
Proceedings of the Ancient Language Processing Workshop associated with RANLP-2023, pages 213–221,
held in Varna Bulgaria, Sept 8, 2023.

https://doi.org/10.26615/978-954-452-087-8_024

213

Tibetan Dependency Parsing with
Graph Convolutional Neural Networks

Bo An
Institute of Ethnology and Anthropology,Chinese Academy of Social Sciences

Building 6, Zhongguancun Nandajie 27, Beijing, China
anbo@cass.org.cn

Abstract

Dependency parsing is a syntactic analy-
sis method to analyze the dependency rela-
tionships between words in a sentence. The
interconnection between words through de-
pendency relationships is typical graph
data. Traditional Tibetan dependency
parsing methods typically model depen-
dency analysis as a transition-based or
sequence-labeling task, ignoring the graph
information between words. We propose
a graph neural network (GNN)-based Ti-
betan dependency parsing method to ad-
dress this issue. This method treats
Tibetan words as nodes and the de-
pendency relationships between words as
edges, thereby constructing the graph data
of Tibetan sentences. Specifically, we use
BiLSTM to learn the word representations
of Tibetan, utilize GNN to model the rela-
tionships between words, and employ MLP
to predict the types of relationships be-
tween words. We conduct experiments on a
Tibetan dependency database, and the re-
sults show that the proposed method can
achieve high-quality Tibetan dependency
parsing results.

1 Introduction
In recent years, the explosive growth of Ti-
betan text data, fueled by the popularization
of information technology in Tibetan areas,
has made the processing and deeper under-
standing of Tibetan information a hot research
topic in Tibetan natural language processing
(NLP) (Faggionato and Meelen, 2019). De-
pendency analysis is an essential task for the
semantic modeling of texts, as it provides a
basis for deep semantic analysis and has sig-
nificant research and practical value. The re-
sults of dependency analysis can be directly
applied to numerous basic natural language
processing tasks, such as question answering

(Cao et al., 2019), sentiment analysis (Xiaomei
et al., 2018), and named entity recognition (Jie
et al., 2017).
Traditional Tibetan dependency analysis

methods can be mainly classified into two cat-
egories: (1) statistical learning-based methods
(Hua et al., 2013), which usually require ex-
perts to design corresponding rules and fea-
tures and then use statistical learning models
to model and predict dependency syntax. This
type of method heavily relies on Tibetan lin-
guistic experts. (2) deep learning-based meth-
ods(An and Long, 2021) , which have been
widely applied in Tibetan information process-
ing, such as word segmentation, text classifica-
tion, and dependency analysis, with the rapid
development of deep learning. The major ad-
vantage of deep learning-based methods is that
they do not require expert features. Tibetan
dependency analysis can be achieved through
a fixed network structure and annotated data.
However, the methods above model Tibetan

dependency analysis as a classification or tran-
sition problem, ignoring the features of graph
data in dependency analysis. Graph data
features can better model the relationships
between different words and ignore the dis-
tance between words in the text, i.e., they
can model the dependency information be-
tween words that are far apart. They can also
model higher-order relationships through indi-
rect relationships between words, which signif-
icantly impacts modeling word relationships,
such as AMR (Abstract Meaning Representa-
tion) (Wang et al., 2020).
This paper presents a method for Tibetan

dependency analysis based on graph convo-
lutional neural networks. Tibetan word rep-
resentations are modeled using Bert (Devlin
et al., 2018) and BiLSTM, followed by graph
neural networks(GNN) (Zhou et al., 2020) for



214

modeling dependency relationships between
words. MLP is then employed for relationship
classification and determining the dependency
relationship types. The results on Tibetan de-
pendency analysis data indicate that GNN can
significantly enhance the performance of Ti-
betan dependency analysis, thus affirming the
value of graph information.

The main contributions of our work are
as follows: (1) We propose using graph con-
volutional neural networks (GCN) to model
the dependency relationships in Tibetan sen-
tences. (2) Experimental results show that the
proposed method outperforms other methods,
such as R-GCN (Schlichtkrull et al., 2018), in
Tibetan dependency analysis, which may be
due to insufficient training data.

The main contributions are twofold:

• We propose using GCN to model the de-
pendency relationships in Tibetan sen-
tences.

• Experimental results show that the
GCN+MLP method outperforms other
methods, such as R-GCN, in Tibetan de-
pendency analysis, which may be due to
insufficient training data.

The rest of the paper is organized as follows:
Section 2 introduces some of the most related
work, including Tibetan dependency parsing
models and graph neural networks. Our pro-
posed model is detailed described in Section
3. Section 4 shows our experimental results
on the introduced Tibetan dependency analy-
sis dataset and presents the effects of different
modules. We conclude our work in Section 5.

2 Related Work
This section briefly reviews related work, in-
cluding Tibetan dependency parsing meth-
ods and neural-based methods for dependency
parsing.

2.1 Tibetan dependency parsing
method

The Tibetan dependency analysis dataset is
the foundation for researching dependency
analysis methods. Therefore, the existing Ti-
betan dependency analysis data is introduced

first. The current Tibetan dependency anal-
ysis dataset includes the following: For in-
stance,Hua et al. 2013 construct a Tibetan de-
pendency tree semi-automatically. It includes
a word-pairs dependency classification model,
and dependency edges annotation model based
on Tibetan language grammar. Tashi and Duo
2015 built a Tibetan dependency treebank
of multidimensional windows based on their
grammar. Toudan et al. 2018 annotated de-
pendency trees for sentences from Tibetan pri-
mary school textbooks. Wu et al. 2019 intro-
duced a Tibetan dependency analysis dataset
with 1500 sentences annotated based on com-
plex dependency grammar with 62 types of
dependency arcs. (An and Long, 2021) con-
structs a Tibetan dependency parsing dataset
with more than 5000 Tibetan sentences based
on an interlinearized annotation dataset.
Currently, most of the Tibetan dependency

parsing models are composed of two compo-
nents: feature extraction and dependency pre-
diction. A discriminant model is proposed to
conduct Tibetan dependency parsing based on
feature engineering by Tibetan experts (que-
cai rang and Zhao, 2013). And their model
was further utilized for the parsing of Tibetan
compound sentences. Xia et al. 2019 ex-
tracted unigram, bigram, trigram, and some
Tibetan-specific features for each word in the
sentence and employed a perceptron classifier
to perform Tibetan dependency parsing. All
of the above works were based on features de-
signed by Tibetan language experts. Com-
pared with these methods, the main advantage
of our method is that our model can extract
useful feature vectors automatically.

2.2 Neural-based method for
dependency analysis

In recent years, neural-based models have
achieved competitive performances in many
natural language processing tasks, such as
word segmentation, part-of-speech, and se-
mantic parsing. Furthermore, this line of
works have two advantages: avoiding complex
feature engineering and better generalization.
Due to the above advantages, neural-based
models are introduced for dependency analysis.
There are two main research directions for de-
pendency analysis: translation-based parsers
and graph-based parsers.



215

Figure 1: An example of Tibetan dependency tree.

Chen and Manning introduced the first
neural translation-based dependency parser
(Chen and Manning, 2014), which utilizes a
feedforward network to assign a probability to
each action the parser. Andor et al. (Andor
et al., 2016) augments the above model with
a beam search and a conditional random field
loss objective for correcting false predictions.
The Long-Short-TermMemory (LSTM) model
was employed to achieve the state-of-the-art
performance (Dyer et al., 2015; Kuncoro et al.,
2016).

The first neural graph-based parser 2016
utilizes the attention mechanism from ma-
chine translation and LSTM to conduct depen-
dency parsing. Hashimoto et al. 2016 extend
the graph-based parser as a multi-task neural
model and employ a bilinear MLP label clas-
sifier. Furthermore, Cheng et al. 2016 further
resolve the limitation of being unable to condi-
tion the scores of each possible arc on previous
parsing decisions of other graph-based parsers.
Dozat et al. 2016 propose bi-affine classifiers
to predict arcs and labels for dependency anal-
ysis tasks and achieve state-of-the-art perfor-
mances. Recently, with the wide use of deep
contextual embeddings (Peters et al., 2018),
Schuster et al. 2019 introduced a multilingual
transfer framework that utilizes deep contex-
tual embeddings in an unsupervised fashion.

(An and Long, 2021) proposes a deep
learning-based Tibetan dependency parsing
method using BiLSTM and multi-layer percep-
tron. (Duo et al., 2021) models the Tibetan
dependency parsing task using deep learning-
based transition. Recently, scholars have in-
troduced deep learning methods to the task
of Tibetan dependency parsing task, resulting

in an improvement in the performance of Ti-
betan dependency parsing. Despite the poten-
tial of graph neural networks, they have not
been utilized in Tibetan dependency parsing
tasks. Hence, this paper proposes a graph neu-
ral network-based Tibetan dependency pars-
ing method to better model the relationships
between words.

3 The GCN-based Tibetan
Dependency Parsing Method

3.1 Task Definition
Dependency parsing is a natural language pro-
cessing task that involves analyzing the gram-
matical structure of a sentence by identify-
ing the relationships between the words in it.
Moreover, Figure 1 presents an example of a
Tibetan dependency tree.

Specifically, given a sentence S consisting
of n words w1, w2, ..., wn, dependency parsing
aims to construct a directed acyclic graph G =
(V,E), where V = v1, v2, ..., vn is the set of
vertices representing the words in S, and E ⊆
V ×V is the set of directed edges representing
the syntactic dependencies between words.
Each edge ei,j = (vi, vj) in E is labeled

with a dependency type ri,j ∈ R, where R is
the set of all possible dependency types. The
dependency tree’s root is the vertex with no
incoming edges. Thus, the dependency tree
T = (V,E′) is a tree if it contains n− 1 edges
and satisfies the constraints mentioned above.
The output of a dependency parser is the

dependency tree T that represents the sen-
tence’s grammatical structure. This tree can
be used for various downstream applications,
such as machine translation, information re-
trieval, and text summarization.



216

This work employs the dataset introduced
by (An and Long, 2021). There are 34 types
of dependency arcs in our Tibetan dependency
grammar. We present them in Table (1).

3.2 GNN for Tibetan Dependency
Parsing

Tibetan dependency parsing includes word seg-
mentation, word relation, and arc label predic-
tion. The framework of Tibetan dependency
parsing is presented in Figure 2.
We employ SegT (Huidan Liu and Yeping,

2012) for Tibetan word segmentation in this
work. We utilize the Tibetan-Roberta-base to
implement the embedding layer, which gener-
ates the embedding for each Tibetan syllable.
Moreover, we employ BiLSTM (Kiperwasser
and Goldberg, 2016) to compose the syllable
embeddings into the word embedding hi.

We employ Graph Convolutional Networks
(GCN) to model Tibetan dependency parsing.
GCNs can be used to model dependency pars-
ing by constructing a graph representation of
the sentence, where the vertices represent the
words in the sentence, and the edges repre-
sent the syntactic dependencies between them.
Each vertex is associated with a word embed-
ding hi, which captures the semantic informa-
tion of the word. Formally, let G = (V,E)
be the graph representation of the sentence,
where V = v1, v2, ..., vn is the set of vertices
representing the words in the sentence, and
E ⊆ V × V is the set of directed edges rep-
resenting the syntactic dependencies between
words. Each vertex vi is associated with a
word embedding hi ∈ Rd, where d is the di-
mension of the embedding. To capture the
interactions between the vertices in the graph,
GCNs perform graph convolution operations
on the vertex embeddings. Specifically, the
embedding of each vertex is updated by ag-
gregating the embeddings of its neighboring
vertices, weighted by an adjacency matrix A
that encodes the edge information. The graph
convolution operation can be expressed as:

h
(l+1)
i = σ

 ∑
j∈N (i)

1

ci,j
W (l)h

(l)
j


where h(l)i is the embedding of vertex i at layer

l, N (i) is the set of neighboring vertices of ver-
tex i, W (l) is the weight matrix at layer l, and
ci,j is a normalization constant that ensures
that the sum of the weights of the neighbors
of vertex i is 1. The activation function σ is
typically a non-linear function, such as the rec-
tified linear unit (ReLU).
After several graph convolution operations,

the final vertex embeddings can be fed into a
classifier to predict the syntactic dependency
labels between the words.

3.2.1 Arc Prediction Layer
This layer comprises two classifiers; the first
predicts the dependency head for each word,
while the second classifies the type of depen-
dency arc between the word and its head word.

Head Classifier. The input to this classi-
fier is the feature vectors of each word, and it
outputs the index of the word’s head. Since
the number of words in a sentence is variable,
this is a variable-class classification task, mak-
ing it impossible to utilize a multi-layer percep-
tron (MLP) typically used for category tasks.
We draw inspiration from the biaffine atten-
tion model (Dozat and Manning, 2016) to ad-
dress this challenge and employ two MLP mod-
els to build the head classifier. Specifically, we
use Equation (1) and (2) to convert the feature
vector of each word into two vectors f⃗head ∈ dh

and f⃗dep ∈ dh, respectively, to represent the
head and dependent nodes of the dependency
arc.

f⃗head
i = MLP headf⃗i (1)

fdep
i = MLP depf⃗i (2)

Next, the position of the head node for each
word i is calculated using a bilinear atten-
tion mechanism as per Equation (3), where
harci ∈ dh represents the score for the j-th
word as the head node of the i-th word. Here,
Fdep ∈ dnh is a matrix obtained by concatenat-
ing the head representation f⃗head

i of all words
in the sentence, where n is the number of
words in the sentence. Additionally, U ∈ dhh

is the parameter matrix, and u⃗ ∈ dh is the
parameter vector.

harcj = FdepUfdep
i + Fheadu (3)



217

Table 1: The types of Tibetan dependency arcs.

Item Dependency Relationship Label Item Dependency Relationship Label
1 Subject predicate relationship SBV 2 Direct object relationship DOB
3 Indirect object relationship IOB 4 Subject verb relationship SBC
5 Predicative verb relationship CPS 6 Modifier relationship MOD
7 Apposition relationship APP 8 Quantitative relationship QUN
9 Constellation relationship COO 10 Connection relationship CON
11 Referential relationship REF 12 Qualified relationship DET
13 Negative relationship NEG 14 Interrogative relationship ITG
15 Location relationship LOC 16 Time relationship TMP
17 Expression relationship EXP 18 Genitive relationship GEN
19 Ergative relationship ERG 20 Dative relationship DAT
21 Comitative relationship COG 22 Plural relationship PLU
23 Honorific relationship HON 24 Nominalized relationship NML
25 ROOT relationship ROOT 26 Tense and aspect relationship TAM
27 Punctuation relationship PUN 28 Description relationship DES
29 Particle relationship PAR 30 Target relationship TAR
31 Auxiliary relationship AUX 32 Manner relationship MAN
33 Source relationship SOU 34 Non-predicative verb relationship PER

Figure 2: The framework of Tibetan dependency parsing.



218

Table 2: The statistics of the dataset.

Dataset #Instances Average Length
train 4970 6.8
validation 200 6.7
test 400 7.1

Finally, the head node with the highest score
is selected as per Equation (4) to correspond
to the word.

headi = max
0<x<n

hx (4)

Type Classifier. The number of depen-
dencies between head and dependent words is
fixed, making this a fixed-class classification
problem. To better model the dependency re-
lationship between the head and dependent
words, we use both the representations of the
head and dependent words to predict the type
of dependencies, as shown in Equation (5).
Where j is the head word index of word i;
W1 ∈ df∗m∗f and W2 ∈ d2f∗m a parameter ma-
trix; m is the number of types of dependency
arcs; b⃗ ∈ dm is a parameter vector.

headlabeli = f⃗T
j W1~ri + (~rj ⊕ ~ri)W2 + ~b (5)

The type of the dependency arc is predicted
using Equation (6).

typei = max
0<x<m

headlabelx (6)

4 Experiments
In this section, we conduct experiments of Ti-
betan dependency analysis task on the dataset
from (An and Long, 2021) .

4.1 Dataset
The dataset is divided into three parts: the
training set, validation set, and test set. Table
(2) displays the statistics of the dataset.

4.2 Evaluation Metrics
Four evaluation metrics are employed in this
paper, as follows.

4.2.1 UAS
The unlabeled attachment score (UAS) is de-
fined as the percentage of all words that have
found their correct head word, including the

root node. Notably, this metric does not con-
sider the type of dependency arcs. UAS is
calculated as per Equation (7), where Nhead

word

is the number of words labeled with the cor-
rect head word, and Nword represents the total
number of words in the dataset.

UAS =
Nhead

word

Nword
(7)

4.2.2 LAS
The labeled attachment score (LAS) is defined
as the percentage of all words that have the
correct head word and the correct type of de-
pendency arc, including the root node. LAS
is calculated as per Equation (8), where Narc

word

is the number of words with the correct head
word and type of dependency arc.

LAS =
Narc

word

Nword
(8)

4.2.3 UEM
The unlabeled exact match score (UEM) is de-
fined as the percentage of sentences in which
all the words have the correct head words.
UEM is calculated using Equation (9), where
Nhead

sentence is the number of sentences with
correct head words for all their words, and
Nsentence is the total number of sentences in
the dataset.

UEM =
Nhead

sentence

Nsentence
(9)

4.2.4 LEM
The labeled exact match score (LEM) is de-
fined as the percentage of sentences in which
all the words have the correct head words and
type of dependency arcs. LEM is calculated us-
ing Equation (10), where Narc

sentence is the num-
ber of sentences with correct head words and
type of dependency arcs for all their words.

UEM =
Narc

sentence

Nsentence
(10)

4.3 Experimental Settings
The validation set is utilized to determine the
best hyperparameters for the model. The hy-
perparameters of the model are then set as fol-
lows: Tibetan-Roberta-base1 is employed to

1https://huggingface.co/sangjeedondrub/tibetan-
roberta-base �



219

generate the embedding of Tibetan syllables,
and the vectors are composed into word em-
beddings based on BiLSTM. The dimension
of the word embedding is set at dw = 768,
whereas the dimension of the semantic role la-
bel is set at dl = 100.

The dimension of the multi-layer perceptron
matrix MLP head is set at 768 ∗ 100, and the
dimension of MLP dep is also set at 768 ∗ 100.
The model’s dropout is set at 0.3, and it em-
ploys the adadelta optimizer, with the learning
rate set at 0.001. All parameters are randomly
initialized using a uniform distribution among
[−0.2, 0.2].

Moreover, we compare our model with
deep learning-based Tibetan dependency pars-
ing models, including word2vec + BiLSTM
+ MLP (DL-BiLSTM), word2vec + RNN +
MLP (DL-RNN), word2vec + GRU + MLP
(DL-RNN) and word2vec + Stacked LSTM +
MLP (DL-Stacked) from (An and Long, 2021).
And the word embedding is trained by fast-
Text (Thavareesan and Mahesan, 2020). In
addition, we compare our model with R-GCN
(Schlichtkrull et al., 2018) with similar set-
tings.
All experiments were conducted on a GPU

server with a CPU configuration of 2* AMD
Skyline 7742, 512G DDR4 RAM, and 4*
Nvidia A100 40G GPU cards.

4.4 The Overall Experimental Results
The Tibetan dependency parser is designed to
predict the head word and type of dependency
arc for each word in a sentence. Our frame-
work is implemented using Pytorch, and the
overall results are presented in Table (4).
The experimental results demonstrate that

the method proposed in this paper achieved
the best performance on all four metrics, high-
lighting the value of graph neural networks in
Tibetan dependency analysis. And our pro-
posed method achieves better performances
than R-GCN, we speculated that R-GCN re-
quires more data to train the relation repre-
sentation matrix, whereas our training data
is sufficient to train the relation matrix effec-
tively.

4.5 Ablation Study
To better understand the impact of different
parts of the model on the experimental re-

sults, an ablation study was conducted to ana-
lyze the value of pre-trained language models
and graph neural networks in Tibetan depen-
dency analysis. The experimental results are
presented in Table 3, where ”- GCN + LSTM ”
represents our proposed model replacing GCN
with LSTM, ”-Bert + GCN” represents our
proposed model replacing Bert with word2vec.
From these results, two conclusions can be

drawn: (1) Graph neural networks signifi-
cantly impact the performance of Tibetan de-
pendency analysis, and using word embed-
dings as the lexical representation method can
still improve the performance. (2) Tibetan
pre-trained language models also hold value
in Tibetan dependency analysis, and the per-
formance of Tibetan dependency analysis de-
clines to some extent when using word embed-
dings to replace the BERT model.

5 Conclusion
To address the issue of inadequate model-
ing of dependency graph information in cur-
rent Tibetan dependency analysis methods,
this paper proposes a graph neural network-
based approach for Tibetan dependency anal-
ysis. Furthermore, a Tibetan pre-trained lan-
guage model is employed to improve the per-
formance further. The experimental results
demonstrate the effectiveness of the graph neu-
ral network and the Tibetan pre-trained lan-
guage model for enhancing Tibetan depen-
dency analysis. Large models such as Chat-
GPT have recently achieved significant results
in natural language processing tasks such as
dialogue and knowledge extraction. In the fu-
ture, we aim to explore large models for low-
resource languages and their potential applica-
tions in low-resource scenarios.

6 Acknowledgments
This work is supported by the Natural Sci-
ence Foundation of China (22BTQ010), the
National Natural Science Foundation of China
(62076233) and the Innovation Project major
research of Chinese Academy of Social Sciences
(2022MZSQN001).

References
Bo An and Congjun Long. 2021. Neural depen-

dency parser for tibetan sentences. Transactions



220

Table 3: Overall results of various models on Tibetan dependency parsing datasets.

Model UAS LAS UEM LEM
DL-RNN 0.905 0.851 0.675 0.54
DL-GRU 0.913 0.865 0.677 0.565
DL-LSTM 0.918 0.867 0.687 0.560
DL-Stacked 0.912 0.864 0.680 0.570
R-GCN 0.907 0.852 0.630 0.542

Our model 0.924 0.879 0.696 0.577

Table 4: The result of ablation study.

Model UAS LAS UEM LEM
Our model 0.924 0.879 0.696 0.577

- GCN + LSTM 0.913 0.865 0.677 0.565
-Bert + GCN 0.918 0.867 0.687 0.560

on Asian and Low-Resource Language Informa-
tion Processing, 20(2):1–16.

Daniel Andor, Chris Alberti, David J Weiss,
Aliaksei Severyn, Alessandro Presta, Kuzman
Ganchev, Slav Petrov, and Michael Collins. 2016.
Globally normalized transition-based neural net-
works. arXiv: Computation and Language.

Qingxing Cao, Xiaodan Liang, Bailin Li, and Liang
Lin. 2019. Interpretable visual question answer-
ing by reasoning on dependency trees. IEEE
Transactions on Pattern Analysis and Machine
Intelligence.

Danqi Chen and Christopher D Manning. 2014. A
fast and accurate dependency parser using neu-
ral networks. pages 740–750.

Hao Cheng, Hao Fang, Xiaodong He, Jianfeng Gao,
and Li Deng. 2016. Bi-directional attention with
agreement for dependency parsing. arXiv: Com-
putation and Language.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of
deep bidirectional transformers for language un-
derstanding. arXiv preprint arXiv:1810.04805.

Timothy Dozat and Christopher D Manning. 2016.
Deep biaffine attention for neural dependency
parsing. arXiv preprint arXiv:1611.01734.

Jiecairang Duo, Quecairang Hua, Keyou Huan,
and Rangdangzhi Cai. 2021. Transition based
neural network dependency parsing of tibetan.
In MATEC Web of Conferences, volume 336,
page 06018. EDP Sciences.

Chris Dyer, Miguel Ballesteros, Wang Ling, Austin
Matthews, and Noah A Smith. 2015. Transition-
based dependency parsing with stack long short-

term memory. arXiv: Computation and Lan-
guage.

Christian Faggionato and Marieke Meelen. 2019.
Developing the old Tibetan treebank. In Pro-
ceedings of the International Conference on Re-
cent Advances in Natural Language Processing
(RANLP 2019), pages 304–312, Varna, Bulgaria.
INCOMA Ltd.

Kazuma Hashimoto, Caiming Xiong, Yoshimasa
Tsuruoka, and Richard Socher. 2016. A joint
many-task model: Growing a neural network
for multiple nlp tasks. arXiv: Computation and
Language.

Quecairang Hua, Wenbing Jiang, Haixing Zhao,
and Qun Liu. 2013. Semi-automatic building ti-
betan treebank based on word-pair dependency
classification. Journal of Chinese Information
Processing.

Weina Zhao Jian Wu Huidan Liu, Minghua Nuo
and He Yeping. 2012. Segt:a practical tibetan
word segmentation system. Journal of Chinese
information processing.

Zhanming Jie, Aldrian Obaja Muis, and Wei Lu.
2017. Efficient dependency-guided named entity
recognition. In Thirty-First AAAI Conference
on Artificial Intelligence.

Eliyahu Kiperwasser and Yoav Goldberg. 2016.
Simple and accurate dependency parsing us-
ing bidirectional lstm feature representations.
arXiv: Computation and Language.

Adhiguna Kuncoro, Miguel Ballesteros, Lingpeng
Kong, Chris Dyer, Graham Neubig, and Noah A
Smith. 2016. What do recurrent neural network
grammars learn about syntax. arXiv: Computa-
tion and Language.

https://doi.org/10.26615/978-954-452-056-4_035


221

Matthew E Peters, Mark Neumann, Mohit Iyyer,
Matt Gardner, Christopher Clark, Kenton Lee,
and Luke Zettlemoyer. 2018. Deep contextual-
ized word representations. arXiv: Computation
and Language.

Hua que-cai rang and Hai Xing Zhao. 2013.
Tibetan text dependency syntactic analysis
based on discriminant. Computer Engineering,
39(4):300–304.

Michael Schlichtkrull, Thomas N Kipf, Peter
Bloem, Rianne Van Den Berg, Ivan Titov,
and Max Welling. 2018. Modeling relational
data with graph convolutional networks. In
The Semantic Web: 15th International Confer-
ence, ESWC 2018, Heraklion, Crete, Greece,
June 3–7, 2018, Proceedings 15, pages 593–607.
Springer.

Tal Schuster, Ori Ram, Regina Barzilay, and Amir
Globerson. 2019. Cross-lingual alignment of con-
textual word embeddings, with applications to
zero-shot dependency parsing. arXiv: Computa-
tion and Language.

Tashi-Gyal and Duo-La. 2015. Theory and method
of tibetan dependency treebank construction.
Journal of Tibet University.

Sajeetha Thavareesan and Sinnathamby Mahe-
san. 2020. Sentiment lexicon expansion using
word2vec and fasttext for sentiment prediction
in tamil texts. In 2020 Moratuwa engineering
research conference (MERCon), pages 272–276.
IEEE.

Nima-Zhaxi Toudan Cairang and Wanme Zhaxi.
2018. Study on the technique of tibetan depen-
dence treebank building. Plateau Science Re-
search, 2(03):103–109.

Tianming Wang, Xiaojun Wan, and Hanqi Jin.
2020. Amr-to-text generation with graph trans-
former. Transactions of the Association for
Computational Linguistics, 8:19–33.

XIA Wuji and HUAQUE Cairang. 2019. Depen-
dency tree based tibetan semantic dependency
analysis. Journal of Tsinghua University (Sci-
ence and Technology), 59(9):750–756.

Zou Xiaomei, Yang Jing, Zhang Jianpei, and Han
Hongyu. 2018. Microblog sentiment analysis
with weak dependency connections. Knowledge-
Based Systems, 142:170–180.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan
Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. 2020. Graph
neural networks: A review of methods and ap-
plications. AI open, 1:57–81.


	Introduction
	Related Work
	Tibetan dependency parsing method
	Neural-based method for dependency analysis

	The GCN-based Tibetan Dependency Parsing Method
	Task Definition
	GNN for Tibetan Dependency Parsing
	Arc Prediction Layer


	Experiments
	Dataset
	Evaluation Metrics
	UAS
	LAS
	UEM
	LEM

	Experimental Settings
	The Overall Experimental Results
	Ablation Study

	Conclusion
	Acknowledgments

