in Example 3, suggests rain→ cancellation, but
the Bayesian framework incorrectly classified it as
cancellation→ rain. rain→ cancellation approxi-
mates the gamma distribution whereas cancellation
→ rain follows the Student’s t-distribution. Fig-
ure 4, which shows the posteriors for both rain

Figure 4: Both f(rain → cancellation | X) and
f(cancellation→ rain | X) are shown.

→ cancellation and cancellation→ rain, clearly
favours cancellation→ rain.
"<e1>Rain </e1> caused <e2>cancellation </

e2> of the event in 1877, so
enforcement of the new law had to
wait until 1878."

Cause -Effect(e1,e2)

Example 3: A sample sentence. The last line indicates
rain→ cancellation.

Referring to Equation (10) and (11), in situa-
tions where there exists co-occurrence between e1
and e2, which is C(e1, e2) > 0, the entity with a
higher frequency count is always identified as the
effect when evaluating the entity counts. In this spe-
cific instance, the prevalence of the term C(rain)
typically surpasses that of C(cancellation). The
reason rain appears more often in the text could be
attributed to the fact that rain is commonly used
in everyday language, particularly weather-related
contexts like events related to weather conditions.

2. moon→ perturbations In the second case, as
shown in Example 4, the correct answer is moon
→ perturbations, but the Bayesian framework erro-
neously misclassified it as perturbations→ moon.
perturbations→ moon approximates the Student’s
t-distribution whereas moon→ perturbations fol-
lows the inverse-gamma distribution. Figure 5,
which illustrates the posterior distributions for both
moon→ perturbations and perturbations→ moon,
distinctly favours perturbations→ moon.
"The thin F ring on the left of the

image shows the <e1>perturbations </
e1> caused by the <e2>moon </e2 >
Prometheus ."

Cause -Effect(e2,e1)

Example 4: A sample sentence. The last line indicates
moon→ perturbations.
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Figure 5: Both f(moon → perturbations | X) and
f(perturbations→ moon | X) are shown.

In consideration of Equation (10) and (11),
P (perturbations → moon) is higher than
P (moon → perturbations) in all the do-
mains, except for wiley.com, springer.com, and
ncbi.nlm.nih.gov. What they have in common is
their focus on providing access to scientific re-
search articles, publications, or resources. Given
the context, which appears to be closely related to
astronomy, it is likely that these specific domains
cover relevant topics in this field. As further work,
it is suggested to automatically identify and select
the most suitable domains for the calculation of
priors.

8 Further Work

There are many areas we can explore to improve
the study further. In this section, we present three
of them: Earth Mover’s Distance, Mixture Models,
and Bayesian Network.

Earth Mover’s Distance. While conducting
PPC in Section 4.1.1, we utilized a simple method
to determine the percentage of times when the max-
imum or minimum value originated from simu-
lated samples. This approach offers the advan-
tage of being straightforward to implement because
it involves comparing two numbers. However, it
may not always provide reliable results. Gelman
et al. (2004); Lambert (2018) recommend using
Kullback-Leibler Divergence (KL Divergence) to
compare two distributions. However, KL Diver-
gence is sensitive to the choice of a reference dis-
tribution, which can be a drawback. An alternative
way to do so is Earth Mover’s Distance (EMD)
(Rubner et al., 2000) or Word Mover’s Distance
(Kusner et al., 2015; Sun et al., 2019). EMD is a

e1

e3

e2

Figure 6: e1, e2 and e3 show causal relations.

e1

e3

e2

Figure 7: e3 → e2 is one possible way if e3 → e2
exists.

e1

e3

e2

Figure 8: e3 → e1 → e2 is another possible way if
e3→ e2 exists.

methodology to compute “distances” between the
experimental values and the listed distributions in
Section 4.1.1. The distribution with the shortest
distance is considered as the best fit.

Mixture Models. The distributions listed in Sec-
tion 4.1.1 are not suited for modelling multi-modal
data, which we frequently encountered in word oc-
currences, so a significant number of priors was
rejected by PPC. Mixture models (Gelman et al.,
2004) could be good substitutes. They are in fact
probability distributions, which can account for
data that exhibits multimodal and skewness. The
idea is to take numerous probability distributions
and stack them together using a linear combination.

Bayesian Network. We have so far considered a
single causal relation in the sentence. To extend the
analysis further, we can consider a multiple causal
relations’ scenario. That is, a model determines
causal directions among all the causal relations.
Let the diagram shown in Figure 6 be underlying
causal relations. The task is to determine whether
the causal direction e3 → e2 exists. If e3 → e2
exists, there are two possible networks as shown
in Figures 7 and 8. We may be able to extend the
proposed method to compute the likelihoods of
Figures 7 and 8 if e3→ e2 exists.
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9 Conclusion

In this paper, we have shown empirically that word
occurrences resemble the characteristics of causal
directions. This finding provides significant impli-
cations and contributes significantly to our under-
standing of the data generation process underpin-
ning causal directions.
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A Appendix

A.1 Experiments
Tables 5 and 6 show the individual runs of

• Bayesian+Pre-trained BERT (PPC+), and
• Bayesian+Pre-trained BERT (PPC−)

respectively.
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Run Precision Recall F1 Accuracy

1 42.62% 38.81% 40.62% 53.66%
2 47.51% 64.18% 54.60% 56.40%
3 49.18% 44.78% 46.88% 58.54%
4 45.60% 42.54% 44.02% 55.79%
5 47.65% 52.99% 50.18% 57.01%
6 48.33% 43.28% 45.67% 57.93%
7 46.88% 55.97% 51.02% 56.10%
8 44.34% 35.07% 39.17% 55.49%
9 46.67% 26.12% 33.49% 57.62%
10 41.22% 45.52% 43.26% 51.22%

Average 46.00% 44.93% 44.89% 55.98%
SD (2.56%) (10.83%) (6.22%) (2.18%)

Table 5: Results of Bayesian+Pre-trained BERT
(PPC+) are shown.

Run Precision Recall F1 Accuracy

1 46.20% 54.48% 50.00% 55.49%
2 46.67% 57.46% 51.51% 55.79%
3 48.94% 51.49% 50.18% 58.23%
4 46.88% 55.97% 51.02% 56.10%
5 46.99% 58.21% 52.00% 56.10%
6 47.65% 52.99% 50.18% 57.01%
7 45.60% 42.54% 44.02% 55.79%
8 49.18% 44.78% 46.88% 58.54%
9 47.51% 64.18% 54.60% 56.40%
10 42.62% 38.81% 40.62% 53.66%

Average 46.82% 52.09% 49.10% 56.31%
SD (1.85%) (7.86%) (4.14%) (1.39%)

Table 6: Results of Bayesian+Pre-trained BERT
(PPC−) are shown.
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Abstract 

This paper exploits band-limited cepstral 

coefficients (BLCCs) in forensic voice 

comparison (FVC), with the primary aim of 

locating speaker-sensitive spectral regions. 

BLCCs are sub-band cepstral coefficients 

(CCs) which are easily obtained by a linear 

transformation of full-band CCs. The 

transformation gives the flexibility of 

selecting any sub-band region without the 

recurrent cost of spectral analyses. Using 

multi-band BLCCs obtained by sliding a 

600-Hz sub-band every 400 Hz across the 

full [0-5kHz] range, FVC experiments were 

attempted using citation recordings of the 5 

Japanese vowels from 297 adult-male, 

native speakers. The FVC results give 

locations and ranges for the most speaker-

sensitive sub-bands, and show that 

combining 3-4 of these yields comparable 

FVC performance with full-band CCs. 

Owing to their ability to easily extract 

locally-encoded speaker information from 

full-band CCs, it can be conjectured that 

BLCCs have a significant role to play in the 

search for meaningful interpretations of the 

numerical outcome of forensic analyses. 

1 Introduction 

In forensic voice comparison (FVC), the forensic 

scientist typically needs to compare a pair of 

speech recordings: the source-questioned and 

source-known samples, and to obtain the strength 

of evidence quantified by a likelihood ratio (LR).  

For this purpose, it has become standard practice 

to parameterise the acoustic speech signal using 

low-dimensional vectors of cepstral coefficients 

(CCs). These are automatically extracted from any 

phonetic segments, and have been shown to be 

effective for speech and speaker classification. The 

effectiveness is attributable to the ability of low-

ordered CCs to produce cepstrally-smoothed 

spectra with reduced sensitivity to “noninformation 

bearing variabilities” (Rabiner and Juang 1993: 

169) and, thus, with increased distinctiveness. Such 

spectra may be obtained with full-band CCs which 

yield spectral representations over the full 

frequency range, or with sub-band CCs which give 

access to local regions within the full range. 

Consistent with our long-term goal of 

interpreting the FVC outcome beyond numerical 

LR values, the present study focuses on sub-band 

CCs with the dual aim of (a) locating vowel 

spectral regions that are most sensitive to speaker 

differences, and (b) determining the extent to 

which such regions affect LR values compared to 

the full band from vowel to vowel. The motivation 

for this endeavour stems from an old premise 

(Peterson 1959: 151) that speaker information is 

not uniformly encoded throughout vowel spectra, 

i.e., there exist local regions of strong speaker and 

phonetic specificity. Supportive evidence has since 

been reported in a wide range of studies (inter alia: 

Goto et al. 2017; Hyon et al. 2012; Khodai-Joopari 

et al. 2004; Kitamura and Akagi 1995; 

Mohammadi et al. 2011; Mokhtari and Clermont 

1994; Pols et al. 1973; Saito and Itakura 1982; van 

den Heuvel et al. 1993; Wang et al. 2016). 

The presentation of our work is as follows. Sec. 

2 describes and illustrates the method (Clermont 

2022) adopted for obtaining sub-band CCs, 

hereafter referred to as band-limited CCs (BLCCs 

in short). The BLCC method affords flexibility and 

efficiency, two properties exploited in this work. 

Sec. 3 recalls the basics of the LR framework. 

Sec. 4 concerns the multi-speaker vowel data used, 

the BLCC parameterisation applied to a sequence 

of sub-bands, the FVC procedures, and the LR-

based metric for performance assessment. Sec. 5 

presents full-band and sub-band FVC results for 

each vowel. Sec. 6 discusses the results in context 

of previous work, and Sec. 7 outlines potential 

ways forward. 

The sub-band cepstrum as a tool for local spectral analysis  

in forensic voice comparison 
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2 The BLCC Method 

This section focuses on the method employed for 

obtaining BLCCs by a linear transformation of full-

band CCs. The method is described in Sec. 2.1, and 

its mathematical formulation is outlined in Sec. 2.2. 

In Sec. 2.3, the numerical and spectral behaviours 

of BLCCs show that the practical size for a BLCC 

vector depends on the fraction of the full-band’s 

frequency range occupied by the sub-band’s width. 

2.1 Procedural steps 

The BLCC method consists of three main steps 

encapsulated in Fig. 1. Steps (1) and (2) describe 

standard procedures of spectral analysis, which are 

applied to short-time frames of the speech signal 

sampled at some frequency 𝐹𝑠 (Hz). The final step 

(3) concerns the linear transformation itself. 

At Step (1), the all-pole linear-prediction (LP) 

model of speech production is adopted for two 

reasons: (a) It provides a reliable characterisation 

of the spectral resonance patterns of  non-nasalised, 

voiced sounds; (b) It is thus expected that speaker 

differences are strongly encoded in the LP cepstral 

representation of the vowels used for this study.  

Step (1) yields a log magnitude spectral (LMS) 

representation based on the LP model (order 𝑀 ), 

which spans the entire frequency range [0, (𝐹𝑠/2)] 
in Hertz (or [0, 𝜋] in radians). The dashed curve in 

Fig. (2a) illustrates this representation also known 

as the “exact” LP-based LMS. Note that the 

frequency scale along the horizontal axis is kept 

linear in our experiments, thus leaving open the 

possibility of finding speaker-sensitive sub-bands 

without pre-defined nonlinear constraints. 

The purpose of the Discrete Cosine Transform 

(DCT) at Step (2) is to expand the exact LMS as a 

Fourier cosine series of the so-called cepstral 

coefficients 𝐶𝑘. These are here referred to as full-

band 𝐶𝑘  since our LMS spans the full frequency 

range. The average of the full-band LMS is usually 

assumed to be zero, hence 𝐶0 = 0. In practice, the 

series is truncated after 𝑀 terms as follows: 

𝑆(𝜔) = ∑ 𝐶𝑘
𝑀
𝑘=1 cos(𝑘𝜔) ,    0 ≤ 𝜔 ≤ 𝜋                   (1)                               

The solid curve in Fig. 2(a) depicts the 

cepstrally-smoothed LMS resulting from the 

truncated series. As noted earlier, smoothing has 

the beneficial effect of enhancing spectral 

distinctiveness. 

At Step (3), BLCCs are obtained using a method 

 

Figure 1: The BLCC method and its main steps. 

 
 

 

Figure 2: Spectral representations of a back vowel: (a) 

Exact LMS (full band) based on LP analysis (order 

M=14) at Step (1), overlaid with cepstrally-smoothed 

LMS based on Eq. (1) and on the 𝐶𝑘 obtained at Step 

(2); (b) Sub-band region [𝜔1, 𝜔2]  highlighted as an 

integral part of the full-band, cepstrally-smoothed LMS. 
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which affords the flexibility of selecting any sub-

band region of the full-band spectrum without 

repeating the two previous steps. The central idea 

portrayed in Fig. 2(b) is this: Focusing on a sub-

band region [𝜔1, 𝜔2] does not alter the fact that it 

forms an integral part of some full-band spectrum. 

It is therefore conceivable that sub-band cepstra are 

derivable from full-band cepstra. As shown in 

Clermont’s (2022) study, the vector 𝐜′  of BLCCs 

representing a sub-band can indeed be calculated 

using a linear transformation 𝐀  of the vector 𝐜  of 

full-band 𝐶𝑘. Sec. 2.2 outlines the transformation 

formulae. Key properties are illustrated in Sec. 2.3. 

2.2 Linear transformation formulae 

The mathematical goal is to represent a sub-band 

region [𝜔1, 𝜔2] of the full-band, cepstrally-

smoothed LMS with a Fourier cosine series, such 

that its coefficients 𝐶𝑙
′ depend on the full-band 𝐶𝑘. 

The band-limited analogue of Eq. (1) may be 

expressed as follows: 

𝑆(𝜔(𝜔′)) = 𝐶0
′ + ∑ 𝐶𝑙

′𝑁
𝑙=1 cos(𝑙𝜔′) , 0 ≤ 𝜔′ ≤ 𝜋   (2) 

where 𝐶𝑙
′  is the l-th BLCC and 𝑁  is the series’ 

upper bound. Eq. (2) includes 𝐶0
′   because the 

average of 𝑆(𝜔(𝜔′)) within a sub-band may not be 

zero. The other 𝐶𝑙>0
′  represent the spectral shape. 

The frequency variable 𝜔′ defined below plays 

a key role by translating the sub-band interval 

[𝜔1, 𝜔2] to that of the full-band range [0, π]: 

𝜔′ = 𝜋 [
(𝜔−𝜔1)

(𝜔2−𝜔1)
] , 𝜔1 ≤ 𝜔 ≤ 𝜔2                               (3)             

From Eq. (3) it is easy to express the frequency 

variable 𝜔 of the full-band series as: 

𝜔(𝜔′) = 𝜔1 + [
(𝜔2−𝜔1)

𝜋
] 𝜔′ = 𝜔1 + 𝑊𝜔′                 (4)             

where the scalar 𝑊 is the ratio of the sub-band’s 

width to the full-band’s frequency range.  

The notation 𝜔(𝜔′) is a reminder that 𝜔 is itself 

a (band-dependent) function of 𝜔′, thus making it 

possible to substitute 𝜔 in Eq. (1) for Eq. (4) and to 

use standard formulae for the coefficients of the 

BLCC series in Eq. (2). These operations lead to:  

𝐶𝑙
′ = ∑ 𝑎𝑙𝑘

𝑀 
𝑘=1 𝐶𝑘, 𝑙 = 0,1, … , 𝑁                                (5) 

and to the matrix form 𝐜′ = 𝐀𝐜 laid out below: 

[
 
 
 
 
 
𝐶0

′

𝐶1
′

⋮
𝐶𝑙

′

⋮
𝐶𝑁

′ ]
 
 
 
 
 

=

[
 
 
 
 
 
𝑎0,1 ⋯ 𝑎0,𝑘 ⋯ 𝑎0,𝑀

𝑎1,1 ⋯ 𝑎1,𝑘 ⋯ 𝑎1,𝑀

⋮ ⋮ ⋮
𝑎𝑙,1 ⋯ 𝑎𝑙,𝑘 ⋯ 𝑎𝑙,𝑀

⋮ ⋮ ⋮
𝑎𝑁,1 ⋯ 𝑎𝑁,𝑘 ⋯ 𝑎𝑁,𝑀]

 
 
 
 
 

[
 
 
 
 
𝐶1

⋮
𝐶𝑘

⋮
𝐶𝑀]

 
 
 
 

            (6) 

The band-dependent weights 𝑎𝑙𝑘  are given in 

Eq. (7a) for  𝑙 = 0 and in Eqs (7b)-(7c) for 𝑙 > 0. 

𝑎𝑙𝑘, 𝑙=0    = 𝛽𝑘[sin( 𝑘𝜔2) − sin(𝑘𝜔1)]                      (7a) 

𝑎𝑙𝑘, 𝑙≠𝑘𝑊 = 𝛾𝑙𝑘[(−1)𝑙+1 sin(𝑘𝜔2) + sin(𝑘𝜔1)]    (7b) 
 

𝑎𝑙𝑘, 𝑙=𝑘𝑊 =  cos(𝑘𝜔1)                                                                (7c) 

where: 

𝛽𝑘 =
1

𝑘(𝜔2−𝜔1)
  and  𝛾𝑙𝑘 =

2(𝑘𝑊)

𝜋[𝑙2−(𝑘𝑊)2]
                       (7d) 

The implementation of Eqs (6) and (7) raises the 

question of how large 𝑁  needs to be in practice. 

The empirical solution suggested in Clermont’s 

study is to fix 𝑁 at 𝑀 × 𝑊 (𝑀𝑊 in short) rounded 

to the nearest integer, where 𝑊 is the ratio defined 

above and 𝑀 the size of the vector of full-band 𝐶𝑘.  

2.3 Numerical illustrations of key properties 

What do BLCCs look like, and how effective are 

they at preserving spectral resolution in a sub-band 

region for 𝑁 = 𝑀𝑊? 

Fig. 3(a) gives a glimpse of BLCC series for two 

sub-bands selected from the same back vowel 

illustrated in Fig. (2). The full-band 𝐶𝑘={1⋯𝑀=14} 

were obtained by DCT of the full-band LP-based 

LMS ranging from 0 to 5 kHz. Eqs (6) and (7) were 

then used to calculate BLCCs for these sub-bands: 

[0.1-0.814]-kHz and [2.3-3.728]-kHz, the latter 

being twice as large as the former. 

The coefficient 𝐶0
′   in Fig. 3(a) is visibly much 

larger in the [0.1,0.814]-kHz range, thus indicating 

a prominent region in the lower part of the 

spectrum. The next 𝐶𝑙
′ exhibit a consistent trend for 

both sub-bands: A major drop in magnitude is 

noticeable after 𝑀𝑊,  followed by a clear decay 

towards zero.  

Is the proposed truncation after 𝑀𝑊 detrimental 

to the spectral resolution in a sub-band region? To 

gain insights into this question, it is instructive to 

observe cepstrally-smoothed spectra representing 

the full band and the two sub-bands. The latter are 

overlaid in Figs 3(b)-(d) for 𝑁 = 0, 1,𝑀𝑊, 
respectively. The 𝑁 = 0  cases in Fig. 3(b) 

correspond to using only 𝐶0
′ . While the spectral fits 

are expectedly very poor, these coefficients alone 

give a good indication of the respective levels of 

the prominences in the two sub-bands. Recruiting 

the next BLCC with 𝑁 = 1  improves the 

approximation by capturing the overall slopes in 

Fig. 3(c). Finally, the spectral fits become very tight 

in Fig. 3(d) with 𝑁 = 𝑀𝑊. 
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In sum, the numerical evidence described above 

indicates that BLCCs after 𝑀𝑊 tend to contribute 

relatively little to the spectral representation of a 

sub-band. This is supported by the consistent decay 

towards zero seen in Fig. 3(a). 

 

 

 

 

 

Figure 3: (a) BLCC series for two selected sub-bands. 

Cepstrally-smoothed spectra (full band based on Eq. 

(1), and sub-bands based on Eq. (2)) are 

superimposed for the following upper bounds: (b) 

𝑁 = 0, (c) 𝑁 = 1, and (d) 𝑁 = 𝑀𝑊. 

3 Likelihood Ratio Framework 

The LR framework provides the theoretical 

foundation upon which voice evidence is analysed 

for source-inference purposes. In FVC, the task of 

the expert is to estimate the strength of voice 

evidence using the LR expressed as follows: 

LR =
𝑝(𝐸 = (𝑋, 𝑌)|𝐻𝑝)

𝑝(𝐸 = (𝑋, 𝑌)|𝐻𝑑)
 

(8) 

The LR is the ratio of two conditional 

probabilities: the numerator is the probability (𝑝) 

of the evidence (𝐸) given the prosecution (same-

speaker) hypothesis (𝐻𝑝) , while the denominator 

is the probability given the defense (different-

speaker) hypothesis (𝐻𝑑).  

The evidence ( 𝐸)  typically consists of the 

source-questioned sample ( 𝑋 ) and the source-

known sample (𝑌). In theory, the belief of the trier-

of-fact regarding the hypotheses, which was 

developed by the previously presented evidence, is 

to be updated by the LR; the assessment of the 

newly presented evidence. In other words, the 

belief of the decision maker regarding the suspect 

being guilty or not changes as a new piece of 

evidence is presented to them in the form of a LR.  

The further away from LR=1, the more strongly 

the LR supports either of the competing 

hypotheses. 

4 Experimental Procedures 

4.1 Speech material and parametrisation 

The speech materials were taken from a Japanese 

dataset of 297 speakers (between 20 and 60 years 

old) as described in Osanai et al. (1995). The 

citation recordings (landline telephone calls) of the 

5 vowels (2 non-contemporaneous sessions × 2 

tokens) were used for the FVC experiments.  

The sampling frequency is 10 kHz because the 

high-end of the telephone bandpass is around 4.5-

kHz in Japan, i.e., the available full-band extends 

from 0 to 5 kHz. Full-band CCs were extracted by 

linear-prediction (LP) analysis (order 14) of each 

vowel’s central frame.  

Using the sub-band transformation explained in 

Sec. 2, BLCCs were obtained from the full-band 

CCs by scanning the full range with a 600-Hz sub-

band shifted every 400 Hz. This process yielded 12 

vectors of BLCCs corresponding to the 12 sub-

bands listed in Table 1. 
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1 [0, 0.6] 2 [0.4, 1.0] 3 [0.8, 1.4] 

4 [1.2, 1.8] 5 [1.6, 2.2] 6 [2.0, 2.6] 

7 [2.4, 3.0] 8 [2.8, 3.4] 9 [3.2, 3.8] 

10 [3.6, 4.2] 11 [4.0, 4.6] 12 [4.4, 5.0] 

Table 1: Limits [𝜔1, 𝜔2] in kHz of the 12 sub-bands. 

Following the definition given in Sec. 2.2, the 

upper bound for the BLCC series representing a 

600-Hz sub-band may be fixed at 𝑀𝑊 = 14 ×
600

5000
= 1.68 and then rounded up to 2 for practical 

use. Per sub-band, the total number of BLCCs is 3 

including the 0th-order one. A FVC system 

incorporating BLCCs was then employed to 

calculate LRs for each of the 12 sub-bands. 

4.2 Data partitioning and LR calculation 

The 297 speakers were randomly divided into three 

mutually-exclusive batches (99 speakers each). 

These were used as the test, background, and 

calibration databases in a cross-validation manner, 

resulting in six-fold cross-validation experiments. 

The results of the six experiments were averaged 

for comparison. 

The LR calculation is a two-stage process 

consisting of a feature-to-score stage and a score-

to-LR stage. A statistical model commonly used in 

linguistic-phonetic FVC is the Multivariate Kernel 

Density (MVKD) model for the feature-to-score 

stage (Aitken and Lucy 2004). The output of the 

MVKD model is a score, and the score is converted 

to a LR value at the score-to-LR stage. The MVKD 

returns a score for a pair of recordings under 

comparison by assessing their similarity and 

typicality. The necessary statistical information for 

typicality is obtained from the background 

database. The score-to-LR conversion, also called 

“calibration”, is performed via logistic regression 

(Morrison 2013). The logistic regression weights 

are determined using the calibration database.  

4.3 Performance assessment 

The log-LR-cost (Cllr) is a standard metric for 

assessing LR-based inference systems in forensic 

science. Eq. (9) is the formula for Cllr, where 𝑁𝑆𝑆 

and 𝑁𝐷𝑆 are the numbers of the same-speaker (SS) 

and different-speaker (DS) LRs, respectively. The 

SS LRs are indexed by i and the DS LRs by j.  

𝐶𝑙𝑙𝑟 =
1

2
(

1

𝑁𝑆𝑆

∑ 𝑙𝑜𝑔2 (1 +
1

𝐿𝑅𝑆𝑆𝑖

)
𝑁𝑆𝑆

𝑖
 

                   +
1

𝑁𝐷𝑆

∑ 𝑙𝑜𝑔2 (1 + 𝐿𝑅𝐷𝑆𝑗
)

𝑁𝐷𝑆

𝑗
) 

(9) 

The first 𝑙𝑜𝑔2(∙) is the cost function for the SS 

LRs and the second one is for the DS LRs. The Cllr 

is the grand average between the mean cost of the 

SS LRs and that of the DS LRs. The lower the Cllr, 

the better in performance.  

5 Experiment Descriptions and Results 

Two FVC experiments were run separately per 

vowel, and the results are jointly charted in Fig. 4.  

In Experiment 1, speaker information locally-

encoded in the spectrum was investigated vowel-

by-vowel by conducting the experiments with the 

multi-band BLCCs (see Table 1 for the specific 

locations of the sub-bands).  

The Cllr values obtained for the 12 sub-bands are 

displayed as a red curve at the bottom plot of each 

panel included in Fig. 4. Each Cllr value (Y-axis) is 

given against the central frequency (X-axis) of the 

sub-band. The horizontal dashed line (in blue) 

indicates the overall mean of the 12 Cllr values for 

the vowel. Expected formant-frequency ranges 

(F1, F2 and F3) taken from Kinoshita et al. (2022) 

are also marked for each vowel. 

In Experiment 2, the sub-band LRs obtained 

from Experiment 1 were fused from two to all sub-

bands as per the following list (r) = {2,3,…,12}. 

All possible combinations of r sub-bands (12
𝑟
) 

were also included. 

In the top plot of each panel, the best (lowest) 

Cllr value is given for each r together with the Cllr 

value of the single best sub-band (r=1). The Cllr for 

the full-band CCs is indicated by the horizontal 

dotted line. The three best sub-bands (fused) are 

highlighted in blue in the bottom plot, and the three 

worst sub-bands (fused) are highlighted in pink.  

5.1 Results: Experiment 1 

The red curve included in the bottom plot of each 

panel (Fig. 4) stays consistently below Cllr=1, 

implying that every spectral region specified by the 

sub-bands carries some useful speaker information 

for FVC. However, the fluctuations in the Cllr 

curves indicate that speaker-specific information is 

not evenly distributed throughout the entire 

frequency range, and the distributional patterns are 

distinctive for each vowel. It is worth noting that 

the Cllr value consistently increases for the 

rightmost sub-band [4.4, 5.0] kHz, meaning that 

this spectral region contains relatively less speaker-

specific information. This may be due to the upper  
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limit of the Japanese telephone band-pass located 

near 4.5 kHz (Rose et al. 2003). 

The distributional patterns of speaker-specific 

information are particularly contrastive between /i/ 

and /a/. The information is more strongly encoded 

in the mid- and high-frequency regions of /i/, 

roughly between 1.9 and 4.3 kHz (covering F3 and 

beyond). By contrast, for /a/, it is the low-frequency 

region up to about 1.9 kHz (spanning F1 and F2) 

which carries the bulk of speaker-specific 

information. These findings agree with the 

observations reported in Osanai et al. (2018). Their 

study based on sub-band cepstral distances points 

to roughly 2.0 kHz as the frequency below which 

speaker verification accuracy was relatively higher 

for /a/, and roughly 1.9 kHz above which speaker 

verification performed relatively better for /i/. 

For the other vowels (/u, e, o/), the ups and 

downs of the Cllr curves are overall less dynamic 

than those for /i/ and /a/. Yet, some alternations in 

Cllr are still evident. For instance, the Cllr values are 

marginally lower in the range between 

approximately 2.7 and 3.9 kHz (spanning F3 and 

  

  

 

Figure 4: The results for each of the five Japanese vowels are grouped in a separate panel. The top plot in each 

panel contains the best Cllr values for the fused r (=1 to 12) sub-bands. The horizontal dotted line indicates the Cllr 

value for the full-band CCs. The vertical red solid line indicates r=3 for which sub-band performance becomes 

very close to the full-band result. The bottom plot in each panel gives the profile of Cllr values (in red) for the 12 

sub-bands. The horizontal dashed line (in blue) indicates the Cllr value averaged over the 12 sub-bands. The sub-

band regions highlighted in blue are the three best-performing sub-bands (fused), and the sub-bands highlighted 

in pink are the three worst-performing sub-bands (fused). 
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beyond) for /u/ and /o/ and around 1.5-1.9 kHz 

(spanning F2) for /e/.  

Kinoshita (2001) found that F2 of /i/ and F2 and 

F3 of /e/ are strong acoustic features for Japanese 

FVC. With more specific details based on F-ratios, 

Khodai-Joopari et al. (2004) reported that the 

spectral regions of 1.7-2.7 kHz (spanning F3) and 

3.7-4.5 kHz (extending beyond F3) of /i/, and the 

spectral regions of 1.4-2.4 kHz (spanning F2), 2.6-

3.7 kHz (spanning F3) and 3.8-4.5 kHz (extending 

over F3) of /e/, are potentially useful for speaker 

classification based on Japanese vowels.  

The results obtained from Experiment 1 mostly 

agree with the findings from the two studies 

referenced above, in that the spectral or formant 

regions identified as promising returned 

categorically low Cllr values. For example, the 

lowest Cllr value (=0.63171) of all vowels lies 

within the frequency range pointed out by Khodai-

Joopari et al. (2004) for /i/. Likewise, the lowest Cllr 

value (=0.70510) for /e/, also the lowest amongst 

vowels /e, a, o, u/, also occurs in the F2 range 

pointed by Kinoshita (2001).  

For the back vowels (/u, o, a/), the frequency 

range spanning and/or extending beyond F3 is 

reportedly a good candidate for Japanese speaker 

classification (Khodai-Joopari et al. 2004). Some 

studies also report the usefulness of F3 of back 

vowels as a speaker discrimination feature in 

English (Mokhtari and Clermont 1996; Sambur 

1975). As noted above, the importance of the 

frequency region spanning F3 and beyond holds 

true in our results for /u/ and /o/. This point will be 

revisited in describing results from Experiment 2. 

5.2 Results: Experiment 2 

Turning our attention to the top plots in each panel, 

it can be observed that regardless of the vowels, 

performance is improved by fusing multiple sub-

band LRs. The performance is substantially 

enhanced when 3 or 4 sub-bands are fused in 

contrast to using only the best single sub-band. As 

a matter of fact, the fusion of 3 or 4 optimal sub-

bands brings the system to nearly the same 

performance level as that obtained with full-band 

CCs or even marginally better.  

Note that 3 or 4 sub-bands are here represented 

with 9 or 12 BLCCs in total, respectively. Thus, 

only a few BLCCs are necessary to achieve nearly 

the same performance as that obtained with the 14 

full-band CCs. This a notable advantage of BLCCs 

in terms of computational efficiency. 

The performance stays basically unchanged 

even when more sub-bands are included for fusion, 

except for a slight deterioration in performance 

towards the higher numbers of fused sub-bands.  

Together with the results from Experiment 1, the 

above observations based on Experiment 2 would 

seem to indicate that locally-encoded speaker 

information is not necessarily unique as per its 

spectral region. In other words, pieces of speaker 

information may be redundantly encoded across 

different spectral regions. Otherwise, the 

continuous decline in Cllr (an incessant gain in 

performance) should have been observed as more 

sub-bands are totalled for fusion. 

The bottom plots in each panel clearly show that 

the three best-performing sub-bands span different 

spectral regions depending on the vowel. For /i/, 

they are in the mid- and high-frequency ranges 

above 2 kHz, which generally correspond to the 

spectral regions with strong speaker information. 

On the other hand, for /e/ and /a/, the three best sub-

bands are dispersed in the low- and mid-frequency 

ranges below 3.0-3.4 kHz. For /u/ and /o/, the three 

best sub-bands are most widely separated in the 

range approximately between 0 and 4.2 kHz.  

It is noticeable that the 3 best sub-bands are not 

only spaced apart from each other, but they also 

tend to fall in the speaker-sensitive spectral regions. 

This leads us to conjecture that those sub-bands are 

likely to contain more locally-distinctive speaker 

information. In support of the conjecture, it can be 

observed that the 3 worst sub-bands (coloured in 

pink) are in immediately neighbouring positions. 

For /u, e, a/, they are the 3 contiguous sub-bands 

appearing in the high-end of the spectrum and, for 

/i/, the 3 sub-bands flock together towards the low-

frequency end, where Cllr values are worse. It can 

therefore be surmised that those sub-bands did not 

perform well after fusion because they are largely 

redundant in speaker information in addition to 

being less sensitive to speaker individuality, as 

demonstrated in Experiment 1.  

Following on from Experiment 1, the 

importance of the F3 region for FVC is also evident 

for the back vowels from the bottom plots given in 

Fig. 4, in that one of the 3 sub-bands falls in the F3 

region. The sub-band spanning F3 does not 

seemingly contain strong speaker information for 

vowel /a/; the Cllr values of the region are higher 

than the average Cllr. Nevertheless, the speaker 

information encoded in the F3 region is judged to 

be complementary with the sub-bands spanning F1 
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and F2 for /a/. For /u/ and /o/, one sub-band appears 

in the frequency range beyond F3, in agreement 

with Khodai-Joopari et al. (2004).  

As can be seen from the bottom plots for the 

back vowels, the first sub-band [0, 0.6] kHz turned 

out to be a good one when fused with the other 2 

sub-bands. Judging from the commonly shared 

empirical knowledge that more speaker-specific 

information is encoded in higher spectral regions 

(Hayakawa and Itakura 1994; Kitamura and Akagi 

1995), this result is counter-intuitive. However, 

Khodai-Joopari et al. (2004) also sighted a peak of 

speaker F-ratio below F1 region for /o/ and /a/, and 

suggested their glottal-source characteristics as a 

possible cause for the peak.  

6 Discussion 

The FVC results presented in Sec. 5 confirm the 

existence of speaker-sensitive spectral regions, 

which principally agree with previous acoustic and 

articulatory studies of vowels. As such, it can 

demonstrably be argued that BLCC is a useful 

analytical tool equipped with flexibility and 

precision in selecting any sub-band of interest. 

The formant frequencies (F1, F2 and F3) are 

common phonetic features in linguistic-phonetic 

FVC (Rose et al., 2003; Morrison 2008, Rose, 

2017). The analytical potential of the multi-band 

BLCCs, however, unavoidably led us to notice that 

the regions corresponding to formant frequencies 

do not always contain strong speaker information. 

For example, the Cllr values for sub-bands spanning 

the F1-F2 region of /i/, the F2 region /o/ and the F3 

region of /a/ are relatively high compared to the 

other regions. This suggests that sub-band selection 

based strictly on formant ranges is an unnecessarily 

constraining and even sub-optimal solution.  

A case in point is Kinoshita et al’s (2022) results 

based on sub-band cepstral distances and on prior 

knowledge of fixed F1, F2 and F3 sub-bands. A set 

of FVC experiments was done with the sub-bands 

that were selected according to the fixed F1, F2 and 

F3 ranges provided in Kinoshita et al. (2022) for 

the same experiments performed in the current 

study. The resultant Cllr values are shown in Table 

2, together with the Cllr values with the 3 optimal 

sub-bands (fused) selected empirically (see Fig. 4), 

i.e., without prior acoustic-phonetic knowledge. 

The Cllr values for the full-band CCs are also listed. 

The results from the 2 rightmost columns of 

Table 2 indicate that BLCCs can achieve nearly 

full-band performance with 3 optimal sub-bands 

and, thus, with fewer cepstral features. This finding 

illustrates the power of BLCCs in locating such 

sub-bands without any prior knowledge. 

Vowels 

Kinoshita et al 

(2022) 

This Study 

3 sub-bands 

(with prior  

knowledge) 

3 sub-bands 

(without prior 

knowledge) 

full band 

/i/ 0.52191 0.43142 0.40342 

/u/ 0.68992 0.60858 0.57934 

/e/ 0.54173 0.51947 0.48843 

/o/ 0.73500 0.66732 0.67500 

/a/ 0.65428 0.61239 0.58130 

Ave. 0.62856 0.56783 0.54549 

Table 2: Middle columns: Cllr values for 3 fused sub-

bands selected using two approaches. Kinoshita et al’s 

(2022) approach with prior knowledge, i.e., based on 

their formant ranges; and this study’s approach without 

prior knowledge, i.e., guided by empirical selection. 

Rightmost column: full-band Cllr values from this study 

are included for reference. 

It is relevant to point out that while our FVC 

experiments and Kinoshita et al’s (2022) involve 

phonologically the same vowels and about the 

same number of speakers, their vowel tokens were 

produced in various consonantal contexts, whereas 

ours were produced without any such contexts. 

Thus, the exact formant ranges could be different 

for the vowels included in these two studies.  

Notwithstanding this discrepancy for now, the 

trend of Cllr values in the 2 middle columns of Table 

2 is consistent and encouraging: Our approach 

(without prior knowledge) outperforms the one 

employed by Kinoshita et al. (2022) (with prior 

knowledge). Further investigations with BLCCs 

applied to Kinoshita et al’s vowel data and to other 

datasets will be necessary to confirm the apparent 

superiority of our sub-band approach in FVC.  

The results obtained in this study are based only 

on male speech samples. While this is practically 

justified because males tend to commit crimes 

more often than females, further experimentation is 

desirable with a wider variety of speakers. 

However, the analytical power of BLCCs should 

remain unaffected by gender or age. It is the 

locations and ranges of speaker-sensitive spectral 

regions that could differ with these factors. 

While retaining intrinsic properties of the 

cepstrum (e.g., ease of extraction, immunity to 

insignificant spectral details), the analytical power 

of BLCCs allows the forensic scientist to flexibly 

shift the focus of scrutiny and interpretation 

according to the selected sub-band region(s). This 

47



 
 

is an invaluable contribution that BLCCs can bring 

to the task of communicating the FVC outcome to 

the trier-of-fact in a more approachable way.  

7 Future Work 

The BLCCs exploited here are based on LP 

modelling of the speech signal and extracted on a 

linear frequency scale. However, there may be 

further insights to be gained by applying the same 

linear transformation to CCs from filter-bank 

outputs, combined with a nonlinear mapping of the 

frequency axis such as the often-used Mel scale. It 

is interesting to note that, except for /i/, our best-

performing sub-bands include the lower-spectral 

regions that are precisely emphasised with Mel-

Frequency CCs (MFCCs). A deeper investigation 

of MFCCs with differing sub-band widths and 

overlaps is therefore possible using our flexible 

approach to selecting local spectral regions.  

From a forensic point of view, it is coherent to 

extend the application of BLCCs to non-vowel 

sounds (Rose 2022), whose speaker-sensitive 

spectral properties have received relatively less 

attention. From a linguistic point of view, it is 

conceivable that BLCCs could also be used as an 

ancillary or alternative parameter in the areas of 

acoustic-phonetics (e.g., efficient encoding of 

contrastive features as in Iskarous (2018)) and 

socio-phonetics (e.g., exploration of accent-

specific sub-bands) (Arslan and Hansen 1997). In 

connection with these applications, it would be 

useful to study correlations between BLCCs and 

formant frequencies via the linear regression 

models developed by Broad and Clermont (1989) 

and Clermont (2013), and recently explored by 

Hughes et al. (2020) in the FVC context. 

Finally, it is hoped that the sub-band approach 

embedded in BLCCs will bring new perspectives 

in other areas of speech science and technology, 

such as speech classification (Mokhtari and 

Clermont 1994), spoofing detection (Chettri et al. 

2020; Soni et al. 2016), language identification 

(Salesky et al. 2021), and speech emotion 

recognition. Any pieces of information related to 

speaker variability, speech emotion, or synthesised 

speech, which are found to be notably encoded in 

specific sub-bands, would be advantageous for 

building robust classification systems, or for 

training deep-learning models. These technological 

pursuits are likely to benefit from the flexibility and 

efficiency afforded by the BLCC approach to sub-

band spectral analysis. 
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Abstract

Voice-enabled technologies such as virtual as-
sistants are quickly becoming ubiquitous. Their
functionality relies on machine learning (ML)
models that perform tasks such as automatic
speech recognition (ASR). These models, in
general, currently perform less accurately for
some cohorts of speakers, across axes such as
age, gender and accent; they are biased.

ML models are trained from large datasets. ML
Practitioners (MLPs) are interested in address-
ing bias across the ML lifecycle, and they of-
ten use dataset documentation here to under-
stand dataset characteristics. However, there
is a lack of research centred on voice — spo-
ken language — dataset documentation. Our
work makes an empirical contribution to this
gap, identifying shortcomings in voice dataset
documents (VDD), and arguing for actions to
improve them.

First, we undertake 13 interviews with MLPs
who work with voice data, exploring how they
use VDDs. We focus here on MLP roles and
trade-offs made when working with VDDs.
Drawing from the literature and from inter-
view data, we create a rubric through which
to analyse VDDs for nine voice datasets. Tri-
angulating the two methods in our findings, we
show that VDDs are inadequate for the needs of
MLPs on several fronts. VDDs currently codify
voice data characteristics in fragmented ways
that make it difficult to compare and combine
datasets, presenting a barrier to MLPs’ bias
reduction efforts.

We then seek to address these shortcomings
and “right the docs” by proposing improvement
actions aligned to our findings.

1 Introduction, motivation and previous
work

Voice-enabled technologies, such as virtual as-
sistants and smart speakers, are “going to scale”
through axes such as volume (Kinsella and Mutch-
ler, 2020; Bradley, 2020; Van der Meulen and

Forni, 2016), geographies (Popović et al., 2015;
Jones, 2020; Kendall et al., 2020), miniaturi-
sation (Bouraoui et al., 2017), expanding use
cases (Dale, 2020; Brewer et al., 2022; Jesús-
Azabal et al., 2019) and use in multiple modal-
ities (Baevski et al., 2022). Speech technology
has become part of the fabric of modern informa-
tion infrastructures — the technical capabilities, so-
cial norms, organisational practices and economic
mechanisms (Bowker et al., 2009; Turow, 2021) —
that collectively allow us to speak with machines
and have them do our bidding. As voice technol-
ogy becomes ubiquitous, so too does the potential
societal impact of its bias. A person’s poor voice
interaction experience is no longer confined to a
virtual assistant in the home, or to a mobile phone,
but extends to the workplace, the car, healthcare,
and customer service settings.

These systems use machine learning (ML)-
enabled components like automatic speech recog-
nition (ASR). However, they don’t yet work well
for everyone (Liu et al., 2022; Ngueajio and Wash-
ington, 2022; Feng et al., 2021). They exhibit bias
— defined here as systematic and unfair discrimi-
nation against individuals or cohorts of individuals
in favour of others (Friedman and Nissenbaum,
1996) 1 — across axes such as age (Vipperla et al.,
2010; Gerosa et al., 2007), gender (Tatman, 2017;
Tatman and Kasten, 2017; Garnerin et al., 2020),
race (Koenecke et al., 2020), nationality (Hutiri
and Ding, 2022), and accent (Hinsvark et al., 2021).
Dataset documentation is a frequent tool used by
MLPs to mitigate bias.

1.1 Dataset documentation and its use by
MLPs

The ML-enabled components in voice-enabled
technologies require large datasets to be effective.

1We recognise that bias manifests in many ways and has
several interpretations, and suggest (Barocas et al., 2019) for
a more complete treatment.
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Dataset documentation — descriptive information
characterising the nature, contents and provenance
of a dataset — affords MLPs a clearer understand-
ing of a dataset’s characteristics before the dataset
is used as an input to an ML model. This allows
the detection of some forms of bias, such as under-
representation of speakers having specific char-
acteristics. In contrast, model documentation —
descriptive information characterising the perfor-
mance of a trained ML model against evaluative
criteria — focuses on the performance output of
ML processes. It provides MLPs the opportunity
to detect and remediate bias issues such as poor in-
ference accuracy for specific types of speech. Both
types of documentation are well established in the
literature as tools to detect and prevent bias in ML.

Bender and Friedman (2018) introduce Data
statements for natural language processing (NLP),
where they propose collecting information such
as speaker demographics, annotator demographics,
and the domain and context of the material as a
way to address bias in written text corpora. Gebru
et al. (2021) brings data provenance to the fore-
front of broader ML practice by outlining key areas
MLPs should consider, such as the purpose and in-
tended use of the dataset, the objects it stores, how
they’re represented, the relationships between them,
sources of error and noise, sensitivity and identifica-
tion considerations, how the data was collected and
labelled, and how the datasets are distributed and
maintained. Boyd (2021) seeks to empirically vali-
date the utility of datasheets, and demonstrates their
benefit by having MLPs ethically reflect on prob-
lematic datasets — directly connecting datasheets
as an artifact with improved practice. From the
field of computer vision, Miceli et al. (2021) also
focus on praxis, emphasising the need for practi-
tioner reflexivity in the production of ML datasets.
Similarly, in an effort to make the ethical consid-
erations and choices made during the production
of datasets produced through crowd-sourced an-
notations more transparent, Díaz et al. (2022) de-
velop the CrowdWorkSheets framework. McMillan-
Major et al. (2023) focus on adoption of dataset
documentation, working with NLP practitioners to
increase uptake.

In Costa-jussà et al. (2020), we see the adapta-
tion of data statements and datasheets for datasets
from NLP to other written language technologies
— in this case — machine translation. Bandy and
Vincent (2021) tie dataset documentation to the

concept of technical debt, and retrospectively pro-
duce a datasheet for a text corpus. Pushkarna et al.
(2022), based on their work with text corpora at
Google, then introduce the concept of data cards,
concentrating on descriptive information that can-
not be inferred from the dataset itself. Building on
this work, and drawing from an extensive literature
review, Papakyriakopoulos et al. (2023) propose
augmented datasheets specifically for spoken lan-
guage datasets — the only one of its kind to date.

Similarly, there has been increasing research at-
tention toward model documentation. Model cards
were first introduced by Mitchell et al. (2019) and
built on by Shen et al. (2022), who produced a
practitioner toolkit to aid in generic model card
development. Crisan et al. (2022), recognising that
many laypeople also use model documentation, de-
velop an interactive approach to aid in model ex-
ploration. McMillan-Major et al. (2021) seek to
join both datasheets and model cards, proposing a
standard format for datasets in NLP.

However, data and model documentation in it-
self is not sufficient for tackling bias. An MLP
creates or consumes that documentation, provid-
ing a feedback loop which motivates MLP action:
re-balancing a training set, gathering more diverse
data, or fine-tuning a model.

Accordingly, recent work from Microsoft Re-
search shifts the focus of inquiry to practitioners’
use of dataset and model documentation and ap-
proaches to fairness more broadly. Heger et al.
(2022) find that dataset documentation practices are
“largely ad-hoc and myopic in nature”, with many
practitioner needs unaddressed. Similarly, Holstein
et al. (2019) find, in a set of interviews with MLPs
in industry, that while they saw the datasets as “the
most important place to intervene to improve fair-
ness in their products”, the teams did not have in
place processes — such as dataset documentation
— “to help support the collection and curation of
balanced or representative datasets”.

1.2 The research gap
People are increasingly using speech to interface
with services and sources of support in the real
world. ML-enabled voice technology systems con-
tinue to have pronounced biases; they work better
for some people than others. If we wish to make the
socio-technical systems of our world fairer, then we
need to generate effective approaches for tackling
bias in these systems. The approaches, motivations
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and actions of MLPs around dataset documentation
have been shown to assist in this regard. However,
there is a lack of research here covering spoken lan-
guage data — the kind of data used to build voice
technology systems.

We therefore pose the following research provo-
cations: How may we characterise current VDD
artefacts and practices? And what work is needed
to make VDDs more useful in addressing bias in
voice technologies?

2 Methodology

We devise an exploratory study that combines
two methods, one focusing on ML practitioners
and their experiences creating or consuming voice
dataset documentation and the other on dataset doc-
umentation artefacts.

Firstly, we undertake 13 semi-structured inter-
views with MLPs who work with voice or closely
adjacent data. We explore their voice dataset docu-
ment (VDD) approaches across the ML lifecycle.
Secondly, we turn our attention to existing VDDs.
VDDs represent how MLPs generate datasets and
release them to the world — they encode practices,
beliefs and assumptions (Birhane et al., 2022). We
select nine VDDs for their varied purposes, collec-
tion methods and source data.

Drawing both from our literature review in Sec-
tion 1.1 and from participant data, we develop a
rubric for analysis, and assess the VDD artefacts
across seven categories. We then triangulate the
two methods, showing how VDD practices differ
by MLP role, and how VDDs may help or hinder
MLPs in making trade-off decisions.

2.1 Semi-structured interviews
Semi-structured interviews are established as an
appropriate exploratory method for inquiring about
phenomena, particularly in ML practice (Baier
et al., 2019; Jöhnk et al., 2021; Følstad et al., 2018).

2.1.1 Participant selection
Potential participants were identified using profes-
sional networks, snowball sampling, and via col-
laborative code sites. Inclusion criteria were (i)
that the participant must work with voice or closely
adjacent data, and (ii) be currently practicing in
industry, academia or open source fields. Purpo-
sive sampling was used to ensure representation of
perspectives from diverse genders, professional dis-
ciplines, and geographic locations, and to help es-
tablish trustworthiness of findings (Campbell et al.,

2020; Lincoln and Guba, 1985; Groves et al., 2011;
Ezzy, 2013). A summary of participants by charac-
teristic is shown in Appendix A.

Interviews were conducted via video-
conferencing, and participants were able to
make corrections and redactions to the resulting
transcript. We concluded our interviews at 13
participants as themes were becoming repetitive,
and we had sufficient data to inform our document
analysis method.

2.1.2 Semi-structured interview design
We adopted an inductive approach, seeking to ac-
cumulate many perspectives around how VDDs
are produced and consumed, whilst varying their
contexts, applications and geographic sites of prac-
tice (Creswell and Creswell, 2018). Drawing from
both Spradley (1979) and Minichiello et al. (1990),
we structured our interview questions around “the
lifecycle of creating a voice dataset” — a “grand
tour” approach.

2.1.3 Coding approach
Based on our literature review, we identified sev-
eral a priori categories (Saldaña, 2021) and used
them to code the 13 interviews. We combined this
with open coding — a way to capture new cate-
gories as they emerge in the data (Williams and
Moser, 2019). Axial coding — a way to frame the
contextual conditions of the phenomena being stud-
ied (Ezzy, 2013) — was then used to categorise
how VDDs were produced and consumed. Selec-
tive coding — a way to collapse and combine sev-
eral codes into core categories for analysis (Corbin
and Strauss, 1990) — was then applied, yielding 14
broad categorisations across a total of 1889 codes.
Here, we focus on only two of those broad cate-
gories; different MLP roles involved in VDDs, and
how VDDs are used in the trade-offs MLPs make.

2.2 Document analysis
As a complementary method to our semi-structured
interviews, we then undertook document analysis —
“a systematic procedure for reviewing or evaluating
documents” (Bowen, 2009).

2.2.1 Selection of documents
Datasets used for ML are often released with ac-
companying documentation in the form of a dedi-
cated web site, code repository or online catalogue
entry. Additionally, some datasets contain a meta-
data file within the dataset. We considered all of
these in scope for analysis.
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To identify VDDs for analysis, we performed
a web search, using the terms “voice dataset” or
“speech dataset”. We purposively sampled nine
datasets that varied by intended task; by whether
the speech was elicited or spontaneous; the domain
of speech; the curation rationale; funding source;
license; and vocabulary size 2. A summary is pro-
vided in Appendix B.

2.2.2 Document analysis rubric
To create the rubric used to analyse the VDD arte-
facts, we drew from previous work in dataset docu-
mentation (see Section 1), broader reading in meta-
data and research infrastructure, and participant
data, arriving at 41 elements across seven cate-
gories. Here, we outline the contents of each cate-
gory and justify their inclusion in the rubric.

Dataset identification Here we included persis-
tent identifier — a uniquely identifying string, sep-
arate from the location of the dataset itself, which
provides a referral to the current storage location
of the dataset (Zeng and Qin, 2016) — and ver-
sion as a way to distinguish dataset releases over
time (Bhattacherjee et al., 2015). Efforts have been
long underway to ensure datasets have persistent
identifiers (Klump and Huber, 2017), and they tie
closely to work on making research datasets more
findable (Wilkinson et al., 2016).

Intent, purpose and curation rationale Here,
we draw on the definition given by Schlangen
(2021); a language task is a mapping between an in-
put and an output, and a dataset provides examples
of this mapping. Clear descriptions of intent and
purpose are therefore important so the MLP can
identify if the dataset is task-appropriate. We adapt
“curation rationale” as given in Bender and Fried-
man (2018) to spoken language, and define it as
determining which speech utterances are included
in the dataset, and why.

Dataset creation process, sources and actors
Here, we draw again from Bender and Friedman
(2018), who place emphasis on understanding the
social standpoint of annotators. For many speech
tasks, written transcriptions are also required as
inputs. Noting the work of Bucholtz (2007, 2000)
— that transcription has both variation and poli-
tics in its production — we also identified whether

2We note here that the AusTalk dataset in the ALVEO
repository is currently offline; had it been available we would
have also included it due to its focus on Australian speech.

the transcription method was provided. Referenc-
ing Barbiers et al. (2007) work on spoken language
variation from corpus linguistics, we also included
the source of elicited speech prompts as an element.

Characteristics of the dataset itself Here, we
drew on from material on research data infrastruc-
ture. Working with “big data” presents many chal-
lenges to MLPs (Kitchin, 2014); and so it is benefi-
cial to provide an overview of the size, shape and
constituency of the dataset.

Constitution of the dataset by speaker, record-
ing environment and spoken language attributes
In our exploratory interviews (see 3), comprehend-
ing contents was a key consideration for many par-
ticipants. Speech recognition requires a wide vari-
ety of voice samples, while speech synthesis needs
many samples from a single speaker. It is therefore
important that characteristics of the speech utter-
ances captured in the data are clearly represented:

“...Sometimes you really need to dig deeply into
the corpus to find it. Sometimes you just don’t find
it. And sometimes this is well documented. ... This
is important ... because we need to have a balanced
corpus for training your system. And then also to
be able to evaluate, gender wise, the performance
of your system.” — SB

We drew both from the literature and from ex-
ploratory interviews to identify specific attributes
to assess. Bender (2019) makes the case for clearly
identifying the languages we work with in, and Ben-
der and Friedman (2018) advocate both for repre-
senting the languages in a dataset in BCP-47 for-
mat and providing a “prose description” of the
language’s “axes of variation”.

Participant TS highlighted additional areas of
spoken language variance to scrutinise when eval-
uating trained models: “... We have a lot of folks
who have code-switched data ... it’s also domain
variation or register variation, or all your training
data is super formal ...” —TS.

Code-switching is where the speaker alternates
between two or more “codes” — usually languages
— within a conversation (Auer, 2013). The domain
of spoken language is usually taken to be the sub-
ject matter of the conversation, while register is
how spoken language varies by social situation;
we speak differently in formal and informal set-
tings (Finegan, 2014).

Models, benchmarks and academic papers We
adapt this category from Gebru et al. (2021), who
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recommend documenting where a dataset should
not be used, as also echoed by an interview partic-
ipant: “When you think about kind of building a
dataset, it’s easy to think about, ‘Okay, I’m build-
ing a dataset, it’s going to be used for this. This is
what I want it to be used for.’ Unfortunately, peo-
ple are going to use it for things you didn’t intend.”
—CG.

Similarly, noting increasing calls for bench-
marks to be tightly linked to the intended task of a
dataset (Raji et al., 2021), we included these as an
attribute in the analysis.

Privacy, bias, limitations and social impact
Here, we drew from Bender and Friedman (2018);
Gebru et al. (2021); Papakyriakopoulos et al.
(2023), who all underscore the importance of docu-
menting privacy and sensitivity considerations of
a dataset, and their potential social consequences,
and we use this category to assess whether biases
and limits of the dataset are considered in VDDs.

2.2.3 Performing the analysis
To perform the analysis, we reviewed each dataset’s
documents against the criteria in each category of
the rubric. If fulfilment of a criterion was implied
but not explicit in the document(s), then we made
a finding of “Implied” and provided a rationale.
If a criterion was not applicable to a dataset, we
made a finding of “N/A” — for example, in speech
synthesis datasets like “LJSpeech”, speech sam-
ples are usually taken from only one speaker and
so the number of unique speakers in the dataset
is not applicable. Our analysis is summarised in
Appendix C.

3 Findings

Here, we triangulate our two methods. We charac-
terise the experience of MLPs with VDDs through
the frames of MLP roles and trade-offs the MLP
makes, quoting from interview transcripts to high-
light key points. At the same time, we corroborate
the interview findings by referencing results from
the document analysis. This layered approach pro-
vides a richer characterisation of VDDs.

3.1 Characterising practices by role
Our interview data showed that MLPs could be
categorised into four distinct roles, depending on
how they discovered, commissioned, produced or
consumed voice datasets. We use a “food” analogy
to label the roles — which seems odd at first glance

— but which we believe accurately characterises a
role’s relationship with voice datasets. The results
of the document analysis had different implications
for each role, which we unpack below.

Chefs We characterise as Chefs those MLPs who
are provided with a dataset specification against
which to create a voice dataset: “... we would
have a data collection spec, [with a] percentage
of different accents or gender or whatever.” —BP.
Chefs are mostly likely to be producers of VDDs.

Diners Diners form a complement to Chefs, be-
ing the MLPs who are in a position to order voice
datasets from commercial companies. These com-
panies offer both bespoke options — à la carte —
as well as subscriptions to regular dataset updates
— a grocery box. There are many such providers:
“So there are many companies that offer services in
terms of annotating data, transcribing data. There
are many companies that collect some data and sell
data.” —SS.

Scavengers Alternatively, an MLP may be a
Scavenger — where they must discover freely avail-
able voice datasets to meet their needs due to cost
constraints. “... us open source folks we’re scav-
engers, right? ... The ordering options are there
... and I’ve looked at them and they want tens of
thousands of dollars, for access. And I’m like, ‘"I
don’t have that."’” —PS.

Importantly, it was this remark that helped us
arrive at our role categorisation.

Hoarders Hoarders, in contrast to Scavengers,
Chefs and Diners, do not have a clear intent in
mind for the voice data they accumulate; they store
it for some future, unspecified purpose in the hope
that it will be of use. Voice data accumulated this
way is usually a byproduct of business operations:
“We know that often companies, they have a plan to
extract and collect as much data as possible before
they even know what it’s potentially useful for.”—
PP.

3.2 The focus of VDD practices differs by role
Discovery For the Scavenger, dataset documen-
tation is important to their discovery efforts — and
their ability to comprehend the contents of a dataset
when found. Based on our document analysis, their
needs are currently poorly served. While eight of
the nine datasets represented speaker gender, only
two represented accent, and only one represented
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speaker nationality or age. Speaker occupation, lan-
guage heritage or education attainment were absent,
save for an overview of speaker occupation in the
African languages VDD. There was very little in-
formation provided on the recording environments
used, and the only representation of variance of
spoken language tended to be the way in which
the dataset language(s) were specified — with five
of the nine VDDs representing language using a
BCP-47 or ISO-639 code.

Representation Chefs may produce documenta-
tion as part of their creation efforts, and in doing
so, must make choices about how to represent that
data. With both an absence of agreed or de facto
standards for documenting voice and speech data3,
as well as multiple standards for language repre-
sentation (Wright, 2019), some participants faced
challenges in determining how some data items
should be reported: “There is no unified format.
Everybody has their own JSON 4 that might have
similar information.”—BP.

Another Chef practitioner faced similar data rep-
resentation dilemmas in regard to dialect, grappling
with what level of granularity to represent in the
VDD: “...what if we label what dialect they are
speaking in? Or what if they self label what dialect
they think they are speaking in? Then we do things
like how about we review this? Meaning let’s write
whether we think this is pronounced correctly. It’s
either yes or no. Okay. Wait, what if we can la-
bel every single character in the sentence and say
whether the character was pronounced correctly?”
—EG

VDDs are still relevant for the Hoarder role,
even though they may not yet know what tasks
their datasets will be used to perform. Hoarders
still wrestle with how to represent the data they are
collecting. Here, there was a desire to create VDDs
that allowed the broadest scope of future use for
the data:

“...it’s always good to document, to label your
data to the maximum extent that you can in terms
of fidelity.” —RW.

The desire to chronicle datasets with high fidelity
places additional onus on the MLP to define how
the data is represented. We see here a tendency
to reproduce that which has come before: “...we

3We note here the work of Papakyriakopoulos et al. (2023),
however this was not available at the time the interviews were
conducted.

4JSON is a data structure format commonly used for voice
data

didn’t put a lot of thought into the choosing of the
structure of the [Dataset] dataset, because we just
used it as it was. And the reason that we chose the
[Dataset] as an example dataset was because it was
a fairly common, well-known speech recognition
dataset”—RW.

This effect serves as a reinforcing loop, anchor-
ing practice to the status quo.

Diversity of data Both Scavengers and Diners
need to know whether the data within a voice
dataset is useful for their intended purpose: “...the
dataset documentation would give me an idea, does
this dataset work for my application? ... Is this
dataset going to be useful?” —CG.

Drawing from our document analysis, it appears
Scavengers and Diners are well served by current
VDDs — all nine datasets examined provided an
executive summary or description, and eight of the
nine provided both intended tasks or use cases, as
well as a curation rationale.

However, even if a dataset appears to meet an
MLP’s need based on the contents of the VDD,
variation in how the dataset is transcribed can be
problematic, requiring that the MLP spend time
“listening to the data”: “...All transcription is sub-
jective. And so each of these databases will have
been transcribed by different people, maybe follow-
ing different conventions, and those conventions
are especially important with semi words, ums and
uhs and mm-mms, and stuff like that.” —BP.

Cross-referencing our participant’s statement
with our document analysis, we note that only one
of the three datasets that had transcribed sponta-
neous speech provided a description of the tran-
scription process.

Another salient example here deals with the lack
of variation of accents in the dataset not being ap-
parent from the VDD, a realisation the practitioner
makes only after listening to the data, and having
to cross-check with the dataset’s related academic
paper:

“...I had worked with it for a while, I thought
I knew the data. It was a very popular dataset.
And it wasn’t until I started listening to it, that I
realized that these are only North American voices.
It wasn’t obvious to me until then. And then I went
back and I read the paper, the actual paper ... and it
was explicit like, yes, they chose voices that were
North American. And it’s something simple as that,
you don’t know until you start listening to the data.”
—CD
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Again, cross-referencing, only two of the nine
datasets provided a representation of the speaker’s
accent.

3.3 Characterising practices through
trade-offs the practitioner must make

Changing our analytical lens, we now explore prac-
tices by exploring the trade-offs a practitioner must
make. Drawing from the field of social learning the-
ory, Wenger-Trayner and Wenger-Trayner (2014)
hold that practitioners operate across multiple dis-
ciplinary communities in a “landscape of practice”.
An MLP may need to span disciplines such as data
engineering, machine learning, metadata specifica-
tion and linguistics; each with their own accepted
practices (e.g. Deng et al. (2022); Balayn et al.
(2021)). These practices may be in tension, re-
quiring the practitioner to make trade-offs. While
our interview data uncovered many trade-offs, we
focus here on the most frequently recurring.

3.3.1 Big data vs storage
“The problem is, data gets big. And then you have
a problem, right?” —AG

Speech technologies may require thousands of
hours of data, in turn requiring large volumes of
disk storage capacity. For example, one dataset
we analysed, Mozilla Common Voice, is nearly
80GB in size. This scale causes practical problems
for MLPs, such as one Chef who created voice
datasets, and needed to store them on a server. His
frustration at having to frequently move datasets
was palpable: “Yeah. We would find somewhere
on [University web server] we’d be, ‘Oh yeah. No,
we’ll serve it off our little file server here and it’ll
be no worries.’ And we’d put it up there and we’d
create a website for it. And we’d point people at
the website. And then the IT guys would go, ‘Oh
yeah, no. We don’t want to do that [...] We’re
going to shut that down. You’re going to have to
find somewhere else to put that.’” —RW.

One mechanism that exists to overcome this lim-
itation is the use of a persistent identifier. In our
document analysis, only three of the nine datasets
were found to have persistent identifiers applied
(see C Dataset identification), and these were veri-
fied using Crossref 5. More positively, all datasets
bar one indicated storage requirements, and all pro-
vided the number of hours of overall speech in the
dataset (see C Characteristics of the dataset itself ).

5https://search.crossref.org/

3.3.2 Big data vs understanding data contents
We also identified trade-offs that the MLP had to
make in comprehending the contents of a voice
dataset. Earlier, in 3.2, we showed that an MLP
compensated for lack of variation description in
VDD by “listening to the data”. The size of voice
datasets makes this practice more onerous, as high-
lighted by one interview participant: “We ended
up with 12,000 recordings, which was humanly
transcribed and those 12,000 recordings equated
to 20 hours of speech. So we literally had a team
of people listening to recordings and typing the
recordings out verbatim.” —SS.

This again points to the need for more focus on
capturing data related to recording environment in
particular: “And with a hundred thousand hours
of data, how are you going to listen to all that
as one person especially? You can’t. You can
randomly sample and hope for the best that you
catch something. But if you precisely knew exactly
the conditions of the recordings and all that stuff,
if you could control all that then I think you could
do a much better job.” —PS.

Triangulating this with our document analysis
(see C How the dataset represents the recording en-
vironment), we find that only the CHIME-5 dataset
provided explicit information on the recording en-
vironment. This is likely due to its relevance in
the dataset’s purpose of speech separation. Other
datasets implied some recording information —
such as the HUB5 dataset being of recorded tele-
phone conversations.

Again, we find that VDDs are inadequate for
MLPs’ needs.

4 Righting the docs: Towards VDD that
help MLPs mitigate bias in speech
technologies

Drawing from the gaps in VDD practice uncovered
from our exploratory study above, we now propose
a program of work to begin to address them.

4.1 A unified description format for spoken
language datasets

The VDDs we analysed contained a patchwork of
information in varying formats. This presents hur-
dles for dataset consumers, such as Scavengers and
Hoarders, in understanding dataset contents, as cor-
roborated in 3.2. This is a necessary step before
datasets can be effectively combined for training
ML models. A unified datasheet format for spo-
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ken language datasets is likely to go some way to
addressing this weakness. Here, we welcome the
work of Papakyriakopoulos et al. (2023) in formu-
lating Augmented datasheets for speech data. This
work provides both a minimal description structure,
and tools to enable the dataset producer to create
it. However, this alone is insufficient to address the
challenges we uncovered.

4.2 Automating the creation of descriptive
information for voice data

Augmented datasheets for speech data assumes that
dataset producers act reflexively before or during
the dataset creation process. Indeed, reflexivity
has been shown to improve dataset practice (Boyd,
2021). We found some evidence of reflexivity in
our interviews, with Chefs considering how to rep-
resent data items (see 3.2). However, given the
lack of descriptive information found in many of
the nine datasets analysed, it is reasonable to claim
that much VDD work happens after the fact, if at
all.

Here, classification models, such as for gender,
age and accent, are needed to help provide better
descriptive information for speech datasets, reduc-
ing the need for the MLP to “listen to the data” (see
3.2). This would be particularly helpful for datasets
where granular VDD was not captured at the point
of creation, providing the ability to create parts of
VDD retrospectively — although we acknowledge
that inferred VDD are likely to represent dataset
contents less accurately.

There is some emerging work in this space, such
as Sánchez-Hevia et al. (2022), who use a range of
neural models to accurately predict gender and age
on the Common Voice dataset, and Najafian and
Russell (2020), who use automatic accent identi-
fication to make a model more robust to accented
speech. We note, however, that such classification
can be used for ethically dubious purposes, such
as pre-emptive policing (e.g. such as that recently
done in the Türkçe language (Korkmaz and Boy-
acı, 2022)). We also note that Gebru et al. (2021)
caution against automating the creation of dataset
documentation, championing instead the use of re-
flexive processes. We hold that there is a practical
middle ground here; to be reflexive during dataset
creation, but to have tools available when VDDs of
existing datasets are insufficient.

4.3 Common representation taxonomies for
voice data

In section 3.2, several participants highlighted the
lack of consistency in formats used for represent-
ing variance in speaker characteristics, context of
speech and the spoken language itself. Here, com-
mon taxonomies would assist MLPs in combining
datasets in ways that aid in addressing bias. For
example, MLPs may wish to compile spoken lan-
guage data of a particular accent to assess if a neu-
ral model performs well on that accent. However,
if different datasets represent accents in different
ways, combining datasets becomes much harder.
Indeed, the need to capture speaker demographics
in particular more systematically was highlighted
in our interviews:

“I would say that each time a new speaker is
registered to the system, is going to start making a
recording, we should have a nice interface, an easy
to use interface, to quickly fill all the information
that we need.” —SB.

Although there is some recent work in the accent
space, such as calls to extend the BCP-47 format
to better represent low-resource languages (Gillis-
Webber and Tittel, 2019, 2020), and work to rep-
resent gender bias more accurately in text cor-
pora (Havens et al., 2022), we still lack accepted
taxonomies for representing the linguistic heritage
of a speaker (language acquisition, L1 and L2
status etc), domains of speech (such as medical,
quick service restaurant ordering, industrial au-
tomation) and the recording environment (such as
cafe, quiet office, family home, studio). Having
such reusable and inter-operable taxonomies would
also align with efforts to make research data, and
speech archives specifically, more “FAIR” (Wilkin-
son et al., 2016; Calamai and Frontini, 2018).

4.4 Incentivising adoption of unified formats
Even if unified description formats and common
taxonomies for VDDs are available, a mechanism
is needed to incentivise their adoption, particularly
given the practice identified in our interview data of
replicating existing dataset formats (see 3.2). Ben-
der and Friedman (2018) outline several incentives
which would be useful here, such as requiring ad-
herence to dataset documentation formats for pub-
lication in key journals.

With increasing usage of collaborative coding
platforms in ML practice (Berman, 2023), another
available incentive is to require complete VDDs
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before datasets are uploaded. For example, while
Hugging Face displays dataset datasheets on the
platform, there is no requirement for them to be
completed, and they are often blank 6.

5 Limitations

Additional methods to triangulate findings We
recognise the small, although purposive, sample of
participants and datasets in our exploratory study.
We now intend to administer a questionnaire to a
broader group of MLPs, to validate or invalidate
these initial findings.

Only publicly knowable datasets were analysed
In identifying and selecting datasets for analysis,
we recognise that our approach was limited to only
publicly knowable datasets; private and/or propri-
etary datasets used internally by organisations may
exhibit very different dataset documentation prac-
tices, although this is unlikely based on the work
of Heger et al. (2022) and Holstein et al. (2019).

6 Conclusion

Here, we have situated voice dataset documentation
(VDD) practices conducted by machine learning
practitioners (MLPs) within broader efforts to re-
duce bias in ML-enabled speech technologies as
they go to scale. We first provided a brief litera-
ture review of ML-related dataset documentation
work, identifying that VDD practices are under-
studied. We presented an exploratory study that
combined two methods — semi-structured inter-
views and document analysis — to provide a rich
characterisation of practices surrounding VDDs.

We find that VDDs are currently inadequate to
meet the needs of MLPs who create and consume
voice datasets. In particular, they often fail to de-
scribe voice dataset contents accurately, if at all,
and the range of representation formats used makes
it difficult for MLPs to combine datasets effectively
— as is often required in bias reduction efforts.

Drawing from these findings, we propose actions
that seek to “right the docs”, focusing on unified
formats for dataset documentation, as well as the
need for common taxonomies for data items com-
mon to voice datasets.

6For example, the datasheet for Common Voice on Hug-
ging Face omits large sections, such as curation rationale and
limitations
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A Interview participant summary

Table 1: Interview participant summary (n=13)

Characteristic Total

Gender Female 3

Male 10

Other gender expressions 0

Occupational field

Research scientist or academic 5

ML or NLP Engineer 2

Software Engineer 2

Data annotator 1

Developer Relations Advocate 2

UX Designer / researcher 1

Country of residence
United States 5

Australia 3

South Africa 1

Aotearoa New Zealand 1

Nigeria 1

France 1

Canada 1
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B Summary of voice dataset documents analysed

Table 2: Summary of voice dataset documents analysed

Characteristic
of the

dataset or
voice dataset

document
(VDD)

Mozilla
Common
Voice(Ardila
et al., 2020)

Librispeech
(Panayotov
et al., 2015)

African
languages in
the field
(Gauthier
et al., 2016)

Voxceleb
(Chung et al.,
2018; Nagrani
et al., 2020)

LDC 2000
HUB5
English
Evaluation
Speech

TED-LIUM
cor-
pus (Rousseau
et al., 2012;
Hernandez
et al., 2018)

Free spoken
digit dataset
(Jackson
et al., 2018)

CHIME 5
Speech
separation
challenge
dataset
(Barker
et al., 2018)

LJSpeech
Speech dataset
(Ito, 2017)

Type of
document(s)

analysed

CommonVoice
website,
GitHub
repository,
related paper

Entry on
OpenSLR
website,
related paper

Entry on
OpenSLR
website,
README file in
dataset,
related paper

VoxCeleb
website,
Metadata file
archived on
archive.org,
related papers

LDC Cata-
logue entry

TED-LIUM
website,
README file in
dataset,
related paper

GitHub
repository,
Zenodo
dataset record,
metadata.py
file in dataset

Data page on
CHIME
website, JSON
file in dataset

LJ Speech
website

Year of initial
release &

latest version

2018; 2023
(version 13)

2015; no
newer version

2005; no
newer version

2017; 2018
(version 2)

2005; no
newer version

2012; 2018
(version 3)

2018; no
newer version

2018 2017; 2017
(version 1.1)

Intended
language task

Speech
recognition

Speech
recognition,
multilingual

Speech
recognition,
monolingual

Speaker
identification,
speech
separation,
monolingual

Speech
recognition,
monolingual

Speech
recognition,
monolingual

Speech
recognition,
monolingual

Speech
separation,
monolingual

Speech
synthesis,
monolingual

Nature of
speech in

dataset

Elicited, large
vocabulary,
multiple
domains

Elicited, large
vocabulary,
out of
copyright
works

Elicited, large
vocabulary,
multiple
domains

Spontaneous,
large
vocabulary,
multiple
domains

Spontaneous,
large
vocabulary,
multiple
domains

Spontaneous,
large
vocabulary,
multiple
domains

Elicited,
constrained
vocabulary,
spoken digits

Spontaneous,
large
vocabulary,
multiple
domains

Elicited, large
vocabulary,
non-fiction
books
publishes
between 1884
and 1964

Motivation
and funding

source

Ecosystem
development;
Grant-based for
particular
languages;
additional
funding from
NVIDIA

Research;
funding
unknown.

Research;
ALFFA
Research
Project,
funded by
agence
nationale de
la recherche.

Research by
Oxford
University,
funded
through
EPSRC
programme
grant

Commercial;
Sponsored by
National
Institute of
Standards and
Technology.

Research,
funding not
specified.

Research,
funding not
specified.

Research
challenge
sponsored by
Google and
Microsoft
Research.

Research,
funding not
specified,
independent
researcher.

Method of
collection of

dataset

Volunteer
speakers
recorded on
web-based
platform.

Secondary
use dataset
from Librivox
volunteer
audio book
project (Lib-
rivox, 2021)

Original
dataset,
volunteer
speakers
recorded in
field.

Secondary
use dataset
from
YouTube;
speakers’
consent not
provided.

Original
dataset,
recruited
speakers
recorded via
telephone.

Secondary
use dataset
from TED
videos;
speaker
consent
unknown.

Original
dataset,
speaker
recruitment
and recording
unknown.

Original
dataset,
speaker
recruitment
unknown,
recorded in
speakers’
homes.

Tertiary
dataset,
subset of
Librispeech
containing
single speaker.
Speaker
consent not
stated.
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C Summary of dataset documentation analysis

Table 3: Descriptions and data items included in current voice dataset documentation

Data item

Mozilla
Common
Voice Librispeech

African
languages in
the field Voxceleb

LDC 2000
HUB5
English
Evaluation
Speech

TED-LIUM
corpus

Free spoken
digit dataset

CHIME 5
Speech
separation
challenge
dataset

LJSpeech
Speech
dataset

Dataset identification
Persistent identifier for the

dataset
No No No No Yes No Yes Yes No

Dataset versioning Yes Yes No Yes Yes Yes Yes Implied via
yearly
competition

Yes

Dataset release date Yes Implied
through
related
paper

Yes Implied
through
related
paper

Yes Implied
through
related
paper

Yes Yes Yes

Intent, purpose and curation rationale
Executive summary or

description
Yes Yes Yes Yes Yes Yes Yes Yes Yes

Intended tasks or use cases Yes Yes Yes Yes Yes Yes Implied
through
GitHub
repository
tags

Yes No

Curation rationale Yes Yes Yes Yes Yes Yes Yes Yes No

Dataset creation process, sources and actors
Dataset collection method Yes Yes Yes Yes Yes Yes No Yes Yes

For elicited speech, the source
of prompts

Implied
through
GitHub
history

Yes Yes Yes No Yes No Yes Yes

For spontaneous speech,
description of the

annotation/transcription process

N/A N/A N/A N/A No Yes N/A No N/A

For spontaneous speech,
description of the annotators

N/A N/A N/A No N/A No N/A N/A N/A

Characteristics of the dataset itself
Structure of dataset, such as

field mapping, described
Yes Yes Yes Yes Yes Yes Yes Yes Yes

Dataset storage size provided Yes Yes Yes Yes No Yes Yes Yes Yes
Overall hours of speech in

dataset specified
Yes Yes Yes Yes Yes Yes Yes Yes Yes

License specified CC0 CC-BY-4.0 MIT CC-BY-SA-
4.0

LDC User
Agreement

CC-BY-NC-
ND-3.0

CC-BY-SA-
4.0

Dataset spe-
cific

Public
domain

# of distinct voices in dataset
specified

Yes Yes Yes Yes Implied via
# of conver-
sations

Yes, in
paper

Yes Yes Yes

# of utterances in dataset
specified

Yes Yes Yes Yes No, only #
of conversa-
tions given

Yes, in
paper

Yes Yes Yes

Length of utterances given Yes No Yes, aver-
aged

Implied via
each
utterance
having same
length

No No Implied via
each
utterance
being a
single digit

Inferred via
JSON file

Yes, aver-
aged

Split information (test, train, dev
etc) provided

Yes Yes Yes, in data
structure

No No Yes, in data
structure

Yes Yes N/A, splits
not used in
speech syn-
thesis

Audio file type specified Yes, in data
structure

Yes, in data
structure

Yes, in data
structure

No File type
implied by
sample file

Yes Yes Yes Yes

Audio file format details
(resolution etc) provided

No Yes (some) No No Yes Yes Yes Yes Yes
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Table 4: Descriptions and data items included in current voice dataset documentation (continued)

Data item

Mozilla
Common
Voice Librispeech

African
languages in
the field Voxceleb

LDC 2000
HUB5
English
Evaluation
Speech

TED-LIUM
corpus

Free spoken
digit dataset

CHIME 5
Speech
separation
challenge
dataset

LJSpeech
Speech
dataset

How the dataset represents characteristics of the speaker(s)
Representation or distribution of

speaker accent
Yes No No No No No Yes No No

Representation or distribution of
speaker nationality

No No No No No No Yes No No

Representation or distribution of
speaker age

Yes No No No No No No No No

Representation or distribution of
speaker gender

Yes Yes Not in
dataset, but
distribution
specified in
paper

Yes No Yes, in pa-
per

Yes Yes Implied,
single
speaker,
gender
specified

Representation of speaker
occupation

No No Not in
dataset, but
overview
given in
paper

No No No No No No

Representation of speaker
language acquisition or heritage

No No No No No No No No No

Representation of speaker
educational attainment

No No No No No No No No No

How the dataset represents the recording environment
Constitution by recording

hardware
No No No No Implied

(telephone
No No No No

Constitution by recording
environment

No No No Implied
(interview)

Implied
(phone con-
versations)

Implied
(TED talks)

No Yes No

How the dataset represents characteristics of spoken language
Dataset language(s) represented
using a standard such as BCP-47

or ISO-639

Yes Yes Yes Yes Yes No No No No

Multilingual flag Implied
through
dataset
structure

Yes Implied
through
dataset
structure

No No No No No No

Representation of phonetic
distribution or variation

No No No No No No No No No

Representation of dialect,
lexical or non-phonetic variation

No No No No No No No No No

Representation of domain of
speech

No Implied due
to Librivox
source

No No No No Implied -
digits

No Implied due
to Librivox
source

Constitution by formality or
register of spoken language

Varies with
prompt

Varies with
prompt

No No No Implied -
TED talks

No No Varies with
prompt

For spontaneous speech,
whether code-switching is

indicated

N/A N/A N/A No No No N/A No N/A

Models, benchmarks and academic papers
Benchmarks specified or linked

to
No, uses
CER for
eval’n but
no
benchmark

Yes, WSJ No Yes,
previous
speaker
recog’n
datasets

No No No, uses
WER and
CER for
eval’n
but no
benchmark

No No

Models trained from dataset
specified or linked to

Yes, speci-
fied in paper

Yes, speci-
fied in paper

Yes, speci-
fied in paper

Yes, speci-
fied in paper

No No No Yes, in re-
sults page

No

Papers based on dataset
specified or linked to

Yes, on web-
site

Yes, on web-
site

Yes, on web-
site

Yes, on web-
site

No Yes, on web-
site

Yes Yes, in re-
sults page

No

Privacy, limitations and social impact
Privacy or sensitivity statement

of the dataset
Some info
on website

No No Has a
privacy
statement

No No No No No

Social impact statement of the
dataset

Some info
on website

No No No No No No No No

Statement of biases in dataset No No No No No No No No No
Statement of limitations of

dataset
No No No No No No No No No
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Abstract

Stock market prediction is considered a com-
plex task due to the non-stationary and volatile
nature of the stock markets. With the increas-
ing amount of online data, various information
sources have been analyzed to understand the
underlying patterns of the price movements.
However, most existing works in the literature
mostly focus on either the intra-modality infor-
mation within each input data type, or the inter-
modal relationships among the input modalities.
Different from these, in this research, we pro-
pose a novel Multi-Modal Cross Attention Net-
work for Stock Market Prediction (MCASP)
by capturing both modality-specific features
and the joint influence of each modality in a
unified framework. We utilize financial news,
historical market data and technical indicators
to predict the movement direction of the mar-
ket prices. After processing the input modali-
ties with three separate deep networks, we first
construct a self-attention network that utilizes
multiple Transformer models to capture the
intra-modal information. Then we design a
novel cross-attention network that processes
the inputs in pairs to exploit the cross-modal
and joint information of the modalities. Ex-
periments with real world datasets for S&P500
index forecast and the prediction of five indi-
vidual stocks, demonstrate the effectiveness of
the proposed multi-modal design over several
state-of-the-art baseline models.

1 Introduction

Stock market movements are inherently affected by
a multitude of data sources, encompassing histor-
ical price data, technical indicators (Vargas et al.,
2017), financial news (Schumaker and Chen, 2009),
social media (Chen et al., 2018), and official an-
nouncements (Feuerriegel and Gordon, 2018). It
has been established that analyzing these multi-
ple data modalities together enables the capture of
underlying patterns in stock movements, render-
ing stock market prediction a multi-modal learning

task (Akita et al., 2016). The efficacy of employing
effective multi-modal representation and learning
techniques to uncover the joint influence of these
data modalities is pivotal for model performance
(Li et al., 2020). Simultaneously, it is important
to extract the intra-modal information within each
data source. Early information fusion techniques
combine raw input features initially and then con-
struct a prediction model, which aids in capturing
the combined influence of modalities but neglects
intra-modal information. Late fusion techniques,
conversely, analyze input features separately and
subsequently employ a fusion layer for prediction.
While this approach facilitates a focus on modality-
specific features, it may overlook inter-modal infor-
mation. Balancing the capture of intra-modal and
inter-modal information from input modalities is
essential.

Researchers have identified that pairs of data
modalities, such as financial news and market
prices, as well as market prices and technical in-
dicators (Vargas et al., 2017), both impact price
movements. However, existing models, while striv-
ing to capture the joint influence of all modalities
together, may overlook the underlying bi-modal re-
lationships between various data inputs. Therefore,
in addition to capturing their collective influence, it
is also crucial to understand the bi-modal relation-
ships among pairs of input modalities.

To address these challenges, various methods
have been developed, primarily categorized as
inter-modality and intra-modality-based techniques.
Inter-modality methods aim to capture the underly-
ing relationships among input modalities but may
miss the connections within each modality. Con-
versely, intra-modality techniques focus on uncov-
ering modality-specific relations but tend to dis-
regard the inter-modal connections across input
modalities. Combining modality-specific features
with inter-modal connections can synergize and
enhance overall analysis. Hence, exploring a uni-
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fied framework capable of capturing both inter-
modality and intra-modality relations within the
input data is imperative.

Motivated by these challenges, we present a
novel Multi-Modal Cross-Attention Network for
Stock Market Prediction (MCASP). MCASP fore-
casts the direction of price movements by jointly
modeling inter-modality and intra-modality rela-
tionships within the input data (i.e., financial news,
market data, and technical indicators) within a uni-
fied deep learning framework. To achieve this, we
construct two distinct attention networks: a self-
attention network and a cross-attention network,
designed to capture intra-modal and inter-modal
relationships, respectively.

The self-attention module focuses on extracting
modality-specific features from the input modal-
ities. We first employ two separate Long Short-
Term Memory (LSTM) networks to extract latent
features from market data and technical indicators.
Simultaneously, we leverage FinBERT (Liu et al.,
2020b) to encode textual data (i.e., financial news).
Within the self-attention network, the LSTM net-
work outputs are processed by two Transformer
(Vaswani et al., 2017) units, while the encoded
textual data undergo analysis via a Convolutional
Neural Network (CNN).

The cross-attention module involves creating
three pairs by concatenating representations of
news and market data, news and technical indi-
cators, and market data and technical indicators.
These pairs are then fed into three separate Trans-
former units. The outputs from the self-attention
and cross-attention modules converge in the Fusion
Layer to generate a combined feature vector. Fi-
nally, we employ a fully-connected layer to predict
the direction of price movements.

2 Related Work

In this section, we review related work in stock
market prediction, multimodal machine learning
and the attention mechanism.

2.1 Stock Market Prediction

Financial news, market data, social media data, of-
ficial company announcements have been widely
used for market analysis research. It has been
shown by Shi et al. (2019a) that using only news ti-
tles is better than using the whole article text. Schu-
maker et al. (2012) proposed the Arizona Financial
Text (AZFinText) system, focusing on sentiment

analysis using propoer nouns. In another study, Var-
gas et al. (2017) represented news headlines using
Word2Vec word embeddings and constructed a mul-
timodal prediction model using Convolutional Neu-
ral Networks (CNN) and Long Short-term Memory
(LSTM) networks. Meanwhile, Huynh et al. (2017)
designed a prediction model using the Bidirectional
Gated Recurrent Unit (BGRU) architecture, extract-
ing news headlines and representing them using
word embedding vectors.

The paper by Nuij et al. (2014) used Viewer-
Pro to extract events from news articles and incor-
porated them with technical indicators. Matsub-
ara et al. (2018) employed paragraph vectors for
news data representation, and Ding et al. (2015)
introduced a CNN-based event embeddings model
where the authors constructed a neural tensor net-
work to learn event embeddings from financial
news data.

2.2 Multimodal Machine Learning

Multimodal learning architectures have been
widely utilized in various fields including robotics
(Lee et al., 2018), healthcare (Ghulam et al., 2021),
multimedia (Liang et al., 2018), and sentiment anal-
ysis (Zadeh et al., 2018). A multimodal paper by
Barnum et al. (2020) applies early fusion in the
multimodal representation of audio and visual in-
puts and another research (Federici et al., 2020) em-
ploys structured image and textual to construct mul-
timodal concept taxonomies. Researchers have also
utilized various RNN structures for multimodal rep-
resentations for different kinds of applications such
as human behaviour analysis (Rajagopalan et al.,
2016) and time-series data analysis (Liang et al.,
2018; Zadeh et al., 2018).

One popular technique for combined utilization
of multimodal data is early fusion (Morency et al.,
2011; Pérez-Rosas et al., 2013). Early fusion con-
catenates low-level features from individual modal-
ities to be utilized with any learning framework
for downstream machine learning tasks. Moreover,
early fusion performs poorly when feature fusion
among non-interacting modalities (such as voice
and fingerprint) is performed. These limitations
are slightly addressed in Zadeh et al. (2016), where
shared embeddings (latent space) among individual
modalities are learned. These shared representa-
tions outperform the early fusion but require careful
parameter tuning.

There also exists a stream of work that perform
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outer-product-based neural frameworks for multi-
modal data fusion. In Lin et al. (2015) a bilinear-
CNN is proposed to obtain bi-modal interactions
among features obtained from two heterogeneous
CNNs. This is accomplished by taking a neural-
based bilinear product of high-level features. The
bilinear layer required parameter estimation of a
quadratic number of neurons and hence prone to
over-fitting. This limitation is alleviated in Fukui
et al. (2016); Hu et al. (2017a) which introduced
an alternate formulation of the bilinear layer and
obtains its compact representation by utilizing so-
phisticated neural-based factorization schemes.

2.3 Attention

The attention mechanism has found success in a
wide range of domains, including natural language
processing (NLP) (Bahdanau et al., 2014; Vaswani
et al., 2017), image captioning (You et al., 2016),
image classification (Xiao et al., 2014), visual ques-
tion answering (Lu et al., 2016), and more (Rush
et al., 2015; Li et al., 2015). Notably, the Trans-
former model (Vaswani et al., 2017) introduced
the self-attention mechanism, which explores intra-
modal relationships, such as the relationships be-
tween words in machine translation.

Taking inspiration from the Transformer model
(Vaswani et al., 2017), the self-attention mecha-
nism has been applied in various works, extend-
ing its utility to visual question answering (Yu
et al., 2019), video analysis (Wang et al., 2017),
and image-text matching (Wu et al., 2019).

In recent years, attention mechanisms have also
made their way into multi-modal learning problems.
While architectures like BERT (Devlin et al., 2019)
were originally designed for NLP tasks, they have
been adapted for multi-modal challenges as well
(Chen et al., 2019; Lu et al., 2019). For instance,
some approaches, like the dual attention network
in Nam et al. (2016), focus on learning inter-modal
relationships between visual regions and textual
elements within sentences. Others, like the co-
attention framework in Lu et al. (2016), tackle tasks
like visual question answering by jointly learning
image and question attentions. Additionally, in
Paulus et al. (2017), a combination of inter-modal
and intra-modal attentions is leveraged within deep
reinforcement learning for text summarization.

3 Model Design

In this section, we provide a detailed description
of the architecture of the proposed MCASP model.
The design of our MCASP model is demonstrated
in Figure1.

3.1 Input Representation

We start by using historical market data and finan-
cial news as our primary data sources. From the
market data, we derive a set of seven technical
indicators. We employ three distinct data modali-
ties for stock market prediction: market data, tech-
nical indicators, and financial news. To process
these modalities, we employ three separate deep
networks.

We construct two LSTM networks to handle the
market data and technical indicator modalities, re-
spectively. Additionally, we utilize text embed-
dings to encode the news data. For this purpose,
we leverage BERT and FinBERT embeddings.

The latent features obtained from the LSTM
networks and the sentence embeddings from Fin-
BERT are then fed into the self-attention and cross-
attention modules to capture both intra-modal and
inter-modal relationships.

3.2 Self-Attention Module

The primary objective of the attention process is
to discern the relationship between two states and
focus on the most crucial features. This is achieved
by assigning higher weights to the most pertinent el-
ements within the input vectors. The attention layer
consists of three key components: the query, keys,
and values, with these elements being identical in
the self-attention context. The attention mechanism
can be conceptualized as mapping a query and a
set of key-value pairs to an output, where the out-
put is a weighted sum of the values. The weight
matrix, determining the weight assigned to each
value, is defined using the query and the key. Sev-
eral options for the attention function are available,
including the dot product, multi-layer perceptron,
and scaled dot product.

The self-attention network is used to capture
intra-modality relations, employing two separate
Transformer units (Li et al., 2014) for market data
and technical indicators, along with a CNN for
financial news data. In the Transformer model,
we employ the scaled dot product to compute the
weight matrix. This module encompasses both
multi-head self-attention and position-wise feed-
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Figure 1: Demonstration of the MCASP architecture design.

Figure 2: Design of the Transformer model

forward layers, as depicted in Figure 2. The term
’multi-head attention’ implies that attention is com-
puted multiple times. The attention calculation is
as follows:

A(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

Where the dk represents the dimension of the
queries and the keys. In the Transformer mod-
ule, multiple parallel attention values are computed
where each output is called a head. The ith head is
calculated as:

headi = A(QWQ
i ,KWK

i , V W V
i ) (2)

We then concatenate these heads to obtain the
multi-head attention.

MT (Q,K, V ) = Concat(head1, ., headh)W
0

(3)
In our self-attention module, the two Transform-

ers for market data and technical indicators modal-
ities, we get the following two outputs:

fm = MT (Qm,Km, Vm)

ft = MT (Qt,Kt, Vt)
(4)

For the textual data modality, we utilize the out-
puts of the BERT embeddings. The BERT model
incorporates multiple Transformers and is profi-
cient at capturing intra-modality information. Sub-
sequently, we employ a CNN to extract local latent
features denoted as fn.

These three outputs from our self-attention mod-
ule, namely fm, ft, and fn, are later employed to
predict the movement of closing prices.

3.3 Cross-Attention Module
We introduce a novel cross-attention to model both
intra-modality information and the interconnect-
edness of the modalities, achieved by implement-
ing three separate Transformer units. By model-
ing both intra-modality and inter-modality relation-
ships, we aim to capture the joint effect of the
input modalities while retaining modality-specific
features.. Our aim is to capture the interactions
across the input modalities by applying the cross-
attention function to the outputs of the input repre-

70



sentation layer. Initially, we establish three distinct
pairs from the modalities to implement the atten-
tion mechanism: from market data to technical
indicators (m − t), from market data to financial
news (m − n), and from technical indicators to
financial news (t−n). Market data and the derived
technical indicators have a significant influence
on market movements, which justifies prioritizing
these pairings with higher weights.

The calculation of these three cross-attention
values is as follows:

Am−n(Qm,Kn, Vn) = softmax(
QmKT

n√
dk

)Vn

Am−t(Qm,Kt, Vt) = softmax(
QmKT

t√
dk

)Vt

At−n(Qt,Kn, Vn) = softmax(
QtK

T
n√

dk
)Vn

(5)
Here, Am−n, Am−t, and At−n represent the

cross-attention between market data and news, mar-
ket data and technical indicators, and technical in-
dicators and news modalities, respectively. Fur-
thermore, Qm and Qt denote the query vectors for
the market data and technical indicators modalities,
while Kt and Kn represent the key vectors, and Vt

and Vn denote the value vectors for the technical
indicators and news modalities, respectively.

With these cross-attention terms in place, we
proceed to compute the attention values for each
head as follows:

headim−n = Am−n(QmWQm

i ,KnW
Kn
i , VnW

Vn
i )

headim−t = Am−t(QmWQm

i ,KtW
Kt
i , VtW

Vt
i )

headit−n = At−n(QtW
Qt

i ,KnW
Kn
i , VnW

Vn
i )

(6)
These terms represent each head in each cross-

attention pair. Subsequently, we combine these
head values for each pair to obtain the multi-head
attention for each cross-attention block:

MTm−n = Concat(head1(m−n), ., head
h
(m−n))W

0
m−n

MTm−t = Concat(head1(m−t), ., head
h
(m−t))W

0
m−t

MTt−n = Concat(head1(t−n), ., head
h
(t−n))W

0
t−n

(7)
Putting all these together, our cross-attention

module produces the following three outputs:

fm−n = MTm−n

fm−t = MTm−t

ft−n = MTt−n

(8)

3.4 Fusion Layer
In the fusion layer, we amalgamate the feature vec-
tors from the self-attention and cross-attention mod-
ules to form a combined feature vector.

fmerged = [fm, ft, fn, fm−n, fm−t, fn−t] (9)

We then employ a fully connected layer with
ReLU as the activation function to process the fea-
ture vector fmerged. In the final step, another fully
connected layer is employed to make predictions.
The overall network is a binary classification model
used for predicting the movement direction of stock
closing prices, and the model weights are optimized
by minimizing the binary cross-entropy loss:

L = −(y log(ŷ) + (1− y) log(1− ŷ)) (10)

where y represents the target class for the move-
ment direction, and ŷ signifies the prediction ob-
tained from MCASP. The movement direction is
defined as the difference between the closing prices
on day t + 1 and day t. The labels are catego-
rized into two classes: Class 1 indicating an up-
ward movement and Class 0 indicating a downward
movement in the closing prices.

4 Experimental Settings

In our experiments, we utilized real-world datasets
encompassing financial news, market data, and
technical indicators spanning from January 1, 2010,
to December 31, 2019, encompassing a 10-year
period. The financial news was sourced from
Reuters1, with each article containing a title, body,
and publication date. The publication date was em-
ployed to align the articles with the daily market
data. We specifically focused on the headlines from
the financial news, as research has demonstrated
that using news titles can yield superior prediction
results compared to using the entire article body
(Shi et al., 2019b). The number of news titles per
trading day varied; hence, we aggregated all the ti-
tles for a given day into a single extended sentence

1https://www.reuters.com/business/
finance/
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and employed FinBERT to encode the textual data
into feature vectors. Consequently, we obtained a
single sentence embedding vector for each trading
day.

We utilize historical market data for S&P in-
dex and individual stocks from Yahoo Finance2

for the corresponding dates. These five companies
included Google, Tesla, Amazon, Apple, and Mi-
crosoft and the data includes Open, High, Low,
Close prices, and Volume. We normalize the mar-
ket data to be within the range of [0, 1].

We initially employ an 80-20% split for train-
ing and testing for index price prediction. We also
evaluate the yearly performances of the models by
utilizing the first 10 months of each year for train-
ing and the last 2 months for testing. We utilize the
80-20% split again for training and testing purposes
for individual stock prediction.

Based on the literature (Kim, 2003), we com-
puted seven technical indicators for each trading
day using the market data over the preceding five
days.

We employ accuracy (Acc) and Matthews Cor-
relation Coefficent (MCC) to evaluate the perfor-
mance of different models. MCC is generalyy em-
ployed when the sizes of classes y = 1 and y = 0
differ.

4.1 Baseline Methods

We compare our approach with the following base-
lines on predicting individual stocks and S&P500
index.

Recurrent Convolutional Neural Network
(RCNN) (Vargas et al., 2017) is a CNN and RNN
based stcok forecast model that utilizes technical
indicators and financial news. Event Embeddings
(EB-RCN) (Oncharoen and Vateekul, 2018) is an-
other LSTM and CNN based model that also in-
cludes market data and employ event embeddings
from (Ding et al., 2015). Bidirectional Gated Re-
current Unit (BGRU) (Huynh et al., 2017) uses
both online financial news and historical price data
to predict the stock movements. LSTM-based
Recurrent State Transition (ANRES) (Liu et al.,
2020a) uses only news events for market movement
prediction. Hybrid Attention Network (HAN)
(Hu et al., 2017b) is a state-of-the-art stock trend
prediction model with hierarchical attention that
utilizes news data. Multi-Modality Attention Net-
work (MMAN) (He and Gu, 2021) Attention-

2https://finance.yahoo.com/

Based Recurrent Neural Network (At-LSTM)
(Liu, 2018) Adversarial Attentive LSTM (Adv-
LSTM) (Feng et al., 2018) is a market prediction
model using historical market data, where the au-
thors employ attentive LSTMs and utilize adversar-
ial training strategy.

Other than these methods, we also perform ab-
lation studies by constructing different variants of
the proposed MCASP model.

5 Results and Analysis

In order to test the effectiveness of our model, we
run experiments using real-world dataset includ-
ing financial news data, historical market data and
technical indicators.

5.1 Main Results

We use our dataset to conduct tests for forecast-
ing of the price movements of S&P500 index and
five individual stocks. The accuracy results are
illustrated in Figure 3, showing that MCASP im-
proves upon the baseline models. The MCC re-
sults, presented in Figure 4, echo the same trend,
with MCASP exhibiting superior prediction perfor-
mance for the price movement directions of all five
stocks and S&P index compared to the baseline
models.

Overall, in our experiments, MCASP consis-
tently achieves the best results in terms of both ac-
curacy and MCC. When compared to the baselines,
MCASP demonstrates improvements in prediction
performance for both index and individual stock
predictions, underscoring the effectiveness of the
proposed multi-modal attention design in leverag-
ing intra-modal and inter-modal information from
multiple input sources.

Among the baseline models, attention-based pre-
diction models perform better than other baselines
in both accuracy and MCC. These results under-
score the significance of the attention module in
capturing critical latent features from the input data.
However, MCASP surpasses the attention-based
baseline models, suggesting that its enhanced per-
formance stems not only from the use of the self-
attention module but also from its ability to extract
inter-modal relationships among input modalities
through the novel cross-attention module.

We also asses the models’ yearly prediction per-
formances for S&P 500 index prediction, where we
use the first 10 months of each year for training and
the last two months for testing. The accuracy re-
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Figure 3: Accuracy results on index and individual stock prediction (the higher, the better).

Figure 4: MCC results on index and individual stock prediction (the higher, the better).

sults, given in Figure 5, demonstrate that MCASP
consistently outperforms all the baseline models for
each year. Although the yearly results are slightly
lower than the initial test results, this can be at-
tributed to the smaller test sample size inherent in
the yearly setup.

Collectively, the experiments involving S&P500
index prediction and the prediction of price move-
ments for five individual stocks demonstrate that
the MCASP model is adept at learning meaning-
ful representations from multiple input modalities,
capitalizing on the self-attention network and the
innovative cross-attention module.

5.2 Ablation Study

To assess the impact of different components of the
MCASP model, we conducted an ablation study
using the same real-world dataset. Initially, we
evaluated the effectiveness of our two attention
modules independently by creating two distinct
models. Subsequently, we explored three text em-
bedding techniques to demonstrate the influence
of the textual representation method on the overall
performance.

Self-attention and cross-attention modules.
This experimental study elucidates the individual
performance of each module and underscores the
significance of capturing both intra-model and inter-
model information, in contrast to the prevalent

approach of focusing solely on either modality-
specific or joint influence of input modalities, as
seen in most existing works. To this end, we devel-
oped two distinct models - MCASP-SA (MCASP
with the self-attention module only) and MCASP-
CA (MCASP with the cross-attention module only)
- and subjected them to testing using our original
dataset.

In our experiments, MCASP consistently out-
performs both MCASP-SA (which exclusively em-
ploys the self-attention module) and MCASP-CA
(which relies solely on the cross-attention module)
across both accuracy and MCC metrics. This sub-
stantiates the effectiveness of our proposed design
in addressing multi-modal problems.

Notably, MCASP-CA yields superior results
compared to MCASP-SA. We postulate that this
is attributed to the cross-attention module’s design,
which initially extracts modality-specific features
and subsequently captures inter-modal relation-
ships among modalities using the attention mecha-
nism.

Moreover, when compared to the baseline mod-
els, both MCASP-SA and MCASP-CA consis-
tently demonstrate improved accuracy and MCC
results in the majority of the tests. This underscores
the success of the proposed sequential design for
both modules. The results further affirm that lever-
aging multiple modalities (i.e., financial news, his-
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Figure 5: Yearly ACC results on S&P index prediction (the higher, the better).

torical market data, and technical indicators) can
enhance model performance.

MCASP with various text embeddings. We
subsequently examined the impact of various tex-
tual embeddings (Transformer-based BERT and
GloVe) on the overall model performance. We em-
ployed three distinct textual embedding methods
to encode and represent the financial news data,
namely GloVe word embeddings, Transformer-
based BERT embeddings, and FinBERT embed-
dings. Our experimental results underscore the
significance of selecting an appropriate text embed-
ding method when utilizing financial news data.

The results, presented in Table1 show that
Transformer-based BERT and FinBERT embed-
dings consistently outperformed GloVe embed-
dings across both accuracy and MCC metrics
for S&P index prediction. Furthermore, Fin-
BERT showed improved results compared to BERT
embeddings, underscoring the value of domain-
specific knowledge in textual data representation.

Table 1: The impact of different text embedding meth-
ods.

Embedding Method Accuracy MCC
GloVe 60.91% 0.208
BERT 61.60% 0.215

FinBERT 62.03% 0.228

Notably, predictions using FinBERT as our text
embedding method exhibited improvement com-
pared to GloVe and BERT embeddings. This high-
lights the utility of domain knowledge in compre-

hending and representing textual data. However,
even without domain knowledge and when employ-
ing RNN-based GloVe embeddings and general
BERT embeddings, MCASP consistently outper-
formed all baseline methods across both metrics
for S&P500 index prediction. These results affirm
that while a robust textual representation technique
can enhance model performance, the primary factor
contributing to improved results lies in the novel
multi-modal design, which incorporates both self-
attention and cross-attention modules to capture
latent features from the input modalities.

6 Conclusion

We have proposed a novel multi-modal cross atten-
tion network for stock market prediction that mod-
els the intra-modal and inter-modal information
from the input modalities in a unified framework.
We first analyze the input modalities via three sep-
arate deep networks to extract the salient features.
We then process these features with the proposed
self-attention and cross-attention modules to jointly
model the intra-modal and inter-modal information.
We analyze financial news, historical market data
and technical indicators to predict the movement
direction of S&P500 index prices and the prices of
five individual stocks. We test the effectiveness of
the proposed multi-modal design using real-world
dataset from Reuters and Yahoo! Finance and com-
pare its performance against multiple state-of-the-
art baseline models. Experimental results show that
our model achieves improved performance in stock
market prediction.
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Abstract
We investigated the development of a Machine
Learning (ML)-based classifier to identify ab-
normalities in radiology reports from Emer-
gency Departments (EDs) that can help auto-
mate the radiology report reconciliation pro-
cess. Often, radiology reports become avail-
able to the ED only after the patient has been
treated and discharged, following ED clinician
interpretation of the X-ray. However, occasion-
ally ED clinicians misdiagnose or fail to detect
subtle abnormalities on X-rays, so they conduct
a manual radiology report reconciliation pro-
cess as a safety net. Previous studies addressed
this problem of automated reconciliation using
ML-based classification solutions that require
data samples from the target institution that is
heavily based on feature engineering, imply-
ing lower transferability between hospitals. In
this paper, we investigated the benefits of using
pre-trained BERT models for abnormality clas-
sification in a cross-institutional setting where
data for fine-tuning was unavailable from the
target institution. We also examined how the in-
clusion of synthetically generated radiology re-
ports from ChatGPT affected the performance
of the BERT models. Our findings suggest that
BERT-like models outperform previously pro-
posed ML-based methods in cross-institutional
scenarios, and that adding ChatGPT-generated
labelled radiology reports can improve the clas-
sifier’s performance by reducing the number of
misdiagnosed discharged patients.

1 Introduction

When a patient presents to the Emergency Depart-
ment (ED) with a possible limb fracture, ED clini-
cians order an X-ray from the radiology department.
Following imaging, a radiologist authors a report
stating the radiological observations and diagnosis,
which is then sent back to the ED clinician request-
ing the procedure. Unlike radiology images, radiol-
ogy reports may not be completed before a patient

∗Conducted this research while affiliated with CSIRO.

leaves the ED. In such cases, ED clinicians interpret
radiological images themselves (Koopman et al.,
2015). Occasionally, ED clinicians misdiagnose
radiological evidence such as subtle limb abnormal-
ities (e.g., small fractures, dislocations or foreign
bodies), resulting in patients being discharged with-
out appropriate treatment (Koopman et al., 2015;
Zuccon et al., 2013). As a safety net, ED clinicians
retrospectively reconcile radiology report findings
with ED discharge diagnoses to detect potential
misdiagnoses (Koopman et al., 2015). Since the
radiology report reconciliation process is retrospec-
tive and performed manually, it may take several
days to identify and notify a misdiagnosed patient,
exposing them to potentially adverse impacts on
their health (Koopman et al., 2015; Masino et al.,
2016).

Machine Learning (ML)-based methods for clas-
sifying radiology reports (Koopman et al., 2015;
Zuccon et al., 2013; de Bruijn et al., 2006; Zhou
et al., 2014; Hassanzadeh et al., 2018b) have the
potential to streamline and semi-automate the radi-
ology report reconciliation process. However, the
development of ML solutions is dependent on the
availability of large and diverse labelled datasets
from target hospitals for model training (Gligic
et al., 2020). While radiology reports may be
readily available, labelling them requires domain
expertise, is time-consuming and costly (Hassan-
zadeh et al., 2018b). Therefore, individual depart-
ments or hospitals may not have the capacity to
collect sufficiently large datasets of labelled radiol-
ogy reports to conduct their own model training (Li
et al., 2021a). Cross-institution transfer learning, in
which datasets and model training from one institu-
tion are used to start the ML model development at
another institution, may solve this problem. How-
ever, for cross-institution transfer learning to be
useful for developing local ML models for radi-
ology report reconciliation, it must be resilient to
interinstitutional variations in reporting styles, lan-
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guage, and verbosity (Hassanzadeh et al., 2018b;
Liu et al., 2022).

Many pre-trained Transformer-based language
models have achieved state-of-the-art performance
in various benchmark datasets (Jia, 2022; Li et al.,
2021b), especially Bidirectional Encoder Represen-
tations from Transformers (BERT) (Devlin et al.,
2019). In this study, we investigated the benefits
of pre-trained BERT-like models on a radiology
report classification task in cross-institutional envi-
ronments, where labelled data from the target insti-
tution are unavailable. Although domain-specific
pre-training appears to be effective for in-domain
applications (Peng et al., 2019), little is known
about the impact of pre-training with different cor-
pora on a radiology report classification task in
cross-institution settings. Therefore, we focused
on answering the following research questions:

RQ1 - What is the impact of pre-training
on the abnormal radiology report classification
task?

To answer RQ1, we chose six different BERT
models pre-trained using the medical and biomedi-
cal corpora and evaluated them on cross-institution
radiology report classification, based on data from
three Australian hospitals. We then used the best
performing model – PubMedBERT – to explore:

RQ2 - Can we train a model that is trans-
ferable between institutions without relying on
samples from the target institution?

To answer RQ2, we compare PubMedBERT
with previously proposed SVM and CNN-based ra-
diology report classification models. Our observa-
tions indicate that fine-tuned PubMedBERT models
are more transferable in cross-institutional settings
than previously proposed SVM and CNN-based
solutions. Since labelled radiology reports needed
for fine-tuning are scarce (Li et al., 2022), one of
the remedies to mitigate the lack of labelled sam-
ples is to utilise synthetic radiology reports, gen-
erated according to the desired class condition, to
diversify the fine-tuning set and boost classification
performances. In particular, the recently released
ChatGPT shows impressive text generation capa-
bilities and high potential to generate discharge
summaries (Patel and Lam, 2023). In contrast to
the proposal that ChatGPT be used in the context
of generating high-quality discharge summaries
to offload junior doctors (Patel and Lam, 2023),
we investigate the benefit of using ChatGPT as an
additional source of data to fine-tune abnormal ra-
diology report classification (BERT) models. Then

we aim to answer the following research question:
RQ3 - What is the impact of using ChatGPT

as an additional data source of synthetic data
for classification model fine-tuning?

Note that we only use ChatGPT to supplement
fine-tuning data; our empirical evaluation was still
performed with a carefully curated set of real ra-
diology reports by clinicians. We found that in-
cluding ChatGPT-synthesised radiology reports in
fine-tuning improves abnormal radiology record
classification performances.

Lastly, we examine the practical application of
using pre-trained BERT-like models, fine-tuned on
real and synthetic radiology reports, to classify and
reconcile radiology reports with ED discharge di-
agnoses in a clinical environment. Reconciling
radiology reports with the corresponding ICD-10
discharge diagnoses from the ED system can result
in four outcomes: 1) Both Abnormal; 2) Both Nor-
mal; 3) Radiology Abnormal, ED normal; and 4)
Radiology Normal, ED Abnormal. By doing so,
we are answering the following research question:

RQ4 - How does adding ChatGPT synthesised
radiology reports to fine-tuning dataset impact
the downstream reconciliation task?

When answering RQ4, we particularly pay atten-
tion to the difference in reconciliation performance
(confusion matrix) between models that included
ChatGPT-synthesised reports in fine-tuning and the
models that did not. We observed that the PubMed-
BERT classifier, fine-tuned in real and synthetic
radiology records, improves the detection of misdi-
agnosed patients at the expense of a higher number
of records that require manual clarification.

The contribution of this work is fourfold: 1) we
demonstrated that pre-trained models generalise
better in the case of abnormal radiology report
classification in cross-institution settings; 2) we
highlighted the impact of ChatGPT on fine-tuning
abnormal radiology report classification; and 3) we
extended the impact of ChatGPT-generated syn-
thetic report on a downstream reconciliation task.

2 Related Work

Common challenges of supervised ML models that
support clinical decisions arise from limited clin-
ical data and the lack of their labels, especially
when the model is trained with data from a sin-
gle hospital (Li et al., 2021a). The lack of la-
belled samples from a target hospital has previ-
ously been addressed by using transfer learning
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(Gligic et al., 2020), leveraging training sets with
labelled (Koopman et al., 2015; Li et al., 2021a)
and unlabelled (Hassanzadeh et al., 2018a) data
from multiple institutions. However, there are no
prior examples of scenarios in which there is no
training data at all from the target hospital. In
this study, we investigated whether ML automation
of the radiology report reconciliation process in
a target ED could rely on a training data set that
originated from an entirely different hospital.

For our purposes, the model architecture of
choice must be able to generalise well across in-
stitutions. Methods relying on feature engineer-
ing, such as support vector machine (SVM), naïve
bayes, or random forest, are not suitable for cross-
institution settings since features engineered for
a dataset collected at one institution may not be
the best fit for data collected at another institu-
tion (Xiao et al., 2018). This was also observed
by Koopman et al. (2015) who found a signifi-
cant reduction in performance (F1-Score) of up
to 10–12% in SVM-based radiology report clas-
sifiers, when the training source institution was
different from the target, the test institution. Has-
sanzadeh et al. (2018b) further demonstrated the
dependency on pre-defined feature engineering by
showing improved F1-score of 5-10% across hospi-
tals when employing self-feature-extracting CNNs
with feature adoption transfer. However, to achieve
such improvements in performance still required
training data from the target institution. Unlike
SVMs and CNNs, Transformer models take advan-
tage of the attention mechanism capable of extract-
ing textual features (location, context, syntactic
structure, and semantics), which leads to better
performance (Jia, 2022). Transformer-based mod-
els, such as pre-trained BERT models, are some
of the most successful deep learning (DL) models
for natural language processing (NLP) across do-
mains (Zaheer et al., 2020). Therefore, we chose
pre-trained BERT-like models for the current study.

Data synthesis is one technique that can mitigate
the shortage of labelled training/fine-tuning data.
We determined whether ChatGPT-generated syn-
thetic radiology reports could be used to augment
training or fine-tuning datasets for the purpose of
reconciliating radiological findings. Additionally,
we evaluate the impact of ChatGPT-generated re-
ports on the performance of the BERT-based ab-
normal radiology report classifier when ChatGPT-
synthesised reports are included in the fine-tuning
dataset. Although ChatGPT has already been ex-

plored for data augmentation (Dai et al., 2023),
little has been studied to evaluate the impact of
ChatGPT-generated radiology reports on increas-
ing the performance of the BERT-based classifica-
tion model, fine-tuned on real samples with and
without synthetic reports.

3 Materials and Methods

ChatGPT. ChatGPT 1, recently developed by Ope-
nAI, is one of the largest language models to
date (about 175 billion parameters) based on GPT-
3 (Brown et al., 2020). ChatGPT is a generative
language model that is designed to generate natu-
ral language according to some input prompt. The
quality of its generated language is driven in part
by the extensive text it was provided as part of the
training process.

Data. In this study, we used four datasets of free-
text limb structure radiology reports; three acquired
from the ED of three Australian public hospitals
(2378 reports), and a synthetic dataset created using
ChatGPT (100 reports). The hospital-acquired radi-
ology reports comprise anonymised adult, children,
and mixed (adult and children) reports from three
hospitals located in southeast Queensland, Aus-
tralia. Ethical approval for the acquisition of these
data was granted by the Human Research Ethics
Committee of the Royal Brisbane and Women’s
Hospital.

Real free-text radiology reports were manually
assessed by two emergency medicine physicians
as either “normal” (no fractures, dislocations, or
foreign bodies present) or “abnormal” (fractures,
dislocations, or foreign bodies present). A software
tool was developed to help physicians record their
interpretations and highlight the relevant portions
of text in the reports. Initially, the assessors agreed
on the annotations of 2,215 out of 2,378 reports. A
senior physician was then asked to act as a third
assessor and resolve disagreements. The dataset
distribution from three hospitals (RBWH, RCH and
GCH), including the number of reports, the propor-
tion of normal and abnormal cases, the average
length of words and the number of unique words
in the dataset, are presented in Table 1. The Fleiss
kappa (κ) of 0.85 was calculated from the initial
annotations of the first two assessors, indicating a
high level of inter-rater reliability.

The 100 synthetic radiology reports – 50 normal
and 50 abnormal – were generated using ChatGPT

1https://openai.com/blog/chatgpt
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Dataset Description #Reports Normal Abnormal Avg. Doc. #Unique words
RBWH Royal Brisbane & Womens’ Hospital (adult) 1480 58% 42% 52 words 1944
RCH Royal (Brisbane) Childrens’ Hospital (child) 498 66% 34% 50 words 1100
GCH Gold Coast Hospital (adult 62% & child 38%) 400 62% 38% 27 words 558
ChatGPT Synthetic reports generated by ChatGPT (adult) 100 50% 50% 76 words 201

Table 1: Four different datasets of radiology reports, the number of normal and abnormal cases as identified through
our annotation process or conditional generation, and document length for free-text reports document-wise.

prompts listed in Appendix Table 5. To ensure
the variability between the synthetic radiology re-
ports generated, we followed the initial with addi-
tional prompts. Synthetic reports with only mini-
mal changes (e.g., patient name, age) and the same
diagnosis were discarded.

RQ1 - What is the impact of pre-training
on the abnormal radiology report classifica-
tion task? We evaluated the six pre-trained
BERT-based models on the free-text radiology re-
port classification task to identify abnormalities
of limb structures (normal vs abnormal). Six
pre-trained models were selected based on their
score on the Biomedical Language Understand-
ing and Reasoning Benchmark (BLURB) 2 at the
time of conducting experiments. BLURB includes
a comprehensive benchmark for PubMed-based
biomedical NLP applications and a leaderboard
for tracking community progress. We evaluated
the following six pre-trained BERT-like models
on the cross-institutional radiology report classi-
fication task: PubMedBERT (Gu et al., 2021),
BERT (Devlin et al., 2019), LinkBERT (base
and large) (Yasunaga et al., 2022), BioClinical-
BERT (Alsentzer et al., 2019), BlueBERT (base
and large) (Peng et al., 2019) and BioELECTRA
(base and large) (Kanakarajan et al., 2021). These
models are pre-trained on different corpora from
different domains (Appendix Table 6). The differ-
ence between base and large BERT models is in the
number of layers (12 vs 24), hidden layer size (768
vs 1024) and the number of self-attention heads
(12 vs 16). PubMedBERT (Gu et al., 2021) is pre-
trained from scratch on biomedical article corpora,
including both abstracts and full-text articles, from
PubMedCentral 3. LinkBERT is a BERT-based
model pre-trained on a large corpus of documents
and their links (e.g., hyperlinks, citation links) to
incorporate knowledge spanning across multiple
documents. BioClinicalBERT is pre-trained in all
MIMIC III notes. BlueBERT models were trained

2https://microsoft.github.io/BLURB/
3https://www.ncbi.nlm.nih.gov/pmc/

on pre-processed PubMed texts extracted from the
PubMed ASCII code version, containing approxi-
mately 4000 million words. BioELECTRA models
were pre-trained on PubMed abstracts only with
biomedical domain vocabulary.

While each model was pre-trained on different
corpora, we benchmarked the mentioned models
to determine the impact of model pre-training on a
classification task on our mixed datasets (RBWH,
RCH, and GCH). Since our dataset is relatively
small, consisting of only 2378 radiology reports
from all three hospitals, we chose to evaluate the
pre-trained models under test with 5-fold cross-
validation. Each model was fine-tuned for ten
epochs per fold, with a learning rate of 9e-6 and
randomly selected seed of 112. We compared F
scores, precision, recall, and Matthew’s correlation
coefficients (MCC) between the models.

RQ2 - Can we train a model that is trans-
ferable between institutions without relying on
samples from the target institution? We com-
pare a Transformer-based PubMedBERT model
with the SVM and CNN models on the abnormal-
ity classification task, in a cross-institutional set-
ting, previously reported in Koopman et al. (2015)
and Hassanzadeh et al. (2018b), respectively. We
selected PubMedBERT since it achieved slightly
higher, but not significantly better, performance
across all four metrics as a result of answering
RQ1. To compare PubMedBERT with previously
proposed methods (Koopman et al., 2015; Hassan-
zadeh et al., 2018b), we trained PubMedBERT
models on data from two out of three hospitals
and tested them in the remaining one. In other
words, we considered the three fine-tuning/testing
splits, namely 1) fine-tuning on RBWH + RCH,
testing on GCH, 2) fine-tuning on RBWH + GCH,
testing on RCH, 3) fine-tuning on RCH + GCH,
testing on RBWH. PubMedBERT was fine-tuned
for ten epochs, with the learning rate of 9e-6 and
the seed value of 112, to keep it consistent with
the experimental set-up in RQ1. We compared
F1 scores between PubMedBERT in the current
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study, and SVM and CNN models from previous
studies (Koopman et al., 2015; Hassanzadeh et al.,
2018b).

RQ3 - What is the impact of using ChatGPT
as an additional data source of synthetic data for
classification model fine-tuning? We investigate
the benefits of including synthetic reports generated
by ChatGPT while fine-tuning the PubMedBERT
on the radiology report abnormality classification
task. We fine-tuned six PubMedBERT models on
three datasets (RBWH, RCH and GCH) separately
with and without synthetic reports generated by
ChatGPT. The model fine-tuning was performed
in consistence with the experimental setup of RQ1
and RQ2, where each model was fine-tunned for
ten epochs, with the learning rate of 9e-6 and the
seed value of 112. We evaluated each fine-tuned
model on the remaining two real datasets (e.g., the
model trained on RBWH we evaluated on RCH
and GCH datasets). The model evaluation consists
of an F1 score and a confusion matrix, including
the number of true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN)
per fine-tuned model.

RQ4 - How does adding ChatGPT synthesised
radiology reports to fine-tuning dataset impact
the downstream reconciliation task? To assess
the impact of ChatGPT-generated reports (used in
fine-tuning) on patient data reconciliation, the ra-
diology report classification results of both mod-
els – PubMedBERT fine-tuned with and without
ChatGPT-generated reports (RQ3) – were cross
checked with the patient’s ICD-10 discharge diag-
nosis of the ED. Since some of the ICD-10 codes
were unavailable or missing from the data received
from the ED, we performed patient data reconcilia-
tion on available 1429/1480 RBWH, 495/498 RCH
and 329/400 GCH records. Following the experi-
mental design used to address RQ3, we evaluated
two groups of PubMedBERT models, fine-tuned
on records from a single hospital with and without
ChatGPT-generated reports, on the downstream
task of automatic reconciliation of radiology re-
ports and discharge diagnoses. The evaluation of
these two fine-tuned PubMedBERT model groups
was performed on the datasets from the remaining
two hospitals. Based on the classification results,
there were four possible combinations of the radiol-
ogy report classification / ED discharge diagnosis
results: 1) Both Abnormal; 2) Both Normal; 3)
Radiology Abnormal but ED Normal; and 4) Radi-
ology Normal but ED Abnormal.

Datasets Methods RBWH RCH GCH

RBWH + RCH
SVM - - 0.84
CNN - - 0.9294
PubMedBERT - - 0.9416

RBWH + GCH
SVM - 0.88 -
CNN - 0.9367 -
PubMedBERT - 0.944 -

GCH + RCH
SVM 0.80 - -
CNN 0.9085 - -
PubMedBERT 0.9086 - -

Table 2: Results (F1 scores) for a transferred SVM,
CNN without transfer learning, and PubMedBERT
trained on multiple sources and evaluated on a different
target source. Bold numbers represent the highest F
score for each target test set.

4 Experiments and Results

RQ1 - What is the impact of pre-training on the
abnormal radiology report classification task?
Figure 1 shows the fine-tuned means and stan-
dard deviations for F-score, precision, recall and
MCC across 5-folds for each of the six pre-trained
BERT-based models. Both BioELECTRA mod-
els, the base and the large models were excluded
from the comparison since the models did not con-
verge and always predicted the same (abnormal)
class. Figure 1 shows that the PubMedBERT model
achieves the highest performance across all four
metrics (F1-score, Precision, Recall and MCC).
To determine the significance of the difference in
performance between models, we calculated two-
sided 95% Wilson confidence intervals (Figure 1
- right). Models with confidence intervals that do
not overlap are regarded significantly different at
p < 0.05. Overlapping of the Wilson confidence
intervals suggests that the performances of Pub-
MedBERT, BERT, BioClinicalBERT, BlueBERT-
base and LinkBERT (base and large) were not sig-
nificantly different from each other; however, all
those models performed significantly better than
the BlueBERT-large model.

RQ2 - Can we train a model that is trans-
ferable between institutions without relying on
samples from the target institution? The re-
sults of the abnormal report classification perfor-
mance achieved by PubMedBERT models and their
comparison with the earlier reported performance
of the SVM and CNN models are presented in
Table 2. PubMedBERT achieved comparable or
higher F1-score compared to SVM and CNN in all
three cross-institution fine-tuning/testing splits. In
the case of the data split, where the models were
fine-tuned on RBWH + RCH and tested on GCH,
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Figure 1: F1-score, Precision, Recall and Matthew’s Correlation Coefficient (MCC) computed over 5-fold cross-
validation (mean and standard deviation) of six pre-trained BERT models fine-tuned on a mixed dataset (RBWH,
RCH, GCH). Two-sided, 95% Wilson confidence intervals for each model.

F1-score TP TN FP FN
RBWH RCH GCH RBWH RCH GCH RBWH RCH GCH RBWH RCH GCH RBWH RCH GCH

RBWH No ChatGPT - 0.9477 0.9431 - 154 141 - 327 242 - 4 7 - 13 10
ChatGPT - 0.9619 0.9255 - 164 149 - 321 227 - 10 22 - 3 2

RCH No ChatGPT 0.8769 - 0.9037 520 - 136 814 - 235 48 - 14 98 - 15
ChatGPT 0.9016 - 0.9201 545 - 144 816 - 231 46 - 18 73 - 7

GCH No ChatGPT 0.8835 0.9358 - 508 153 - 838 324 - 24 7 - 110 14 -
ChatGPT 0.8627 0.8595 - 550 159 - 755 287 - 107 44 - 68 8 -

Table 3: Confusion matrix computed for testing cases of PubMedBERT fine-tuned on a dataset containing radiology
reports from RBWH, RCH, and GCH, with and without synthetic 100 radiology reports generated by ChatGPT.
The models are evaluated on the corresponding two remaining hospital radiology reports datasets by computing
F1-Score, the number of true positives (TP), false positives (FP), true negatives (TN) and false negatives (FN).

PubMedBert achieved a 1.3% F1-score increase
compared to CNN and a 12% F1-score increase
compared to SVM. When fine-tuned on RBWH +
GCH and tested on RCH, PubMedBERT achieved
a 0.8% F1-score increase compared to CNN and
a 7% F1-score increase compared to SVM. When
the models under test were fine-tuned on GCH +
RCH and tested on RBWH, PubMedBERT was
similar to CNN but obtained a 14% increase in
F1 compared to SVM. The F1 scores achieved by
PubMedBERT follow the same trend as SVM and
CNN, where higher F1 were achieved in training
scenarios where the train set involved substantially
more samples than the test set (e.g., fine-tuning
on RBWH+RCH and testing on GCH). Overall,
according to the obtained results presented in Ta-
ble 2, PubMedBERT generalises better in the cross-
institutional setting than previously proposed SVM
and CNN-based models.

RQ3 - What is the impact of using ChatGPT
as an additional data source of synthetic data
for classification model fine-tuning? The evalua-
tion results (F1 score, TP, TN, FP and FN) of Pub-
MedBERT fine-tuned with and without ChatGPT-

generated reports are detailed in Table 3. Com-
pared with models without ChatGPT data, those
fine-tuned with ChatGPT data resulted in more true
positives (reports for which both the ML-classifier
and the expert labeler indicated an abnormality was
present) but also more false positives (reports for
which the ML-classifier indicated an abnormality
when an abnormality was not present). Conversely,
the models fine-tuned with ChatGPT data resulted
in fewer true negatives and fewer false negatives
compared with models without ChatGPT data. This
pattern appeared in all training scenarios except
when the model was trained on reports from RCH
and tested on real reports from RBWH, whereby
the models with ChatGPT data resulted in more
true negatives and fewer false positives.

Although these trade-offs do not manifest as a
clear improvement in metrics such as the F1-score
(Table 3), the observed trade-off trend has impor-
tant implications on the downstream task consid-
ered here of automated abnormality classification
from radiology reports. The role of an ML-based
classifier in practice would be to automatically
shortlist or highlight all reports that indicate the
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presence of a radiological abnormality. This would
allow ED clinicians to focus on the “abnormal” re-
ports and conduct a more efficient reconciliation
process. A model that generates high numbers of
true positives and true negatives, while keeping the
number of false negatives (potential missed abnor-
malities) and false positives low is desirable, and
our output is consistent with this. Despite relatively
low numbers of false positives and false negatives,
the high true positive and true negative cases could
help to significantly reduce the manual report rec-
onciliation burden on ED clinicians. According
to Table 3, fine-tuning PubMedBERT on real re-
ports plus ChatGPT-generated synthetic leads to
much lower number of FN than using real reports
alone. For example, we saw a 25.5% reduction in
FN when training on RCH and testing on RBWH
and a 76. 9% reduction when training on RBWH
and testing on RCH.

RQ4 - How does adding ChatGPT synthe-
sised radiology reports to fine-tuning dataset
impact the downstream reconciliation task? The
results obtained, detailed in Table 4, suggest the
same trend observed when answering RQ3. Ta-
ble 4 reveals the trade-off between the ability of
the models to reconcile discharge diagnosis with
greater disagreement between abnormal radiology
classification outcome and normal ED discharge di-
agnosis (PubMedBERT fine-tuned with ChatGPT-
generated reports); or normal radiology classifica-
tion outcome and abnormal ED discharge diagno-
sis (PubMedBERT fine-tuned without ChatGPT-
generated reports). The consequences of the rec-
onciliation disagreement between these two model
groups impact patients in the retrospective review
process of the ED differently. The automatic clas-
sification outcomes from models fine-tuned with
real radiology report only result in a lower num-
ber of reports that require manual processing by
a clinician but a higher number of misdiagnosed
discharged patients. In contrast, automatic classifi-
cation results from models fine-tuned with real and
ChatGPT-generated reports result in a higher num-
ber of radiology reports that require manual pro-
cessing by a clinician and a lower number of mis-
diagnosed discharged patients. On average, across
the six testing scenarios, for a 48.38% higher num-
ber of reconciliation disagreements between the ab-
normal radiology model classification outcome and
normal ED discharge diagnosis (requiring manual
review), the number of actual misdiagnosed rec-
onciliation cases is 15.35% lower. This implies a

lower number of disagreements between normal ra-
diology model classification outcome and abnormal
ED diagnosis. Since the severity and cost of mis-
diagnosis in undiscovered patients can be higher
than the cost of a manual retrospective review of ra-
diology reports, PubMedBERT models fine-tuned
on the combination of real and ChatGPT-generated
reports achieve higher performance than PubMed-
BERT models fine-tuned on real reports only.

5 Discussion and Conclusion

We determined that PubMedBERT was the best-
performing of six pre-trained BERT-like models for
classifying free-text radiology reports of X-rays for
suspected limb fractures in ED patients. Compared
to SVM and CNN models, PubMedBERT had bet-
ter performance (measured by F1-score) for clas-
sifying radiology reports when training data and
testing data were from different hospitals, suggest-
ing that PubMedBERT has better transferability in
cross-institution settings, especially in a low-data
regime where the data from the target hospital is
unavailable.

We also found that PubMedBERT models, which
included some ChatGPT-generated synthetic radi-
ology reports in fine-tuning, resulted in higher num-
bers of true positives and false positives and lower
numbers of true negatives and false negatives than
models without synthetic reports. The trade-off
in detecting more true positives, using the model
enhanced by ChatGPT data, is that there were also
more false positives. While this implies that more
patients with misdiagnoses would be identified,
it also increases the number of reports that must
be manually reconciled. This is an important ob-
servation in the reconciliation process since the
higher number of FPs has less severe consequences
on reconciliation than the higher number of FNs.
This is because every FP-classified radiology re-
port would require manual clarification, and every
FN-classified report stands for a misdiagnosed case.
Nevertheless, if all radiology reports are requried
to be reviewed, as is done in current practice, our
approach to reconciliation can allow patient cases
to be prioritised for clinical follow-up such that
suspected misdiagnosed cases would be prioritised
for manual review.

To address the issue of data imbalance, it is com-
mon in the literature to perform over- or under-
sampling when developing prediction models (Has-
sanzadeh et al., 2014; van den Goorbergh et al.,
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Both Abnormal Both Normal
Radiology Abnormal,

ED Normal
Radiology Normal,

ED Abnormal
RBWH RCH GCH RBWH RCH GCH RBWH RCH GCH RBWH RCH GCH

RBWH
No ChatGPT - 126 109 - 302 148 - 29 20 - 38 52
ChatGPT - 129 118 - 289 140 - 42 28 - 35 43

RCH
No ChatGPT 357 - 109 806 - 148 183 - 20 83 - 52
ChatGPT 366 - 115 792 - 144 197 - 24 74 - 46

GCH
No ChatGPT 347 126 - 831 299 - 158 32 - 93 38 -
ChatGPT 356 134 - 718 265 - 271 66 - 84 30 -

Table 4: Reconciliation results encapsulate the agreement between ED discharge diagnosis and radiology report
classification model results, where the agreement between the two falls into one of the four categories: 1) Both
Abnormal, 2) Both Normal, 3) Radiology Abnormal, ED Normal, and 4) Radiology Normal, ED Abnormal. Two
radiology report classification models were compared, the radiology report classifier where ChatGPT-generated
reports were and were not used in fine-tuning. The bold numbers represent the better performing model based on
the reconciliation outcome.

2022). Using synthetic data generated from Chat-
GPT can be viewed as another approach to augment
modeling by changing the data distribution. We
demonstrate that using synthetic data reduces the
number of unwanted predictions, such as false neg-
atives. This shows that augmenting with ChatGPT
has a similar effect to balancing the data distribu-
tion by increasing the sample size of rare classes,
in this case the abnormal diagnoses.

Overall, when developing a solution for auto-
mated reconciliation of radiology reports and dis-
charge diagnoses in a setting where labelled radiol-
ogy reports from the target institution are unavail-
able, pre-trained transformer models such as Pub-
MedBERT fine-tuned on available labelled reports
from partner institutions, together with ChatGPT-
synthesised radiology reports can boost the auto-
matic reconciliation performance. As we showed
the promise of using NLP models to facilitate diag-
nosis reconciliation for ED clinicians, more works
may investigate similar approaches to streamline
the manual review process, flag mismatches, and
explore workflow integration.
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Initial prompts Abnormal case Normal case

1
"Write an example of a limb x-ray radiology
report with an abnormality."

"Write an example of a limb x-ray radiology report
without abnormalities."

2
"Write an example of a limb x-ray radiology
report with several abnormalities."

"Write an example of a normal limb x-ray radiology
report."

3
"Write an example of a limb x-ray radiology
reports with max 12 abnormalities."

"Write an example of a limb x-ray radiology reports
with max 12 normal observations."

4

"Write an example of a limb x-ray radiology
report with an abnormality, use lowercase
abbreviations with no explanation, and no
full stop after an abbreviation."

"Write an example of a normal limb x-ray
radiology report, use lowercase abbreviations
with no explanation, and no full stop after an
abbreviation."

Auxiliary prompts
1 "Give me another example."
2 "Give me another example with more clinical detail."
3 "Give me another example with more specific details."
4 "Give me another example with more specific details, but less repetitive."
5 "Give me another example. Use abbreviations without explanation."

Table 5: Prompts ChatGPT was presented to obtain synthetic radiology report examples used for training. The
auxiliary prompts were used to gather more diverse synthetic samples.

Pre-trained BERT model Corpora
BERT 3,300 million words from BooksCorpus and English Wikipedia
PubMedBERT PubMedCentral abstracts and full-text articles
LinkBERT (base and large) A large corpus of documents and their links (e.g., hyperlinks, citation links)
BlueBERT (base and large) PubMed texts (about 4000 million words)
BioClinicalBERT All notes from MIMIC III
BioELECTRA (base and large) PubMed abstracts only with biomedical domain vocabulary

Table 6: Pre-trained BERT models and training corpora.

87



Proceedings of The 21st Annual Workshop of the Australasian Language Technology Association, pages 88–99
November 29 - December 1, 2023 ©2023 Association for Computational Linguistics

Turning Flowchart into Dialog: Augmenting Flowchart-grounded
Troubleshooting Dialogs via Synthetic Data Generation

Haolan Zhan, Sameen Maruf, Lizhen Qu, Yufei Wang
Ingrid Zukerman and Gholamreza Haffari

Department of Data Science & AI, Monash University, Australia
{firstname.lastname}@monash.edu

Abstract
Flowchart-grounded troubleshooting dialogue
(FTD) systems, which follow the instructions
of a flowchart to diagnose users’ problems in
specific domains (e.g., vehicle, laptop), have
been gaining research interest in recent years.
However, collecting sufficient dialogues that
are naturally grounded on flowcharts is costly,
thus FTD systems are impeded by scarce train-
ing data. To mitigate the data sparsity issue,
we propose a plan-based synthetic data genera-
tion (PlanSDG) approach that generates diverse
synthetic dialog data at scale by transforming
concise flowchart into dialogues. Specifically,
its generative model employs a variational-
base framework with a hierarchical planning
strategy that includes global and local latent
planning variables. Experiments on the Flo-
Dial dataset show that synthetic dialogue pro-
duced by PlanSDG improves the performance
of downstream tasks, including flowchart path
retrieval and response generation, in particular
on the Out-of-Flowchart settings. In addition,
further analysis demonstrate the quality of syn-
thetic data generated by PlanSDG in paths that
are covered by current sample dialogues and
paths that are not covered.

1 Introduction

Flowchart-grounded Troubleshooting Dialogue
(FTD) systems (Leake et al., 2005; Boye, 2007;
Williams, 2007; Paek and Pieraccini, 2008; Ja-
narthanam and Lemon, 2008; Wei et al., 2018;
Raghu et al., 2021), which communicate with users
to help them diagnose problems through the guid-
ance of a flowchart, have been gaining interest in re-
cent years. FTD systems face additional challenges
to those faced by typical task-oriented dialogue sys-
tems (Wen et al., 2017; Budzianowski et al., 2018),
e.g., FTD systems must accurately follow the in-
structions of a flowchart, actively detect the root
cause of issues, and provide users with reasonable
solutions by following an action instruction along
with the path in a flowchart (Figure 1).

starter cranks

starter spins?

jump start the
car

A Selected Path I have a Kia Telluride for 10 years. The car
refused to start this moring. I also noticed that
the started does not crank on turing key.

Agent

It is not spinning when I turn the car on.User

Does the voltage of your battery read more
than 12V?

How do I check the car battery voltage?

You can check the battery voltage using a
volmeter.

User

The car battery does not read more than 12V.

Agent

Agent

User

Your battery is dead, try to find someone to
help you jump  start your car.

I have a frined who can help with that.
Thanks for the tip! Have a good day!

Agent

User

User

No

No

No

Yes

                    Decision Node 
              
                    Action Node
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No
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No

No

NoYes
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Yes
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... ......

Does turning on the car make the starter spins?

  battery 
over 12V?

Figure 1: A sample flowchart-grounded troubleshooting
dialogue. Agent follows the path of a flowchart to help
user diagnose problems.

Collecting sufficiently large flowchart-related di-
alogue corpora for FTD is challenging, since it
requires domain experts with relevant knowledge.
This problem also applies to a crowd-sourced FTD
corpus, such as FloDial (Raghu et al., 2021), whose
collection still involved a great deal of human ef-
fort. Despite this, the 1,789 dialogues in FloDial
(§ 3.1) cover only 65% of the paths in the underly-
ing flowcharts on average (Figure 2). An alternative
approach to obtaining additional dialogues could
involve crawling through websites. However, most
of these data obtained in this manner focus on anec-
dotes and subjective opinions (Dai et al., 2022),
and are thus unsuitable for FTD systems.

In this paper, we propose PlanSDG: a Plan-based
Synthetic Data Generation approach that generates
synthetic dialogues from flowchart paths. Specifi-
cally, PlanSDG takes as input a path extracted from
an underlying flowchart, and generates a dialogue
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Figure 2: Statistics on the percentage (%) of (un)covered
paths in the FloDial (containing ten flowcharts in two
domains: Vehicle and Laptop) – each flowchart pertains
to a specific problem. In total, more than 35% of paths
are not covered by dialogue instances.

session consisting of dialogue acts and utterances.
PlanSDG is formalised as a probabilistic generative
model with structured planning latent variables,
specifically global and local latent variables, that
guide the generation process. The global latent
variables are responsible for modeling the dialogue
acts between the dialogue turns, providing a high-
level sketch. To be able to model these global
variables, we manually labeled the dialogue acts
for the utterances in the FloDial dataset. The local
latent variables control the diversity of generated
synthetic dialogues during sentence realization.

We conducted extrinsic and intrinsic evaluations
of our approach on the FloDial corpus, as well as
follow-up ablation studies. Our extrinsic evalua-
tion shows that the retrieval and generative mod-
els trained on the synthetic dialogues produced
by PlanSDG achieve better performance than other
augmentation methods in terms of the downstream
tasks: flowchart path retrieval and response gen-
eration, particularly on the Out-of-Flowchart set-
tings. Our intrinsic evaluation, which examines the
quality of the synthetic dialogues, indicates that
PlanSDG outperforms strong baseline models in
term of diversity and faithfulness. Our ablation
studies demonstrate the effectiveness of our pro-
posed global and local latent planning variables.
Further analysis demonstrate the quality of syn-
thetic data generated by PlanSDG in uncovered
paths that are included by flowchart but not in dia-
logues.

2 Plan-based Synthetic Data Generation

2.1 Task Formulation

The goal of PlanSDG is to take a sampled path
from the flowchart, and generate a complete syn-
thetic dialogue as well as the dialogue acts. In

this paper, we only have access to a (relatively
small) training set T = {(x,a,y)i}mi=1, where
x = {x1, x2, . . . , xn} is a flowchart path. A
path includes tuples of nodes and edges from the
flowchart. Each xi ∈ x on the path corresponds to
a sub-dialogue yi = [yi,0, · · · , yi,|yi|] ∈ y, where
yi,j is an utterance associated with a dialogue act
ai,j ∈ a. For example in the flowchart path in
Figure 1, the node “battery over 12V” (x3) corre-
sponds to the sub-dialogue starting from the turn
“Does the voltage of . . .” and ending to the turn
“The car battery does not . . .” (y3,0 to y3,3), where
each turn is associated with a dialogue act.

Given a flowchart path x, our proposed data
augmentation method PlanSDG generates synthetic
dialogue acts â and dialogues turns ŷ, and pro-
duces the synthetic dataset TSyn = {(x, â, ŷ)i}ni=1

where n could be much larger than m (e.g., 10x).
Our goal is that the downstream retrieval and gen-
erative dialogue models trained using T ∪ TSyn
outperform the models trained using only T .

2.2 Flowchart Path Extraction
As shown in Figure 1, the flowcharts used in this
paper consist of decision nodes and action nodes.
The decision nodes include a question, and they are
connected with other nodes by the user responses
(e.g., Yes, No). The action nodes at the bottom of
the flowcharts indicate the recommended actions.

For training PlanSDG, we directly extract the
flowchart paths for the dialogues in the training
set. For syntactic data generation, to ensure full
coverage for the flowchart paths, we extract the
flowchart paths by Depth-First-Search from the
top decision node to the bottom action nodes. The
resulting flowchart paths are then used as the inputs
for PlanSDG.

2.3 Synthetic Dialogue Generation
PlanSDG is designed to generate diverse and high-
quality synthetic dialogues from the extracted
flowchart paths. Even though the input flowchart
paths include textual questions, user responses and
final actions, conditioning only on this information
could result in tedious conversations consisting of
rigid sequences of question-answer pairs. Starting
from a node in a flowchart, there could be many
feasible open-ended dialogues. To facilitate cover-
age of this dialogue space, we employ intermedi-
ate latent variables in PlanSDG. Dialogue acts are
an intuitive choice to characterise these variables,
as they describe the basic function of a dialogue
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Figure 3: Detailed framework of PlanSDG, including path extraction and synthetic dialogue generation.

turn/utterance (e.g., inform, clarification), and re-
flect users’ intentions (Stolcke et al., 2000; Bunt,
2011). We denote them by global latent variables
za
i , responsible for modeling the dialogue act tran-

sition process over the turns. We further introduce
local latent variables zy

ij , responsible for generat-
ing lexically diverse utterances for each turn. As
such, PlanSDG is formally a probabilistic gener-
ative model with structured latent variables (Fig-
ure 3), explained below in more details.

Global Planning over Dialogue Acts. We inject
stochasticity into the global planning process us-
ing a continuous latent variable in each dialogue
turn za

i , which is assumed to follow the isotropic
Gaussian distribution (Kingma and Welling, 2014).
We first sample zai from its prior distribution
pz

a

θ (za
i |xi), and then generate a sequence of di-

alogue acts auto-repressively:

za
i ∼ pz

a

θ (za
i |xi) (1)

ai,j = paθ(.|ai,j−1, xi, z
a
i ) (2)

where paθ(ai,j |ai,j−1, z
a
i ,h

x
i ) is a 2-layer MLP

with the softmax on top. We train pz
a

θ (za
i |xi) to

approximate the posterior distribution qϕ(z
a
i |xi, yi)

using Gaussians in the training phase. The parame-
ters in the prior and posterior distributions, µp

a, σp
a,

µq
a and σq

a, are parameterised as follows:

µp
a = MLPp

θ(h
x
i ),

σp
a = softplus(MLPp

θ(h
x
i )),

µq
a = MLPq

ϕ([h
x
i ,h

y
i ]),

σq
a = softplus(MLPq

ϕ([h
x
i ,h

y
i ])),

where MLP(·) denotes a multi-layer per-
ceptron, softplus(·) is a smooth approx-
imation to ReLU, which ensures posi-
tiveness. hx

i = AvgPool(Enc(xi)) and

hy
i = AvgPool(Enc([yi,0, · · · , yi,k])), which al-

lows za
i to capture the global utterance information

associated with xi. Finally, the Evidence Lower
Bound (ELBO) is computed as follows:

Lglobal = −DKL(qϕ(z
a
i |xi, yi)||pz

a

θ (za
i |xi))

+Eza
i ∼qϕ [

∑

j

log paθ(ai,j |ai,j−1, z
a
i , xi)],

where DKL(·|·) denotes the Kullback-Leibler di-
vergence (Kullback and Leibler, 1951).

Local Planning for Utterance Generation.
Given the dialogue act ai,j generated from za

i , we
focus on generating lexically diverse dialogue utter-
ances that are faithful to the flowchart. We sample
zyi,j from its prior distribution conditioned on ai,j
and xi, as follows:

zy
i,j ∼ pz

y

θ (zy
i,j |xi, ai,j) (3)

We train pz
y

θ (zy
i,j |xi, ai,j) to approximate the pos-

terior distribution qϕ(z
y
i,j |xi, ai,j , yi,j), assuming

that both distributions are Gaussian. They are pa-
rameterised as follows:

µp
y = MLPp

θ(h
x
i ,h

a
i,j),

σp
y = softplus(MLPp

θ(h
x
i ,h

a
i,j)

µq
y = MLPq

ϕ(h
x
i ,h

a
i,j ,h

y
i,j),

σq
y = softplus(MLPq

ϕ(h
x
i ,h

a
i,j ,h

y
i,j)),

where hai,j = AvgPool(Enc(ai,j)). In contrast
with global planning, here we use the ground-truth
utterance yi,j for training to allow PlanSDG to focus
on the local information. Finally, the ELBO for the
local planning variable is:
Llocal =
−DKL(qϕ(z

y
i,j |xi, ai,j , yi,j)||pz

y

θ (zy
i,j |xi, ai,j))

+Ezy
i,j∼qϕ

[log pθ(yi,j |yi,j−1, xi, ai,j , z
y
i,j)].

90



PlanSDG generates each utterance yi,j based on
hz
i,j , xi and yi,j−1, as follows:

yi,j = Dec(hy
i,j−1,h

x
i ,h

z
i,j),

where hz
i,k = Concat([ha

i,j , z
y
i,j ]) is the concate-

nation of the global and local planning variables.
Enc and Dec are based on the Transformer archi-
tecture, and their parameters are initialized from a
pre-trained Seq2Seq model (e.g., BART).

2.4 Training Objective
To summarise, the probabilistic generative model
of PlanSDG performs the following steps to pro-
duce a dialogue from a flowchart path x. For each
xi ∈ x on the path, it starts by sampling the global
latent variable za

i ∼ pz
a

θ (.|xi), and then iteratively
samples the turns yi,j as follows:

• Sample the dialogue act:
ai,j ∼ paθ(.|ai,j−1, xi, z

a
i )

• Sample the local latent variable:
zy
i,j ∼ pz

y

θ (.|xi, ai,j)
• Sample the utterance:
yi,j ∼ pyθ(.|yi,j−1, xi, ai,j , z

y
i,j)

Hence, the probability of generating a conversa-
tion and the corresponding dialogue acts given the
flowchart path can be written as follows:

pθ(y,a|x) =
∏

i

∫
d(za

i )p
za

θ (za
i |xi) (4)

×
∏

j

∫
d(zy

i,j)p
a
θ(ai,j |ai,j−1, xi, z

a
i )

×pzy

θ (zy
i,j |xi, ai,j)p

y
θ(yi,j |yi,j−1, xi, ai,j , z

y
i,j)

The overall training objective of PlanSDG is the
sum of the ELBOs: L = Lglobal + Llocal. This is
based on the variational approach to overcome the
challenges of integration over the latent variables
in the likelihood objective (Equation 4). We use the
re-parametrization trick in (Kingma and Welling,
2014) to optimise the training objective.

3 Experiments

3.1 Setup
Dataset We use the FloDial dataset (Raghu et al.,
2021) for our experiments. FloDial is a trou-
bleshooting dialogue corpus containing 1,789 di-
alogues grounded on ten individual flowcharts1

1There is no path interaction or overlap between two indi-
vidual flowcharts.

statement
11.6%

clarification

9.8%

inform

34.7%

yes-no-question

26.2%

thanking

6.2%

closing

4.3%suggestion

7.2%
statement
clarification
inform
yes-no-question
thanking
closing
suggestion

Figure 4: Statistics of dialogue act proportions in the
FloDial dataset.

from two main domains: vehicle and laptop (five
flowcharts in each domain). FloDial has two differ-
ent settings: In-Flowchart and Out-of-Flowchart.
In the In-Flowchart setting, both the training
and test data are grounded on the same sets of
flowcharts, while in the Out-of-Flowchart setting,
the test dialogues are based on the flowcharts that
are not included in the training stage.

Dialogue Act Labeling As the original FloDial
dataset does not contain dialogue act labels, we
manually label the dialogue act for each utterance.
We investigated several widely-used dialogue act
datasets, including Switchboard2, AMI3 and Mul-
tiWoz.4 From these datasets, we select the most
commonly used set of dialogue acts (i.e., cover
74.38% of the dialogue acts in these datasets) that
are compatible with the FloDial dataset, including
{statement, inform, yes-no-question, clarification,
thanking, closing, suggestion}, and conduct anno-
tation5 for the FloDial dataset. Figure 4 shows the
detailed statistics of the labeled dialogue acts.

Evaluation Settings In this paper, we conduct
following evaluation: 1) Extrinsic Evaluation: We
aim to verify whether the synthetic data generated
from the baselines and PlanSDG are useful for im-
proving the performance of FTD. To precisely mea-
sure FTD performance, we use the same evaluation
metrics as Raghu et al. (2021): Perplexity (PPL)
and BLEU (Papineni et al., 2002) for response gen-
eration, and R@1 and R@5 for flowchart node
retrieval.6 2) Intrinsic Evaluation: We aim to
confirm if our proposed model PlanSDG generate
more diverse and faithful pseudo-dialogues than

2https://catalog.ldc.upenn.edu/LDC97S62
3https://groups.inf.ed.ac.uk/ami/corpus/
4https://github.com/budzianowski/multiwoz
5https://github.com/zhanhl316/

flowchart-dialogue-with-DA
6In order to diagnose problems, at each step, the agent

must retrieve the most relevant node from flowchart database.
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Augmentation In-Flowchart Out-of-Flowchart

Model PPL ↓ BLEU ↑ R@1 ↑ R@5 ↑ PPL ↓ BLEU ↑ R@1 ↑ R@5 ↑
FloNet 4.93 19.36 0.834 0.957 17.08 9.53 0.529 0.765

EDA 5.67 19.65 0.837 0.956 16.84 9.79 0.535 0.772
Back-Tran 4.88 19.93 0.839 0.952 19.26 10.67 0.538 0.781
GPT-2 4.37 20.69 0.844 0.958 15.93 13.70 0.574 0.813
BART 4.52 21.11 0.852 0.965 12.48 13.94 0.581 0.826

PlanSDG w/o Lglobal 4.61 20.75 0.847 0.963 14.25 14.17 0.583 0.829
PlanSDG w/o Llocal 4.48 21.06 0.843 0.956 12.45 13.83 0.579 0.832
PlanSDG 4.35∗ 21.18∗ 0.853∗ 0.968∗ 12.64 14.73∗∗ 0.609∗∗ 0.841∗∗

DialoGPT 4.19 20.93 0.849 0.961 14.66 12.63 0.557 0.793
BlenderBot 4.06 21.26 0.847 0.960 13.06 12.89 0.562 0.804

Table 1: Extrinsic evaluation: Performance of augmented synthetic dialogue data generated by different models in
In-Domain and Out-of-Domain settings. Results are based on the augmentation of 10x the amount of data. Scores
marked with “⋆” and “⋆⋆” respectively indicate a significance of p-value < 0.05 and p-value < 0.01 in the t-test
after Benjamini-Hochberg (BH) correction for false discovery rate (Benjamini and Hochberg, 1995).

the baseline models. To investigate the quality of
generated synthetic data from PlanSDG and other
baseline models, we use ROUGE (Lin, 2004) to
assess fluency, Distinct (Li et al., 2016) and Self-
BLEU (Zhu et al., 2018) for diversity, and Em-
bedding Metrics (Average, Extrema, Greedy) and
BART-Score (Yuan et al., 2021) for faithfulness.

Baselines Our baseline is FloNet (Raghu et al.,
2021) which only uses the original training data
T . Given the newly generated synthetic data TSyn
from PlanSDG and other synthetic data generation
models, we train the same FloNet model with T ∪
TSyn under the same set of hyper-parameters. We
compare PlanSDG with the following synthetic data
generation models:

• EDA (Wei and Zou, 2019) is a rule-based
approach by synonym replacement, random
insertion, random swap, and random deletion.

• Back-Tran (Sennrich et al., 2016) is the clas-
sical back translation algorithm rooted from
the machine translation task.

• Generic pre-trained language models in-
cluding GPT-2 (Radford et al., 2019),
BART (Lewis et al., 2020).

• Conversational pre-trained models including
DialoGPT (Zhang et al., 2020b) and Blender-
Bot (Roller et al., 2021).

We use the large version for all pre-trained mod-
els. To make a fair comparison, we incorporate
annotated dialogue acts for both PlanSDG and other
synthetic data pre-trained models.

Implementation Details We utilize the state-of-
the-art pre-trained text generation model BART
to initialize the encoder and decoder of PlanSDG,
for both prior and posterior, encoder and genera-
tor. For fair comparison with baseline models, we
use the BARTlarge for our model. In preliminary
experiments, we find that fine-tuning outperforms
prompt-tuning (Li and Liang, 2021) for generating
valid dialogue data. For training process, we use
AdamW (Loshchilov and Hutter, 2019) for gradi-
ent optimization, learning rate 0.001. batch size 8
in our experiments. We fine-tune PlanSDG for 50
epochs and the maximum length for utterances is
set to 64. To mitigate the posterior collapse issue,
we adopt the KL thresholding strategy (Kingma
et al., 2016) that maximizes the KL term with a
constant β = 0.17.

3.2 Extrinsic Evaluation

Main Results Table 1 summarizes the augmen-
tation experiment results using 10 times (10x)
for both baseline data augmentation models and
PlanSDG. In both settings, the performance of re-
sponse generation and flowchart node retrieval
tasks trained with the synthetic data from PlanSDG
are boosted up, especially in the Out-of-Flowchart
setting. Specifically, PlanSDG outperforms rule-
based EDA and naive Back-Tran methods by a
large margin, demonstrating that widely-used data
augmentation methods cannot handle the FTD sit-
uations. While comparing with strong pre-trained
models (e.g, GPT-2, BART), synthetic data gener-
ated by our model have better augmentation per-

7The code will be made available upon publications.
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Data Size In-Flowchart Out-of-Flowchart

PPL ↓ BLEU ↑ R@1 ↑ R@5 ↑ PPL ↓ BLEU ↑ R@1 ↑ R@5 ↑
FloNet (1x) 4.93 19.36 0.834 0.957 17.08 9.53 0.529 0.765

2x Data 5.26 20.72 0.843 0.956 13.27∗∗ 11.75∗ 0.546∗∗ 0.819∗∗

5x Data 4.28 21.06∗ 0.851∗ 0.961 15.63∗∗ 14.01∗∗ 0.595∗∗ 0.837∗∗

10x Data 4.35∗ 21.18∗ 0.853∗ 0.968 12.64∗∗ 14.73∗∗ 0.609∗∗ 0.841∗∗

Table 2: Extrinsic performance. FloNet (1x) is the dataset of the baseline model (Raghu et al., 2021). 2x, 5x and
10x means that we extend the original FloDial training set with different amounts of synthetic data. Scores marked
with “⋆” and “⋆⋆” indicate a significance of p < 0.05 and p < 0.01 in the t-test with BH correction respectively.

Model Uncovered path within flowchart

PPL ↓ BLEU ↑ R@1 ↑ R@5 ↑
FloNet 12.94 11.05 0.597 0.815

EDA 12.36 11.69 0.598 0.804
Back-Tran 13.67 12.18 0.608 0.827
GPT-2 9.82 14.61 0.632 0.854
BART 8.46 15.29 0.637 0.852

PlanSDG 8.26∗ 15.90∗∗ 0.654∗∗ 0.868∗

Table 3: Augmentation performance on Uncovered path
in the flowchart (In-Flowchart using 10x augmented
synthetic data.). Scores marked with “⋆” and “⋆⋆” indi-
cate a significance of p < 0.05 and p < 0.01 in the t-test
with BH correction respectively.

formance. We see that PlanSDG is more effective
in the Out-of-Flowchart setting, though it is on-
par or better than the baselines in the In-Flowchart
setting. In the out-of-Flowchart setting, PlanSDG
achieves at least 5.6% and 4.8% for BLEU and
R@1 metric than baseline models. Surprisingly,
model performance supported by PlanSDG even
surpass those models supported by DialoGPT and
BlenderBot which use large-scaled dialogue data
for pre-training. This result suggests that with
small training data, PlanSDG can generalize well to
the domains not encountered (i.e., dialogue) in its
pre-training stage.

Analysis on Synthetic Data Size Table 2
presents the augmentation performance using dif-
ferent size of synthetic data. FloNet (1x) only uses
original training data. As shown in Table 2, the
FloNet model performance keeps improving along
with the data size expansion. Especially in the Out-
of-Flowchart setting, augmentation performance
improve significantly comparing to the FloNet (1x)
model. These results demonstrate that PlanSDG
can effectively learn from existing training data
and produce diverse and relevant synthetic data
rather than introducing noise information.

Analysis on Uncovered Path To verify the effec-
tiveness of PlanSDG on uncovered path, we conduct
additional experiments on a novel uncovered path
setting. As discussed above, the existing training
data only cover 65% of the flowchart path in the
FloDial dataset. We split these training datasets
into training (80%), as covered path, and testing
(20%), as uncovered path. Table 3 summarizes
the results on the uncovered path setting. PlanSDG
achieves the best augmentation performance com-
paring to other augmentation baseline models. The
positive results demonstrate that PlanSDG is capa-
ble enhance the model performance on those un-
covered flowchart paths.

Ablation on Latent Variables We conduct abla-
tion study for the components of local and global
planning variables described in Section 2.3. As
shown in Table 1, the elimination of local and
global planning variables undermine the perfor-
mance of PlanSDG, showing the positive contribu-
tion of these two latent variables in generating di-
versity and relevant synthetic data. Specifically,
the ablation of local planning variable leads to
more performance degradation than the ablation
of global in terms of flowchart node retrieval task,
showing the importance of local variable in con-
trolling the diversity on sentence realization, which
further impact the training on downstream tasks.

3.3 Intrinsic Evaluation

In this section, we directly verify the quality of syn-
thetic data by using various of automatic metrics.

Automatic Metrics We show the automatic in-
trinsic evaluation results on synthetic dialogue
in Table 4. PlanSDG outperforms the baselines
in terms of ROUGE-L, Dist-2/3, Embedding and
BART-Score. For BLEU-4 the results of PlanSDG
are close to the baseline models. The significant
improvement obtained by PlanSDG for Dist-2/3 in-
dicates that our model is able to generate more
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Model BU-4 ↑ RG-L ↑ Dist-2 ↑ Dist-3 ↑ Self-B ↓ BART-S ↓ Emb (Avg/Extr/Gre) ↑
GPT-2 26.8 43.1 0.267 0.425 0.328 -2.590 88.1/68.7/84.1
BART 29.7 47.2 0.351 0.541 0.271 -2.164 87.2/67.5/83.3
DialoGPT 24.7 40.1 0.366 0.563 0.257 -2.328 89.3/62.5/82.6
BlenderBot 19.3 35.6 0.308 0.497 0.283 -2.051 82.6/59.3/78.6

w/o Lglobal 27.3 49.1 0.382 0.574 0.249 -2.156 87.1/68.3/84.7
w/o Llocal 27.8 47.6 0.365 0.568 0.261 -2.321 85.7/68.2/83.8
PlanSDG 28.5 51.2⋆⋆ 0.397∗∗ 0.602∗∗ 0.225∗∗ -2.037⋆ 86.1/69.4⋆/85.7∗∗

Table 4: Intrinsic evaluation results for pseudo dialogue generation. The metrics BLEU-4, ROUGE-L, Distinct-2/3,
Self-BLEU, BART-score and Embedding are abbreviated as BU-4, RG-L, Dist-2/3, Self-B, BART-S and Emb
respectively. The best results are highlighted with bold. Scores marked with “⋆” and “⋆⋆” indicate a significance of
p < 0.05 and p < 0.01 in the t-test with BH correction respectively.

diverse texts than the baselines – a result of our
latent variable modeling. The high scores of Em-
bedding and BART-Score indicate that our model
also has the capacity to generate utterances that are
semantically coherent with the input flowchart.

Ablation on Latent Variables We first show the
ablation study of different training objectives in Ta-
ble 4. We observe a certain performance drop when
removing global planning latent variable Lglobal or
local planning latent variable Llocal during fine-
tuning. Specifically, the removal of Llocal results in
a significant drop in Dist-2/3 metric, showing that
the local planning latent variable, together with dia-
logue act, is responsible for utterance diversity. We
then highlight that the significance of dialogue act
plays an important role in high-level sketch. The
absence of Lglobal also results in a drop of perfor-
mance in terms of BLEU-4, RG-L and Dist-2/3,
showing that global planning latent variable play
an important role in both relevance and diversity
of the generated synthetic data. Thus, the combina-
tion of Lglobal and Llocal guarantees the quality of
generated synthetic dialogues.

3.4 Case Study
In this section, we conduct a case study towards the
output of PlanSDG when given covered path and
uncovered path as inputs, respectively. The output
examples are given in Table 5.

Covered path We first focus on the PlanSDG
outputs (Gen-1 and Gen-2) for covered flowchart
path. By interpolating the latent variables, PlanSDG
is able to generate diverse utterances along with
the corresponding dialogue act sequences. For in-
stance, in addition to generating a series of "yes-
no-question" dialogue acts during the problem di-
agnosis process, PlanSDG can incorporate other
dialogue acts as well, such as " clarification " and

Covered Flowchart paths : car won’t start → starter crank? Yes → Engine fires? No

→ Spark to plugs? No → Spark from coil? No → 12V+ at coil primary? No
→ Ignition system wiring, voltage regulator.

Gen-1:
user: My family and children were very happy for the week end trip in my Honda CR-V.
When everything was packed and we got seated the car would not simply start. (statement)
agent: After the key is turned does the starter crank? (yes-no-q)
user: Yes, The starter cranks when the key is turned (inform)
agent: When you turn the key, does the engine fire right up? (yes-no-q)
user: No, When the key is turned the engine does not fire up. (inform)
agent: Are the sparks able to reach the plug? (yes-no-q)
user: How do I check if it is able to reach the plug? ( clarification )
agent: Hold the metal clip of the spark plug wire with a screw driver after pulling it and

ask your assistant to crank it over. A bright spark will be visible to you. ( suggestion )
user:No, I’m not seeing any evidence of that. The sparks aren’t reaching the plug. (inform)
agent: Did spark come out of the ignition coil? (yes-no-q)
user:There is no spark near the ignition coil. (inform)
agent: Does the voltmeter reading show 12 volt+ at the primary coil? (yes-no-q)
user:No, the voltmeter reading does not show 12 volt + at the primary coil. (inform)
agent: There are a couple of suggestions. Either your car ignition system wiring or the
voltage regulator is at fault. (suggestion)

Gen-2:
user: I am unable to start my Lincoln Continental. I think the problem is major, because
I’ve only had the car for a week. (statement)
agent:Does turning the key make the starter crank? (yes-no-q)
user: It cranks when I turn the key. (inform)
agent: Can you tell me if the engine fires on turning the key? (yes-no-q)
user: The engine doesn’t fire on turning the key. (inform)
agent:Is the spark reaching the plugs? (yes-no-q)
user: Spark isn’t reaching the plugs. (inform)
agent: Is there any kind of spark from the ignition coil? (yes-no-q)
user: It’s not coming from there. (inform)
agent: Is the reading more than 12 volt at the primary coil? (yes-no-q)
user: No, the reading is not more than 12 volt at the primary coil. (inform)
agent: The problem is the car ignition system wiring or voltage regulator is not working.
Hope I was helpful. (suggestion)

Uncovered Flowchart paths : laptop wireless problem. → See Wireless Network? No →
Switch on, enabled? Yes → outer active, in range? No → Get router wireless activity,
LED blinking, try laptop in same room
user: I am unable to connect to the wireless network with my Lenovo. Any solution
I can fix this? (statement)
agent: Can you see the wireless network you want to connect to? (yes-no-q)
user: How do I check if my laptop to see the wireless network? (clarification)
agent: Click on the network icon, then you can see it. (Suggestion)
user: Sorry, man, it isn’t showing up. (inform)
agent: Ok, Is the wireless adapter switched ON? (yes-no-q)
user: Yes, of course. It’s switched on. (Inform)
agent: Is the router in range and active? (yes-no-q)
user:No, I checked my network router and it’s within range and working. (inform)
agent: Make sure the router is turned ON and its wireless activity LED is blinking.
You should be able to connect in this way. (suggestion)

Table 5: Pseudo dialogue generation case by our
PlanSDG model, including covered path and uncovered
path.

" suggestion ". This will further lead to the diver-
sity in their corresponding utterance generation. In
addition, although being diverse, both example dia-
logues still maintain high faithfulness towards the
input flowchart path.
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Model Faith. Rel. Info. kappa
EDA 1.37 1.85 2.09 0.64
Back-Tran 1.62 2.27 2.18 0.59
GPT-2 2.24 2.53 2.65 0.56
BART 2.19 2.59 2.16 0.59
PlanSDG 2.33 2.60 2.54 0.57

Table 6: Human Evaluation. Annotators are required to
judge each instances individually generated by baselines
and our model.

Uncovered Paths As only 65% flowchart paths
are covered in the FloDial training data, we
conduct a further qualitative analysis to explore
whether PlanSDG can generate acceptable synthetic
dialogues for those uncovered paths. As shown in
the bottom case in Table 5, we can tell from the ex-
ample that basic requirements such as fluency, nat-
uralness, and faithfulness have been fulfilled. We
hypothesise that, through fine-tuning on those cov-
ered dialogue instances, dialogue systems trained
on PlanSDG augmented data acquire and memorize
relevant domain knowledge in flowcharts. There-
fore, these dialogue systems will likely to have bet-
ter performance compared to the ones which have
not seen training data instances for the uncovered
flowchart paths.

3.5 Human Evaluation

We have shown that our proposed PlanSDG method
can achieve better performance in both extrinsic
and intrinsic evaluations. However, the automatic
metrics do not necessarily reflect human preference
of the generated text. We therefore select 150 out-
put samples for each baseline synthetic models and
PlanSDG model. For each individual sample, we
ask three annotators to judge from three aspects:
Faithfulness, Relevance and Informativeness. The
scale ranges from 0 (low) to 3 (high). Table 6
summarizes human evaluation results. The kappa
scores indicate that the annotators came to a fair
agreement in the judgement. Compared to base-
line models, our PlanSDG approach achieves higher
performance on its generated synthetic dialogues.
Thus, synthetic data from PlanSDG also aligns well
with human preferences.

4 Related Work

4.1 Troubleshooting Dialogue Systems

Troubleshooting dialogues typically appear in
problem-solving scenarios between a novice and an
expert (Boye, 2007; Williams, 2007; Janarthanam
and Lemon, 2008). In such scenarios, experts with

domain knowledge help novices by asking a se-
ries of questions to identify the problem, while the
novice mostly supplies answers. Recently, Wei
et al. (2018) built an end-to-end system for patient
diagnosis, and a flowchart-grounded troubleshoot-
ing dialogue scenario was proposed by (Raghu
et al., 2021). However, these methods are only
explored in limited domains and datasets (e.g., com-
puter, car), while PlanSDG is a general approach to
synthesize pseudo dialogues.

4.2 Data Augmentation for Dialogue

Data augmentation for dialogue-related tasks has
been explored in several previous works: Quan and
Xiong (2019) presented sentence and word-level
data augmentation approaches for end-to-end task-
oriented dialogues; Hou et al. (2018) presented
a seq2seq framework to augment dialogue utter-
ances for dialogue language understanding, includ-
ing a ranking system to produce diverse utterances;
Zhang et al. (2020a) proposed a Multi-Action Data
Augmentation (MADA) model, which uses dialog
states to summarize the dialog history, and then
maps dialog states to their system actions. Data
augmentation methods for spoken dialogue and lan-
guage understanding, including generative latent
variable models, were investigated in (Hou et al.,
2018; Kim et al., 2019; Yoo et al., 2019). However,
most of the previous works focus on data augmen-
tation for discriminative tasks. Kann et al. (2022)
used retrieval-based data augmentation to improve
response generation performance in open-domain
dialogues, which heavily rely on relevant exter-
nal resource. Given the limited relevant external
resource in FTD, the retrieval-based data augmen-
tation method cannot be applied for FTD systems.

5 Conclusions

In this paper, we explore the synthetic dialogue
generation as a data augmentation approach with
pre-trained model for flowchart-grounded trou-
bleshooting dialogue systems. In further, in or-
der to incorporate dialogue-specific features effi-
ciently, we present a planning-based generative
model PlanSDG for generating synthetic dialogues
on troubleshooting dialogue task. The generated
augmented dataset is then used to train an FTD sys-
tems. Experiments on the FloDial benchmark show
the effectiveness of our proposed method. In the
future, we plan to generalise our method to more
complex dialogues, and apply it to other tasks.
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A Appendix

A.1 Derivation of Variational Lower Bound

logpθ(a,y|x)

= log
∫

za

∫

zy
pθ(a|za,x)·

pθ(y|zy, a,x)pϕ(zy|a, x)pϕ(za|x)dza

= log
∫

za
pθ(a|za,x)pϕ(za|x)

qϕ(za|x, y)
qϕ(za|x, y)

·
∫

zy
pθ(y|zy, a,x)pϕ(zy|a, x)

qϕ(zy|x, a, y)
qϕ(zy|x, a, y)

dzx

= log
∫

za
pθ(a|za,x)pϕ(za|x)

qϕ(za|x, y)
qϕ(za|x, y)

·

Eqϕ(zy |x,a,y)

[
pθ(y|zy, a,x)pϕ(zy|a, x)

qϕ(zy|x, a, y)

]
dzx

= logEqϕ(za|x,y){
pθ(a|za,x)pϕ(za|x)

qϕ(za|x, y)
·

Eqϕ(zy |x,a,y)

[
pθ(y|zy, a,x)pϕ(zy|a, x)

qϕ(zy|x, a, y)

]
}

≥ Eqϕ(za|x,y){log
pθ(a|za,x)pϕ(za|x)

qϕ(za|x, y)
+

Eqϕ(zy |x,a,y)

[
pθ(y|zy, a,x)pϕ(zy|a, x)

qϕ(zy|x, a, y)

]
}

≈ −KL(qϕ(za|x,y)||pθ(za|x))
+ Eza∼qϕ [log pθ(a|za, x)]
−KL(qϕ(zy|x, a,y)||pθ(zy|x, a))
+ Ezy∼qϕ [log pθ(y|x, a, zy)]

98

https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.1145/3209978.3210080
https://doi.org/10.1145/3209978.3210080


Domain Vehicle
ticking brake battery wont_start engine

#Dialog 178 188 196 174 168
#path 15 19 18 17 14

Domain Laptop
drive overheating power lcd wireless

#Dialog 192 186 188 178 196
#path 16 13 15 15 15

Table 7: #Dialog and #sub-path denote the number of
dialogue session, and the number of sub-paths of each
corresponding flowchart.

A.2 Details about FloDial Dataset
The FloDial dataset is collected for the trou-
bleshooting situations, where the interactions be-
tween user and agent are carried to diagnose user’s
problem in specific domain. FloDial contains two
main domain: vehicle and laptop. Each domain
contains 5 sub-problems. For each sub-problem,
there is a corresponding flowchart. Dialogues are
conducted based on these flowcharts. Details about
each sub-problems and flowchart are shown in Ta-
ble 7. FloDial contains 1,789 dialogue sessions
in total. In the experiments of FloDial paper, they
construct two settings: In-Flowchart and Out-of-
Flowchart settings. The test set of In-Flowchart
setting contains the dialogue in 8 sub-problems (in-
cluding ticking, brake, battery, wont_start, drive,
overheating, power and lcd), which maintains the
same domain with training set. Beside, the test
set of Out-of-Flowchart setting only contains 2
sub-problems (engine, wireless), while all other 8
sub-problems are treated as training set. An ex-
ample of flowchart in car_wont_start domain is
shwon in Figure 5

Besides, as the original FloDial dataset does not
contain any dialogue act information, we manu-
ally label the dialogue act for each dialogue ut-
terance. The selection of dialogue acts is based
on the investigation on previous work, includ-
ing Switchboard (https://catalog.ldc.upenn.
edu/LDC97S62), AMI (https://groups.inf.ed.
ac.uk/ami/corpus/), MultiWoz (Budzianowski
et al., 2018) and etc. Finally, we chose seven
most frequent dialogue, which also compatible
with the FloDial dataset. These dialogue acts in-
clude: {statement, inform, yes-no-question, clar-
ification, thanking, closing and suggestion}. The
percentage of each dialogue act in the FloDial is:
statement: 11.6%, inform: 34.7%, yes-no-question:
26.2%, clarification: 9.8%, thanking: 6.2%, clos-
ing: 4.3% and suggestion: 7.2%.

Figure 5: The flowchart example of car_wont_start do-
main. The figure is directly downloaded from the web-
site:https://www.ifitjams.com/, the original source
of FloDial dataset.
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Abstract 

This study adopts an inter-disciplinary 
approach to explore how the prefixation is 
encoded and contributes to the word 
formation in Zhangzhou Southern Min, an 
under-described Sinitic dialect spoken in 
the southern Fujian of mainland China. It 
reveals the semantic function, morpho-
syntactic characteristics, prosodic effect, 
pragmatic significance of prefixation in this 
dialect, along with their occurrence 
constraints. The exploration directly fills in 
the research gap in the study of Zhangzhou 
grammar, and substantially advance our 
knowledge of the encoding of prefixation in 
southern Chinese dialects. It contributes 
well-attested linguistic data to the typology 
of prefixation as an important phenomenon 
in the world’s natural languages, while 
enlightening the discussion on how Sinitic 
languages should be better defined from the 
morpho-syntactic perspective. 

Keywords: refixation, semantics, morpho-syntax, 
phonology, constraint, Zhangzhou, Southern Min 

1 Introduction 

Affixation broadly refers to a morphological 
process whereby lexical or grammatical 
information is added to an existing lexical base and 
a new lexeme, or a new form of the same lexeme is 
derived (Hall, 2008; Hawkins & Gilligan, 1998; 
McCarthy, 2002). Natural languages vary in what 
morphological processes are available in their 
grammar, how frequently the processes are used, 
and what types of information are encoded. For 
example, English expresses the plurality of nouns 

using suffixation (e.g., table/tables, friend/friends) 
(McCarthy, 2002). Zapotec, a language spoken in 
Oaxaca, Mexican, expresses the plurality through 
prefixing ka-morpheme to nominal bases (Marlett, 
1985). Yoruba, a language of south-western 
Nigeria, uses a separate word to encode the 
plurality, such as the word okunrin means ‘the man’ 
and its corresponding plural form is awon ‘the men’ 
(Ajiboye, 2005). As seen, morphology is not 
equally prominent in spoken languages, as the 
same information can be encoded differently. 
Languages are thus classified into different types, 
such as analytic and synthetic, depending on the 
complexity of morphology and the method they 
employ to construct words (e.g., Banfi & Arcodia, 
2007; Bybee et al., 1990; Basciano, 2017).  

Sinitic languages, along with Yoruba and 
Vietnamese, are often cited to be isolating because 
of their exhibiting an extreme degree of analyticity 
with little affixation (Lin, 2001; Liao, 2014). 
However, this convention has been challenged 
because both inflectional and derivational affixes 
are continuingly discovered in the synchronic 
speech of those so-called isolating languages (Lin, 
2001; Liao, 2014; Arcodia & Basciano, 2012; 
2022). For example, in Zhangzhou Southern Min, 
a Sinitic dialect spoken in southern Fujian province 
of southeast China, the prefix ʔɐ33 can be attached 
to kinship terms (ʔɐ33-kɔŋ35 ‘grandfather’) or the 
first name of personal names (ʔɐ33-kun22 ‘address 
a girl whose last syllable of first name is kun 22) to 
express closeness and affection. The infix ʔɐ51 can 
be inserted into disyllabic bases and serve as a 
modifying marker (kjɵ35-ʔɐ51-tʰɐw22 ‘bridge-
ʔɐ51-head: a place name’), or a coordinative 
marker (ɗĩ35-ʔɐ51-tse41 ‘year-ʔɐ51-festival: 
traditional festivals’). The suffix ʔɐ51 can serve as 
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a purely nominal marker (kɐm35-ʔɐ51 ‘orange-
ʔɐ51: orange’), a nominaliser to some verbs (ɠɛ̃55-
ʔɐ51 ‘to clamp-ʔɐ51: plier’) and adjectives (pwi35-
ʔɐ51 ‘fat-ʔɐ51: fat person’) or a diminutive marker 
to kinship terms to deliver feeling of smallness, 
closeness, and affection (tsɐw55-ʔɐ51 ‘daughter-
ʔɐ51: daughter’). Given an increasingly high ratio 
of morphemes per word, it has become 
questionable to define these languages as being 
morphologically isolating. 

Triggered by its intriguing affixational 
phenomenon, this study is devoted to exploring 
how prefixation is encoded and contributes to word 
formation in Zhangzhou Southern Min. This Sinitic 
dialect is under-described, because no systematic 
work has described its prefixing system. Fives 
specific research questions will be addressed, 
including (a) what semantic information can be 
encoded in the process of prefixation? (b) What 
morpho-syntactic consequences are induced? (c) 
What prosodic consequence can be evoked? (d) 
What pragmatic information can be conveyed by 
the prefixation, and (e) What linguistic factors can 
constrain the application of prefixation in this 
Sinitic dialect?  

The exploration directly fills in the research gap 
and advances our knowledge of the encoding of 
prefixation in this Southern Min variety, while 
contributing vital linguistic data to the typology of 
affixation as an important morphological event not 
only in Sino-Tibetan language family but in human 
languages at the general level. The description also 
enlightens the discussion on how human beings 
employ different linguistic levels to encode and 
decode a particular language phenomenon in their 
mental grammar and language practice, while 
shedding light on the discussion of how Sinitic 
languages should be better defined. 

The materials used in this study are collected 
from the field site by the author in 2019, and also 
from online consultation with native speakers over 
these years. The research locality is strictly limited 
to Xiangcheng and Longwen districts, the inner 
urban area of Zhangzhou, which are conventionally 
considered to be historically-socially-culturally-
linguistically-geographically representative of 
Zhangzhou (Huang, 2022). 

2 SEMANTICS OF PREFIXATION 

Semantically, the prefixes in this dialect can be 
classified into either mono-semantic or 
polysemantic, depending on the range of lexical 

information that they can covey. The mono-
semantic prefixes refer to those prefixes whose 
derived words can only cover one semantic 
domain. For example, as illustrated in (1), the 
prefix ħwɐn35 exclusively indicates the foreign 
origin of the related object. For example, the lexical 
base tsi22 literarily means ‘potato’, while the 
derived word ħwɐn33-tsi22 particularly refers 
‘sweet potato’. Because sweet potatoes historically 
are imported from other countries, rather than 
being produced domestically. The prefix ħwɐn33 
indicates the foreign origin of sweet potatoes.  
Likewise, when attached to numbers, the prefix 
te33 exclusively indicates an ordinal order of the 
base. For example, the lexical base zi33 means 
‘two’, while the derived word te32-zi33 with the 
prefix particularly refers to ‘the second’. 
(1) Mono-semantics of prefixation 
• ħwɐn35 (foreign origin) 
   ħwɐn33-pɵ22 ‘ħwɐn33-lady: foreign lady’   
   ħwɐn33-tsi22 ‘ħwɐn33-potato: sweet potato’  
• te33 (ordinal order) 
   te32-ʔik41 ‘te32-one: the first’  
   te32-zi33 ‘te32-two: the second’ 
• kɛ63.pɐk41 (internal relation) 
   kɛ63.pɐk65-ħjɐ̃35 ‘kɛ63.pɐk41-elder brother’ 
   ‘to address the elder son of father's brother’ 
   kɛ63.pɐk65-tsik41 ‘kɛ63.pɐk41-younger uncle’ 
   ‘the younger son of grandfather’s brother’ 
•  pjɐw51 (external relation) 

pjɐw35-ħjɐ̃35 ‘pjɐw35-elder brother’ 
   ‘the elder son of father's sister or mother’s sibling’ 
    pjɐw35-tsik41‘pjɐw35-younger uncle:  
   ‘son of grandpa’s sister or grandma’s sibling’ 

The mono-semantic property can also be seen 
from the prefixes kɛ63.pɐk41and pjɐw51 which can 
be attached to the same kinship terms but reveal 
different semantic readings. The prefix kɛ63.pɐk41, 
which literarily means ‘next belly’, is exclusively 
created in Southern Min to indicate an internal 
relation to one’s family or clan. Such as the derived 
word kɛ63.pɐk65-ħjɐ̃35, in which the base ħjɐ̃35 
means ‘elder brother’, is used to address the son of 
one’s father’s brother who is elder than the 
addresser. On the contrary, the prefix pjɐw51, 
meaning ‘surface’, expresses an external relation to 
a family or a clan. For example, the derived word 
pjɐw35- ħjɐ̃35 exclusively refers to the elder son of 
one’s father’s sister or mother’s sibling. 
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On the contrary, the poly-semantic prefixes refer 
to those prefixes whose attachment can cover two 
or more semantic domains. This property is 
illustrated in (2). The prefix ʔɐ35 can be attached to 
lexical bases of different types to transfer different 
semantics. Such as it can be attached to kinship 
terms to address one’s family members who are 
senior in terms of age or generation with a sense of 
respect and closeness. For example, the derived 
word ʔɐ33-ħjɐ̃35 is colloquially used to address 
one’s elder brother. It can be attached to person 
names of those family members who are at the 
same generation to deliver a feeling of closeness 
and affection. For example, given a person’s first 
name contains tsʰju33 morpheme that means ‘tree’, 
it is a common way to address him as ʔɐ33-tsʰju33 
that transfers a sense of closeness and affection. 
Likewise, the prefix ɗɐw33 can be attached to 
kinship terms to address family members who are 
senior than the addresser with respect to age and/or 
generation with a sense of respect and closeness 
(ɗɐw32-pɛ33 ‘ɗɐw32-father: to introduce one’s 
father’). It can also be attached to person names of 
those people at the same generation to convey a 
feeling of closeness and affection (ɗjɔk32 
ʔi35.su35 → ɗɐw32-su35 ‘Su35; Si’). Apart from 
these, this prefix can also be attached to an entity to 
express a sense of a long history ‘old’. Such as, the 
term tsʰju33 itself means ‘tree’, while the derived 
word ɗɐw32-tsʰju33 refers to ‘an old tree’. 

(2) Poly-semantics of prefixation 
 • Prefix ʔɐ35 

Before kinship term (closeness and respect) 
ʔɐ33-kɔŋ35 ‘grandfather’  
ʔɐ33-ɓɐ̃51 ‘grandmother’ 
ʔɐ33-pɐ35 ‘father’   
ʔɐ33-ɓɐ̃35 ‘mother’ 
Before first name (closeness and affection) 
tɐn33. ɠe32.kun22 → ʔɐ33-kun22 ‘Qun’  
ħwĩ22 kʰɐj33.tsʰju33 → ʔɐ33-tsʰju33 ‘Shu’  

  • ɗɐw33 
Before a kinship term (respect and closeness) 
ɗɐw32-pɛ35 ‘ɗɐw32-father: introduce one’s dad’ 

  ɗɐw32-ɓu51 ‘ɗɐw32-mum: introduce one’s mum’ 
Before person name (affection and closeness) 
ɗjɔk32 ʔi35.su35 → ɗɐw32-su35 ‘Su35; Si’ 
tɐn33 kɔk65.kjɐŋ22 → ɗɐw32-kjɐŋ22 ‘Kjɐŋ22’ 
Before an entity (long history) 
ɗɐw32-tjɐm41 ‘ɗɐw32-store: an old store’ 
ɗɐw32-tsʰju33 ‘ɗɐw32-tree: an old tree’ 

  • ɗɐw51 

Before number (ordering) 
ɗɐw35-zi33 ‘ɗɐw35-two: second eldest sibling’ 
ɗɐw35-sɐ̃35‘ɗɐw35-three: third eldest sibling’ 
Before family name (closeness and respect) 
ʔɔŋ33 tsu35.zin22 → ɗɐw35-ʔɔŋ22 ‘ʔɔŋ22’ 
ʔwĩ33 tsʰiŋ33.tsui51 → ɗɐw35-ʔwĩ22 ‘ʔwĩ22’ 
As seen, the prefixation is productive to modify 

the lexical meanings of existing bases and create 
new lexemes across several semantic domains. The 
process substantially enriches the inventory of 
local vocabulary that native speakers can choose 
and use in their conversations, while expanding the 
lexicon in their mental grammar. 

3 MORPHO-SYNTAX OF 
PREFIXATION  

Morpho-syntactically, the prefixing process 
seldom changes the part of speech of related item 
in Zhangzhou Southern Min. In most cases, the 
derived words are categorically the same as their 
corresponding bases being attached. For example, 
the bases that can be attached by the above-
mentioned prefixes (ħwɐn35, te33, kɛ63.pɐk41, 
pjɐw51, te33, ʔɐ35, ɗɐw33, ɗɐw51) in (1) and (2) 
are all nominal, so are their derived lexemes. 
Therefore, the prefixation process presents a 
categorical-preserving characteristics.  

Apart from this, most of lexical bases that can 
undergo prefixation are dominantly nominal. Only 
few non-nominal bases can be prefixed to derive 
words of a different part of speech. This can be seen 
in (3), for example, the prefix kʰɵ51, a cognate of 
Mandarin ke214可, can transfer verbal or nominal 
bases to lexemes of an adjective category to deliver 
a semantics of ‘do-able’, equivalent to the English 
suffix ‘-able’. Such as in the word kʰɵ35-ʔɐj41, the 
base ʔɐj41 is a verb meaning ‘to like, love’, while 
the derived word refers to ‘likable’. In the word 
kʰɵ35-kʰɐw51, the base kʰɐw51 is a noun meaning 
‘mouth’, with this prefix, the derived word is used 
to describe something which is delicious. 

(3) Categorical-changing prefixation  
 • kʰɵ51 
  verbal base 
  kʰɵ35-ʔɐj41 ‘kʰɵ35-like: likeable’  
  kʰɵ35- kʰɵ41 ‘kʰɵ35-rely: reliable’  
  nominal base 
  kʰɵ35-kʰɐw51 ‘kʰɵ35-mouth: delicious’ 
  kʰɵ35-zin22 ‘kʰɵ35-people: lovable’ 
• ħɵ51 
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  verbal base 
  ħɵ35-tʰjɐ̃35 ‘ħɵ35-listen: sound-good’  
  ħɵ35-tsjɐ221 ‘ħɵ35-to eat: taste-good; delicious’ 
  ħɵ35-sjɐ51 ‘ħɵ35-to write: good-writing’ 
• ɓɐj41 
  verbal base 
  ɓɐj35-tʰjɐ̃35 ‘ɓɐj35-to listen: sound-unpleasant’  
  ɓɐj35-tsjɐ221 ‘ɓɐj35-to eat: bad-tasting 
  ɓɐj35-kʰwɐ̃41 ‘ɓɐj35-to look: bad-looking; ugly’  

The prefixes ħɵ51 and ɓɐj51, which separately 
mean ‘good’ and ‘bad’, are commonly attached to 
verbal bases to derive new lexemes of an adjective 
category that expresses the positive or negative 
characteristics of related verbal actions. For 
example, the derived word ħɵ35-tsjɐ221, with the 
verbal base tsjɐ22 ‘to eat’, is used to describe 
something that tastes good. Similarly, the derived 
word ɓɐj35-tsjɐ221 describes something that tastes 
bad. As seen, the attachment of these prefixes not 
only changes the semantics but also the word class. 
However, not so many cases involve such a 
categorical change, instead, in most cases, the 
grammatical category of nominal lexical bases is 
maintained over the prefixation in this dialect. 

4 PROSODY OF PREFIXATION 

The prefixing process in Zhangzhou Southern Min 
does not cause any phonological alternation on 
their subsequent lexical bases, but all prefixes 
themselves are seen changing their tonal profiles to 
be entirely different from their corresponding 
forms in citation. Such a tonal alternation can be 
consider resulting from the operating effect of a 
right-dominant tone sandhi system in Zhangzhou 
(Huang, 2018; 2020; 2022). All tones at the non-
right-most position, referred to as sandhi position, 
alter their realizations phonologically and 
phonetically, while tones at the rightmost position 
maintain their realization categorically similar to 
their citation forms, but may subject to certain 
variation at the phonetic level because of their 
sensitivity to occurring environments (Huang, 
2018; 2020; 2022). So that, all prefixes are 
supposed to change their tonal profiles if they are 
attached to lexical bases to fulfil their semantics 
and/or morpho-syntactic functions.  

What needs a further mention is that no special 
tone sandhi pattern is evoked over the prefixing 
process. But rather, all prefixes follow the general 
sandhi tendency to change their tonal forms. For 

example, tone 1 is realised as a rising [35] contour 
in citation but is altered to be a mid-level [33] 
contour in the sandhi context. Tone 3 changes its 
contour shape to a rising [35] from a high falling 
contour in citation. All tones within general 
morpho-syntactic phrases XP in which X may be 
adjective, verbal, nominal among others, are 
expected to change in this way (Huang, 2018; 
2020). Table 1 summaries tonal changes of 
individual prefixes, in which the forms in bold 
show their corresponding sandhi forms.  

Table 1. Tonal changes of individual prefixes. 

As seen, the tonal pitch of all prefixes has been 
changed phonetically and phonologically. Such as 
the prefix ɗɐw51 has a high-falling [51] contour in 
citation, but when attached to lexical bases, the 
pitch is changed to a rising [35] contour (ɗɐw35-
sɐ̃35 ‘the third (of the siblings)’). Similarly, the 
prefix ħwɐn35 has a rising contour [35] in citation 
but the pitch is changed to a mid-level [33] when 
attached to lexical bases to denote their foreign 
origin (ħwɐn33-kjɔ̃35 ‘foreign chilli’). The tone 
sandhi pattern  in the prefixing context is different 
from that occurs in other affixational environment 
in which tones are changed to either a rising or 
high-level contour, depending on their contour 
shape in citation (Huang, 2023). 

5 Pragmatics of Prefixation 

Certain prefixes are pragmatically significant to 
reveal certain relation within the social-cultural 
setting of Southern Min. This can be demonstrated 
by the usage of prefixes pjɐw51, kɛ63.pɐk41 and 

103



5 
 
 

ʔŋ51. They can be attached to the same kinship 
terms but reveal different social relationships. As 
illustrated in (4), the prefix pjɐw51 indicates an 
external relation to a family or a clan; the derived 
words are particularly used to address the 
descendant of (grand-) father’s sisters or (grand-) 
mother’s siblings. Such as the term pjɐw35-ħjɐ̃35, 
in which the base ħjɐ̃35 refers to the elder brother, 
is specifically used to address the son of father’s 
sister or mother’s sibling who is elder than the 
addresser. The prefix kɛ63.pɐk41 indicates an 
internal relation to one’s family or clan; the derived 
terms are limited to address the descendant of 
(grand-) father’s brothers. Such as the term 
kɛ63.pɐk65-ħjɐ̃35 specifically refers to the son of 
father's brother who is elder than the addresser. 
Similarly, the prefix ʔŋ51 expresses the core blood 
relationship on the paternal side. Such as the term 
ʔŋ35-ħjɐ̃35 refers to one’s blood-related elder 
brother who has the same parents. 
(4) Pragmatics of prefixation  
• pjɐw51 
 pjɐw35-ħjɐ̃35 ‘pjɐw35-elder brother’ 
 ‘the elder son of father's sister or mother’s sibling’ 
 pjɐw35-tsik41‘pjɐw35-younger uncle’ 
 ‘son of grandfather’s sister or grandma’s sibling’ 
• kɛ63.pɐk41 
  kɛ63.pɐk65-ħjɐ̃35 ‘kɛ63.pɐk41-elder brother’ 
 ‘the elder son of father's brother’ 
  kɛ63.pɐk65-tsik41 ‘kɛ63.pɐk41-younger uncle’ 
 ‘the younger son of grandfather’s brother’ 
• ʔŋ51 

ʔŋ35-ħjɐ̃35 ‘ʔŋ35-elder brother’ 
‘the blood-related elder brother’ 
ʔŋ35-tsik41 ‘ʔŋ35-younger uncle’ 
‘father’s younger brother (s)’ 

 • twɐ33 
twɐ32-pɛ41‘twɐ32-uncle’  
‘to address father (or husband)’s eldest brother’  
twɐ32-kɔ35 ‘twɐ32-parental aunty’ 
 ‘to address father (or husband)’s elder sister’ 

 • se41 
se63-kɔ35 ‘se63-father’s sister’ 
‘to address husband’s younger sister’ 
se63-tsik41 ‘se63-father’s younger brother’ 
‘to address husband’s younger brother’ 
se63-kim35-ʔɐ51 ‘se63-mother’s brother’s wife’ 

The pragmatic function can also be illustrated 
by the usage of the prefixes twɐ33 and se41 before 
kinship terms. The prefix twɐ33, lexically meaning 

‘big’, is often used to indicate the elder (not 
necessarily needs to be the eldest) member of a 
group, especially within a family or a clan. On the 
contrary, the prefix se41, lexically meaning 
‘small’, indicates the younger member. However, 
in Southern Min, housewives are discovered using 
exactly the same kinship words as their children to 
address their husband’s siblings. 

For example, as illustrated in (4), the word 
twɐ32-kɔ35, in which the base kɔ35 means ‘aunty 
on the parental side’, can be used to refer to either 
father’s elder sister or husband’s elder sister. On the 
contrary, the words se63-kɔ35 and se63-tsik41, 
which literarily mean ‘younger aunty (father’s 
younger sister)’ and ‘younger uncle (father’s 
younger brother)’, respectively, are exclusively 
used by housewives to address their husband’s 
younger siblings. The reason for existing such a 
special addressing is because, in the old society of 
Southern Min, married women are given a lower 
status within a family and a clan. Thus, they step 
down their seniority and address their husband’s 
siblings in the same way as their children do. Such 
an addressing has been customized over time and 
is still adopted by the married women in the 
modern society. Therefore, as seen, the application 
of certain prefixation is pragmatically related by 
the local social culture and custom. 

6 OCCURRENCE CONSTRAINT  

The prefixation is productive in this dialect to 
expand its lexicon; however, several different 
constraints can be seen governing what prefixes 
can be used; what lexical bases can be attached, 
and/or what new lexemes can be generated. 
6.1 Semantic constraint 

The occurrence of certain prefixes is strictly limited 
to a particular semantic domain. For example, the 
prefixes pjɐw51 (pjɐw35-twɐ32-tsi51 ‘to address 
the daughter of father’s sister or mother’s sibling 
who is elder than the addresser’), kɛ63.pɐk41 
(kɛ63.pɐk65-twɐ32-tsi51 ‘to address the daughter 
of father’s brother who is elder than the addresser’) 
and ʔŋ51 (ʔŋ35-kɔŋ35 ‘to address the blood-related 
grandfather’) can only occur before kinship terms 
to deliver the blood relation or the affinity by 
marriage to a family or a clan. On the contrary, the 
prefix te33 (te32-sɐ̃35 ‘te32-three: the third’) can 
occur before numbers to indicate ordering.  
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6.2   Phonological constraint 

The prefixing process in Southern Min can be 
constrained phonologically because there exist 
some cases in which only parts of the lexical bases, 
rather than the entire bases, can be prefixed to fulfil 
a particular semantic function. For example, as 
illustrated in (5), the prefixes ɗɐw33, ɗɐw51, ʔɐ35 
and sjɵ51 can all be attached to person names, but 
the prefixes ɗɐw51 and sjɵ51 are typically attached 
to the family names, while the prefixes ɗɐw33 and 
ʔɐ35 are exclusively attached to the last syllables of 
the first names. If they are attached to other part of 
the lexical bases, the derived forms are considered 
to be colloquially ill-formed. 
(5) Phonological constraint on prefixation 

 Before family name 
•  ɗɐw51 (seniority and respect) 
   ʔɔŋ33 tsu35.zin22 → ɗɐw35-ʔɔŋ22 ‘ʔɔŋ22; Wang’ 

tɐn33 kɐk65.kɛ3̃5 → ɗɐw35-tɐn22 ‘Tɐn22; Chen’ 
• sjɵ51 (diminution and affection) 

tɐn33. ɠe32.kun22 → sjɵ35-tɐn22 ‘Chen’ 
ħwĩ22 sjɔk65.kwan35 → sjɵ35-ħwĩ22 ‘Huang’  
Before first name 

 • ɗɐw33 (seniority and respect) 
ɗjɔk32 ʔi35.su35 → ɗɐw32-su35 ‘Su35; Si’ 
tɐn33 kɔk65.kjɐŋ22 → ɗɐw32-kjɐŋ22 ‘Kjɐŋ22’ 

 • ʔɐ35 (diminution and affection) 
ħwĩ22 ɠe32.kjɐŋ22 → ʔɐ33-kjɐŋ22 ‘Qiang’  
lim33 sjɔk65.kwan → ʔɐ33-kwɐn35 ‘Juan’ 

For example, given a person is called ʔɔŋ33 
tsu35.zin22, in which ʔɔŋ22 is the family name and 
tsu35.zin22 is his first name, it is grammatically 
well-formed to address him as ɗɐw35-ʔɔŋ22 with a 
sense of respect and seniority. Similarly, the prefix 
sjɵ51 can also be attached to family names to 
convey a sense of diminution and affection, such as 
sjɵ35-tɐn22 ‘Chen’ given a person’s family name 
is tɐn22. The two prefixes can only be attached to 
family names, and it is grammatically ill-formed to 
attach them to other position of the person names. 

On the contrary, the prefixes ɗɐw33 can only be 
attached to the last syllables of the first names to 
deliver a semantics of seniority and respect. Such 
as, given a person is called ɗjɔk32 ʔi35.su35 in 
which ɗjɔk32 is the family name, it is 
grammatically well-formed and colloquially 
respectful to address him as ɗɐw32-su35, but ill-
formed to call him as *ɗɐw32-ɗjɔk32 or *ɗɐw32-
ʔi35.su35. Likewise, the prefix ʔɐ35 can only be 
attached to the last syllables of the first names to 

convey a sense of closeness and diminution, such 
as ʔɐ33-kwɐn35 given a person is called lim33 
sjɔk65.kwan35. As seen, the occurrence of certain 
prefixes is phonologically limited to certain 
syllables, and this has become an important part of 
the mental grammar of native speakers. 

6.3. Pragmatic constraint 

The occurrence and usage of certain prefixes can 
also be constrained by the pragmatic factor. For 
example, as discussed in Section 5, the derived 
words with the prefix pjɐw51 are exclusively used 
to address descendants of (grand-) father’s sisters; 
and/or (grand-) mother’s siblings. The derived 
words with the prefix kɛ63.pɐk41 are dominantly 
used to address descendants of (grand-)father’s 
brother(s), whereas the derived words with the 
prefix ʔŋ51 only refer to those core family 
members who hold a blood relationship on the 
parental side. As well as this, the married women 
in Southern Min address their husband’s siblings in 
the same way as their children. Such as the derived 
word twɐ32-kɔ35 can be used to address one’s 
father’s eldest sister, but also one’s husbands’ elder 
sister(s). These reflects the constraints from the 
social culture and custom in Southern Min. 

7 Discussion 
As discussed in this paper, the prefixing process 
has been developed as an important device in the 
word formation in Zhangzhou Southern Min. 
Semantically, the prefixation is constructive to 
create new lexemes and substantially enlarge the 
local vocabulary. Some prefixes are polysemantic 
to derive words that can cover different semantic 
domains, like the prefixes ɗɐw51, ɗɐw33, and ʔɐ35, 
while some prefixes are shown to be mono-
semantic whose derived items can only cover one 
single semantic domain, such as ħwɐn35 and te33. 

 Morpho-syntactically, the prefixing process, in 
general, presents a categorical-preserving property, 
because both the lexical bases and their derived 
words are largely nominal, the process of which 
does not evoke a new word class. But some 
prefixes in few cases, like kʰɵ51, ħɵ51, and ɓɐj41 
can change the category of the bases from a non-
adjective category to adjective. Phonologically, the 
tonal forms of all prefixes are changed 
categorically over the process, because of the 
forcing factor of the right-dominant tone sandhi 
system in this Southern Min variety. Pragmatically, 
the usage of certain prefixes, like pjɐw51, 
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kɛ63.pɐk41, ʔŋ51, twɐ33 and se41, can reveal some 
particular social culture and custom of Southern 
Min. As seen, the prefixing can substantially affect 
the semantic, morpho-syntactic, and prosodic 
structures of this dialect. However, the encoding 
also subjects to several constraints from semantics, 
morpho-syntactics, phonology and pragmatics, 
reflecting a close interface between different 
linguistic levels in this dialect.  

This study is the first to discuss the prefixation 
in Zhangzhou, which directly fills in the research 
gap of this under-described Southern Min variety. 
The exploration substantially stretches and 
advances our knowledge of how prefixation is 
encoded and contributes to the word formation in 
southern Chinese dialect, shedding an important 
light on the generalization of areal characteristics 
of prefixation within the Sino-Tibetan language 
family. The innovative description also contributes 
vital empirical data to the typology of prefixation 
in world’s natural languages. The discussion also 
challenges the conventional assumption of 
regarding Sinitic languages as being isolating 
without significant affixation, while enlightening 
the theoretical discussion on how Sinitic languages 
should be better defined from the morpho-syntactic 
perspective, given their existing rich prefixing 
system in the synchronic speech. 
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Abstract

Thanks to the state-of-the-art Large Language
Models (LLMs), language generation has
reached outstanding levels. These models are
capable of generating high quality content, thus
making it a challenging task to detect generated
text from human-written content. Despite the
advantages provided by Natural Language Gen-
eration, the inability to distinguish automati-
cally generated text can raise ethical concerns
in terms of authenticity. Consequently, it is im-
portant to design and develop methodologies
to detect artificial content. In our work, we
present some classification models constructed
by ensembling transformer models such as Sci-
BERT, DeBERTa and XLNet, with Convolu-
tional Neural Networks (CNNs). Our experi-
ments demonstrate that the considered ensem-
ble architectures surpass the performance of the
individual transformer models for classification.
Furthermore, the proposed SciBERT-CNN en-
semble model produced an F1-score of 98.36%
on the ALTA shared task 2023 data.

1 Introduction

Nowadays, people have access to state-of-the-art
LLMs which help them simplify some of their daily
activities. One of the most notable breakthroughs
in recent years is the evolution of OpenAI’s GPT
models which are capable of generating text that
looks as if they are written by a human. Especially,
the latest models such as ChatGPT and GPT4 (Ope-
nAI, 2023) have won global attention for providing
solutions to any kind of question or concern that
humans possess. Moreover, these models produce
outputs that appear to be written by a human.

Thus there is a potential risk in determining
the authenticity of textual content that mankind
refers to. Especially, in a domain such as academia,
leveraging generation models in composing arti-
cles might raise an ethical concern. For example
in ICML 2023, they have included a note under
the “Ethics” section prohibiting the use of text gen-

erated by ChatGPT and other LLMs, unless “pre-
sented as part of the paper’s experiential analysis.”
1. Accordingly, it is essential to have mechanisms
for detecting artificially composed text from human
written text.

Currently, a substantial amount of research has
focused on the detection of automatically gener-
ated text. Recent research ((Zellers et al., 2019),
(Glazkova and Glazkov, 2022) and Liyanage and
Buscaldi (2023)) mostly consider detection as a
binary classification task and leverage SOTA clas-
sification models to distinguish machine-generated
text from original text. Besides, some employ sta-
tistical detection tools such as GLTR (Gehrmann
et al., 2019) or latest deep learning based tools such
as GPT2 output detector2, DetectGPT (Mitchell
et al., 2023) or GPTZero 3. Moreover, several
researchers (Liyanage et al. (2022), (Kashnitsky
et al., 2022)) have published corpora composed of
machine-generated content, which can be utilized
by future research on detection.

Our work is based on the participation of our
team in the ALTA shared task 2023 (Molla et al.,
2023) The objective of the task is to build automatic
detection systems that can discriminate between
human-authored and synthetic text generated by
Large Language Models (LLMs). Their corpus
is composed of artificial contents that belong to
a variety of domains (such as law, medical) and
are generated by models such as T5 (Raffel et al.,
2020) and GPT-X.

This paper is organized as follows. We provide
the corpus and task description in Section 2. In Sec-
tion 3, we describe our methodology and Section
4, deliver the experimental setup and the official
results. Section 5 concludes this paper.

1https://icml.cc/Conferences/2023/
llm-policy

2https://openai-openai-detector--5smxg.
hf.space

3https://gptzero.me/
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2 Task Overview

2.1 Task Definition
The task at hand revolves around distinguishing be-
tween automatically generated and human-written
texts. In essence, it involves a binary classification
challenge where the goal is to categorize provided
texts into two distinct and exclusive groups. To
outline this formally:

• Input: We are presented with text segments.

• Output: The objective is to assign one of two
possible labels to each text segment: either
"human-written" or "machine-generated".

This undertaking aims to establish a clear bound-
ary between texts created through automated pro-
cesses and those crafted by human authors. The
primary aim is to develop a model that can effec-
tively differentiate between these two categories
based on the characteristics of the given excerpts.

2.2 Corpus
The dataset published for the ALTA shared task is
a balanced one composed of 9000 original (human
written) excerpts and 9000 fake (artificially gener-
ated) excerpts. On average, the excerpts consist of
35 words each. To gain a deeper comprehension of
the corpus, category-wise (original vs generated)
statistics with respective example excerpts are pro-
vided in Table 1.

3 Methodology

Given that the shared task frames detection as a bi-
nary classification challenge, we utilized a range of
classification models to address this objective. In
the subsequent subsections, in-depth explanations
are provided pertaining to the examined statistical,
recurrent and transformer models, and the corre-
sponding ensemble architectures.

3.1 Statistical Models and their Respective
Ensemble Architectures

In our work, we primarily employed Naive Bayes,
Passive Aggressive and Support Vector Machine
(SVM), which are classification algorithms used in
machine learning to categorize data points into dif-
ferent classes (Bishop and Nasrabadi, 2006). Naive
Bayes is a probabilistic classification algorithm
based on Bayes’ theorem and it is widely used for
tasks such as spam detection. It assumes that the
features are conditionally independent given the

class label. Passive Aggressive is a type of algo-
rithm that aims to make aggressive updates when
it encounters a misclassified point and passive up-
dates when the point is correctly classified. SVM
is a powerful supervised machine learning algo-
rithm used for classification and regression tasks.
It is a popular algorithm in text classification tasks.
These algorithms were employed in conjunction
with the two text encoding methodologies, namely
Bag of Words (BoW) and Term Frequency-Inverse
Document Frequency (TF-IDF).

Furthermore, we harnessed the capabilities of en-
sembles comprising the aforementioned statistical
models, applying various ensemble methodologies
such as voting, stacking, bagging, and boosting. By
amalgamating the predictions of multiple models,
ensemble techniques aim to enhance the overall
predictive power of our system. Voting combines
the outputs through a majority or weighted deci-
sion, stacking involves training a meta-model on
the predictions of base models, bagging leverages
bootstrapped subsets of data for training individ-
ual models, and boosting iteratively adjusts model
weights to prioritize difficult-to-classify instances.
Through these ensemble strategies, we sought to
extract richer insights from our data and attain im-
proved classification performance.

3.2 Recurrent Models and their Respective
Ensemble Architectures

Recurrent models, a subset of neural network ar-
chitectures, are models designed to capture tempo-
ral dependencies and patterns within sequences.
We conducted experiments with LSTM and Bi-
LSTM models, which are a type of RNN archi-
tecture specifically designed to address the vanish-
ing gradient problem that can occur in traditional
RNNs. To further improve classification accuracies
of these models, we ensembled them with a Con-
volutional Neural Networks (CNNs) architecture.
The proposed hybrid RNN-CNN approach helps in
enhancing the predictive capabilities overall model
by capitalizing on their respective strengths in cap-
turing temporal dependencies and spatial features.
We trained the entire ensemble end-to-end, allow-
ing the network to learn how to best combine the
features extracted by both LSTM and CNN compo-
nents.
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Original Generated
Min. word count 10 1
Max. word count 96 192
Avg. word count 25 45
Example excerpt This is the data I collected so far (mo-

torcycle standing on central stand, back
wheel revolving, velocity comes from
the back wheel, ABS LED blinking).

In this sense, she emphasized that it
was a mistake to tie development aid
to times of economic booms, as it is a
"permanent commitment".

Table 1: Statistics of the ALTA shared task corpus (The avg. figures are rounded off to the nearest whole number)

3.3 Transformer Models and their Respective
Ensemble Architectures

For our classification experiments, we leveraged
cutting-edge transformer models, namely BERT,
SciBERT, DeBERTa, and XLNet. These state-of-
the-art architectures have demonstrated exceptional
proficiency in a wide spectrum of natural language
processing tasks, including classification. BERT
(Bidirectional Encoder Representations from Trans-
formers) (Devlin et al., 2018) introduces bidirec-
tional context by pretraining on a massive corpus
and then fine-tuning on task-specific data. SciB-
ERT (Beltagy et al., 2019) is specialized for scien-
tific text, adapting BERT’s embeddings to domain-
specific language. DeBERTa (Decoding-enhanced
BERT with Disentangled Attention) (He et al.,
2020) enhances attention mechanisms, capturing
dependencies among words more effectively. XL-
Net (Yang et al., 2019) employs a permutation-
based training approach to capture bidirectional
context and alleviate BERT’s limitations.

Initially, we created ensembles by combining
the capabilities of SciBERT and DeBERTa mod-
els with the foundational BERT model. This pro-
cess involves channeling the data through each
base model, which comprises the transformer block
along with a subsequent max pooling layer. Subse-
quently, the outcomes derived from these individual
models are concatenated to generate a unified rep-
resentation, which is then channeled into a linear
classification layer for making refined predictions.

Furthermore, we combined the transformer
model with Convolutional Neural Networks
(CNNs) to build ensemble architectures that ex-
hibit enhanced performance. As depicted in the
architectural diagram 1, the embeddings produced
by the transformer model are used as input for a
CNN. This network includes three stacked con-
volutional layers to cover a large enough part of
the input. The output of the three stacked lay-

ers is then passed through a dropout, a max pool-
ing and another dropout layer before being passed
to a dense layer for the classification. In our ap-
proach, we don’t need to embed the output using
nn.Embedding layers, as there is no need for a
lookup table.

4 Experiments and Results

The text underwent preliminary processing, involv-
ing the elimination of stopwords and stemming,
before being supplied to either statistical or neural
network architectures. The processed data was then
transformed into numerical vectors using Bag of
Words (BoW) or tf-idf encoding techniques, which
were subsequently utilized as inputs for the statisti-
cal models. All of the employed statistical models,
as well as their corresponding ensemble methods,
were imported from the Scikit-learn library. For
constructing LSTM and CNN models, the relevant
layers were imported from TensorFlow’s Keras
module. Training these recurrent models, includ-
ing those combined with CNN ensembles, involved
running 10 epochs. The LSTM and Bi-LSTM ar-
chitectures were trained using batch sizes of 64 and
128, respectively.

Concerning transformer architectures and their
associated ensembles, pre-trained models from
Hugging Face (Wolf et al., 2020) were imported
and subsequently fine-tuned through the utiliza-
tion of Simple Transformers 4. The BERT tok-
enizer was consistently employed across all models.
The fine-tuning process involved 3 epochs, a batch
size of 16, and a maximum sequence length of
128. Leveraging the T4 GPU Hardware accelerator,
the average training time for models was approxi-
mately 30 minutes. For standalone models, the in-
put consisted of unprocessed text, while ensembles
underwent pre-processing involving punctuation re-
moval and conversion to lowercase. As represented

4https://simpletransformers.ai
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Figure 1: Architecture of Transformer-CNN Ensemble (Here, the “input type ids," “input masks," and “input ids"
are the components used to prepare and encode the input data for the transformer model.)

in Figure 1, the CNN block of the ensembles was
composed of three convolutional layers.

The dataset was split in 80:20 ratio for train-
ing and testing. To assess the classification per-
formance of the models under consideration, the
F1 score was employed. This score, being a bal-
anced combination of precision and recall, offers a
comprehensive evaluation. Each model underwent
a total of five experimental iterations, and the re-
sultant average F1 scores are presented in Table
2.

In general, the ensemble architectures have ex-
hibited superior performance compared to their cor-
responding original models. Our best-performing
solution is the combination of DeBERTalarge with
CNN, achieving an F1 score of 98.36%.

Considering that baseline models such as Naïve
Bayes and tf.idf weighting obtain scores close to
90%, it is clear that the dataset is not well balanced.
In fact, looking at the Multinomial Naïve Bayes
and the log probabilities differences for all fea-
tures, we observed a thematic bias. Specifically, the
top most probable words in the negative category
(human-generated) are law-oriented: “plaintiff",
“defendant", and “judgment". On the other hand,
LLM-generated text contains words like “round",
“league", “players", etc. Therefore, it is not clear
whether these results are generalizable to the gen-
eral task of detecting artificial text.

5 Conclusion

In this work, we have explored the application of
different SOTA classification models on the detec-
tion of automatically generated text from human
written text. Moreover, we have created various
ensemble methods with the aforementioned models
and examined their performance on the detection

Model F1
Statistical Models
NB + BoW 89.04
PA + BoW 84.07
SVM + BoW 87.51
NB + tf-idf 89.02
NB + tf-idf 91.00
NB + tf-idf 91.42
Ensembles of Statistical Models
Voting (NB + PA + SVM) + BoW 90.29
Stacking (NB + PA + SVM) + BoW 88.23
Bagging (NB + PA + SVM) + BoW 91.56
Boosting (NB + PA + SVM) + BoW 90.28
Recurrent Models
LSTM 49.08
Bi-LSTM 90.58
Ensembles of RNNs
LSTM + CNN 49.08
Bi-LSTM + CNN 90.02
Transformer Models
BERTbase 90.81
SciBERT 94.89
DeBERTalarge 96.67
XLNetlarge 93.62
Ensembles of BERT models
BERTbase + SciBERT 97.80
BERTbase + DeBERTalarge 97.47
Ensembles of transformers with CNN
BERTbase + CNN 97.42
SciBERT + CNN 97.56
DeBERTalarge + CNN 98.36
XLNetbase + CNN 97.44

Table 2: Classification Scores
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task. Our results on the test data showed that gen-
erally the ensemble architectures outperform the
considered original models. However, an analysis
of the dataset raises some doubts about the gener-
alizability of these results as it looks like the data
are thematically biased. Therefore, these results
should be considered only within the scope of the
ALTA 2023 shared task.

As future work, we plan to examine the appli-
cability of our ensemble architectures in detecting
artificially generated text in multilingual corpora.
Another potential research direction involves as-
sessing the effectiveness of knowledge-based ap-
proaches for detecting artificial text.

References
Iz Beltagy, Kyle Lo, and Arman Cohan. 2019. Scibert:

A pretrained language model for scientific text. arXiv
preprint arXiv:1903.10676.

Christopher M Bishop and Nasser M Nasrabadi. 2006.
Pattern recognition and machine learning, volume 4.
Springer.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Sebastian Gehrmann, Hendrik Strobelt, and Alexan-
der M Rush. 2019. Gltr: Statistical detection and
visualization of generated text. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics: System Demonstrations, pages
111–116.

Anna Glazkova and Maksim Glazkov. 2022. Detect-
ing generated scientific papers using an ensemble
of transformer models. In Proceedings of the Third
Workshop on Scholarly Document Processing, pages
223–228.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2020. Deberta: Decoding-enhanced
bert with disentangled attention. arXiv preprint
arXiv:2006.03654.

Yury Kashnitsky, Drahomira Herrmannova, Anita
de Waard, Georgios Tsatsaronis, Catriona Fennell,
and Cyril Labbé. 2022. Overview of the dagpap22
shared task on detecting automatically generated sci-
entific papers. In Third Workshop on Scholarly Doc-
ument Processing.

Vijini Liyanage and Davide Buscaldi. 2023. Detecting
artificially generated academic text: The importance
of mimicking human utilization of large language
models. In International Conference on Applications
of Natural Language to Information Systems, pages
558–565.

Vijini Liyanage, Davide Buscaldi, and Adeline
Nazarenko. 2022. A benchmark corpus for the de-
tection of automatically generated text in academic
publications. In Proceedings of the Thirteenth Lan-
guage Resources and Evaluation Conference, pages
4692–4700.

Eric Mitchell, Yoonho Lee, Alexander Khazatsky,
Christopher D Manning, and Chelsea Finn. 2023.
Detectgpt: Zero-shot machine-generated text detec-
tion using probability curvature. arXiv preprint
arXiv:2301.11305.

Diego Molla, Haolan Zhan, Xuanli He, and Qiongkai
Xu. 2023. Overview of the 2023 alta shared task:
Discriminate between human-written and machine-
generated text. In Proceedings of the 21st Annual
Workshop of the Australasian Language Technology
Association (ALTA 2023).

OpenAI. 2023. Gpt-4 technical report.

Colin Raffel, Noam Shazeer, Adam Roberts, Kather-
ine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. 2020. Exploring the
limits of transfer learning with a unified text-to-text
transformer. Journal of Machine Learning Research,
21(140):1–67.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,
et al. 2020. Transformers: State-of-the-art natural
language processing. In Proceedings of the 2020 con-
ference on empirical methods in natural language
processing: system demonstrations, pages 38–45.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for lan-
guage understanding. Advances in neural informa-
tion processing systems, 32.

Rowan Zellers, Ari Holtzman, Hannah Rashkin,
Yonatan Bisk, Ali Farhadi, Franziska Roesner, and
Yejin Choi. 2019. Defending against neural fake
news. Advances in neural information processing
systems, 32.

111

http://arxiv.org/abs/2303.08774
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html


Proceedings of The 21st Annual Workshop of the Australasian Language Technology Association, pages 112–117
November 29 - December 1, 2023 ©2023 Association for Computational Linguistics

Chat Disentanglement: Data for New Domains and Methods for More
Accurate Annotation

Sai R. Gouravajhala†, Andrew M. Vernier†, Yiming Shi†, Zihan Li†
Mark S. Ackerman†, Jonathan K. Kummerfeld†‡∗

†Computer Science & Engineering, University of Michigan, Ann Arbor
‡School of Computer Science, University of Sydney

Abstract

Conversation disentanglement is the task of
taking a log of intertwined conversations from
a shared channel and breaking the log into in-
dividual conversations. The standard datasets
for disentanglement are in a single domain
and were annotated by linguistics experts with
careful training for the task. In this paper, we
introduce the first multi-domain dataset and a
study of annotation by people without linguis-
tics expertise or extensive training. We experi-
ment with several variations in interfaces, con-
ducting user studies with domain experts and
crowd workers. We also test a hypothesis from
prior work that link-based annotation is more
accurate, finding that it actually has compara-
ble accuracy to set-based annotation. Our new
dataset will support the development of more
useful systems for this task, and our experi-
mental findings suggest that users are capable
of improving the usefulness of these systems
by accurately annotating their own data.

1 Introduction

Rapid synchronous chat involving a large group
often leads to overlapping conversations. The chal-
lenge of disentangling these conversations has been
studied for over a decade, but the main datasets are
expert annotated and based on discussion of Linux
(Elsner and Charniak, 2008) and Ubuntu (Kum-
merfeld et al., 2019). Recent work has considered
scripts from movies (Chang et al., 2023), but there
is still the need for data from additional sources to
measure the generalizability of methods.

A range of methods have been proposed to avoid
expensive expert annotation in NLP, e.g., crowd
work (Snow et al., 2008), games with a purpose
(Jurgens and Navigli, 2014) and user feedback (Iyer
et al., 2017). Various annotation methods have been
used for disentanglement, but all focused on experts
and only one study has compared annotation tools
(Cerezo et al., 2021).

∗ jonathan.kummerfeld@sydney.edu.au

This work takes two key steps to expand this
task to new domains: (1) we created a new, multi-
domain, gold-standard dataset, and (2) we explored
annotation methods to see if domain experts and
crowd workers can do the task.

Our dataset includes several important variations
not seen in existing datasets: (a) new types of con-
versations (e.g., meetings), (b) new types of user
relationships (e.g., business-customer), and (c) a
range of Internet Relay Chat (IRC) networks. We
annotated 600 messages from each channel, which
is enough to evaluate out-of-domain ccuracy.

It is impossible to collect expert labels for ev-
ery domain. However, if we can develop the right
tools, owners and users of channels may be able to
improve models by annotating some of their own
data. We conducted a user study with domain ex-
perts and crowd workers, exploring two types of
variation in user interfaces: (1) whether annotators
receive automatic guidance, and (2) what structure
is annotated. Prior work has speculated that link
annotation1 is more accurate than set annotation2

(Elsner and Charniak, 2010), but our work is the
first controlled comparison.

We found that domain experts can effectively
annotate data, and improve with automatic guid-
ance. Crowd workers struggled with the task, doing
worse than an automatic model. Set-based and link-
based annotation are actually comparable in accu-
racy. We recommend link annotation as it provides
the internal structure of conversations.

The dataset we release3 will support the devel-
opment of more generalizable models, and our
findings show how to help domain experts anno-
tate effectively. Together, these results will enable
progress on this challenge in new domains, making
conversations easier to follow for everyone online.

1Labeling reply-to relations between pairs of messages,
then each connected graph of messages is a conversation.

2Putting messages into groups, where each group is a con-
versation.

3https://www.jkk.name/irc-disentanglement/
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Msg Users Tok
Channel Network Purpose / Hr / Hr / Msg κ

Mediawiki Wikimedia Technical support regarding mediawiki software. 71 4.1 10 0.78
Rust Mozilla Help related to the Rust programming language. 33 8.0 12 0.80
Stripe Freenode Customer support for the payments processing service. 76 6.6 16 0.81
Ubuntu Meeting Ubuntu Developer meetings. 371 9.9 8 0.71

Ubuntu Ubuntu Technical support for users of the operating system. 395 32 10 0.72

Table 1: Expert annotator agreement (κ) and properties of the four channels we annotated and the Ubuntu channel
used in Kummerfeld et al. (2019). The channels span multiple topics (programming languages, customer support,
web applications) and conversation styles (question-answer, meetings).

2 Related Work

All prior annotation for conversation disentangle-
ment has been done by trained experts, like many
tasks in NLP (Ide and Pustejovsky, 2017). Early
work on the task asked annotators to form sets of
messages (Elsner and Charniak, 2008, 2010), but
they speculated that annotators may be more consis-
tent at annotating reply-to links. Subsequent work
took the link approach (Riou et al., 2015; Mehri and
Carenini, 2017; Kummerfeld et al., 2019; Cerezo
et al., 2021). This work is the first controlled com-
parison of the two. Cerezo et al. (2021) compared a
command-line UI and GUI, finding that annotators
preferred the GUI, but accuracy was the same, and
using the GUI was slower. Our study complements
theirs by considering: (1) variation in who anno-
tators are, (2) variation in the form of annotation,
and (3) guidance.

Crowd work can be cheaper and more scalable
than expert annotation (Snow et al., 2008). Ef-
fective crowd annotation user interfaces and work-
flows have been developed for a range of tasks (e.g.,
Dumitrache et al., 2018; Finin et al., 2010; Larson
et al., 2020), but there has been no prior work for
disentanglement.

Guiding annotators using an automatic system
has improved speed for other tasks (Marcus et al.,
1993; Chiou et al., 2001). Recent work has ap-
plied similar ideas to crowd work (Gormley et al.,
2010; Ramírez et al., 2019). We apply this idea to
conversation disentanglement for the first time.

3 Data in New Domains

When multiple synchronous conversations are hap-
pening in the same channel they can be difficult to
understand.4 Conversation disentanglement is the

4Some services, e.g., Slack, WebEx, and Microsoft Teams,
have the ability to split a conversation starting at a message,
but that only solves the problem if the split is created as soon
as a new topic is started and the conversation remains on topic.

Channel F 1-1

Mediawiki 46 90
Rust 60 91
Stripe 83 94
Ubuntu Meeting 22 73

Ubuntu 43 82

Table 2: Model accuracy on conversations for each of
the channels.

task of identifying separate conversations, to make
them understandable and useful.

There are hundreds of active Internet Relay Chat
(IRC)5 channels, but only two have disentangle-
ment annotations: #Ubuntu (Kummerfeld et al.,
2019) and #Linux (Elsner and Charniak, 2008,
2010). To create a realistic out-of-domain setting,
we annotated data from four diverse channels, de-
scribed in Table 1. We chose channels that: (1)
have public logs, (2) have various topics and con-
versation styles, and (3) are from different IRC
networks, which may exhibit different conventions.

For each channel, we used three random samples,
each 1,200 messages long (200 to annotate, 1,000
for context). This leads to a total of 2,400 annotated
messages and a further 12,000 context messages.
Our data is in the same format as Kummerfeld et al.
(2019) to enable easy evaluation. This is the first
work to annotate multi-domain data, enabling out-
of-domain evaluation.

Expert Annotation To make a gold-standard ref-
erence, two of the authors labeled each file, then
one of the authors adjudicated disagreements. To
match the annotations of Kummerfeld et al. (2019)
as closely as possible, we labeled reply-to links
using their tool, SLATE (Kummerfeld, 2019), and
the same annotation guidelines. Conversations are
the connected components in the reply-to graph.

Table 1 shows agreement scores for reply-to
5IRC is a protocol for synchronous chat in use since 1988.

113



Figure 1: Part of the user interface for link annotation with guidance. The left side is the log of messages and the
right side is the set of annotated conversations. The red box is the message to be annotated. Yellow / orange high-
lights are four of the predictions from the out-of-domain model. Blue and green text are explained in Section 4.1.
The annotator needs to select the earlier message that the red message is replying to. The red message will then be
added to the same conversation (on the right) as the message it is replying to. If the red message is the start of a
new conversation the annotator will press a special button (not shown here).

links before adjudication. Agreement is as good
or better than prior work. Based on our experi-
ence doing annotation, the Ubuntu Meeting chan-
nel was harder to annotate because the discussion
was rapid and interleaved. The model struggles in
this domain, with by far the lowest performance, as
shown in Table 2.

4 Improving Annotation

To go beyond expert-annotated resources, we need
effective annotation methods for either users (e.g.,
domain experts who run a channel and are will-
ing to annotate data for their own use) or crowd
workers (who can be recruited at larger scale). We
perform the first experiments in annotation with
both of these groups, exploring several variations
in tool support for them.

4.1 Annotation Tools

Figure 1 shows a screenshot of part of our tool. We
considered two forms of variation: (1) the type of
annotation and (2) whether guidance is provided.
In all cases, there was an interactive tutorial that
explained the interface and annotation conventions.

Annotation Type Conversations can be anno-
tated in two ways: forming sets of messages, where
each set is a conversation (set-based); or creating a

graph of reply-to links between messages, in which
case each connected component in the graph is a
conversation (link-based). This is the first system-
atic comparison of these two types of annotation.

Guidance We implemented guidance to help an-
notators. We used the feedforward neural network
model from Kummerfeld et al. (2019), trained on
their Ubuntu data, to predict reply-to links. For
details of the model architecture, training, and in-
domain accuracy, see Kummerfeld et al. (2019).
Our data is out-of-domain for the model, and it is
not perfect even in-domain, so we showed the top
five predictions, with darker shades of yellow in-
dicating more likely options. On this data, the top
five predictions have an average recall of 92%. In
the link annotation case, we highlighted individual
messages, as shown in Figure 1. In the set annota-
tion case, we highlighted the conversations those
messages belong to.6

We also changed the colour of messages to indi-
cate likely interactions: (a) messages written by the
current user and any message that addresses7 the
current user were green, (b) if the current message
addresses someone, then we made messages from

6If multiple predicted messages were in the same conversa-
tion then the shade of yellow is based on the max probability
of the options.

7This is when one user mentions another user in a message.
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that user green as well, and (c) messages where
both (a) and (b) were true were blue. Figure 1
shows examples of these variations.

4.2 Participants

Participants were randomly split into the four task
conditions. They completed an interactive tutorial,
then annotated a 34 message sample from each
channel. Following Kummerfeld et al. (2019), we
provided 1,000 prior messages as context. To miti-
gate learning and task fatigue effects, we varied the
order of the channels across participants.8

Domain Experts We recruited seventeen fluent
English speakers who were PhD students in Com-
puter Science at the University of Michigan, but not
doing research in NLP. They have knowledge of
the subject area, but no prior experience with disen-
tanglement. Each participant received an Amazon
gift card valued at $25 for assisting in the study.
We have excluded one participant, who misunder-
stood the task, performed extremely poorly, and
expressed confusion.

Crowd We recruited 128 workers via Amazon
Mechanical Turk, requiring that workers had a 98%
HIT approval level and be U.S.-based. Each HIT
was worth $3.75, an effective rate of $15 per hour
when counting time spent reading instructions and
doing the tutorial as well as the task.

4.3 Metrics

We considered three measures of agreement be-
tween our participants and the experts: κ, the stan-
dard metric applied to reply-to links; Conv-F, an F-
Score calculated based on how many conversations
match exactly; and 1-1, a conversation-matching
metric from Elsner and Charniak (2008). We also
measured the time taken. Note that κ can only be
calculated for cases where the type of annotation is
reply-to links (Kummerfeld et al., 2019).

We also include the accuracy of the model that
provided guidance. This provides a baseline that
annotators must exceed for their work to be helpful.

We do significance testing with one-tailed un-
paired t-tests. To control for family-wise errors, we
apply the Holm-Bonferroni Method (Holm, 1979).
Results of tests are described where relevant in the
text below.

8The orders were: SRUM, RMSU, USMR, MURS (S =
Stripe, R = Rust, U = Ubuntu Meeting, and M = Mediawiki).

Anno. Guid- Accuracy Time
Type ance κ Conv-F 1-1 (min)

Computer Science PhD Students
Conv No - 51 80 6
Conv Yes - 58 87 7
Link No 0.68 43 80 6
Link Yes 0.79 69 92 10

Crowd workers
Conv No - 33 74 5
Conv Yes - 39 70 6
Link No 0.52 19 64 8
Link Yes 0.55 37 69 9

Automatic 0.68 53 78 -

Table 3: Accuracy and time for each condition. Met-
rics are defined in Section 4.3. Domain experts provide
high quality annotations, particularly with guidance.

4.4 Ethics

The use of public IRC logs was approved by the
University of Michigan’s IRB, as was the anno-
tation study with human participants (Study IDs
HUM00176661 and HUM00172084). To protect
the identities of crowd workers, their Amazon IDs
will not be released. Details of compensation are
provided above, with values chosen to ensure fair
payment without being so high as to be coercive.
Our results are limited by the range of participants
we had in the task and so may not be representative
of all domains. This work does not introduce any
significant new risks that we are aware of.

5 Results

Table 3 shows results for each of the conditions,
which allow us to answer several questions.

Domain experts can annotate accurately.
Comparing the top half of the table to the
automatic results (bottom row), our participants
provide annotations that are more accurate than
the model, but only when given guidance (this
difference is statistically significant).

Guidance helps domain experts. The condi-
tions with guidance have higher accuracy (signifi-
cant at the 0.05 level), though at the cost of more
time (also significant). This is the reverse of the
pattern seen in annotations for tasks such as POS
tagging and NER, where guidance improves speed
of annotation while keeping accuracy the same.
One possible explanation is that the guidance is
prompting annotators to read additional options,
which helps them find an option they may have
otherwise missed, but also leads them to read more,
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which takes time. In contrast, guidance in classifi-
cation tasks such as POS tagging and NER does not
reveal additional options (there is a fixed, known
tag set) and does not lead to more reading.

Further work is needed to support crowd work-
ers. Crowd workers are worse than the out-of-
domain model in every condition. This indicates
that further research is needed to help crowd work-
ers succeed. It also shows that the needs of crowd
workers and domain experts are different, as the
domain experts were effective and improved with
guidance, while crowd workers did not (the varia-
tions are not statistically significant). However, a
few workers did have high accuracy. In a survey,
we found that some of our workers had substantial
technical knowledge, for example “My Unix ex-
perience goes back to SVR4 days (mostly IRIX &
Solaris - ugh), and I still code on Linux occasion-
ally”. This suggests that domain experts exist in
the crowd workforce and if they can be identified,
e.g., by pre-screening, they may be as accurate as
the students in our study.

Link-based and set-based annotation are com-
parable in accuracy. When comparing condi-
tions that are equivalent except for the type of anno-
tation, there is no statistically significant difference.
This result answers the question from Elsner and
Charniak (2010). We advise future work to anno-
tate reply-to links as it provides additional informa-
tion about the internal structure of conversations.

How should future work annotate disentangle-
ment? Use domain experts, provide them with
guidance, and ask them to annotate links. This led
to our best results and provides internal structure.

6 Limitations

There are three main limitations of this work. First,
the study participants are an approximation of do-
main experts, rather than being actual users of the
IRC channels we consider. We believe Computer
Science students are a reasonable proxy, given their
knowledge of the subjects discussed in these chan-
nels, but it is possible that they are unaware of
community-specific conventions or jargon.

Second, we only considered online communities
writing in English. It is possible that communities
writing in other languages use significantly differ-
ent conventions that make this task easier or harder.

Third, our sample size is only large enough to
make strong claims about some of the variations in

results. It’s possible that other variations in Table 3
would also be significant if we had a larger set of
participants.

7 Conclusion

This work makes two key contributions. First, the
new dataset we are releasing expands the scope of
multi-domain evaluation of conversation disentan-
glement models. Second, our user study of varia-
tions in annotation tools shows that domain experts
can effectively annotate, particularly when given
automatic guidance. Together, these contributions
show how better models and systems can be cre-
ated that give domain-expert users the ability to
improve systems. That will enable the use of this
technology in a wide variety of new domains.
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Abstract
Bacterial infection (BI) is an important clinical
condition and is related to many diseases that
are difficult to treat. Early prediction of BI can
lead to better treatment and appropriate use of
antimicrobial medications. In this paper, we
study a variety of NLP models to predict BI for
critically ill patients and compare them with a
strong baseline based on clinical measurements.
We find that choosing the proper text-based
model to combine with measurements can lead
to substantial improvements. Our results show
the value of clinical text in predicting and man-
aging BI. We also find that the NLP model
developed using patients with BI can be trans-
ferred to the more general patient cohort for
patient risk prediction.

1 Introduction

Data-driven AI models for healthcare have much
potential to facilitate clinical care, promote
healthcare efficiency, and support medical re-
search (Topol, 2019; Rajpurkar et al., 2022). An
important domain of medicine that could benefit
from AI is infectious disease, where AI can help
better understand infections so that we can design
more effective approaches to monitor, diagnose,
and treat infections (Wong et al., 2023). Among
the different types of infections, bacterial infection
(BI) is one of the most common and is estimated to
be associated with more than 13 million deaths in
2019 alone (Collaborators, 2022).

Previous works have studied various types of AI
models to predict the occurrence of BI-related dis-
eases using data from Electronic Health Records
(EHR), especially sepsis (Moor et al., 2021). Mean-
while, the prediction of BI in general is less studied,
whereby structured measurements were used pre-
dominantly to develop predictive models (Yang
et al., 2023; Eickelberg et al., 2023). The value of
clinical text in BI prediction remains unclear.

In this study, we explore the usefulness of NLP
for infection-related prediction task by focusing on

ICU stay

Collect routine clinical 
measurements and notes

Antibiotic administration

Bacterial 
infection 
prediction

ICU patients

Figure 1: Clinical text is integrated with clinical mea-
surements to enhance the early prediction of bacterial
infection, potentially helping inform clinical decisions
regarding shortening the duration of unnecessary an-
tibiotics to reduce risk of adverse patient outcomes and
antimicrobial resistance.

BI prediction in critically ill patients. We follow
an existing study (Eickelberg et al., 2020) on BI
prediction that relies on a range of clinical measure-
ments as features, and we compare it with common
NLP models that rely solely on routinely collected
clinical text (illustrated in Figure 1). We then use
the best performing text encoder to develop mul-
timodal fusion models for BI prediction, which
obtains the state-of-the-art result. Finally, we study
the applicability of NLP models for mortality pre-
diction in different patient cohorts, showing that
the model trained using patients with BI is more
robust to data shift.

2 Related Work

Many studies have developed machine learning
models to predict diseases caused by bacterial in-
fections, with urinary tract infection (Taylor et al.,
2018; Dhanda et al., 2023) and sepsis (Liu et al.,
2019; Moor et al., 2019) being the two most promi-
nent examples. Early identification of these dis-
eases is helpful, and sometimes essential, for clini-
cians to arrange lifesaving treatments. These stud-
ies typically use clinical measurements as features
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for model development and may sometimes de-
rive features from text as a supplement (Goh et al.,
2021; Yan et al., 2022). Previous work studying
BI prediction used clinical measurements (Eickel-
berg et al., 2020), and this was recently extended
in a multicenter study (Eickelberg et al., 2023). Al-
though text has been applied to predict specific
diseases or organisms (Zhang et al., 2020), the con-
tribution of text to BI prediction in general remains
understudied.

Many previous work shows NLP models are ef-
fective for various clinical predictive tasks (Seinen
et al., 2022; Liu et al., 2022a). Typical early pre-
diction targets include patient mortality, length of
stay in the hospital, readmission, diagnosis groups,
or specific diseases. Multimodal fusion of differ-
ent modalities in the EHR also shows promise in
improving classification performance, such as com-
bining clinical notes 1 and measurements (Deznabi
et al., 2021; Soenksen et al., 2022). While pre-
vious works tend to focus on a specific type of
text encoder or fusion mechanism to compare with
unimodal modeling, the impact of varying these
configurations on performance is not well under-
stood.

The transferability of AI or ML models for clin-
ical care is an important topic since many factors
in healthcare can cause data shift (Finlayson et al.,
2021). Applying models across different patient
cohorts is also important in low-resource patient
groups and to ensure fairness (Amir et al., 2021;
Han et al., 2021). For example, a recent study
shows that model trained in adult patients can be
successfully transferred to pediatric patients (Lem-
mon et al., 2023). More studies are needed to under-
stand the generalisability of models in healthcare.

3 Methods and Experiments

3.1 Task and cohort extraction
We follow Eickelberg et al. (2020) to extract a co-
hort of adult patients from the MIMIC-III ICU
database (Johnson et al., 2016) suspected of having
BI in the early phase of ICU admission. Suspicion
is defined as 1) receiving at least one antibiotic
within 96h after admission to the ICU and 2) having
a microbiology culture tested within 24h before or
after antibiotic use. For antibiotics, a duration over
96h is considered prolonged antibiotic use. For mi-
crobiology cultures, a positive culture means that

1We use the terms of clinical note and clinical text inter-
changeably in this paper.

a bacterial organism is detected 2; thus, infection
occurs. Unlike works focusing on specific bacteria,
such as E. coli, we consider all possible bacteria
identified from microscopy. Then, the binary clas-
sification task of BI considers prolonged antibiotic
use and positive microbiologic culture as positive
and short use and negative culture as negative. We
follow the open source implementation to construct
and process the cohort 3.

For input, we extract clinical measurements and
clinical notes for patients suspected of BI. We fol-
low Wang et al. (2020) to extract clinical mea-
surements within the 24h data collection window
from the first antibiotic dose after ICU admission.
These measurements include routinely collected vi-
tal signs (such as heart rate and blood pressure) and
laboratory results (such as white blood cell counts).
We refer the readers to Wang et al. (2020) for a
complete list of 104 clinical measurements. We did
not experiment with longer windows as in (Eick-
elberg et al., 2020) for the purpose of this study.
For clinical notes, to consider context before ICU
admission, we collect all notes written before the
24th hour of ICU admission, such as those written
when the patient was admitted to the hospital but
not yet transferred to the ICU. We remove patients
who do not have any notes recorded from the co-
hort. We then follow Eickelberg et al. (2020) to
create train/validation/test sets with 70/10/20 ratio,
where we ensure that a patient with multiple admis-
sions appears only in one set. The statistics of the
datasets are presented in Table 1.

Train Validation Test

Num of cases 5937 984 2972
BI rate 19.6% 20.7% 19.6%
Mortality rate 11.7% 12.5% 10.3%
Avg num of notes 13.4 13.6 14.4
Avg num of words 4164.7 4114.2 4596.1

Table 1: Statistics of the BI cohort.

3.2 Data representation and modeling

3.2.1 Modeling clinical measurements
The structured clinical measurements are pre-
processed and formatted as time series following
the existing benchmark (Wang et al., 2020). We

2Common contaminations are controlled by counting cer-
tain bacteria twice, i.e., Staphylococcus.

3https://github.com/geickelb/
mimiciii-antibiotics-opensource
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Model AUC-ROC AUC-PRC
Measurement-based model 0.772 (0.0029) 0.505 (0.0029)
Text-based models Default ordering Reverse ordering Default ordering Reverse ordering
TextCNN 0.706 (0.0041) 0.759 (0.0054) 0.346 (0.0062) 0.434 (0.0088)
BiLSTM 0.585 (0.0056) 0.646 (0.0108) 0.245 (0.0023) 0.289 (0.0093)
BERT 0.635 (0.0118) 0.717 (0.0074) 0.275 (0.0082) 0.399 (0.0145)
BERT+LSTM 0.703 (0.0099) 0.715 (0.0041) 0.337 (0.0112) 0.391 (0.0049)
Longformer 0.629 (0.0057) 0.743 (0.0026) 0.281 (0.0016) 0.437 (0.0032)

Table 2: Results of the measurement-based model and different NLP models for BI prediction. The best scores are
bolded, and the second best are underscored. All scores are averaged over five runs with different random seeds.

use GRU-D in our study (Che et al., 2018), which
is a strong baseline for classifying physiological
time series (Rubanova et al., 2019).

3.2.2 Modeling clinical text

We consider a variety of NLP models to process
clinical notes for the BI prediction task.

TextCNN: We follow the standard implementa-
tion of the classic text CNN model with multiple
filters (Kim, 2014). Pretrained, in-domain word em-
beddings are used (Zhang et al., 2019). All notes
are concatenated as a single text string as input.

BiLSTM: Previous work shows that bidirec-
tional LSTM can be a competitive baseline even
compared with more complex models for text clas-
sification (Adhikari et al., 2019). The input text is
processed as for TextCNN.

BERT: We fine-tune BERT (Devlin et al., 2019)
for BI classification. As pretrained BERT has an
input cap of 512 tokens, the notes are concatenated
and then truncated to fit this size. We use the in-
domain ClinicalBERT (Alsentzer et al., 2019).

BERT+LSTM: BERT is used to encode each
clinical note (first 512 tokens) and form a time
series for modeling with another encoder (Zhang
et al., 2020; Liu et al., 2023). We adopt this hier-
archical strategy by encoding notes with Clinical-
BERT to get [CLS] token representations to then
model with an LSTM.

Longformer: To expand the capacity of pre-
trained language models, we fine-tune Long-
former (Beltagy et al., 2020) with an input size of
2048 tokens. We also initialize it with in-domain
pretrained weights (Li et al., 2023).

We tested two methods of ordering clinical notes.
The first is the default ordering following temporal
order. The other is to reverse the temporal ordering
so that the most recent note appears first. Having
the most updated notes appear first can be impor-

tant for models with limited context length.

3.2.3 Multimodal fusion
Clinical measurements and text are combined to
see if BI prediction performances can be improved.
The measurements are again encoded by GRU-D.
We follow previous work (Liu et al., 2023) to adopt
BERT+LSTM as text encoder and then fuse with
GRU-D using late fusion (Huang et al., 2020) or
the attention-based fusion mechanism (Liu et al.,
2023). Finally, to obtain the best result and explore
whether text encoder selection matters, we select
the best NLP model from the models we examined
and combine it with measurement using late fusion.

3.3 Experiments

We use the area under the receiver operating curve
and the precision recall curve (AUC-ROC and
AUC-PRC) as metrics to evaluate the performance.
We perform early stopping based on AUC-ROC
(main metric) in the validation set if the score
plateaus for more than five epochs for CNN and
LSTM models. We tune hyperparameters for all
models with grid search (see search space in the
Appendix A). After finding the best configuration,
the model is trained using five random seeds, whose
results in the test set are averaged and presented as
mean and standard deviation.

4 Results and Discussion

4.1 Modeling clinical measurement is overall
better than text for BI prediction

We present the modeling results using a single
input modality in Table 2. The first observation
is that our implementation of GRU-D using mea-
surements from the 24h data collection window
achieves a similar performance in Eickelberg et al.
(2020), where their AUC-ROC results with differ-
ent classifiers range from 0.763 to 0.776, indicat-

120



ing that our experimental setup is consistent with
previous work. We then find that the measurement-
based model performs better than all the NLP mod-
els examined. This trend is similar to other clini-
cal prediction tasks, such as mortality prediction,
where structured data can outperform text (Hsu
et al., 2020). This is likely because measurements
can capture detailed and quantitative fast-changing
physiology in patients, not consistently found in
clinical notes. (Gong and Guttag, 2018).

4.2 Choice of NLP models is important for BI
prediction

Nevertheless, we find text-based models can
achieve competitive performances for BI predic-
tion, especially when we reverse the order of notes.
TextCNN and Longformer obtain the second best
results with reversed note ordering for AUC-ROC
and AUC-PRC, respectively, and approach the best
results from the measurement-based model. Re-
verse ordering (i.e., using the lastest portions of
clinical notes) brings significant benefits for mod-
els with limited context length (i.e., BERT and
Longformer), which means having more sophisti-
cated methods to select specific portions of clinical
notes (Zheng et al., 2023) or remove text redundan-
cies (Liu et al., 2022b) can potentially bring further
performance boosts for BI prediction – an avenue
for furture investigations.

In addition, we also observe the significant dis-
parity between different NLP models. For exam-
ple, BiLSTM obtains unexpectedly poor results
compared to other methods. This may indicate
that RNN is not suitable for clinical text (Boag
et al., 2018) as term-level triggers may be sufficient,
which can be better identified by CNN. Our results
indeed show that TextCNN performs well under all
settings, except when compared with Longformer
under AUC-PRC. The pretrained transformer mod-
els overall underperform the simpler CNN model
despite having adapted to the clinical domain and
prolonged input context (i.e., Longformer). We
suspect that this is because the vocabularies used
by ClinicalBERT and ClinicalLongformer are not
domain-specific (Koto et al., 2021) and do not han-
dle the noise in the clinical text well. In addition,
we follow Li et al. (2023) to decide the hyperpa-
rameter space when fine-tuning Longformer. It is
possible that Longformer can achieve better results
with more computation resources and further hyper-
parameter tuning. In this study, we have choosen

TextCNN to balance performance and efficiency
for BI prediction, and used it in combination with
clinical measurements for multimodal fusion.

Model AUC-ROC AUC-PRC

Measurement-based model 0.772 (0.0029) 0.505 (0.0029)

Fusion with note representations encoded by BERT
Late fusion 0.774 (0.0019) 0.508 (0.0049)
Attention-based fusion 0.781 (0.0045)∗ 0.508 (0.0077)

Fusion with the best text-based model
Late Fusion 0.799 (0.0047)∗ 0.541 (0.0052)∗

Table 3: BI prediction results using both measurement
and text. Scores with ∗ denote statistically significant
improvement compared to measurement-based model
(p-value < 0.01).

4.3 Fusion with proper NLP model improves
BI prediction

Table 3 presents the results of combining measure-
ment and text for the prediction of BI. We follow
previous works to use BERT+LSTM as text en-
coder (Liu et al., 2023), but it provided limited ben-
efit even with more complicated attention-based
fusion mechanisms. It shows that BI prediction is
different from common clinical prediction tasks in
utilizing information from the two modalities. Also,
the text-based BERT+LSTM alone achieves subop-
timal results, which is likely the factor that limits
its fusion performance. We thus select the best text
encoder from Table 2 (TextCNN with reverse note
ordering) and combine with measurement-based
model using late fusion, which obtains significantly
improved performances (p-value < 0.01, T-test).
This shows that finding a proper NLP encoder for
multimodal fusion can bring considerable boost to
the early prediction of BI.

4.4 BI cohort is robust to training NLP
models for risk prediction

Finally, we use the BI cohort to train an NLP model
to predict in-hospital mortality and compare with
another model trained using a general cohort of
ICU patients, who may or may not have bacterial
infection. The size of the GENERAL cohort is about
4.5 times that of the BI cohort (more details in Ap-
pendix B). Patients in each of the train, validation
and test sets of the BI cohort appear in the corre-
sponding set of the GENERAL cohort. We again use
TextCNN with reverse ordering for model training
and evaluation.

Table 4 shows the results of the mortality pre-
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Model AUC-ROC AUC-PRC

Model trained using BI cohort
BI test set 0.814 (0.0085) 0.377 (0.0121)
GENERAL test set 0.809 (0.0044) 0.368 (0.0106)

Model trained using GENERAL cohort
GENERAL test set 0.893 (0.0016) 0.592 (0.0031)
BI test set 0.757 (0.0134) 0.481 (0.0241)

Table 4: The mortality prediction results on two cohorts.

diction in the two cohorts. Models trained on the
BI cohort and the GENERAL cohort achieve the
AUC-ROC of 0.814 and 0.893 in their correspond-
ing in-distribution test sets. The model trained on
GENERAL appears to be more capable given that
it has seen more samples. We then apply these
models to the test sets from the different cohorts.

Now we see that the model trained on GEN-
ERAL performs significantly worse on the BI test
set (0.893 to 0.757), while the BI model maintains
its performance (0.814 to 0.809). This has two
implications. First, it shows that a risk prediction
model trained using a general population cannot
be directly applied to patients with bacterial infec-
tion (AUC-ROC drops from 0.814 to 0.757) and a
dedicated model needs to be trained. This relates
to the effect of data bias on subpopulations that
causes models to learn shortcuts and perform dif-
ferently across various groups of patients (Brown
et al., 2023). Second, patients with bacterial infec-
tion turn out to be a valuable resource for training a
robust risk prediction model that can be applied to
a broader cohort. We consider that this finding war-
rants future investigation of the factors that lead to
the difference and ways to develop a more transfer-
able clinical prediction model for different groups
of patients.

5 Conclusion

Clinical text can help predict BI in critically ill pa-
tients and NLP models trained using BI patients
can be transported to those without BI. NLP and
multimodal models can develop better data-driven
strategies to stratify the risk of BI in patients, which
can be compared with prompt-based large lan-
guage models (LLMs) in future work. Clinical
co-development will be pursued to ensure that the
developed models are optimised for clinical work-
flow, capable of refining antibiotic therapy in the
absence of test results, and have the potential to
enhance antimicrobial stewardship, thereby miti-

gating antimicrobial resistance. In the future, we
would like to investigate how text can help improve
BI treatment, such as antimicrobial stewardship
and predict potential antimicrobial resistance.
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For TextCNN, BiLSTM, and BERT+LSTM mod-
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B Constructing GENERAL Cohort
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Train Validation Test

Num of cases 30162 4475 10320
Mortality rate 10.2% 10.4% 9.6%
Avg num of notes 8.7 8.6 8.7
Avg num of words 2440.3 2432.8 2468.4

Table 5: GENERAL cohort statistics.
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Abstract

Measuring empathy as a natural language pro-
cessing task has often been limited to a subjec-
tive measure of how well individuals respond
to each other in emotive situations. Cognitive
empathy, or an individual’s ability to accurately
assess another individual’s thoughts, remains a
more novel task. In this paper, we explore natu-
ral language processing techniques to measure
cognitive empathy using paired sentence data
from design interviews. Our findings show that
an unsupervised approach based on similarity
of vectors from a Large Language Model is sur-
prisingly promising, while adding supervision
does not necessarily improve the performance.
An analysis of the results highlights potential
reasons for this behaviour and gives directions
for future work in this space.1

1 Introduction

User interviews are an important part of modern
product development frameworks as meeting user
needs defines success in Engineering Design. Typi-
cally these interviews, conducted between a poten-
tial user and a designer, are used to either gather
knowledge about the user’s problem or their expe-
riences with current products, or to gain feedback
on the product as it is being developed. However
it remains a question as to whether these processes
improve user understanding and lead to good out-
comes, and the factors which contribute to these.

One such factor regards whether or not design-
ers are able to understand the user during these
interviews - this is referred to as ‘empathic under-
standing’ (Surma-aho and Hölttä-Otto, 2022). If a
designer is able to grasp the user’s experiences and
thoughts, does this necessarily lead to better out-
comes? To answer this question, Chang-Arana et al.

1Code used for our experiments is available at https:
//github.com/owowouwu/empathic-accuracy.
Data is available under request to Katja Hölttä-Otto,
katja.holttaotto@unimelb.edu.au.

(2020) developed a method borrowed from the so-
cial sciences to quantitatively measure empathic
understanding through interviews. The method re-
quires laborious manual annotation, involving the
original user-designer pair and additional raters.

In this paper, we propose to use natural lan-
guage processing (NLP) approaches to automate
the measurement of empathic understanding in in-
terviews, especially due to the advent of out-of-the-
box Large Language Models (LLMs). This can
not only streamline the process of analysing inter-
views in Engineering Design but also provide a test
bed for automatically measuring empathy in con-
versations, an open problem in NLP. Automated
evaluation in this way may be useful more broadly
in other fields, where empathy is highly valued,
such as teaching.

2 Background and Related Work

Work measuring empathy in NLP has been ex-
plored, with open domain dialogue data such as
EmpatheticDialogues (Rashkin et al., 2019)
existing as benchmarks for the task. Much work
has been done detecting how empathy is expressed
in dialogues in a variety of contexts from health-
care (Sharma et al., 2020; Xiao et al., 2015) in
both speech and text, as well as in online communi-
ties (Zhou and Jurgens, 2020). However the theme
of these works is primarily focused on empathy
in the emotional sense. That is, there is a large
focus on studying how individual express empa-
thy towards others through dialogues. A common
example is choosing the ‘right’ emotional words
to comfort another individual in distress, guiding
work in generating empathetic responses (Welivita
et al., 2021).

On the other hand, in a review, Lahnala et al.
(2022) points out that tasks revolving around cogni-
tive empathy are not as prevalent in the NLP litera-
ture. While empathy is a complex concept, loosely
we can distinguish between emotional empathy as
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Figure 1: Overview of the collection of empathic accuracy ratings for interviews. Stage 1 represents the original
user-designer interview, which is recorded. The same user then write their thoughts in Stage 2, with the designer
aiming at guessing these thoughts in Stage 3. The annotation process finishes at Stage 4, where a set of human raters
(3 in this case) assign a score to each aligned thought and guess, with the final empathic accuracy score being the
average of these ratings.

processing and responding to another’s emotions
effectively, and cognitive empathy as being able to
infer their thoughts in a broader sense (Cuff et al.,
2016). One may be able to identify how another
person is feeling and act appropriately, but may not
necessarily know what the other person is thinking.
A key distinction between our work and more com-
mon tasks involving ‘empathy’ in NLP is that we
primarily try to measure cognitive empathy from
pairs of thoughts.

3 Data

The dataset was collected from user-designer in-
terview experiments in Salmi et al. (2023). Fig-
ure 1 gives an overview of the annotation process
for empathic accuracy ratings. Each interview was
recorded in video format. Interviewees were played
back the recording and were asked at any time to
pause the video and write down their thoughts. The
same recording was played back to the interviewer,
where they were tasked with guessing the user’s
thoughts in those moments.

In total, 46 users were interviewed by 3 design-
ers, although not every user and designer were
paired. Each instance of the dataset is indexed by
a (user, designer) pair and contains a timestamped
sentence pair - one being the user’s thoughts at
that particular moment, and the other being a guess
of the user’s thoughts by the designer at the same
moment. Each pair is rated by 3 judges with a
three-level Likert scale ({0, 1, 2}), with the aver-
age taken as a score indicating the accuracy of the
designer’s prediction. The designer is also tasked

with predicting the user’s self-evaluated tone of
speech at that moment.

Figure 2: Example instances of data.

In this work, we focus on automating the rating
stage (Stage 4 in Figure 1). Each instance contains
a sentence pair (a user thought paired with a de-
signer guess) as the input and the averaged rate
given by the judges as the output. Figure 2 shows
two such instances as an example. The inputs were
preprocessed by removing text indicating the sub-
ject ("he/she/I was:") at the start of the string. We
also rescaled the ratings to the unit interval. Table
1 details the statistics of our dataset.

4 Methods

All our models use Sentence BERT (Reimers and
Gurevych, 2019, SBERT) as the LLM backbone,
generating two embedding vectors for each pair
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Designer Instances Avg. Score
1 120 0.414
2 129 0.519
3 200 0.398

All 449 0.437

Table 1: Summary statistics of our dataset. For each
designer, we report their corresponding total number of
sentence pairs and its average similarity score.

of user thought and designer guess. Experiments
with in-domain supervised models were performed
using 10-fold cross validation. For a sound com-
parison, we use the same 10-fold setup for the un-
supervised and out-of-domain models, using only
the testing folds for evaluation.

Unsupervised. Our first approach does not em-
ploy any training: we calculate the cosine similarity
between the two embedding vectors and report the
result as the rating.

In-Domain Supervised. Here we employ a stan-
dard cross-validation procedure, using 9 folds as
training data. Our main approach finetunes a
SBERT regression model following the original
“siamese” method from (Reimers and Gurevych,
2019), which uses the cosine similarity between
the embedding vectors as the regression output. In
addition, we also employed SBERT as a feature
extractor and two off-the-shelf regressors as addi-
tional models: a Gaussian Process (Rasmussen and
Williams, 2006, GP) with an RBF kernel and a
Multilayer Perceptron (MLP). Each input uses the
concatenation of the SBERT vectors obtained from
the user thought and the designer guess, plus the
vector obtained from their absolute difference. On
average, each training set contains 400 pairs.

Out-of-Domain Supervised. Finally, we also
tested with a supervised approach trained on out-
of-domain data. The rationale is that the rating
can be framed as a Semantic Textual Similarity
problem (Corley and Mihalcea, 2005, STS). This
raises the question of whether we can employ ex-
isting STS data to create a good regressor without
requiring any initial ratings for training. For these
experiments, we used the widely available STS-B
(Cer et al., 2017) dataset, containing approximately
6000 pairs. We used the same models as in the
in-domain experiments.

5 Results

Our main results are shown in Table 2, using both
Pearson’s correlation and Root Mean Squared Er-
ror as evaluation metrics. As expected, the fine-
tuned model on in-domain data gives the best per-
formance. However, notably, it is not significantly
better than the unsupervised model, potentially due
to the limited amount of training data. This is
further evidenced by the poor performance of the
off-the-shelf regressors.

The models trainedd on the out-of-domain STS-
B data did not outperform the unsupervised ap-
proach for any regressors. We believe this is due
to significant differences in the STS-B and the In-
terview data. While both can be interpreted as
sentence similarity, the pairs present in STS-B
are much shorter and use simpler language, com-
pared to the more complex sentences present in our
dataset. While we were aware of this important do-
main difference, we still expected the performance
to be better than the unsupervised approach, but
our findings showed otherwise.

It is important to note that a Pearson score of
0.66 already demonstrates good prediction perfor-
mance. Performance improvements could be ob-
tained by adding in-domain training data and fur-
ther model tuning. However, these results are al-
ready promising from an application perspective
and could potentially lead to a reduction in human
labour for obtaining empathic accuracy scores.

6 Qualitative Analysis

Here we will conduct further analysis on our data
to understand the performance of our models under
our task. We summarise three findings that could
lead to further improvements in the prediction task.

Lack of Non-textual Context Textual similar-
ity tasks rely on the meaning and context within
the sentence itself, but in our case did not contain
the extra information that raters may have when
scoring pairs of text. The thoughts are often writ-
ten down in an ad-hoc and conversational manner,
containing implied information around the topic or
interview itself that is able to be inferred by the
raters, but which models which rely on complete
information fail to do. This causes a mismatch be-
tween true scores and predicted scores. Our first
instance in Table 3 shows this, as the designer is
implicitly referring to the "AI system" that the user
is mentioning, and is thus scored highly by the
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Model
STS-B Test Interviews

Pearson↑ RMSE↓ Pearson↑ RMSE↓
Unsupervised
Cosine Similarity w/ SBERT 0.836 0.225 0.662 ± 0.060 0.227 ± 0.015

In-Domain Supervised
Gaussian Process - - 0.562 ± 0.102 0.234 ± 0.022
Multilayer Perceptron - - 0.481 ± 0.153 0.263 ± 0.033
Finetuned SBERT - - 0.680 ± 0.050 0.215 ± 0.019

Out-of-Domain Supervised
Gaussian Process 0.828 0.171 0.534 ± 0.074 0.240 ± 0.016
Multilayer Perceptron 0.800 0.191 0.515 ± 0.123 0.252 ± 0.028
Finetuned SBERT 0.858 2.424 0.618 ± 0.061 0.226 ± 0.017

Table 2: Summary of results. RMSE denotes root mean squared error. For the interview data, we report the average
and standard deviation over 10 folds.

rater, but SBERT fails as in a vaccuum these two
sentences do not have the same meaning without
knowing what the designer refers to.

User: thinking that this is quite hard to do in
some kind of ai system
Designer: its technically hard to detect pedes-
trians
True Score: 0.833
Predicted Score: 0.156

User: you could just ask me what you want me
to provide
Designer: feeling confused about the question
and didn’t know what answers the interviewer
wants
True Score: 0.833
Predicted Score: 0.249

Table 3: Example predictions for interview data.

Inconsistent Points of View Within our data it
is often the case that the two pairs of text are writ-
ten from two different points of view, resulting in
sentences that may have similar content, but have
different meaning. However they may still be rated
highly because the designer, in their own writing,
has effectively guessed the user’s thoughts, even if
they are not writing the thoughts from the perspec-
tive of the user.

Judge Scoring Our methods also tend to over-
estimate the scores in cases where the context or

topic that both the designer and user are thinking of
are the same, but the actual user text was different.
For example, because the interviews were related
to driving, both the user and designer wrote down
thoughts related to driving, but these thoughts did
not necessarily contain the same idea. In these
cases, the human judges tended to more harshly
assign scores of 0 whereas our system tended to
provide a more soft assignment. This is a com-
mon problem of standard regression models, which
are unable to predict extreme values outside a cer-
tain range. Future work should carefully consider
how to penalise the scores based on how the two
sentences diverge in actual meaning.

7 Conclusion

We introduce a novel task of predicting an individ-
ual’s cognitive empathy as scored by their ability to
predict, in text, the thoughts of another individual
using a dataset from design engineering interviews.
Using this data we demonstrate the performance
and limitations of current state of the art models
on our task. Our analysis shows that this problem
poses unique challenges due to the unique structure
and missing context of user written thoughts.

Initial directions for future work are based on
our analysis in Section 6. Incorporating context
from interview transcripts is an important direction,
as well as improved regression models that can bet-
ter predict extreme values. A more challenging,
longer term goal is the prediction of empathic ac-
curacy directly from interviews, without requiring
user thoughts and designer guesses. This would
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effectively bypass Stages 2 and 3 in Figure 1, dras-
tically reducing annotation costs and potentially
enabling real-time empathy feedback during an
interview. We believe this is a much harder prob-
lem, but that nevertheless would lead to benefits to
not just our task in engineering design, but lead to
novel advances in other tasks in NLP.
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Abstract

Named entity recognition (NER) in clinical
documentation is often hindered by the use of
highly specialised terminology, variation in lan-
guage used to express medical findings and
general scarcity of high-quality data available
for training. This short paper compares a Con-
ditional Random Fields model to the previously
established dictionary-based approach and eval-
uates its ability to extract information from a
small corpus of annotated pathology reports.
The results suggest that including token de-
scriptors as well as contextual features signif-
icantly improves precision on several concept
categories while maintaining the same level of
recall.

1 Introduction

Invasive fungal infections (IFIs) are a significant
medical concern, particularly, among immunocom-
promised individuals. These infections, caused by
fungal pathogens that breach the body’s primary
barriers and infiltrate deeper tissues or dissemi-
nate through the bloodstream, can lead to severe
morbidity and heightened mortality rates. Early
detection and appropriate antifungal treatment are
paramount, but they may be difficult to identify in
clinical populations (Even et al., 2011).

To support IFI surveillance, Rozova et al.
(2023b) sought to establish an automated system to
identify markers of IFI in cytology and histopathol-
ogy reports. The authors introduced a corpus called
CHIFIR (Rozova et al., 2023a), the Cytology and
Histopathology Invasive Fungal Infection Reports,
to support the development and evaluation of NLP
methods for concept recognition of clinical con-
cepts relevant to IFIs.They constructed an anno-
tation framework to detect specific terms directly
indicative of a confirmed IFI diagnosis. Central
to their methods was a dictionary-based approach,
which relied on exact term matches in texts.

However, the dictionary-based approach has sev-
eral limitations:

• Lexical variation: the same entity can be de-
scribed in different ways which complicates
the task of exact matching. As an illustration,
while "lung" is categorized as Positive, its syn-
onym "pulmonary" is not recognized by the
dictionary.

• Context is paramount: a term can convey dif-
ferent meanings based on its surrounding text
and where in the report it is located. For in-
stance, while "cryptococcal organism" is clas-
sified as "Fungus", the term "organism" alone
may refer to bacteria, fungi, etc.

In contrast, Machine Learning (ML) algorithms,
when compared with dictionary methods, present a
promising alternative. These algorithms have the
capability to learn the patterns of usage of relevant
concepts or entities, based on consideration of the
context of words.

In this work, we aim to explore the effectiveness
of the ML approach by applying Conditional Ran-
dom Fields (Lafferty et al., 2001) to the CHIFIR
dataset and comparing its performance with the
original dictionary-based solution.

The following sections will delve deeper into the
methodology and outline the results of this compar-
ison, highlighting the advantages of CRF over the
dictionary approach.

2 Background

Histopathology reports are structured documents
that outline findings from microscopic examination
of biopsied tissue. The language used is special-
ized, often employing a combination of medical
terminology, abbreviations, and sometimes subjec-
tive descriptions based on the pathologist’s observa-
tions and interpretations. The complexity and vari-
ability of the narrative, which can differ between
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pathologists and institutions, make standardization
difficult. Subtle nuances and contextually driven in-
terpretations are pivotal in histopathology, making
it challenging for algorithms to consistently inter-
pret and draw accurate conclusions. Moreover, the
occasional use of ambiguous or equivocal terms
to describe uncertain or borderline findings can
further complicate machine interpretation.

Extracting relevant concepts from clinical re-
ports is part of a broader field of information
extraction (IE). Several rule-based systems and
dictionary-based entity recognition tools have been
proposed offering more flexibility to combat the
inherent variability in language. For instance, Funk
et al. (2014) compares a ConceptMapper (Tanen-
blatt et al., 2010) based system with MetaMap
(Aronson and Lang, 2010). While these methods
offer reliability and precision, they still lack the
ability to make context-specific interpretations.

In this paper, we will focus on applying Condi-
tional Random Fields (CRFs) (Sutton et al., 2012;
Sha and Pereira, 2003; Lafferty et al., 2001), which
have been successfully applied to the related task
of named entity recognition. CRFs are a class
of statistical modeling methods and are particu-
larly well-suited for sequence labeling tasks. CRFs
consider the entire sequence, allowing for a more
comprehensive contextual understanding. Addi-
tionally, CRFs are capable of ingesting a diverse
set of features which can be helpful in dealing with
linguistic nuances and inconsistencies across dif-
ferent reports. The model’s flexibility enables it to
effectively handle ambiguities in clinical narratives.
One successful example of CRF implementation
for biomedical entity recognition is BANNER (Lea-
man and Gonzalez, 2008).

It is worth noting that the rapid advancements
in deep learning have led to the emergence of
more sophisticated models, such as LSTMs and
Transformer-based architectures. Such models can
automatically extract features and have demon-
strated superior performance across a variety of
NLP tasks (Chiu and Nichols, 2016) (Santos et al.,
2015). Recent literature has suggested that the
use of contextualised lexical representations (e.g.
in BERT (Vaswani et al., 2017)) as well as the
ability to capture long-range dependencies and se-
mantic relationships in text (Lample et al., 2016)
may be particularly useful in the complex and nu-
anced domain of histopathology reports. However,
such models might not be effective in learning IFI-
specific terms because of the small and specialised

nature of the CHIFIR dataset.

3 Methods

3.1 Dataset

The dataset employed for this research is the CHI-
FIR corpus (Rozova et al., 2023a)1, consisting of
283 cytology and histopathology reports pertaining
to 201 patients.

A characteristic feature of the cytology and
histopathology reports is their extended textual
format, with CHIFIR reports having an average
character count of 1,384. These reports have a
semi-structured layout, with headers delineating
various segments for clinical annotations, macro-
scopic assessments, microscopic evaluations, and
conclusive diagnoses.

3.2 Preparation of dataset

In this study, partitioning into development (n=230)
and test (n=53) sets was replicated exactly from the
original study. To ensure the results are comparable
to the original study, the same stratified group k-
fold cross-validation with 10 splits was applied to
the development set.

Using gold standard annotations, we identified
known concepts in text reports and labeled them
with the corresponding categories (Table 1). The
class distribution of labels is displayed in Table 2.
The remaining text was tokenized into individual
tokens, and each token was labeled with a default
0 label.

3.3 Model & Features

We utilized CRFSuite (Lafferty et al., 2001) as an
implementation for the model and a proper set of
features is needed to capture the underlying pat-
terns in the data. We expect these features should
be able to generalize, i.e., correctly discriminate
the entities on new samples.

We included features that offer information on
how a word appears in the text (i.e., capitalization,
prefixes, suffixes) and its context. We conducted
an empirical evaluation to refine the feature set:
we experimented with adding semantic features,
such as POS tags and special characters; sentence-
level position features, such as if the word is at
the start or the end of a sentence; and word-level
context features, such as previous word and next
word. Contrary to our intuition, the inclusion of

1https://physionet.org/content/
corpus-fungal-infections/1.0.0/
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Concept Description

ClinicalQuery Clinical query of IFI indicates the presence of an IFI.
FungalDescriptor Descriptor for the presence of fungal organism.
Fungus Mentions of specific fungal organisms.
Invasiveness Descriptors for the depth and degree of fungal invasion into tissues.
Stain Histological stains used to visualize fungal elements.
SampleType Specification of the sampled organ, site, or tissue source.
Positive Affirmative expression.
Equivocal Expression of uncertainty.
Negative Negating expression.

Table 1: List of concepts related to the IFI diagnosis.

Concept Total #reports with at #unique Lexical
occurrences least one occurence phrases diversity

ClinicalQuery 65 53 36 0.55
FungalDescriptor 282 128 67 0.24
Fungus 106 60 15 0.14
Invasiveness 37 12 25 0.68
Stain 172 100 13 0.08
SampleType 198 179 55 0.28
Positive 118 42 37 9.31
Equivocal 7 5 5 0.71
Negative 152 104 11 0.07

Table 2: Summary statistics for the IFI-related concepts in the CHIFIR dataset.

those features either did not improve or worsened
the performance of the model. The final list of
included features appears in Table 3.

3.4 Experimental Framework

We tokenize each report and extract relevant fea-
tures as described above. To tune hyperparameters
and refine the feature set, we used cross-validation
whereby within each fold, a CRF model is initial-
ized with ‘lbfgs’ algorithm and a maximum itera-
tion of 100. The final model with hyperparameters
c1=0.01 and c2=0.01 was trained on the entire train-
ing dataset to generate predictions on the test set.

For evaluation, we used full-term identification.
We calculated the number of true positive, false
positive, and false negative concepts in each report
by comparing the predictions to the gold standard
annotations. For each concept category, we summa-
rize model performance using precision and recall,
and record incorrectly identified concepts for error
analysis.

4 Results

4.1 Overview

Overall, the CRF approach outperformed the
dictionary-based approach utilized in the original
paper (Rozova et al., 2023b). Table 4 shows a sig-
nificantly higher precision in detecting categories
FungalDescriptor, SampleType, Positive, and Neg-
ative. For other concept categories, the CRF model
had on average higher precision although the differ-
ence was not statistically significant. Table 5 shows
that recall is on average comparable to that of the
dictionary-based approach. Table 6 summarises
the performance as F1 score showing significant
improvement in categories SampleType, Positive,
Equivocal, and Negative.

4.2 Strengths

First, let us consider the challenge of lexical varia-
tion. The ability of the dictionary-based approach
to generalize is limited; to make a correct predic-
tion a concept has to appear in the same form as in
the training sample. For our CRF model, we found
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Feature Description

word The word itself.
start_pos and end_pos The start and end position of the word.
is_capitalized Checks if the first letter is capitalized.
is_all_caps and is_all_lower Check for casing details.
capitals_inside Checks if there are capital letters inside the word.
prefix and suffix Use the 3 prefix and 3 suffix characters of each word as context.
has_hyphen Whether the word has hyphens.
is_numeric Whether the word has numeric.

Table 3: List of features.

Concept Precision Precision Precision Precision
CV Dict CV CRF TEST Dict TEST CRF

ClinicalQuery 0.92 (±0.13) 0.83 (±0.20) 1.00 1.00
FungalDescriptor 0.75 (±0.10) 0.92 (±0.05) 0.68 0.98
Fungus 0.82 (±0.30) 0.95 (±0.07) 0.88 0.94
Invasiveness 0.45 (±0.41) 0.69 (±0.41) 0.33 1.00
Stain 0.94 (±0.05) 0.97 (±0.05) 1.00 0.97
SampleType 0.15 (±0.03) 0.92 (±0.08) 0.14 1.00
Positive 0.04 (±0.02) 0.82 (±0.16) 0.03 1.00
Equivocal 0.01 (±0.02) 1.00 (±NaN) 0.00 0.00
Negative 0.14 (±0.04) 0.97 (±0.05) 0.15 1.00

Table 4: Comparison of dictionary and CRF approach precision during cross-validation and on unseen test data.

Concept Recall Recall Recall Recall
CV Dict CV CRF TEST Dict TEST CRF

ClinicalQuery 0.53 (±0.35) 0.72 (±0.20) 0.69 1.00
FungalDescriptor 0.93 (±0.04) 0.90 (±0.05) 0.93 0.96
Fungus 0.92 (±0.15) 0.88 (±0.16) 0.94 0.94
Invasiveness 0.60 (±0.39) 0.63 (±0.30) 0.12 0.50
Stain 0.95 (±0.09) 0.98 (±0.04) 1.00 1.00
SampleType 0.86 (±0.10) 0.81 (±0.11) 0.86 0.79
Positive 0.83 (±0.17) 0.89 (±0.13) 0.73 0.95
Equivocal 0.58 (±0.50) 0.20 (±0.45) 0.00 0.00
Negative 0.98 (±0.05) 0.96 (±0.08) 0.90 1.00

Table 5: Comparison of dictionary and CRF approach recall during cross-validation and on unseen test data.

that about 82% of the correctly predicted concepts
in the test set were exact matches from the training
set, and the rest were variations of known concepts.

The CRF model can identify and combine parts
of annotated concepts. For instance, "branching hy-
phae" was not present in the training set. CRF
generalizes "branching" and "hyphae" by learn-
ing from two concepts in the training data, "acute
angle branching" and "septate hyphae", which
were annotated as FungalDescriptor. The suf-

fix "cosis" was also captured as an indicator of
the Fungus category. The model captures linguis-
tic/capitalization/syntax variations, for instance,
"duodenum" is generalized from "duodenal", and
"groccot" from "Groccot". Besides, CRF demon-
strated the ability to learn complex patterns: "?
infection PJP" is detected based on the FungalDe-
scriptor "PJP" present in the training data and the
fact that a "?" followed by a FungalDescriptor of-
ten makes up a ClinicalQuery. The model captures
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Concept F1 F1 F1 F1
CV Dict CV CRF TEST Dict TEST CRF

ClinicalQuery 0.68 (±0.27) 0.75 (±0.16) 0.81 1.00
FungalDescriptor 0.83 (±0.07) 0.91 (±0.03) 0.79 0.97
Fungus 0.91 (±0.09) 0.90 (±0.09) 0.91 0.94
Invasiveness 0.71 (±0.25) 0.68 (±0.27) 0.18 0.67
Stain 0.94 (±0.05) 0.97 (±0.03) 1.0 0.98
SampleType 0.26 (±0.04) 0.86 (±0.08) 0.24 0.88
Positive 0.08 (±0.03) 0.84 (±0.10) 0.05 0.97
Equivocal 0.05 (±0.03) 1.00 (±NaN) NaN NaN
Negative 0.24 (±0.06) 0.96 (±0.04) 0.26 1.00

Table 6: Comparison of dictionary and CRF approach F1 during cross-validation and on unseen test data.

the intuition that certain labels are more likely to
appear after certain other labels. Lastly, phrases
not present in the training data, such as "punch
biopsies", "pericardium", and "abdomen" were cor-
rectly predicted, showing that the model can make
inferences based on relevant contexts.

Secondly, the model did a generally good job of
addressing ambiguity in the medical text. Words
such as "organism" and "capsule" were consistently
overdetected when using the dictionary-based ap-
proach, resulting in a high false-positive rate. The
CRF model has correctly picked out the relevant
mentions considering their context.

4.3 Weaknesses
In general, the detection of concepts belonging to
SampleType and Invasiveness categories showed to
be the most challenging, making up 45% and 17%
of the total error cases, respectively. The errors
were largely due to the relatively modest size of
the training data, high lexical diversity and fewer
occurrences in the dataset.

The modest recall characteristic of the Inva-
siveness category is likely due to high lexical di-
versity and longer phrases consisting of multiple
tokens. For example, the model failed to clas-
sify phrases "tissue invasion" and "vessel lung
parenchyma infiltrated" as Invasiveness concepts,
even though individual words "invasiveness", "ves-
sel", and "parenchyma" were frequently occurring
in the training data. It is possible that engineering
a more extensive contextual feature set is required
to tackle such cases.

Some words did not appear in the training data
and thus the model may have never learned an ap-
propriate representation. This can be seen in exam-
ples involving both medical terms (e.g., "ileum",

"cyst") and generic English words (e.g., "back",
"leg").

The features used in the model may also occa-
sionally be misleading. For instance, the word
"RUL" is misclassified as Stain because a common
Stain concept "PAS" usually appears in uppercase.
Thus the model may associate the upper case with
that label, illustrating an example of the model giv-
ing form much more weight than context.

5 Conclusion

In conclusion, we have seen that the CRF model
performes better and, in particular, is more success-
ful in tackling the lexical diversity and variation
present in the CHIFIR corpus than the previous
dictionary-based method. Although the model per-
formance still suffers from the small sample size
and challenging lexical diversity cases, we demon-
strated that incorporation of context through the
CRF-based concept recognition model benefits de-
velopment of clinical concept recognition tools for
this corpus. It would also be worth exploring and
comparing this CRF-based approach with more ad-
vanced machine learning methods, which might be
able to learn richer representations from data, and
overcome challenges posed by the variability and
linguistic nuances in histopathology texts better.
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Abstract

WARNING:This paper contains content related
to suicide and self-harm. We explore the rela-
tionship between empathy and toxicity in the
context of online mental health forums. De-
spite the common assumption of a negative
correlation between these concepts (Lahnala
et al., 2022), it has not been empirically ex-
amined. We augment the EPITOME mental
health empathy dataset (Sharma et al., 2020)
with toxicity labels using two widely employed
toxic/harmful content detection APIs: Perspec-
tive API and OpenAI moderation API. We
find a notable presence of toxic/harmful con-
tent (17.77%) within empathetic responses, and
only a very weak negative correlation between
the two variables. Qualitative analysis revealed
contributions labeled as empathetic often con-
tain harmful content such as promotion of sui-
cidal ideas. Our results highlight the need for
reevaluating empathy independently from toxi-
city in future research and encourage a recon-
sideration of empathy’s role in natural language
generation and evaluation.

1 Introduction

Natural Language Processing (NLP) technology
has been instrumental in both the analysis and en-
hancement of online discussions, as exemplified by
its application in platforms like Reddit (Medvedev
et al., 2019). Specifically, the detection of toxicity
in online comments has emerged as a widely em-
braced preventive measure for moderating online
discussions (Lees et al., 2022). On the other hand,
in recent years, there has been a surge of research
interest in NLP on empathy (Raamkumar and Yang,
2022), due to its critical role in human communi-
cation and relationship building (Muradova, 2021;
Sharma et al., 2020).

In the realm of online public discourse analysis,
both toxicity and empathy are frequently studied
and discussed within the broader context of civility
(Friess and Eilders, 2015). While toxicity is typi-

cally characterized as a form of uncivil behavior,
empathy is associated with civil interactions that
contribute to pro-social outcomes. Some research
in the field of NLP has made unexamined implicit
assumptions based on this conceptual contrast. One
such assumption posits a negative correlation be-
tween empathy and toxicity (Lahnala et al., 2022;
Oswald, 2023). On the other hand, studies from
psychology hold mixed views regarding the rela-
tion between the two concepts (Moyers and Miller,
2013; Breithaupt, 2018). While the effect and roles
of both toxicity and empathy are complex, devel-
oping technology founded on unexamined assump-
tions entails the risk of unforeseen consequences.

This study analyses the correlation between tox-
icity and empathy using the human annotated em-
pathy labels of EPITOME, a widely used mental
health subreddit empathetic dataset (Sharma et al.,
2020), and augmenting it with toxicity labels pre-
dicted by two popular APIs. We conduct a quali-
tative analysis of EPITOME responses which are
both empathetic and predicted as toxic. Our key
findings and contributions are:

1. 17.77% of human-identified empathetic re-
sponses classified as toxic/harmful by APIs.1

2. Contrary to intuition, no strong negative
correlation found between API predicted
toxic/harmful labels and human annotated
EPITOME empathetic labels.

3. Qualitative analysis reveals presence of sui-
cidal ideation and the widespread unhelpful
responses, suggesting potential risks in fine-
tuning empathetic language generation with
EPITOME dataset.

2 Related Work

Toxicity is generally defined as language that is
harmful, offensive, or suppressing the expression
of others (van Aken et al., 2018). While earlier tox-

1We validated the quality of predictions in Appendix C.
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icity detection tasks primarily focused on binary
classification (Dixon et al., 2018), more recent stud-
ies have shifted towards incorporating more spe-
cific fine-grained labels, such as personal attacks
(Wulczyn et al., 2017), hate speech (Hartvigsen
et al., 2022) and many more (Price et al., 2020).
Recent developments also encompass toxic span
detection (Pavlopoulos et al., 2021) and implicit,
context-dependent toxicity detection (Hartvigsen
et al., 2022; Anuchitanukul et al., 2022).

Some of these advancements have transitioned
into production as public APIs, such as the Per-
spective API (Jigsaw, 2023), and find practical use
not only in everyday applications like online fo-
rum moderation but also in research fields beyond
computer science, such as political science. How-
ever, some concerns have been raised regarding
the potential inconsistency and oversimplification
in the underlying definitions of toxicity within the
detection models (Fortuna et al., 2020).

Driven by the interest in developing more en-
gaging and supportive AI agents, empathy has
emerged as a prominent theme in recent NLP re-
search (Raamkumar and Yang, 2022). Earlier re-
search on empathy primarily focused on emotional
understanding and reactions, whereas recent works
delve into the cognitive dimensions of empathy,
including perspective-taking (Kim et al., 2021).
While numerous studies aim to generate empathetic
responses resembling human ones, few concentrate
on automated empathy detection. This trend can be
attributed, in part, to empathy’s diverse definitions,
spanning various fields such as cognitive neuro-
science and psychology (Singer and Lamm, 2009;
Cuff et al., 2016). The EPITOME dataset (Sharma
et al., 2020) stands out as the sole dataset to not
only label empathy levels but also annotate em-
pathy across three distinct components: Emotion
Reaction (ER), Interpretation (IP), and Exploration
(EX), encompassing both emotional and cognitive
aspects of empathy.

3 Methodology

In this study, we use the sub-reddit version of the
EPITOME dataset, which was sourced from 55
mental health focused subreddits. The dataset in-
cludes 3081 pairs of support seeker post and peer
support response. Each response message is hu-
man annotated with the levels (None: 0, Weak: 1,
Strong: 2) of the three empathetic components (ER,
IP, EX). Appendix A covers the detailed definitions

and annotation level criteria.

We use two widely-used APIs for harmful and
toxic online content detection, the Perspective API
(Jigsaw, 2023) and OpenAI’s moderation API (Ope-
nAI, 2023). Perspective API is provided by Google
for online content moderation. The underlying
models of the API are trained on online comment
labels from a variety of sources, like Wikipedia.
Given an input message, the API returns continu-
ous scores (0-1) for 6 different toxicity categories.
Besides the score, the API also returns the detected
toxic spans for each corresponding category.

OpenAI’s moderation API was developed pri-
marily for moderating the input and output of their
flagship large language model ChatGPT. With less
emphasis on toxicity per se, the API is designed
to detect harmful and dangerous content. For each
input message, it returns an overall binary flag (0,1)
and 11 continuous category scores (0-1). Appendix
B contains the detailed definitions for the labels of
both APIs.

Using both APIs, we (automatically) anno-
tate the peer support responses in the EPITOME
datasets with toxicity labels. We are primarily in-
terested in empathy/toxicity in EPITOME peer re-
sponses, and so feed only the responses into the
APIs. To clarify, we do not include the support
seeker post as part of the input, and so the clas-
sification is done using only the response. Both
quantitative and qualitative analysis have been con-
ducted based on the scores from the APIs along
with the human annotated EPITOME labels.

To validate the predictions of the two APIs and
ensure the validity of this study, we conducted man-
ual annotation on 50 positive (labeled as toxic by at
least one API) and 50 negative samples (not labeled
as toxic by either API), resulting 0.87 accuracy
(details in Appendix C), suggesting that the toxic-
ity predictions are generally reliable. To provide
a qualitative understanding on these predictions,
we conducted an error analysis and identified that
the predominant error cases (12 out of 13) were
false positive errors. These errors were largely
attributed to the predicted self-harm labels from
the OpenAI’s moderation API (10 out of the 12),
while a smaller subset were related to profanity use
(2 out of 12). Upon further qualitative analysis,
we identified that the error cases frequently fea-
tured lengthy content with mixed intentions. For
instance, these cases often began with individuals
sharing their own suicidal thoughts or experiences
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Label Frequency Percentage

IP(E) 1458 47.32
ER(E) 1047 33.98
EX(E) 480 15.58
Profanity(P) 315 10.22
Toxicity(P) 294 9.54
Self-harm(O) 133 4.32
Self-harm/intent(O) 124 4.02
Insult(P) 61 1.98
Harassment(O) 45 1.46
Threat(P) 35 1.14
Violence(O) 25 0.81

Table 1: Frequency and % contining posts of labels from
the three label groups with frequency > 20.

but subsequently shifted towards discouraging sui-
cide. We also observed that the APIs can at times
exhibit oversensitivity to the presence of specific
keywords like “suicide”, “depression” and “shit”,
even when these terms are used with the goal of
emphasis rather than offence.

4 Quantitative Analysis

We first analyse the frequency distribution of each
toxic/harmful label and its correlation with the
EPITOME component levels. In addition, we in-
spect the difference between the empathetic toxic
text and the non-empathetic toxic text. Hereafter,
for convenience, we will group the labels into three
label groups based on their sources, which are E
(EPITOME), P (Perspective API), and O (OpenAI
moderation API).

4.1 Frequency Analysis

Table 1 presents the label-level frequency distri-
bution across the three label groups. To calculate
these frequencies, we converted the continuous con-
fidence scores within the P and O label groups
into binary values, considering any score greater
than 0.5 as positive. For labels within group E,
we marked both weak (1) and strong level (2) as
presence.

Within the Perspective API labels, “profanity”
and “toxicity” are the two most frequently oc-
curring labels. Conversely, the OpenAI modera-
tion API primarily identifies “self-harm” and “self-
harm/intent” as the most frequent labels. Further-
more, the rarer, more severe forms of toxic or harm-
ful speech labels, such as “hate”, “severe toxicity”
and “identity attack”, exhibit frequencies below 20

Label groups Count

E( EPITOME) 2381
P (Perspective API) 379
O (OpenAI moderation) 248
E ∩ P 288
E ∩O 203
E ∩ P ∩O 68
E ∩ (P ∪O) 423

Total 3081

Table 2: The frequency and intersection frequency of
the three labels groups.

EX(E
)

ER(E
)

IP
(E

)

pr
ofa

nit
y(P

)

th
re

at(
P)

tox
ici

ty(
P)

ins
ult

(P
)

se
lf-h

ar
m(O

)

se
lf-h

ar
m/in

ten
t(O

)

ha
ra

ssm
en

t(O
)

vio
len

ce
(O

)

EX(E)

ER(E)

IP(E)

profanity(P)

threat(P)

toxicity(P)

insult(P)

self-harm(O)

self-harm/intent(O)

harassment(O)

violence(O)

X X X

X X X X

X

X

X

X

X X X

X

X
1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Figure 1: The Pearson correlation between labels from
the three label groups. "X" indicates insignificant corre-
lation (p-value > 0.05).

(<< 1% of instances) and as such are excluded
from our experiments.

Table 2 displays the group-level frequencies for
each group individually as well as their intersection.
We consider a group label as present if at least
one label within the group was labeled as positive.
Overall, we observe a notable presence of toxic or
harmful labels within empathetic instances.

4.2 Correlation Analysis

Figure 1 illustrates the Pearson correlation among
the labels from the three distinct groups. Based on
prior work, we would expect (a) positive correla-
tions between labels from the two toxicity APIs
and (b) negative correlations between toxicity and
empathy labels. Indeed, we note weak to moderate
levels of positive correlations observed between the
labels from the two APIs (P and O groups). How-
ever, the correlations between empathy (E) and
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Type N % Toxic Length

All 3084 8.07 47.01
E ∩ (P ∪O) 423 50.86 58.45
¬E ∩ (P ∪O) 109 70.18 34.69

Table 3: Comparing frequency (N), toxic coverage (%
toxic), and response length in tokens between empa-
thetic and non-empathetic toxic harmful responses.

Label Empathetic Toxic Helpful

Percentage 88% 74% 26%

Table 4: Summary statistics of the quality analysis with
manual annotation.

toxicity (P, O) labels exhibit a mixed pattern, com-
prising both insignificant correlations (indicated
with an ‘x’ in Figure 1) as well as small but sig-
nificant positive and negative correlations. While
EX and ER show some significant but weak neg-
ative correlation with some toxic/harmful labels,
IP has weak positive correlation with most of the
toxic/harmful labels. Overall, this mixed pattern
does not fully align with the common assumption
of negative correlation — or, in other words, that
the presence of empathy suggests a lack of toxicity
and vice versa.

4.3 Toxicity in Empathetic and
Non-empathetic Responses

To explore the factors contributing to the toxicity
or harm in empathetic responses, we compared
between empathetic toxic/harmful (E ∩ (P ∪ O)
) and non-empathetic toxic/harmful (¬E ∩ (P ∪
O)) responses. We used the Perspective API to
identify toxic spans and estimate the fraction of
toxic language in a response. The results, as shown
in Table 3, indicate that empathetic toxic/harmful
responses exhibit substantially lower fractions of
toxic language, and are generally longer compared
to their non-empathetic counterparts.

5 Qualitative Analysis

To better understand the interplay between empa-
thy and toxic/harmful characteristics, we selected a
subset of the top 50 samples that exhibited high lev-
els of empathy while also being associated with ei-
ther of the toxic/harmful group labels (E∩(P∪O)),
and performed another manual annotation. Here we
collapsed the fine-grained labels of EPITOME and

both APIs categories into two binary labels “em-
pathetic” and “toxic”, and included a third class,
“helpful” (also binary), to evaluate whether the re-
sponses has pragmatic benefit to the seekers. We
define “helpful” as comments or content that have
the intention or potential to help/improve the future
situation or lessen the negativity of the seeker phys-
ically, mentally or emotionally. Full definitions
of all three classes are given in appendix D. The
motivation for introducing the “helpful” class is to
fill the gap in the current EPINOME annotations,
which lack a metric for measuring the desired out-
come or utility. In the context of mental health sup-
port, we propose the perception of “helpfulness"
serves as a proxy for the desired outcome. For this
exercise, the first author of this paper annotated all
50 samples.

Table 4 displays the distribution of the three
classes in the 50 samples. We see high levels of
“empathetic” and “toxic” instances, aligning with
the original EPITOME and API annotations (recall
that these samples are drawn from E ∩ (P ∪O)).
In contrast, only a smaller proportion of the re-
sponses are categorized as “helpful”, suggesting
that many responses, although labelled as empa-
thetic, are not ultimately helpful in improving the
support seeker’s situation.

Table 9 in Appendix D provides examples of
responses featuring different label combinations
and their ratios. In the first example, the response
demonstrates an intention to help and convey un-
derstanding and uses of profanity for emphasis. In
contrast, the second to fourth examples illustrate
various instances where both toxicity and empathy
are present but there is a lack of any intent to help
the seeker. We also see patterns of side-taking and
personal tragedy sharing. Notably, the third exam-
ple contains content indicative of suicidal ideation
(despite being emphathetic). Our qualitative analy-
sis also reveals that the predominant contributor to
toxic labels is the use of profanity.

6 Conclusion and Limitation

We examined the interplay of empathy and toxicity
in responses to support seekers in mental health
online discussions.

Our results found a mixed pattern of insignifi-
cant or weak (positive/negative) correlations be-
tween the EPITOME empathy labels and the
toxic/harmful labels obtained from two widely used
APIs. We also revealed a significant presence of
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toxic/harmful content within empathetic instances
in the EPITOME dataset, dominated by "profanity"
and "self-harm" labels. These outcomes challenge
the standard assumption that there is a negative
correlation between empathetic and toxic/harmful
language.

Interestingly, we found that the majority of em-
pathetic toxic/harmful responses are not helpful for
the individuals who are seeking help. We also no-
ticed some well-intent responses being labelled as
toxic due to use of profanity. These mislabels could
stem from the issues of oversimplification and am-
biguity in toxicity definitions, as previously high-
lighted in relevant studies (Fortuna et al., 2020).
As argued by some communication studies (Ma-
sullo Chen et al., 2019) (and also seen in our anal-
yses), the utilization of toxic language does not
invariably signify malicious intent. Instead, it may
function as a tool for emphasis, conveying close-
ness, or aligning with the conventions of a partic-
ular sociolect, or online context. This observation
raises further questions about the role of domain-
and community-specific conceptualizations of toxi-
city in the realm of online content moderation.

Furthermore several empathetic instances are
identified as containing suicidal ideation. This dis-
covery raises concerns about the potential use of
this dataset for empathetic fine-tuning purposes
(Lahnala et al., 2022). To address these concerns,
we recommend employing fine-grained toxicity de-
tection models or APIs for data filtering along with
human manual validation to ensure alignment be-
tween the filtered data and the objectives of the
fine-tuning task.

We acknowledge a few limitations of this study:
First, it only examines a single dataset within the
mental health domain, and the predictions do not
consider the context of the seeker’s post due to
API constraints. Second, as demonstrated by both
quantitative and qualitative validation of the APIs’
performance, the correspondence between the pre-
dicted toxic/harmful labels and human judgments
is not perfect (though usable given the accuracy).
Third, the introduction of the “helpful” label in
our analysis is a preliminary endeavor aimed at ad-
dressing the absence of a desired outcome metric
in EPITOME, and as such is a (gross) simplifica-
tion of the problem of measuring response utility.
More refined measures, like empathic concerns
(Zahn-Waxler and Radke-Yarrow, 1990) or self-
report surveys, might be worth considering in fu-

ture studies. And lastly, the final manual annotation
(emphathetic, toxic, and helpful) of the responses
was done with a single annotator, and more thor-
ough investigation is required to further validate
the robustness of our findings.

For future studies, we recommend a re-
evaluation and clarification of the role of empathy
in text generation and understanding tasks. Given
that certain social science studies have indicated po-
tential harm from empathetic behavior (Breithaupt,
2018), further NLP research is needed to identify
subcategories of empathy based on context that
can either be beneficial or detrimental. Finally,
we suggest incorporating a measure of desired or
undesired outcomes in future NLP studies, partic-
ularly when dealing with complex and sensitive
concepts. This approach will facilitate the analysis
and validation of the interplay between outcomes
and mediating factors, such as empathy.
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A Definition and Level Criteria of Epitome Components

Component Definition Level Criteria
ER(Emotion Reac-
tions)

Expressing emotions such as
warmth, compassion, and con-
cern, experienced by peer sup-
porter after reading seekers
post.

A weak communication of emotional reactions al-
ludes to these emotions without the emotions being
explicitly labeled (e.g., Everything will be fine). On
the other hand, strong communication specifies the
experienced emotions (e.g., I feel really sad for you).

IP(Interpretations) Communicating an understand-
ing of feelings and experiences
inferred from the seekers post.

A weak communication of interpretations contains
a mention of the understanding (e.g., I understand
how you feel) while a strong communication spec-
ifies the inferred feeling or experience (e.g., This
must be terrifying) or communicates understanding
through descriptions of similar experiences (e.g., I
also have anxiety attacks at times which makes me
really terrified).

EX(Explorations) Improving understanding of the
seeker by exploring the feelings
and experiences not stated in
the post.

A weak exploration is generic (e.g., What happened?)
while a strong exploration is specific and labels the
seeker’s experiences and feelings which the peer sup-
porter wants to explore (e.g., Are you feeling alone
right now?).

Table 5: The definition and level criteria of the EPITOME components
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B Definition of Perspective API and OpenAI Moderation API Labels

Label Source Definition
Toxicity Perspective API A rude, disrespectful, or unreasonable comment that is likely to

make people leave a discussion.
Severe toxicity Perspective API A very hateful, aggressive, disrespectful comment or otherwise

very likely to make a user leave a discussion or give up on
sharing their perspective. This attribute is much less sensitive
to more mild forms of toxicity, such as comments that include
positive uses of curse words.

Identity attack Perspective API Negative or hateful comments targeting someone because of
their identity.

Insult Perspective API Insulting, inflammatory, or negative comment towards a person
or a group of people.

Profanity Perspective API Swear words, curse words, or other obscene or profane lan-
guage.

Threat Perspective API Describes an intention to inflict pain, injury, or violence against
an individual or group.

Table 6: The definition of Perspective API Labels
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Label Source Definition
Hate OpenAI Content that expresses, incites, or promotes hate based on race,

gender, ethnicity, religion, nationality, sexual orientation, dis-
ability status, or caste. Hateful content aimed at non-protected
groups (e.g., chess players) is harrassment.

Hate/Threatening OpenAI Hateful content that also includes violence or serious harm
towards the targeted group based on race, gender, ethnicity,
religion, nationality, sexual orientation, disability status, or
caste.

Harassment OpenAI Content that expresses, incites, or promotes harassing language
towards any target.

Harassment/threatening OpenAI Harassment content that also includes violence or serious harm
towards any target.

Self-harm OpenAI Content that promotes, encourages, or depicts acts of self-harm,
such as suicide, cutting, and eating disorders.

Self-harm/intent OpenAI Content where the speaker expresses that they are engaging or
intend to engage in acts of self-harm, such as suicide, cutting,
and eating disorders.

Self-harm/instructions OpenAI Content that encourages performing acts of self-harm, such as
suicide, cutting, and eating disorders, or that gives instructions
or advice on how to commit such acts.

Sexual OpenAI Content meant to arouse sexual excitement, such as the de-
scription of sexual activity, or that promotes sexual services
(excluding sex education and wellness).

Sexual/minors OpenAI Sexual content that includes an individual who is under 18 years
old.

Violence OpenAI Content that depicts death, violence, or physical injury.
Violence/graphic OpenAI Content that depicts death, violence, or physical injury in

graphic detail.

Table 7: The definition of OpenAI moderation API labels
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C Validation of APIs combined performance

To validate the combined performance of the two APIs, we firstly derived an overall toxic flag which is
labeled as positive if any APIs returned labels(6 from Perspective API and 11 from Open AI moderation
API) is positive. For the manual annotation criteria, we also derived an aggregated definition of overall
toxicity by inputting all toxic/harmful labels’ definitions into ChatGPT. Subsequently, we employed this
unified toxicity criterion to annotate a set of 100 samples, comprising 50 predicted as positive and 50 as
negative by the APIs to validate the prediction performance. The outcomes of this validation process are
depicted in Figure 2.
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Figure 2: The confusion matrix between the combined predictions of the two APIs(X axis) and the manual annotated
binary labels (Y axis).
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D Qualitative analysis supplementary

Label Definition
Empathetic Comments or content that express emotions like warmth, compassion, and concern

in response to seekers’ posts, or communicate an understanding of inferred feelings
and experiences, or enhance comprehension by exploring unspoken emotions and
experiences.

Toxic Comments or content that are rude, disrespectful, or offensive, likely to drive users
away from a discussion, or includes hate speech, harassment, self-harm promotion,
sexual content, and graphic depictions of violence or injury, targeting various identity-
based and non-protected groups.

Helpful Comments or content that have the intention or potential to help/improve the future
situation or lessen the negativity of the seeker physically, mentally or emotionally.

Table 8: The definition of the labels for the qualitative analysis annotation.
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Example seeker post Example response Empathetic Toxic Helpful Ratio(%)
I want to die. I fucking hate myself
and my miserable existence. I’m a
shitty excuse of a human being. I
can’t even kill myself properly but
that probably won’t stop me from try-
ing again soon.

What makes you think you’re a shitty
human being? I don’t know who you
are and I don’t know your story, so
pardon me if I’m coming as rude by
saying this (that is not my intention,
I’m solely trying to help), but maybe
some of those reasons aren’t founded.
For example I often worry that all the
people I love will abandon me, and
even though it’s not really founded
and I know in the back of my head
that it probably won’t happen, it is
still one of my largest fears.

1 1 1 16

I almost threw up with anxiety from
walking down the high street. I used
to be able to rave, go out with friends,
work, study. Now I can’t walk down
the road without having panic attacks.
Great

sorry man. If people judge you for it
then FUCK THEM

1 1 0 52

I just feel like shit.. I don’t really
know why. Everything’s just so over-
whelming all of sudden. I was feeling
great this past month, but it’s back.
Did I do something wrong? I don’t
know why.

I feel like shit too everyday. I just
wanna fade away.

1 1 0 52

What the hell am I doing. I’m failing
classes. I’m sabotaging relationships
with people I care about. I have little
to no motivation for social interac-
tion. Literally what the fuck am I
doing. I don’t think I’ve reached a
lower point than what I’m currently
at.

we on the same boat. havent been
going to school, probably already
failed some of my classes. theyre just
a group of fucking morons anyway.
broke up with gf. have no friends.
the ones I had were fake. shit.

1 1 0 52

DAE have this? Any happy moment
is ruined by this thought: This would
be a good moment to be my last.. Ev-
ery happy experience is accompanied
by this. Makes it impossible to enjoy
things or get past my issues.

I have tried to kill myself **while
happy** for that exact reason.

0 1 0 6

Table 9: Examplar post and response pairs with manual annotation using three labels, empathetic, toxic, and helpful.
The last column "ratio" indicates the percentage of samples with the same label combination.
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Abstract

The ALTA shared tasks have been running an-
nually since 2010. In 2023, the purpose of the
task is to build automatic detection systems that
can discriminate between human-written and
synthetic text generated by Large Language
Models (LLM). In this paper we present the
task, the evaluation criteria, and the results of
the systems participating in the shared task.

1 Introduction

The generative abilities of recent Large Language
Models (LLMs) such as ChatGPT have shown im-
pressive abilities in generating content with quality
close to those generated by humans. Despite the
possible advantages of LLMs, the concern about in-
appropriate utilization of these generated contents,
accompanied by social and ethical issues, has been
underscored in several preceding studies (Zellers
et al., 2019; Aliman and Kester, 2021; Ranade et al.,
2021; Xu et al., 2022).

Some of those LLMs are designed with water-
marks (He et al., 2022; Kirchenbauer et al., 2023).
However, there is also the possibility of deploying
LLMs without watermarks. Consequently, effec-
tively distinguishing texts by vanilla language mod-
els from the human-written text pieces has become
an emerging and challenging task.

The goal of the 2023 ALTA shared task is to
build automatic detection systems that can discrim-
inate between human-written and text generated by
LLMs. The text comes from a variety of sources
and different LLMs.

Formally, this is a binary classification problem,
as each candidate sentence can be generated ei-
ther by human or a LLM. The evaluation metric is
accuracy.

Section 2 presents related work. Section 3 de-
tails how the data have been gathered and labeled.
Section 4 presents the evaluation framework. Sec-
tion 5 describes a baseline that was made available

to the participants. Section 6 lists the details of
the participating systems and their results. Finally,
Section 7 concludes this paper.

2 Related Work

The preliminary work for identifying machine-
generated text involves feature-based approaches,
such as utilizing linguistic patterns (Muñoz-Ortiz
et al., 2023) and cues (Solaiman et al., 2019),
e.g., bag-of-words. More recent work (Zellers
et al., 2019) proposes to use detectors based on
pre-trained language models. e.g., Liu et al. (2019)
use RoBERTa as the basis of the detector. After a
fine-tuning process, RoBERTa has been proven its
prowess as a detector across multiple domains (So-
laiman et al., 2019; Fagni et al., 2021; Rodriguez
et al., 2022). To align with our research goals, we
depart from the conventional assumption that de-
tailed knowledge of synthetic data origin is readily
available, which includes specifics about genera-
tive models, decoding strategies, and domains. In
reality, such information often remains elusive.

It is worth noting several recent works on
discriminating human- and machine-generated
texts, e.g., OpenAI GPT-2 Detector (OpenAI,
2023), GPTZero (Tian and Cui, 2023), Detect-
GPT (Mitchell et al., 2023), DIPPER (Krishna
et al., 2023) and G3-Detector (Zhan et al., 2023),
which train their detectors on collected datasets
with labeled human-written and machine-generated
texts. Later on, a training-free detector DNA-
GPT (Yang et al., 2023) was proposed to discover
n-gram patterns in the machine-generated text.

Although some progress has been made in the
corresponding task, its efficacy and reliability
largely depend on the task settings, such as the
domains of the generative tasks, the structures and
scale of the generative models, etc. (Sadasivan
et al., 2023) Kumarage et al. (2023) propose an
assessment framework using evasive soft prompts,
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and Chakraborty et al. (2023) further introduce
AI detectability index as an evaluation metric for
machine-generated text detection.

Related shared tasks include CLIN331, AuTexti-
fication2 (Sarvazyan et al., 2023) , Detecting Gen-
erated Scientific Papers3 (robodasha, 2022), and
Machine Learning Model Attribution Challenge4

(Merkhofer et al., 2023).

3 Data Gathering

The data for the 2023 ALTA shared task has been
gathered from four generative benchmarks across
multiple domains in the data. These comprise ma-
chine translation, and specifically the WMT (De-
En) benchmark (Bojar et al., 2014), summarization,
with CNN-DailyMail (CNNDM) (Nallapati et al.,
2016), and language pre-training, including Wiki-
Data and the OpenwebText benchmark (Radford
et al., 2019).

The human-written text are directly extracted
from the ground-truth sentences in the above bench-
marks. In contrast, the machine-generated text are
produced by several widely-used generative mod-
els, all of which are GPT-based models. Specifi-
cally, these models contain GPT2-large, GPT3.5-
turbo, and GPT4. We have used GPT2 model files
through the Huggingface repository 5, and then fine-
tuned these models on the aforementioned datasets.
For the GPT3.5-turbo and GPT4 models, we use
prompt-based text generation through the OpenAI
API 6. Specifically, we use the following prompts
for different generative benchmarks:
Translation: Please translate the following
German sentence into English.

Summarization: Please summarize the
following long paragraph with a short
summary.

Language Pre-training: Please paraphrase
the following sentence.

The final data used in the 2023 ALTA shared
task was selected by random sampling from the
gathered data to ensure 50%-50% between human
and machine-generated text (Table 1).

1https://sites.google.com/view/
shared-task-clin33/home

2https://sites.google.com/view/
autextification/home

3https://www.kaggle.com/competitions/
detecting-generated-scientific-papers

4https://mlmac.io/
5https://huggingface.co/
6https://chat.openai.com/

Partition Human (0) Machine (1) Total

Training 9,000 9,000 18,000
Development 1,000 1,000 2,000
Test 1,000 1,000 2,000

Table 1: Statistics of the data used in the 2023 ALTA
shared task

4 Evaluation Framework

The evaluation framework was implemented as a
CodaLab competition7 with three phases.

In the development phase, labelled training and
unlabelled development sets were made available.
Participant systems could submit their system out-
put on the development set up to 100 times, and the
evaluation results were made public to all partici-
pating systems via a leaderboard.

In the test phase, an additional unlabelled test
set was made available, and participating systems
could make up to 3 submissions. The results of the
test phase form a separate leaderboard and are used
for the final ranking reported in this paper.

A third unofficial submissions phase has no
end date and is available to all participant systems
so that they can make additional submissions on
the test data. These submissions form a separate
leaderboard and are not used for the final ranking.

Table 1 shows the statistics of the three parti-
tions.

5 Baseline

We formulate the detection framework as a bi-
nary classification task. Based on previous ob-
servations (Fagni et al., 2021; Rodriguez et al.,
2022), RoBERTa has proven successful in vari-
ous detection tasks. Therefore, to provide a start-
ing point for participants, we provide the vanilla
RoBERTa-large (Liu et al., 2019) as a baseline
system8. Specifically, we use the corresponding
checkpoint presented in Huggingface9, which con-
tains 354 million parameters. The performance of
RoBERTa-large on the test set is 0.9765 in terms
of accuracy.

7https://codalab.lisn.upsaclay.fr/
competitions/14327

8https://github.com/zhanhl316/ALTA2023_shared_
task

9https://huggingface.co/roberta-large
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System Category Accuracy

OD-21 Student 0.9910
DetectorBuilder Student 0.9845
AAST-NLP Student 0.9835
SamNLP Student 0.9820

Baseline 0.9765

VDetect Student 0.9715
cantnlp Student 0.9675
ScaLER Student 0.9665
SynthDetectives Student 0.9555

Table 2: Results of the 2023 ALTA shared task

6 Participating Systems and Results

A total of 9 teams submitted runs in the develop-
ment phase, and 8 submitted in the test phase10.
Table 2 shows the results of the baseline and the
participating systems for the text phase.

The ALTA shared tasks have two categories, a
student category where student members are not al-
lowed to have completed a PhD degree and cannot
be employed full time (with the exception of stu-
dent supervisors), and an open category for those
who are not eligible for the student category. How-
ever, this year (2023) only teams in the student
category submitted in the test phase.

Tests of statistical significance11 indicate that the
difference between the first and the second team is
statistically significant.

All of the participating systems that submitted
a system description to us reported to have used
LLMs in different ways, often as part of ensem-
ble approaches, sometimes in addition to other ap-
proaches.

Team OD-21 (Gagiano and Tian, 2023) used
Falcon-7B and label smoothing. They also used
prompting techniques for samples with low confi-
dence scores.

Team DetectorBuilder (Fang, 2023) used an en-
semble with majority voting of BERT, RoBERTa,
and DeBERTaV3.

Team AAST NLP (El-Sayed and Nasr, 2023)
used an ensemble with majority voting of Distill-
BERT, XLMRoBERTa, and RoBERTa.

10Not all teams who submitted in the test phase had submit-
ted in the development phase

11We conducted both McNemar’s and Bootstrap tests using
https://github.com/rtmdrr/testSignificanceNLP

Team SamNLP (Joy and Aishi, 2023) used a
feature-level ensemble of DeBERTaV3 and XLM-
RoBERTa, where these LLMs are jointly trained
by concatenating their last layer and adding subse-
quent lineal layers.

Team VDetect (Liyanage and Buscaldi, 2023)
experimented with various ensemble approaches
using a varied range of models including several
Transformer models, RNNs, and CNN, plus SVM
and Naive Bayes.

Team SynthDetectives (Nguyen et al., 2023)
used an ensemble of ALBERT, ELECTRA,
RoBERTa, and XLNet, where the predictions of
these LLMs are fed to a linear regression classifier.

7 Conclusions

The 2023 ALTA shared task focused on the discrim-
ination between human-written text and machine-
generated text. All systems submitting runs to the
test phase had accuracy results over 0.95, and the
baseline based on RoBERTa had an accuracy result
of 0.9765. The top system submitted to the shared
task had an accuracy of 0.9910, yet the difference
with the second best system was statistically signif-
icant.

We were pleased to observe such good perfor-
mance by the participants. This indicates that the
task of identifying machine-generated text can be
easy when used as a shared task like the one pre-
sented here. This task may become more difficult
in the future as technology evolves.
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Abstract

The goal of ALTA 2023 Shared Task is to
distinguish between human-authored text and
synthetic text generated by Large Language
Models (LLMs). Given the growing soci-
etal concerns surrounding LLMs, this task ad-
dresses the urgent need for robust text verifica-
tion strategies. In this paper, we describe our
method, a fine-tuned Falcon-7B model with in-
corporated label smoothing into the training
process. We applied model prompting to sam-
ples with lower confidence scores to enhance
prediction accuracy. Our model achieved a sta-
tistically significant accuracy of 0.991.

1 Introduction

The rapid evolution of Large Language Models
(LLMs) has significantly facilitated the genera-
tion of complex, human-like text at scale (Ope-
nAI, 2023). These LLMs have found applica-
tions in various domains, including AI-assisted
writing (Coenen et al., 2021), medical question
answering (Yang et al., 2022; Haq et al., 2021,
2022), financial (Lumley, 2023; Haas, 2023; De-
locski, 2023), and legal sectors (Trautmann et al.,
2022; Blair-Stanek et al., 2023). Leading mod-
els like OpenAI’s GPT-3 (Brown et al., 2020),
Meta’s OPT (Zhang et al., 2022), and Big Science’s
BLOOM (Scao et al., 2022) have the ability to pro-
duce content that closely mimics human-created
text, making it challenging to distinguish between
machine-generated and human-generated content.
However, it’s important to note that these models
lack a genuine understanding of the content they
generate.

This limitation can lead to intended negative
consequences when this machine-generated con-
tent is used in downstream applications. For in-
stance, LLMs have been used to carry out academic
fraud (Cotton et al., 2023; Wahle et al., 2022; Elali
and Rachid, 2023), disseminate fabricated news

stories (Bagdasaryan and Shmatikov, 2022; Groll,
2023; Zellers et al., 2019), and manipulate public
opinion (Goldschmidt, 2019; Stella et al., 2018;
Bessi and Ferrara, 2016). Given the widespread
use of LLMs by the general public (Gault, 2023)
and the rapid global dissemination of information,
there is a growing risk of disinformation affecting
both individuals and organisations.

To address these issues, it is crucial to differen-
tiate between content authored by LLMs and hu-
mans. This distinction is essential for ensuring that
machine-generated content is used appropriately in
various applications while maintaining oversight.
Understanding the specific LLM responsible for
generating content can help users be aware of po-
tential biases and limitations associated with that
model. This interest has led to active research in
the area of automatic detection of AI-generated
text. Recent work, such as DetectGPT (Mitchell
et al., 2023), focuses on techniques for identifying
AI-generated content by perturbing text samples
and comparing log probabilities. Other approaches
involve using LLMs such as DeBERTa (He et al.,
2020) or ensemble methods (Przybyła et al., 2023)
for multi-class AI detection tasks, illustrating the
evolving nature of this research domain.

In this paper, we present our participation in the
ALTA 2023 Shared Task (Molla et al., 2023), which
centres on the automatic detection of synthetic text
produced by LLMs. Participants are challenged
with the task of identifying synthetic text across a
wide spectrum of sources, spanning different do-
mains and LLMs, including prominent models like
T5 (Raffel et al., 2020) and GPT-X (Black et al.,
2022). The primary assessment criterion is accu-
racy, and participants are encouraged to explore
diverse methodologies and approaches to construct
effective text detection systems.

Our approach involved the fine-tuning of a
Falcon-7B (Institute, 2023) model, complemented
by the integration of label smoothing during the
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training process. Furthermore, we leveraged
prompting techniques (Liu et al., 2023) for samples
exhibiting lower confidence scores, to guide our
model, resulting in improved predictions and an
overall enhanced system accuracy.

Our participation in this shared task yielded a
successful outcome, as our method attained an over-
all accuracy of 0.991. This achievement under-
scores the effectiveness of our approach in discern-
ing between human-authored and LLM-generated
text, making a substantial contribution to the ongo-
ing endeavours aimed at addressing the challenges
associated with synthetic text.

2 Related Work

Text classification is a field that extensively investi-
gates the extraction of features from unprocessed
text data to predict text categories. This topic has
witnessed substantial research efforts over recent
decades, leading to the development of various
models tailored for this purpose.

Traditional models like Naive Bayes, Logistic
Regression, Support Vector Machines, Random
Forest, and K-Nearest Neighbors have been widely
explored (Shah et al., 2020; Pranckevičius and
Marcinkevičius, 2017). Machine learning boost-
ing techniques, including Extreme Gradient Boost-
ing and Adaptive Boosting, have demonstrated
their prowess in delivering high performance (Stein
et al., 2019; Qi, 2020; Tang et al., 2020; Minas-
tireanu and Mesnita, 2019; Bloehdorn and Hotho,
2006). Deep learning models, such as Convolu-
tional Neural Networks and Recurrent Neural Net-
works, have surpassed traditional methods in text
classification tasks (Yogatama et al., 2017; Bharad-
waj and Shao, 2019; Zhou et al., 2016).

In recent years, Transformer-based language
models have risen to prominence for natural lan-
guage processing tasks due to their enhanced par-
allelization capabilities and self-attention mecha-
nisms (Vaswani et al., 2017), compared to prior
models like RNNs (Medsker and Jain, 1999). How-
ever, it’s crucial to acknowledge that while Trans-
former models excel in the domains for which they
were trained, they can be less adaptable when deal-
ing with out-of-domain or unseen samples. Their
profound understanding of specific contexts, stem-
ming from vast pre-training data, makes them ex-
perts in those domains, yet can hinder their ability
to generalise effectively (Gagiano et al., 2021; Sar-
vazyan et al., 2023; Wang et al., 2023; Li et al.,

2023). The focus on the knowledge they acquire
during fine-tuning might result in a degree of "do-
main bias," making them less suitable for broader
applications.

To mitigate the limitations of domain-specificity
in Transformer models, a hybrid approach in
text classification is increasingly gaining recogni-
tion (Przybyła et al., 2023; Abburi et al., 2023). The
concept of ensembling Transformer models with
traditional approaches, such as Naive Bayes, Sup-
port Vector Machines, or Ensemble Learning, can
harness the benefits of both worlds (Przybyła et al.,
2023; Abburi et al., 2023). The specialised domain
knowledge acquired by Transformer models can
be combined with the interpretability, simplicity,
and robustness offered by traditional techniques,
ultimately leading to more versatile and adaptive
text classification models.

3 Dataset

3.1 Description

The dataset for the ALTA 2023 shared task on bi-
nary classification, aimed at distinguishing between
human-generated and machine-generated text in
English, is sourced from a diverse array of text
origins. While not specifically annotated, sources
mentioned in the task description encompass vari-
ous domains, such as law and medicine, and utilise
text generated by a range of large language mod-
els, including T5 and GPT-X. The dataset has
a balanced distribution of human and machine-
generated labels, with 9000 samples each, totalling
18,000 samples altogether.

3.2 Pre-processing

In the pre-processing phase, we derive our valida-
tion set from the original training data. To achieve
this, we initiate the process by tokenising each sam-
ple within the training set. Subsequently, we sort
these tokenised samples by their respective lengths.
When creating subsets from the original training
set, we ensure a balanced representation of sam-
ple lengths and origin labels. The resulting data
splits comprise 15,000 samples for training and
3,000 for validation. This approach facilitates ro-
bust model evaluation and ensures that the dataset
adequately represents the variations present in the
training data.
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4 Methodology

4.1 Proposed Approach
In our approach, we used a multi-step strategy to
enhance the performance of our text classification
task. First, we fine-tuned the Falcon-7B model with
label smoothing regularisation on the training data.
We then predict on the validation set, obtaining
prediction labels and confidence scores. We extract
samples below a chosen confidence threshold and
use these to prompt our trained model with a pre-
defined prompt. After prompting we predict on the
validation set again, using prediction accuracy to
determine the optimal confidence threshold.

4.2 Model
Our approach relied on the Falcon-7B1 built by the
Technology Innovation Institute2. The model is a
causal decoder-only model, trained on 1,5000B to-
kens from the English dataset RefinedWeb (Penedo
et al., 2023)

4.3 Label Smoothing
Label smoothing is a common regularisation tech-
nique in machine learning, especially in neural net-
work training. Large language models often suf-
fer from overconfidence in prediction tasks. To
address this issue, label smoothing introduces a
small degree of uncertainty, typically controlled
by a small value (epsilon, ϵ), into the ground-truth
labels during training. Instead of using 1 for the
correct class and 0 for all others in classification,
label smoothing assigns slightly lower than 1 to
the correct class and slightly higher than 0 to the
rest. By encouraging the model to acknowledge
alternative possibilities and distribute some prob-
ability mass to incorrect classes, label smoothing
enhances generalisation, making the model more
robust and adaptable to unseen data.

4.4 Prompting
Model prompting is a natural language processing
technique that transforms the decision-making
process of language models. In traditional classifi-
cation tasks, models analyse entire text inputs and
make predictions based on their understanding of
the complete content. However, model prompting
introduces a novel approach by providing partial
inputs or prompts that guide the model’s reasoning
towards a specific classification. We use the

1https://huggingface.co/tiiuae/falcon-7b
2https://www.tii.ae/

following prompting structure:

"’{sample_text}’ this is the wrong classified
sample, predicted as {pred_label} generated
with confidence score {conf_score} and the gold
prediction is {true_label}."

This approach significantly influences the
model’s thinking, rendering it more focused and
contextually attuned to the intended classification
task.

5 Experiments

5.1 Implementation Details

The parameters we used for model training, label
smoothing, and confidence threshold assessment
are as follows:

• The hyper-parameters used for model fine-
tuning are shown in Table 1.

Parameter Value
learning_rate 2e-4

fp16 True
max_grad_norm 0.3

max_steps 1000
warmup_ratio 0.03

max_seq_length 512
max_gen_token 1

Table 1: Model fine-tuning hyper-parameters.

• For label smoothing, we set ϵ = 0.1.

• To identify which samples we use for prompt-
ing, we search across confidence threshold
values of [0.85, 0.92], finding 0.91 optimal.

6 Results

The organisers of the ALTA 2023 shared task pro-
vided both a development and a test set for evalu-
ation. While predictions were made on both sets,
it’s worth noting that the official rankings are de-
termined based on the results from the test set. Ac-
curacy is the metric used to assess the model’s per-
formance. For this paper, we exclusively present
the results of our test set predictions. The compre-
hensive leaderboard can be accessed on the ALTA
CodaLab Competition website3.

3https://codalab.lisn.upsaclay.fr/
competitions/14327
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Team Name Accuracy
OD-21 0.9910

DetectorBuilder 0.9845
AAST-NLP 0.9835

SamNLP 0.9820
Organizers 0.9765

VDetect 0.9715
cantnlp 0.9675
ScaLER 0.9665

SynthDetectives 0.9555

Table 2: External evaluation of submissions on the test
set. Our approach is highlighted in boldface.

Our approach, under the team name OD-21, as
showcased in Table 2, achieved the highest accu-
racy score of 0.9910, as indicated by the bold-
face. The organisers, using McNemar and Boot-
strap tools, determined the result as statistically
significant when compared to the closest compet-
ing score.

All scores presented in Table 2 are above 0.95.
This can be attributed to the favourable circum-
stances of an in-domain problem. In-domain prob-
lems, where the test set originates from the same
source as the training data, tend to yield high ac-
curacy, as is evident in our results. This alignment
between training and test data contributes to the
robust performance of language models in such
scenarios.

7 Conclusion

In this paper, we have presented our submission
to the ALTA 2023 shared task, a binary classifica-
tion challenge distinguishing generative AI content
from human writing. Our proposed approach, us-
ing a Falcon-7B language model combined with
label smoothing and model prompting, has demon-
strated considerable promise. With a top-ranking
accuracy score of 0.991, our system has showcased
the effectiveness of these techniques in this spe-
cific task. Looking forward, there is an opportunity
for further research and refinement. Future work
should focus on extending our system’s capabili-
ties to tackle more challenging scenarios, including
out-of-domain problems and multi-class authorship
attribution tasks.
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Abstract
In this paper, I provide a detailed description of
my approach to tackling the ALTA 2023 shared
task whose objective is to build an automatic
detection system to distinguish between human-
authored text and text generated from Large
Language Models. By leveraging several pre-
trained language models through model fine-
tuning as well as the multi-model ensemble, the
system managed to achieve second place on the
test set leaderboard in the competition.

1 Introduction

Large Language Models (LLMs) have experienced
a drastic advancement over the past few years
and brought a revolution to the domain of Natu-
ral Language Processing (Gordijn and Have, 2023).
Through the expansion of model parameters and
the intensive pre-training on a large corpus, recent
LLMs such as GPT-4 (OpenAI, 2023) and Llama2
(Touvron et al., 2023) have shown their capability
to understand the human language and generate
high-quality text.

However, the growing attention to LLMs and
their increasing availability to the public nowadays
has inevitably led to some concerns as these mod-
els can be used in an inappropriate manner to cause
harm to society. This includes fake news gener-
ation (Zellers et al., 2019), fake product reviews
generation (Adelani et al., 2020) and plagiarism
(Dehouche, 2021). Therefore, this calls for the
construction of a reliable machine-generated text
detection system to regulate the use of LLMs so
that we can make the most of them. To explore
the effective ways that can achieve this objective,
ALTA 2023 (Molla et al., 2023) organised a shared
task with the goal of constructing an automatic
detection system to distinguish between the human-
authored text and text generated by the LLMs. The
task is formed as a binary classification problem.

My team handled this task through the utilisation
of some representative pre-trained models to tackle

the classification problem for machine-generated vs
human-authored text given the fact that they have
already exhibited their strength in various Natural
Language Processing tasks. The models I exper-
imented with include the vanilla BERT (Devlin
et al., 2019), RoBERTa (Liu et al., 2019) and De-
BERTaV3 (He et al., 2022a) which represent the
chain of improvement for the BERT-based models.
I also implemented an ensemble model via major-
ity voting over the best models to further enhance
the performance. The rest of the paper will provide
a detailed explanation of the design of my system
as well as the performance with respect to the task.

2 Related Work

2.1 Machine-Generated Text Detection

Recent studies related to the construction of au-
tomatic machine-generated text detection systems
focus on the utilisation of the source generator to
assist the detection. One area of research intended
to rely on internal information from the generative
models, such as the probability distribution of to-
kens or text sequences assigned by the generator, to
construct the detector (Mitchell et al., 2023). The
other group of researchers proposed the incorpo-
ration of the watermarking technique into the gen-
erative models by introducing some signals inside
the text that cannot be perceived by humans but
are detectable by machines. (Kirchenbauer et al.,
2023; He et al., 2022b). However, these approaches
suffer from their practicality since there exist nu-
merous proprietary LLMs in the industry where
the developers are reluctant to expose the internal
details of their models, and it is also difficult to
guarantee that every LLM developer agrees on the
incorporation of watermarking into their models.
Therefore, my detection system aims to obtain a
good performance under the “black-box” scenario
where only the generated text from the generative
models is accessible.
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(a) The architecture of the detection system based
on Pre-trained Language Models

(b) Multi-model ensemble through majority voting

Figure 1: Illstration of the automatic detection system

2.2 Pre-Trained Language Models

My detection system took advantage of several pre-
trained language models by constructing the clas-
sifiers upon these models to differentiate machine-
generated and human-authored text. This section
will provide a description of the models that have
been applied during the model development phase.

2.2.1 BERT

BERT (Devlin et al., 2019), which stands for
Bidirectional Encoder Representation from
Transformer, aims to learn the deep bidirectional
contextual representation of the language through
pre-training on a large text corpus. It attains this
objective through the conduction of unsupervised
tasks during pre-training to learn the language
patterns from the text, which includes the Masked
Language Model (MLM) and Next Sentence
Prediction (NSP). MLM intends to predict the
tokens that are masked randomly in the text to
capture the bidirectional information of the token,
while NSP attempts to understand the relationship
between two sentences by predicting whether one
sentence follows the other.

2.2.2 RoBERTa
RoBERTa (Liu et al., 2019) is an extension of
the vanilla BERT with the goal of optimising the
design choices and training strategies of BERT to
boost the performance on the downstream tasks. It
replaced the static masking in BERT with dynamic
masking to avoid duplicated masks and removed
the NSP objective from BERT. In addition to this,
RoBERTa is also pre-trained on a higher volume
of data for a longer time and over a larger batch
size compared to BERT.

2.2.3 DeBERTaV3
The original DeBERTa model (He et al., 2020)
managed to make a further enhancement on both
BERT and RoBERTa through the introduction of
two novel techniques: disentangled attention and
enhanced mask decoder. A recently upgraded ver-
sion of DeBERTa called DeBERTaV3 (He et al.,
2022a) was proposed by the authors to replace the
MLM objective from BERT with Replaced Token
Detection (RTD), where a generator is employed
to generate corrupted tokens inside the text and
the model is trained as a discriminator to deter-
mine whether the token is the original one or has
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been corrupted. It also proposed a method called
gradient-disentangled embedding sharing (GDES)
to handle the embeddings from the generator and
the discriminator in an effective way.

3 Dataset

The dataset provided by the ALTA 2023 shared task
(Molla et al., 2023) consists of text pieces of human-
authored and machine-generated text across a wide
range of domains. The machine-generated text
inside the dataset originates from different types of
LLMs. The statistics of the dataset are presented
in Table 1. The labels are only contained in the
training set where the label assigned to each text
piece is either 1 or 0, with 0 indicating that the text
is generated by the machine and 1 indicating that
the text is written by the human. The distribution
of the labels inside the training dataset is 50% for
machine-generated and 50% for human-authored
which is well-balanced.

Category Size
Training 18,000
Development 2,000
Test 2,000
Total 22,000

Table 1: Statistics of the dataset for ALTA 2023 shared
task

The training set and the development set are
released at the same time for model development
and the test set is used for the final evaluation of
the models and the determination of the rank in the
competition.

4 Methodology

Following the process explained in BERT (Devlin
et al., 2019), the pre-trained language models dis-
cussed in Section 2.2 are adopted to build binary
classifiers by adding a single classification layer on
top of the last hidden state of the first token (the spe-
cial ‘[CLS]’ token added by these pre-trained lan-
guage models) for each of them, which is the con-
textual representation of the full text. The model
architecture is shown in Figure 1a. The original
text pieces are tokenised using the corresponding
tokeniser for each model and the tokens are input
into the classifier. The classifiers are then fine-
tuned on the provided training set so that they can
learn the language patterns inside the data. The re-
sulting models will be applied to make predictions

about the development and test set to gain insight
into their performance.

Besides the employment of each single pre-
trained language model to perform classification
and obtain the results, I’ve further performed the
multi-model ensemble through majority voting
over the prediction results from the 3 models that
express the best performance. The process is
demonstrated in Figure 1b. The voting is conducted
as a hard voting where for each instance of the text
pieces inside the test set, the label that is assigned
to the text by most of the classifiers will be selected
as the final label. The logic behind this is to im-
prove the robustness of the detection system by
combining the results from multiple models.

Hyperparameter Value
Learning rate 2e-5
Batch size 64
Training epochs 5
Max length 100

Table 2: Hyperparameter Setting in the experiment

5 Experiments

5.1 Experimental Settings

During the experimental stage, I utilised the pre-
trained language models from huggingface to build
the classifiers and perform fine-tuning, which in-
cludes the models discussed in Section 2.2 with
varied size: 1) bert-base-cased 1, 2) bert-large-
cased 2, 3) roberta-base 3, 4) roberta-large 4, 5)
microsoft/deberta-v3-base 5, 6) microsoft/deberta-
v3-large 6. I used BCEWithLogitsLoss 7 as the
loss function and AdamW (Loshchilov and Hutter,
2019) as the optimizer during the model training
phase. The setting of the hyperparameters used for
the experiment is indicated in Table 2. All the im-
plemented models applied the same experimental
settings to compare the performance between each
other.

1https://huggingface.co/bert-base-cased
2https://huggingface.co/bert-large-cased
3https://huggingface.co/roberta-base
4https://huggingface.co/roberta-large
5https://huggingface.co/microsoft/

deberta-v3-base
6https://huggingface.co/microsoft/

deberta-v3-large
7https://pytorch.org/docs/stable/generated/

torch.nn.BCEWithLogitsLoss.html
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Model Version Development set Test set
BERT bert-base-cased 0.986 0.976

bert-large-cased - 0.980
RoBERTa roberta-base 0.985 0.981

roberta-large 0.991 0.985
DeBERTaV3 microsoft/deberta-v3-base 0.984 0.978

microsoft/deberta-v3-large 0.992 0.982
Ensemble - - 0.990

Table 3: Classification accuracy of different models on development and test set

The performance of the resulting models is eval-
uated using the accuracy_score 8 from scikit-learn
as specified by the ALTA 2023 shared task.

5.2 Results

Table 3 shows the classification accuracy of all the
fine-tuned pre-trained language models as well as
the ensemble model involved in the experiment
over the development set and test set. As indicated
in the table, for all types of pre-trained language
models, the large version of the models obtain a
better performance compared to the base ones on
both the development and the test set. This illus-
trates the fact that larger models with more param-
eters have the ability to learn more language pat-
terns from the text to distinguish between human-
authored and machine-generated text. Additionally,
all versions of BERT underperform RoBERTa and
DeBERTaV3 on the test set, while RoBERTa and
DeBERTaV3 express a comparable performance
between each other. This suggests that the evolu-
tion of the BERT model makes contributions to
the classification of machine-generated and human-
authored text similar to most of the NLP tasks. The
results from the table also demonstrate the effective-
ness of the multi-model ensemble as the ensemble
model using majority voting outperforms all the
single models by a certain amount on the test set.

6 Conclusion

In this paper, I’ve presented my automatic detec-
tion system for the ALTA 2023 shared task that
classifies machine-generated and human-authored
text. The capability of pre-trained language models
in handling the task is demonstrated by fine-tuning
them on the dataset and constructing the classifiers.
The benefits that the multi-model ensemble brings

8https://scikit-learn.org/stable/modules/
generated/sklearn.metrics.accuracy_score.html

to the performance of the detector are also indi-
cated by the experiment results. As a result, the
best system achieves second place in the ALTA
2023 shared task.
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Abstract

Recent advancements in Large Language mod-
els (LLMs) have empowered them to achieve
text generation capabilities on par with those of
humans. These recent advances paired with the
wide availability of those models have made
Large Language models adaptable in many do-
mains, from scientific writing to story genera-
tion along with many others. This recent rise
has made it crucial to develop systems to dis-
criminate between human-authored and syn-
thetic text generated by Large Language mod-
els (LLMs). Our proposed system for the ALTA
shared task, based on ensembling a number of
language models, claimed first place on the de-
velopment set with an accuracy of 99.35% and
third place on the test set with an accuracy of
98.35%.

1 Introduction

In the realm of human-computer interactions, the
recent advancements in AI-generated texts are hall-
marked by the introduction of Large Language
Models (LLMS), such as GPT4 (OpenAI, 2023),
GPT3 (Brown et al., 2020), T5 (Raffel et al., 2020),
LLAMA (Touvron et al., 2023) and much more.
This has resulted in AI’s ability to generate text of
high quality and fluency comparable to that of hu-
mans. These language models have had widespread
integration and adaptations across many different
fields including but not limited to, law, medicine
and education. Nonetheless, similar to any rev-
olutionary technology, LLMs possess both posi-
tive and negative aspects for our society. Apart
from spreading misleading information, the poten-
tial misuse of LLMs could lead to numerous social
and ethical challenges, such as academic miscon-
duct (Yun et al., 2023) and spread of misinforma-
tion (Else, 2023). The recent growth in adaption
of Large Language Models in many domains and
their unprecedented ability to generate high quality
fluent text similar to that of humans have caught

researchers’ attention. This lead to the develop-
ment of systems with the goal of being able to
differentiate between human-generated texts and
machine-generated ones. Those systems vary ac-
cording to their scope of operation, ranging from
domain specific ones that detect deep fakes based
on specific models to more generalized ones, yet
there have been efforts to build a unified model
able to operate on different domains and generalize
to novel LLMs despite not being trained on their
respective data. Large Language Models are ex-
pected to fundamentally change many aspects of
life and with the trend in the number of Large Lan-
guage Models introduced each year (Naveed et al.,
2023), The challenges of detecting text generated
by Large Language Models are expected to reach
new heights in the upcoming years. The ALTA
2023 shared task (Molla et al., 2023) focuses on
this important topic, offering a dataset for evalu-
ation and training. The dataset addresses several
issues and supports the creation of a single, readily
generalizable model. Our proposed model uses an
ensemble-based approach paired with fine-tuning a
number of language models. The structure of this
research paper will unfold as follows: The related
work section will provide an overview of various
solutions explored by different researchers in the
context of this problem. Subsequently, the data
section will detail the properties of the provided
dataset and any preprocessing steps undertaken. In
the system description section, we will go through
the architecture of our proposed model. The results
section will then offer a detailed analysis of the
outcomes generated by the proposed system, com-
plemented by a comprehensive evaluation of the
model’s overall performance. Finally, the summary
section will synthesize the paper’s content, briefly
touch on potential future research directions, and
consider possible improvements to the model.
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2 Related Work

We will touch on the most recent developments
in identifying data produced by Large Language
models in the section that follows. Because of
the widespread use of LLMs and their possible
drawbacks, academics have been particularly inter-
ested in this area in recent years. Many researchers
have proposed systems that use both deep learn-
ing techniques and traditional machine learning
models. One interesting approach was when (So-
laiman et al., 2019) built a logistic regression based
detector which made use of TF-IDF unigram and
bigram features. The model was trained on GPT-2
outputs and WebText samples and yielded an accu-
racy up to 97% at 124 million parameters and up to
93% at 1.5 billion parameters. (Fröhling and Zubi-
aga, 2021) experimented with a number of conven-
tional machine learning approaches, mainly Sup-
port Vector Machines, Random Forests and Logis-
tic Regression. In the realm of deep learning, many
models were proposed to tackle the problem of AI-
generated text, yet many of the proposed systems
either focused on specific domains, or they were
model specific (Yang et al., 2023; Mitchell et al.,
2023). One interesting system was proposed by (Li
et al., 2023) which consisted of training 3 detection
models; a language model based on Longformer
(Beltagy et al., 2020), FastText (Joulin et al., 2016)
and GLTR (Gehrmann et al., 2019) and testing the
model on multiple settings to ensure its success
ranging from domain-specific & model-specific to
unseen domains and unseen models. Many studies
have also shown that text written by LLM is more
objective and less emotional than human-generated
text (Webber et al., 2020). Another factor has to
do with the fact that LLMs have a condition called
hallucinations, which results from the generation of
material that is nonsensical or inconsistent (Ji et al.,
2023). Something that makes it possible to apply
fact-verification procedures. A different strategy
is known as "white box detection," where the de-
tector can monitor any unauthorized or suspicious
behavior by inserting hidden watermarks into its
outputs and having complete access to the target
language model (Abdelnabi and Fritz, 2021).

3 Data

The dataset used is the dataset provided in the
ALTA 2023 shared task. Below is an illustration
of the dataset distribution. The dataset is derived
from a number of sources, including several LLMs

Dataset Train Dev Test
Texts 18000 2000 2000

Table 1: Data distribution for the task.

(e.g., T5, GPT-X) and domain sources (e.g., le-
gal, medical). The labels are AI-generated and
Human-generated, represented as 1 and 0 respec-
tively, which formulate a Binary Classification
problem. There were 9000 samples in the train-
ing set for each of the corresponding labels, spread
evenly. Other than the language model-specific
preprocessing, no further preprocessing was used.

4 System Description

In the subsequent section, we will outline our ex-
perimentation on the dataset, highlighting the key
stages involved in the development of the previ-
ously mentioned system.

4.1 Conventional Machine Learning Models

Our approach commenced with word embedding
utilizing diverse pretrained word embedding, in-
corporating padding, and iterative experimentation
with various models such as Support Vector Ma-
chines and Logistic Regression. While initially
productive, these models did not produce satisfac-
tory results. Consequently, we pivoted towards
exploring Deep Learning methodologies, focusing
primarily on Language Models to enhance the out-
comes.

4.2 Language Models

Language models have demonstrated outstanding
results on a variety of tasks in recent years. Other
researchers have expanded on this accomplishment
by creating other models based on BERT (Devlin
et al., 2018). Using the dateset we were given,
we fine-tuned many BERT-based models. After
evaluating the fine-tuning of DistilBERT (Sanh
et al., 2019) on our given dataset, achieving an
accuracy of 98.5% on the development set, we de-
cided to adopt Roberta (Liu et al., 2019) as our
primary model due to its strong performance in
similar scenarios (Zhan et al., 2023). Specifically,
fine-tuning Roberta resulted in an impressive accu-
racy of 99.15%. Additionally, XLMRoberta (Con-
neau et al., 2019) demonstrated a high accuracy of
98.75%, affirming our decision to select Roberta as
the foundational model for our development. While
experimenting with different hyperparameters for
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Roberta, we maintained a consistent accuracy of
99.15%, indicating that higher results were not at-
tainable. Nevertheless, a notable finding was that,
despite identical prediction accuracy to our initial
model, there were disparities in the predictions.
This realization prompted us to implement an en-
semble approach.

4.3 Ensembling

An ensemble of machine learning models is a
method that combines many different machine
learning models, often of different kinds or ver-
sions, to enhance robustness, generalization, and
predictive performance. By utilizing the combined
intelligence of several models, this method outper-
forms utilizing a single model in terms of predic-
tion accuracy and stability. Our approach involved
employing hard voting, a technique where multiple
individual models are trained and make predictions
on a given dataset. The final prediction is deter-
mined through a "voting" mechanism, where each
model in the ensemble "votes" for a specific class
(in classification tasks). The final output of the
ensemble is based on the majority of votes for a
particular class or prediction. We experimented
with ensembling multiple learners; DistillBERT,
XLMRoberta and Roberta Base, then we ensem-
bled multiple Roberta base models. This resulted
in the highest performance of the development set.
One approach that was only used in an unofficial
submission is ensembling Roberta large models,
which was found to outperform our previously men-
tioned models.

4.4 Experiment settings

The training procedure was conducted using the
Google Colab platform for training our pipeline,
which has 12.68 GB of RAM, a 14.75 GB NVIDIA
Tesla T4 GPU, and Python language. We used
ktrain’s (Maiya, 2020) fit one cycle, which applies
a one cycle policy (Smith, 2018). The learning
rate was determined via the lr_plot function, which
experiments with a range of learning rates and sug-
gests multiple possible learning rates. The parame-
ters set for our experiment are mentioned in Table
2.

Parameter Value
Epochs 10
Learning Rate Varying
Batch Size Varying
Max Length 128
Optimizer AdamW
Loss Function Binary Cross Entropy

Table 2: Training parameters.

We experimented with 3 different learning rates
for Roberta of 1e-5, 2e-5 and 8.675e-6 as well as
different batch sizes of 32, 64 and 128.

5 Results

This section examines how well our suggested
AAST-NLP system performed in the ALTA-2023
shared task related to the identification of data pro-
duced by big language models. Table 3 presents our
results, some of which were not evaluated because
of submission limit restrictions.

Model Used Validation Test
BASELINE 50.3% _
DistillBERT 98.5% _
XLMRoberta 98.75% _
Roberta BASE 99.15% 98.25%
Ensemble 1 99.3% 98.35%
Ensemble 2 99.35% 98.35%
Ensemble 3 99.3% 98.6%

Table 3: Accuracy of the models on the respective
datasets. Ensemble 1 refers to an ensemble of Distil-
BERT, Roberta and XLMRoberta. Ensemble 2 refers
to an ensemble of 3 Roberta-base models. Ensemble 3
refers to an ensemble of 3 Roberta-large models.

Our ensembled models performed the best of the
suggested systems, placing first on the test set
and third on the development set, suggesting some
progress on ensembling multiple learners. Due to
computational power constraints, we initially con-
ducted our experiments using Roberta-base. How-
ever, after experimenting with Roberta-large, we
discovered that when three Roberta-large models
were ensembled, they outperformed our top rank-
ing system on the test set.

6 Discussion

The results of these experiments showed that an
ensembling-based approach is worth further explor-
ing in the pursuit of a generalized model for classi-
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fying synthetic text data generated by LLMS. Some
potential further improvements include adding
larger models to the ensemble, such as xlm-roberta-
XL. Other improvements include supplementing
the development data set with more training data
such as the one used in (Li et al., 2023). Another
approach could be to further tune the hyperparam-
eters of the individual members of the ensemble,
which could lead to marginal improvements in the
overall performance of the ensemble. Overall, the
system has promising implications and, with more
research, could prove very fruitful in combating
the spread of fake data in the modern world. Ad-
dressing this problem is a very pressing matter as
this spread of fake synthetic text data could spread
far and wide and have catastrophic effects on the
journalism industry,the education industry, along
with several other industries.

7 Summary

The presented system, utilizing an Ensemble ap-
proach through Hard Voting, was thoroughly de-
scribed in this study. The conducted experiments
were comprehensively addressed. Incorporating
pretrained language models, along with ensem-
bling, effectively addresses the challenge of identi-
fying text generated by extensive language models,
though there remains room for enhancement. Our
forthcoming research will concentrate on evaluat-
ing our model in analogous settings, utilizing data
generated by recently developed Large Language
Models across diverse domains to assess its per-
formance. Another compelling avenue for future
investigation involves conducting additional exper-
iments with larger language models, particularly
emphasizing the adaptation of Roberta-large to our
specific problem. This aspect warrants further ex-
ploration in subsequent research endeavors.
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Abstract

As large language models, or LLMs, continue
to advance in recent years, they require the de-
velopment of a potent system to detect whether
a text was created by a human or an LLM in
order to prevent the unethical use of LLMs.
To address this challenge, ALTA Shared Task
2023 introduced a task to build an automatic
detection system that can discriminate between
human-authored and synthetic text generated
by LLMs. In this paper, we present our par-
ticipation in this task where we proposed a
feature-level ensemble of two transformer mod-
els namely DeBERTaV3 and XLM-RoBERTa
to come up with a robust system. The given
dataset consisted of textual data with two labels
where the task was binary classification. Exper-
imental results show that our proposed method
achieved competitive performance among the
participants. We believe this solution would
make an impact and provide a feasible solution
for detection of synthetic text detection.

1 Introduction

In recent years, the remarkable advancements in
Large Language Models (LLMs) have showcased
an unprecedented revolution in the field of Natural
Language Processing (Raiaan et al., 2023). These
models e.g. GPT-X and T5, demonstrate the abil-
ity to generate text that closely resembles content
created by humans. However, there is a risk of
abuse that makes this a double-edged sword and
raises moral questions. The spread of synthetic text
produced by LLMs carries the risk of spreading
false information (Bian et al., 2023), interfering
in elections (Schneier, 2023), and jeopardize the
credibility of scientific knowledge (Birhane et al.,
2023).

In this context, the ALTA Shared Task 20231 in-
troduced a task where researchers have to develop

1https://www.alta.asn.au/events/
sharedtask2023/description.html

automated detection systems with the capacity to
discriminate between human-written text and text
generated by Large Language Models (LLMs). The
aim of this task is to mitigate the unethical applica-
tion of LLMs and promote their conscientious and
responsible utilization in various domains.

The dataset provided by the ALTA Shared Task
2023 is used in building and assessing the auto-
matic text detection systems. The task is funda-
mentally a binary classification problem. Each text
is labeled as either 0 (AI-generated) or 1 (human-
generated). The text samples are derived from di-
verse domains, including law and medicine, and
span a spectrum of LLMs. The efficacy of the mod-
els will be assessed based on their accuracy and
their resilience in detecting synthetic text. This

Text Label
I am asking you this because the fans of
the band are completely devoted. They
experience the days leading up to the
concert very intensely.

0

A Reston man has been charged with
abduction after police say he dragged a
woman from the sidewalk and tried to
remove her clothes.

1

Table 1: Example of ALTA Shared Task 2023. Here, the
two labels are 0 (for AI-generated) or a 1 (for human-
generated).

paper presents our approach to this task, where
we at first performed some data analysis on the
dataset. Then using those analysis, we have pro-
posed a feature-level ensemble model that utilizes
the strengths of two state-of-the-art transformer
models: DeBERTaV3 and XLM-RoBERTa. We
believe that our proposed method, refined through
rigorous experimentation, has achieved competitive
and robust performance, positioning it as a promis-
ing solution among the participating models.
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Text Label ID Language Found
Rektor på Gammel Hellerup Gymnasium, Jør-
gen Rasmussen, ønsker ikke at udtale sig om
sagen.

1 36 German

En réalité, la superteam qui semble se profiler
est composée de :

1 5628 French

E le parole “programma di aggiustamento
strutturale”, “ristrutturazione” e “default” si
possono benissimo tradurre in genocidio so-
ciale.

1 15541 Italian

Table 2: Examples of text in the train set containing other languages.

2 Dataset Description

The dataset statistics are summarized in Table 3.
Each text in the dataset is tagged with either a 0
(for AI-generated) or a 1 (for human-generated).
The training dataset is evenly balanced, ensuring
an equal number of both categories.

In our analysis, we found that text length in the
training set typically range from 10 to 50 and never
exceed 200 which can be seen in Figure 1. Also, we
came across that some words of the texts are in lan-
guages other than English, e.g. German, Afrikaans,
Romanian, French, etc., in about 124 rows of the
train dataset. Some examples are shown in Table 2.
This indicates a bit of multilingual content needs
to be considered as well.

Category Data
Train 18000

Validation 2000
Test 2000

Table 3: Dataset Splits.

Figure 1: Frequency of all the text in the training set. It
shows that all the text lengths are less than 200.

3 System Overview

3.1 Transformer Model

Transformers (Vaswani et al., 2017) are widely
used in NLP tasks because they excel at various
tasks. They offer high performance, scalability, and
flexibility, making them a popular choice for many
applications.

3.1.1 DeBERTaV3
DeBERTaV3 (He et al., 2023) is a new pretrained
language model that improves upon the original
DeBERTa (He et al., 2021) model. It does so
by using a pretraining task called replaced token
detection (RTD) instead of the traditional mask
language modeling (MLM) task, which is more
sample-efficient.

3.1.2 XLM-RoBERTa
XLM-RoBERTa (Conneau et al., 2019), a large-
scale multilingual language model based on Face-
book’s RoBERTa (Liu et al., 2019). XLM-
RoBERTa undergoes pretraining on an extensive
2.5TB dataset of filtered CommonCrawl data.

3.2 Training Strategies

3.2.1 Ensamble Learning
Our model utilizes feature-level ensemble learning
by independently extracting valuable information
from two pre-trained models, DeBERTaV3 and
XLM-RoBERTa. We extract essential details from
each of these models and then effectively combine
them to enhance our model’s performance. This
approach is known as feature-level ensemble learn-
ing.

3.2.2 Model Architecture
We used the base versions (12 layers) of both De-
BERTaV3 and XLM-RoBERTa. We made this
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Figure 2: DeBERTaV3 and XLM-RoBERTa concatenation of the last layer + MLP Architecture.

choice due to computation limitations, as these
base versions are more computationally efficient
while still delivering effective results.

In this setup, the last layer of the DeBERTaV3
and XLM-RoBERTa models is used as the input.
These representations are then passed through ad-
ditional linear layers and fine-tuned on the specific
task or dataset during the training phase. This al-
lows the model to adapt to the task while benefiting
from the pretrained language representation capa-
bilities of DeBERTaV3 and XLM-RoBERTa. From
Figure 2, we can see an overview of our model.

3.2.3 Data Augmentation
We had a validation set for which we initially did
not have the correct labels. However, when we
trained our initial model, we achieved a high level
of accuracy in the validation set. So, we decided
to include the validation data along with the pre-
dicted labels it generated into our original training
dataset. This adjustment improved our models’
performance.

4 Experiments and Evaluation

4.1 Experimental Settings
For hyperparameters, we have taken the number of
epochs for training as 20, the learning rate is 1e-5,
maximum length is 200, batch size of 8, the loss
function is Cross Entropy Loss and the optimizer
is AdamW (Loshchilov and Hutter, 2017).

4.2 Evaluation Metric
The ALTA Shared Task 2023 organizers employed
a standard evaluation metric accuracy to evaluate
the participants’ system. They calculated the ac-
curacy score using scikit-learn’s (Pedregosa et al.,
2011) accuracy_score package.

4.3 Results and Analysis

From Table 4, the highest accuracy in this compe-
tition was achieved by "OD-21" securing the top
position with a score of 0.9910.

Our team, "SamNLP" submitted which achieved
an accuracy of 0.9820, securing the 4th position
in the original contest. This initial model achieved
validation dataset accuracy of 0.9930, signifying
that 1986 out of 2000 samples were accurately
classified. Consequently, we integrated this high-
performing dataset into our training data through
augmentation. The model we later developed with
the validation data added to the training set, was not
initially submitted during the contest but was sub-
mitted after the contest had concluded. The rank
that is listed 2nd is not the original rank it achieved
during the contest but rather represents the rank it
would have attained if it had been submitted as part
of the competition.

A noteworthy observation is the marginal differ-
ences in accuracy among the top-performing teams.
The variations in accuracy between the top-ranking
teams are quite low, suggesting that the competition
was highly competitive and challenging.

5 Conclusion

In conclusion, the growing capabilities of Large
Language Models (LLMs) have brought both op-
portunities and challenges in the field of Natural
Language Processing. The rise of synthetic text
generated by LLMs has raised ethical concerns,
including the spread of misinformation and poten-
tial misuse in various domains. To address this, the
ALTA Shared Task 2023 was introduced. In this pa-
per, we presented our approach to this task, where
we focused on building a feature-level ensemble
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Team Name Accuracy Position
SamNLP (Ours)** 0.9820 4th**

SamNLP (Ours with validation data added)* 0.9855 2nd*
Competitive performance of top-ranked methods

OD-21 0.9910 1st
DetectorBuilder 0.9845 2nd

AAST-NLP 0.9835 3rd
Organizers 0.9765 5th

VDetect 0.9715 6th
cantnlp 0.9675 7th

Table 4: Comparative performance of our proposed method along with top-performing participants’ method. The
double asterisk (**) represents the actual position for the test dataset, while the single asterisk (*) denotes the model
and accuracy achieved in the test dataset after the conclusion of the contest.

model using two state-of-the-art transformer mod-
els. We conducted a comprehensive analysis of the
dataset, which revealed the need to handle multilin-
gual content. Our approach leveraged feature-level
ensemble learning, utilizing the strengths of both
models, and included data augmentation to enhance
performance. While we secured the 4th position in
the original contest, the inclusion of validation data
improved our model’s accuracy, bringing it to the
2nd position when submitted after the contest’s con-
clusion. Notably, the top-performing teams in the
competition exhibited marginal differences in accu-
racy, emphasizing the high level of competitiveness
in the task. We believe that our proposed method
provides a promising solution for the detection of
synthetic text, contributing to the responsible and
conscientious use of LLMs in various applications.
As LLMs continue to evolve, robust detection sys-
tems like the one presented in this paper become
increasingly important to address the ethical chal-
lenges associated with AI-generated text.

References

Ning Bian, Hongyu Lin, Peilin Liu, Yaojie Lu,
Chunkang Zhang, Ben He, Xianpei Han, and Le Sun.
2023. Influence of external information on large lan-
guage models mirrors social cognitive patterns.

Abeba Birhane, Atoosa Kasirzadeh, David Leslie, and
Sandra Wachter. 2023. Science in the age of large
language models. Nat. Rev. Phys., 5(5):277–280.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. CoRR,
abs/1911.02116.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2023.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021. Deberta: Decoding-enhanced
bert with disentangled attention.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Ilya Loshchilov and Frank Hutter. 2017. Fixing
weight decay regularization in adam. CoRR,
abs/1711.05101.

Fabian Pedregosa, Gaël Varoquaux, Alexandre Gram-
fort, Vincent Michel, Bertrand Thirion, Olivier Grisel,
Mathieu Blondel, Peter Prettenhofer, Ron Weiss, Vin-
cent Dubourg, Jake Vanderplas, Alexandre Passos,
David Cournapeau, Matthieu Brucher, Matthieu Per-
rot, and Édouard Duchesnay. 2011. Scikit-learn: Ma-
chine learning in python. Journal of Machine Learn-
ing Research, 12(85):2825–2830.

Mohaimenul Raiaan, Md. Saddam Hossain, Kaniz
Fatema, Nur Fahad, Sadman Sakib, Most. Marufatul
Jannat Mim Mim, Jubaer Ahmad, Mohammed Eu-
nus Ali, and Sami Azam. 2023. A review on large
language models: Architectures, applications, tax-
onomies, open issues and challenges.

Bruce Schneier. 2023. Ai disinformation is a threat to
elections learning to spot russian, chinese and iranian
meddling in other countries can help the us prepare
for 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, volume 30. Curran Associates, Inc.

172

http://arxiv.org/abs/2305.04812
http://arxiv.org/abs/2305.04812
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/1911.02116
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2111.09543
http://arxiv.org/abs/2006.03654
http://arxiv.org/abs/2006.03654
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1907.11692
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101
http://jmlr.org/papers/v12/pedregosa11a.html
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.36227/techrxiv.24171183
https://doi.org/10.36227/techrxiv.24171183
https://doi.org/10.36227/techrxiv.24171183
https://theconversation.com/ai-disinformation-is-a-threat-to-elections-learning-to-spot-russian-chinese-and-iranian-meddling-in-other-countries-can-help-the-us-prepare-for-2024-214358
https://theconversation.com/ai-disinformation-is-a-threat-to-elections-learning-to-spot-russian-chinese-and-iranian-meddling-in-other-countries-can-help-the-us-prepare-for-2024-214358
https://theconversation.com/ai-disinformation-is-a-threat-to-elections-learning-to-spot-russian-chinese-and-iranian-meddling-in-other-countries-can-help-the-us-prepare-for-2024-214358
https://theconversation.com/ai-disinformation-is-a-threat-to-elections-learning-to-spot-russian-chinese-and-iranian-meddling-in-other-countries-can-help-the-us-prepare-for-2024-214358
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf


Proceedings of The 21st Annual Workshop of the Australasian Language Technology Association, pages 173–178
November 29 - December 1, 2023 ©2023 Association for Computational Linguistics

Stacking the Odds: Transformer-Based Ensemble for AI-Generated Text
Detection

Duke Nguyen Khaing Myat Noe Naing Aditya Joshi
University of New South Wales, Sydney, Australia

{duke.nguyen, khaingmyatnoenaing}@student.unsw.edu.au, aditya.joshi@unsw.edu.au

Abstract

This paper reports our submission under the
team name ‘SynthDetectives’ to the ALTA
2023 Shared Task. We use a stacking ensemble
of Transformers for the task of AI-generated
text detection. Our approach is novel in terms
of its choice of models in that we use accessible
and lightweight models in the ensemble. We
show that ensembling the models results in an
improved accuracy in comparison with using
them individually. Our approach achieves an
accuracy score of 0.9555 on the official test
data provided by the shared task organisers.

1 Introduction

Transformer (Vaswani et al., 2017) is a sequence-
to-sequence model that has enabled the training
of large language models (LLMs). LLMs such as
GPT enable text generation in response to user-
defined prompts, allowing for wide applicability.
As a result, they have proliferated into several as-
pects of society, both for good and for bad. Text
generated from LLMs, when used unethically, can
have several detrimental implications: they can
cause widespread fake news, dispense away with
all notions of academic honesty and authorship, and
threaten to replace human-generated information
with AI-generated data at large.

Motivated by these existential concerns, many
models have been developed to distinguish AI-
generated content from human’s. ALTA is par-
ticipatory in tackling this issue by announcing the
ALTA 2023 Shared Task, whose goal is to build
‘automatic detection systems that can discriminate
between human-authored and synthetic text gener-
ated by Large Language Models (LLMs)’ (Molla
et al., 2013). The text comes from a variety of
sources in terms of domains (e.g. medical, law),
and source model (e.g. GPT-X, T5). Technically,
participating teams are required to build an auto-
mated system to solve a binary classification task,

distinguishing between human and AI-generated
text. Models are evaluated based on robustness and
accuracy. There is no requirement on the efficiency
and run-time performance. Our team participated
in the said shared task. The code is available here1.
We stack multiple Transformer-based models in
an ensemble and show that the ensemble performs
better than the individual models. In this paper,
we will discuss existing works in the domain, our
analysis of the original training data, our proposed
pipeline and architecture, our experimental results,
and suggested future work.

2 Related Work

AI-generated text detection has a long history. The
sources of our AI-generated text are LLMs, which
constrain our task to ‘authorship attribution (AA)
for neural texts’, also known as Neural Text Detec-
tion (NTD). It is a subclass of the task of binary
classification (and sometimes multi-class, when
we are detecting the source model). We will sum-
marise briefly the current literature in this domain.
Our main source comes from two major surveys by
Jawahar et al. (2020) and Uchendu et al. (2023).
The latter classifies automated NTD as follows:

Stylometric attribution detects Neural Text
Generator (NTG) using ensembles of classical
machine learning (ML) models trained on stylo-
metric features such as LIWC (Linguistic Inquiry
& Word Count), POS tags, n-grams, Readability
score, WritePrints, Empath. These models work
best on a small dataset. However, as we increase
the data size, they are outperformed by deep learn-
ing models rapidly.

Deep learning: GLoVe-based attribution:
GLoVe (Pennington et al., 2014) is an unsuper-
vised learning algorithm that aggregates global
word-word co-occurrence statistics from text to

1https://github.com/dukeraphaelng/synth_
detectives
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build word representation. GLoVe-based models
use these embeddings with RNN and LSTM, which
was considered SOTA before BERT (Devlin et al.,
2018).

Deep learning: Energy-based attribution:
Energy-based models (EBMs) (LeCun et al., 2007)
are ‘un-normalized generative models’ using some
energy function to generate high-quality data by
modelling the probability distribution of the train-
ing data. Adapted for NTD (Bakhtin et al., 2019),
they perform well on unseen data, however, they do
not scale as well, and are very expensive to train.

Deep learning: Transformer-based attribu-
tion: is Transformer-based models fine tuned to
perform NTD. These models surpass stylomet-
ric and GLoVe-based models and are cheaper
than EBMs. RoBERTa and BERT are two mod-
els that frequently achieve high performance on
NTD benchmarks (Uchendu et al., 2023). Other
Transformer-based models that are used in NTD
include ELECTRA, XLNet, and DeBERTa. These
inspire our choice of weak learners.

Statistical attribution: was developed to com-
bat top-p and top-k decoding strategies which
Transformers are not well-equipped against. It
has been shown that ‘human language is stationary
and ergodic as opposed to neural language’ (Varsh-
ney et al., 2020) suggesting the validity of this
approach. Four different algorithms have been pro-
posed which detect AI-generated text through sta-
tistical distributions. These are: GLTR (Gehrmann
et al., 2019), MAUVE (Pillutla et al., 2021), Distri-
bution detector (Gallé et al., 2021), and DetectGPT
(Mitchell et al., 2023), the last three of which per-
form competitively.

Hybrid attribution: is ensembles using sev-
eral previously described detectors. These include
TDA-based detector (Kushnareva et al., 2021),
which extracts attention matrices of BERT’s word
representations and process them through TDA-
based methods as features for a logistic regression
model, Fingerprint detector (Diwan et al., 2021),
which ensembles fine-tuned RoBERTa embeddings
and CNN classifier), FAST (Zhong et al., 2020),
which uses RoBERTa with a Graph Neural Net-
work), and CoCo (Liu et al., 2022), a coherence-
based contrastive learning model. Our work is an
ensemble-based approach to the task. However, we
use an ensemble of Transformer models.

id text label
0 ‘Have you ever heard of the Cru-

sades? A time in which Christians
went on a 200 year rampage through-
out Europe and on their path to Isreal
in which they slaughtered innocent
people in the name of your God?’

1

4 ‘The Circuit Court of Appeals of New
Jersey had jurisdiction of the contro-
versy between these parties, and its
decree was affirmed. But as the court
had jurisdiction under the original
act of Congress, the jurisdiction in
this case was also, under the act of
Congress, a bar to the suit.’

0

Table 1: Samples from the training set.

3 Dataset

Three subsets of the dataset are presented: training,
validation, and testing. The training set contains
18,000 entries, and the validation and testing each
contains 2,000 entries. Evaluation is based on the
testing set which was not released until the testing
phase of the competition. The training set contains
three columns ‘id’, ‘text’, and ‘label’ (1 if human-
generated, 0 if AI-generated). The validation and
testing set each contains two columns ‘id’, and
‘text’. Samples of the training set are shown in
Table 1.

When analyzing the dataset, we find that the AI-
generated and human-generated text is evenly split
into 9000-9000 entries respectively in the training
set. We also find that the average word count per
text is relatively low. The mean length is in the
34-35 range in the three subsets, with a standard
deviation in the 26.7-27.9 range, a maximum of
172-193, and a minimum of 1, making this a short
sequence task.

To find the main domains of the text, we remove
all stop words from each set and find the frequency
of n-gram phrases from the cleaned corpus, and
pick the top-k elements from each set. We look
at the n-gram range of (3, 4), with k = 10. We
find that overwhelmingly all the phrases are in the
domain of law across the three sets. The following
list is the union of the three sets with the above
configuration: {‘court of appeals’, ‘of the court’,
‘of the united’, ‘of the united states’, ‘opinion of
the’, ‘the court of’, ‘the court of appeals’, ‘the
district court’, ‘the opinion of’, ‘the united states’}.
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4 Approach

Our approach uses a stacking ensemble of classi-
fiers (as shown in Figure 1) to perform our training,
validation, and testing. A stacking ensemble of clas-
sifiers acts similarly to a weighted voting classifier.
Our choice of architecture is inspired by Maloyan
et al. (2022), which achieved high performance in
the RuATD Shared Task 2022 on Artificial Text
Detection in Russian (Shamardina et al., 2022).

We train each weak classifier using the above
dataset split, and then we concatenate the raw pre-
dictions on the training set together and feed them
to the meta-learner. We use a simple Logistic Re-
gressor as our meta-learner. Our criteria for picking
models are ease of use, short-sequence-task-based
models, and variety in model architecture. We also
choose only encoder-only models, since they are
built for regression/ classification tasks, and we can
conveniently extract the [CLS] token from their last
hidden state to perform Logistic Regression. As
a result, we use ALBERT, ELECTRA, RoBERTa
and XLNet as the Transformer-based models.

To optimise the training cycle, we tokenise
the entire dataset (with the respective model’s to-
keniser), and pass them through their respective
pre-trained model to obtain the [CLS] token from
the last hidden state. We consider this to be our
dataset and do our splitting, training, and testing
on this processed dataset. To train, we pass the
[CLS] token through a single fully connected layer,
with the input dimension equivalent to the model’s
[CLS]’s dimension, and the output dimension of 2,
then we softmax the output. After fine-tuning the
weak models, we perform inference on the training
split and concatenate the predictions which are fed
for the meta-learner to train.

5 Experiment Setup

5.1 Setup
We do not perform any data preprocessing on the
dataset. We have a train-validation-test split of 0.8,
0.1, 0.1. All training was done on Google Cloud
Platform’s Vertex Colab GPU for GCE usage on
NVIDIA A100 (40 GB).

5.2 Pipeline
For both our weak learners and our meta-model,
we use the AdamW optimiser with the default set-
tings, i.e. lr = 0.001, β = (0.9, 0.999), ϵ =
1e − 08, weight_decay = 0.01. All models are
trained with epochs = 300 and batch_size = 128.

Text

RoBERTaELECTRAALBERT XLNet

Logistic Regression

Prediction

Figure 1: Our Stack Ensembling Architecture for AI-
generated text detection.

All models in the ensemble are pre-trained mod-
els available on HuggingFace (as of 25th October
2023). For each model, we include their archi-
tecture name and the unique HuggingFace model
identifier associated with their pre-trained weights.

ALBERT (albert-base-v2) (Lan et al., 2020) is a
modification of BERT (Devlin et al., 2018) which
reduces its memory consumption and increases
the training speed by repeating layers split among
groups and splitting the embedding matrix into
smaller matrices, whilst being more performative
than BERT in GLUE, RACE, and SQuAD.

ELECTRA (google/electra-small-
discriminator) (Clark et al., 2020) is another
modification of BERT that changes the pretraining
objective, as inspired by GAN where ELECTRA
acts as the discriminator which predicts whether
a token in a randomly masked text is original
or generated by the generator (which we train
simultaneously). This approach makes ELECTRA
perform comparably to larger models whilst using
a lot less compute.

RoBERTa (roberta-base) (Liu et al., 2019) op-
timises BERT in four aspects of training: using
full-sentences without Next Sentence Prediction
(NSP) loss, with dynamic masking, with larger
mini-batches, and with a larger byte-level Byte-
Pair Encoding (BPE).

XLNet (xlnet-base-cased) (Yang et al., 2020)
uses a generalised autoregressive pretraining
method that maximises the ‘expected likelihood
over all permutations of the input sequence factori-
sation order’ enabling bidirectional contexts and
overcoming BERT’s pretrain-finetune discrepancy
due to neglecting masked positions dependency.
XLNet also builds on Transformer-XL (Dai et al.,
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2019), outperforming BERT on 20 tasks.

Figure 2: Training Loss.

Figure 3: Validation Loss.

Model Accuracy
ELECTRA 0.9311
XLNet 0.9361
ALBERT 0.9567
RoBERTa 0.9572
Ensemble 0.9694

Table 2: Model Accuracy on the Test Set.

6 Results

Figure 2 shows our smoothed training loss using
the Gaussian kernel (since the original training
loss displays too wide short-cycle variation, ob-
fuscating the overall trend), Figure 3 shows our
validation loss which follows a similar pattern. Ta-
ble 2 shows our accuracy on the test set as de-
scribed in the experiment setup. Among our weak
learners, RoBERTa performs the best, followed by
ALBERT, XLNet, and finally ELECTRA. As ex-
pected, our meta-model (Ensemble) outperforms

even RoBERTa by more than 0.012. The final test-
ing accuracy model ranking is reflected in the vali-
dation loss, and to a lesser extent in the training loss.
This agrees with much of the literature indicating
that RoBERTa is the best learner in AI-generated
text prediction (Jawahar et al., 2020). We also note
that XLNet and ALBERT start with extremely low
loss, suggesting their pre-training procedure might
be conducive to AI-generated text detection.

Finally, the ALTA shared task organisers pro-
vided us with a shared task test set i.e., the official
test set. We achieve an accuracy of 0.9555 with
our stacking ensemble on the official test set.

7 Conclusion & Future Work

In this paper, we describe our system for the ALTA
Shared Task 2023. We show how an ensemble of
Transformer-based models can be combined using
a logistic regression classifier to predict if a text
was generated by AI. We achieved an accuracy of
0.9555 using a stacking ensemble of basic encoder-
only Transformer models.

Our work presents a novel approach to ensemble
Transformer-based models to approach the ALTA
shared task. However, this work identifies several
potential directions for future work. Ensembling
models usually benefit from a variety of learners
specialised in different types of inputs. We only
implemented an ensemble of Transformer classi-
fiers, but it would be beneficial to integrate other
non-Transformer-based weak learners as detailed
in Section 2. Especially useful would be to in-
tegrate contrastive learning in our training proce-
dure. In addition, it would also be useful to perform
data augmentation which can help generalise the
model. One suggested technique is ‘text contin-
uation’, where given a human-generated text, we
slice the first n words and have an LLM finish the
sentence. Furthermore, the scope of the shared task
does not imply the possibility of an adversarial at-
tack. It has been shown that the RoBERTa detector
can be attacked easily through misspelling (Wolff
and Wolff, 2022). It would also be helpful to build
detectors that are resilient in this regard.
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1 Introduction

Learning from real-world clinical data has poten-
tial to promote the quality of care, improve the effi-
ciency of healthcare systems, and support clinical
research. As a large proportion of clinical infor-
mation is recorded only in unstructured free-text
format, applying NLP to process and understand
the vast amount of clinical text generated in clinical
encounters is essential. However, clinical text is
known to be highly ambiguous, it contains complex
professional terms requiring clinical expertise to
understand and annotate, and it is written in dif-
ferent clinical contexts with distinct purposes. All
these factors together make clinical NLP research
both rewarding and challenging.

In this tutorial, we will discuss the characteristics
of clinical text and provide an overview of some of
the tools and methods used to process it. We will
also present a real-world example to show the ef-
fectiveness of different NLP methods in processing
and understanding clinical text. Finally, we will
discuss the strengths and limitations of large lan-
guage models and their applications, evaluations,
and extensions in clinical NLP.

2 Learning Objectives

This three hour tutorial has several related learning
objectives:

1. Develop insight into the range of clinical text
data available

§The first two authors contributed equally to this work.

2. Develop insights into a range of clinical NLP
application areas

3. Understand the landscape of methods used in
clinical NLP

4. Identify potential obstacles associated with
working with clinical text

5. Understand privacy, legal, and ethical issues
associated with working with clinical text

6. Understand publication practices in clinical
NLP

Note that given regulatory constraints and eth-
ical sensitivities regarding the sharing of clinical
data, we are unable to distribute clinical corpora
discussed in this session to tutorial participants.

3 Target Audience and Prerequisites

This tutorial targets NLP researchers (students and
more experienced researchers) with an interest in,
or curiosity about working with clinical text. The
tutorial is designed to be accessible for anyone with
an interest in NLP.

4 Outline

The tutorial consists of three consecutive one hour
sessions, described below.

4.1 Introduction to Clinical NLP
The first session will introduce the broad area of
clinical NLP, focusing on the special characteris-
tics of clinical text and some of the challenges
associated with the application of NLP methods
to clinical notes (Nadkarni et al., 2011; Dalianis,
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2018; Wang et al., 2018). First, we will describe
the role of linguistic variation and technical clinical
vocabularies in clinical text, particularly regarding
issues related to polysemy, synonymy, misspellings,
and acronyms. Second, we will discuss the impor-
tance of contextual attributes in the context of clin-
ical information extraction, particularly negation,
uncertainty detection, and temporality detection.
Third, we will discuss typical processes involved in
developing clinical NLP systems, including chal-
lenges related to corpus development and annota-
tion. Fourth, we will briefly outline some of the
major clinical NLP datasets available for research.
Fifth, we will summarise some of the regulatory,
legal, and ethical issues related to clinical NLP,
with a particular focus on privacy protection. Fi-
nally, we will make some brief comments regarding
publication practices and grant funding in clinical
NLP.

Suggested Reading
1. Dalianis (2018). Clinical Text Mining: Sec-

ondary Use of Electronic Patient Records.
Springer (Dalianis, 2018)

2. Nadkarni et al. (2011) Natural Language Pro-
cessing: an introduction. Journal of the Amer-
ican Medical Informatics Association (Nad-
karni et al., 2011)

3. Lederman et al. (2022). Tasks as needs: re-
framing the paradigm of clinical natural lan-
guage processing research for real-world deci-
sion support. Journal of the American Medi-
cal Informatics Association (Lederman et al.,
2022)

4.2 Clinical NLP in Practice
In the second session, we will compare several
approaches to named-entity recognition (NER) us-
ing real-world data. For this, we will use a small
dataset of 283 pathology reports from The Royal
Melbourne Hospital and Peter MacCallum Cancer
Centre, Melbourne, Australia (Rozova et al., 2023).
Phrases in the reports were annotated for invasive
fungal infection (IFI), a rare but dangerous condi-
tion for immunocompromised patients.

We will start by exploring the dataset: we will
look at the reports themselves to see if there is any
structure that we could leverage in our analysis.
The audience will be presented with a report and
asked to determine what information is relevant to
IFI. We will take note of specific terminology, the
importance of negation and context dependency.

Next, we will look into the provided manual
annotations and run summary statistics noting the
number of concept categories, how common each
category is and its lexical diversity. Based on this
information, we will discuss what performance can
be reasonably expected from a NER model.

Finally, we will compare three common ap-
proaches to NER: a simple dictionary-based ap-
proach, conditional random fields (CRF), and
BERT, a transformer-based model (Devlin et al.,
2018). We will consider the strengths and weak-
nesses of each approach, especially given the ap-
plication context. We will then compare the perfor-
mance of the models and discuss what additional
steps can be undertaken for future improvement.

Suggested Reading
1. Liu and Panagiotakos (2022) Real-world data:

a brief review of the methods, applications,
challenges and opportunities. BMC Medical
Research Methodology (Liu and Panagiotakos,
2022)

2. Velupillai et al. (2018) Using clinical Natural
Language Processing for health outcomes re-
search: overview and actionable suggestions
for future advances. Journal of Biomedical
Informatics (Velupillai et al., 2018)

4.3 Large Language Models & Clinical NLP
The third session introduces the use of Large Lan-
guage Models (LLMs) in the context of clinical
NLP, primarily focusing on their applications, do-
main adaptation, and evaluation. We first discuss
the categories of LLMs by considering encoders
and decoders and how they are applied to various
clinical NLP tasks. For encoders, we introduce
using the models for standard NLP tasks involv-
ing clinical text and clinical prediction tasks at the
point of care (Lewis et al., 2020; Jiang et al., 2023).
For decoders, we discuss the applications enabled
by the general-domain LLMs (Lee et al., 2023;
Thirunavukarasu et al., 2023) such as medical ques-
tion answering (Singhal et al., 2023) and zero- and
few-shot learning (Agrawal et al., 2022). Then we
show whether adaptation to the clinical domain is
still necessary for LLMs that have already been
pretrained on vast amounts of general-domain text
by summarising relevant results from recent work
(Lehman et al., 2023). We go on to discuss evalua-
tion issues relevant for LLMs in the clinical context,
as the application of clinical LLMs extends beyond
mere predictive accuracy. We talk about the other

180



perspectives that need to be considered when mea-
suring the effectiveness and usefulness of LLMs
for healthcare (Wornow et al., 2023).

In addition to this core content, we briefly touch
on other related topics surrounding LLMs for clini-
cal applications, including multimodal modelling,
retrieval-augmented generation (RAG), and imple-
mentation issues in the clinical context. For mul-
timodal modelling, we discuss the interaction be-
tween various modalities from patient data, such as
text, image, and structured data, and how LLMs en-
able new modelling approaches (Moor et al., 2023).
For RAG, we talk about its potential benefits in the
clinical setting, such as for open-ended QA (Zakka
et al., 2023). We also discuss issues and challenges
in implementing and monitoring current LLMs in
the clinical environment (Finlayson et al., 2021).

Suggested Reading
Suggested readings for this section include:

1. Lehman et al. (2023) Do we still need clinical
language models? Proceedings of the Con-
ference on Health, Inference, and Learning.
(Lehman et al., 2023)

2. Thirunavukarasu et al. (2023) Large lan-
guage models in medicine. Nature Medicine
(Thirunavukarasu et al., 2023)

3. Wornow et al. (2023) The shaky foundations
of large language models and foundation mod-
els for electronic health records. NPJ Digital
Medicine (Wornow et al., 2023)
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Vlada Rozova is a Postdoctoral Research Fel-
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Ethics Statement

While we do not anticipate any specific ethical
concerns arising directly from this tutorial, there
are a number of more general ethical issues asso-
ciated with NLP that are particularly acute with
respect to clinical NLP. These issues include dual
use (NLP-supported epidemiological studies can
be used to identify and support at-risk groups in the
community, but could also be used to stigmatise
these same groups); bias (NLP models trained on
existing clinical text may amplify existing biases);
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tions), and reproducibility (there is some tension
between the need to protect patient privacy and the
ethical imperative to support reproducibility via
data sharing).
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