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Abstract

We present BabyLemmatizer 2.0, a linguis-
tic annotation pipeline for POS-tagging and
lemmatizing cuneiform languages, as well as
pretrained models for a variety of ancient
Mesopotamian languages and dialects. We eval-
uate the system on two dialects of Akkadian:
Assyrian and Babylonian, as well as on two
genealogically unrelated cuneiform languages:
Sumerian and Urartian. We also test our system
on Ancient Greek and Latin to experiment with
its performance on non-cuneiform languages.
Our system achieves a POS-tagging accuracy
between 95-98% and a lemmatization accuracy
of 94-96% depending on the language or di-
alect. The system can predict correct POS-tags
for 83-91%, and lemmata for 68-84% of out-
of-vocabulary word forms depending on the
language or dialect.

1 Introduction

Lemmatization is a linguistic annotation task that
labels words with their dictionary forms. This is
essential for morphologically complex highly in-
flectional and agglutinative languages, where the
relationship between surface forms and their dictio-
nary forms are opaque. In historical languages with
less standardized spelling, lemmatization becomes
even more crucial because also the relationship
between the surface forms and their graphemic rep-
resentations may be obscure, and make searching
attestations of words belonging to highly inflec-
tional part-of-speech classes difficult, or close to
impossible, without cumbersome regular expres-
sion based search queries.

This issue can be demonstrated with the Akka-
dian verb nadānu "to give", which occurs in 367 dif-
ferent surface forms and in 477 different spellings

0Aleksi Sahala was responsible for developing the tool,
training and evaluating the models and writing the paper. Kris-
ter Lindén was the PI of the project and provided feedback for
the manuscript. BabyLemmatizer 2.0 is accessible at https:
//github.com/asahala/BabyLemmatizer

in the Open Richly Annotated Cuneiform Corpus
(Oracc) (Tinney et al., 2006). The simplest finite
surface form, the third person singular G-present
inaddin "he/she gives" is spelled in seven different
ways in Oracc: logographically IN.SUM, SUM,
SUM{+in}, logo-syllabically SUM-in and syllabi-
cally i-na-din, i-na-di3-in and ina-ad-din. Similarly
the third person singular G-preterite and G-perfect
forms iddin and ittadin are spelled in eight and five
different ways in Oracc, respectively.

Part-of-speech (POS) tagging is another impor-
tant concept in the NLP of morphologically com-
plex languages. Besides its obvious use, that is,
searching for words that belong to a certain POS-
class, POS-tags can be used to some extent to dis-
ambiguate lemmatization. For instance, in Akka-
dian the logogram IGI can denote various concepts
depending on its context. If preceded by a prepo-
sition, it often denotes being in front of something
(e.g. ina IGI = ina pāni), but in other contexts it
can also mean šı̄bu "witness", nāmuru "be(come)
visible" or ı̄nu "eye", among many other readings
and meanings.

Traditionally Akkadian and other cuneiform
language lemmatization and POS-tagging has
been done with rule-based systems, including a
dictionary-based and morphology-based methods.
The disadvantage of dictionary-based lemmatizers
is that they are unable to provide POS-tagging or
lemmatization for previously unseen word forms.
Although morphology-based tools can produce an-
notations for unseen word forms as long as their
lemmata and morphology have been defined, they
struggle to deal with spelling variation, which is
difficult to describe using rules without producing
excessive over-generation.

In this paper we present an OpenNMT-based
neural lemmatizer and POS-tagger for Akkadian
and other cuneiform languages. The presented neu-
ral network based approach aims to solve both of
the previously mentioned issues. It can learn many-
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to-many relations between all spellings of word
forms and their possible lemmata in context, and
use these learned mappings to predict annotation
for previously unseen word forms, also in previ-
ously unseen spellings.

Lemmatization of cuneiform texts opens them to
a variety of computational methods, including, but
not limited to semantic and network analysis, and
enables harmonization of existing resources, which
is essential for the digitalization of Assyriological
research.

2 Cuneiform and the Cuneiform
Languages

The cuneiform writing system was used in ancient
Mesopotamia from the middle of the fourth millen-
nium BCE until the first or the second century CE.
According to modern understanding, it was first
developed by the Sumerians and later adapted by
speakers of several other languages such as Akka-
dian, Elamite, Hittite, Hurrian and Urartian.

Originally cuneiform was a logographic writ-
ing system, where all the signs denoted various
concepts, such as numbers and commodities that
were relevant to trade, taxing and ownership in the
early Mesopotamian society. Around 2800 BCE
the writing system took its first clear steps toward
a more phonetic expression of human language by
allowing certain logograms to be used for marking
syllabic values (Michalowski, 2008). For example,
the sign KA that originally denoted the Sumerian
word for mouth /kag/ began also to mark a pho-
netic syllable /ka/, which allowed ancient scribes to
express more abstract ideas such as combinations
of grammatical affixes. After the cuneiform writ-
ing system had been adopted to the East-Semitic
Eblaic and Akkadian languages around the 25th
century BCE, the use of syllabic signs became
widespread, as logograms alone were too ambigu-
ous for expressing the Semitic stem-internal mor-
phology (Michalowski, 2008).

Cuneiform signs can be used for four distinct
purposes. The two basic uses are logograms that
express ideas such as "king", "wife", "temple" or
"to build", and syllabograms that express syllable-
like sounds like /ma, mu, mi, me/. The remaining
uses are determinatives and phonetic complements.
The former were used to classify words into various
categories, such as divine names, trees or wooden
objects, and places among many others. Phonetic
complements, on the other hand, were used sporad-

ically to give hints on how a logogram next to them
should be read by repeating some of its sounds
syllabically (Jagersma, 2010).

2.1 Transliteration of Cuneiform
Transliteration of cuneiform aims to represent the
original text in the Latin alphabet sign by sign. Con-
ventionally, logograms are written in capital letters
(except in Sumerian), and the syllabic signs are
always written in lowercase. The marking of deter-
minatives and phonetic complements vary. In paper
publications they are written in superscript, but in
the Oracc notation they are wrapped in curly brack-
ets. Phonetic complements are distinguished from
determinatives using a plus sign, as in APIN{+ru}
for the Akkadian word ikkaru "farmer" (Tinney and
Robson, 2019).

Another detail relevant to this paper in cuneiform
transliteration is indexing that aims to separate
cuneiform signs with similar readings from each
other. The index of the sign (or its reading) is ex-
pressed in subscript numbers. For instance, there
are two common cuneiform signs that indicate the
syllable /šu/. To keep these two signs separate in
transliteration, they are transliterated as šu and šu2,
allowing the reader to know which sign was used in
the original source. This makes the transliteration
of cuneiform reversible and more transparent.

2.2 Languages
For this paper, relevant languages are Akkadian,
Sumerian and Urartian.

Akkadian is best known as the language of the
Babylonians and Assyrians. It belongs to the East-
Semitic languages and is documented in writing
from the Old Akkadian period ca. 2400 BCE to
the first or the second century CE. The Assyrian di-
alect, once spoken in the northern Mesopotamia, is
divided into three chronological variants: Old As-
syrian (1950-1500 BCE), Middle Assyrian (1500-
1000 BCE), and Neo-Assyrian (1000-612 BCE).
The Babylonian dialect is divided into Old Babylo-
nian (2000-1500 BCE), Middle Babylonian (1500-
1000 BCE), Neo-Babylonian (1000-626 BCE) and
Late Babylonian (626 BCE-100 CE). An artificial
language known as Standard Babylonian was also
used in literary contexts by Akkadian speaking
scholars for over a millennium. Although this lan-
guage was based on Old Babylonian, the texts writ-
ten in Standard Babylonian often contain residue
from the contemporary spoken Babylonian and As-
syrian dialects.
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Akkadian features a complex morphology that
combines linear (prefixation and suffixation) and
nonlinear (root-pattern morphology and infixation)
processes (Huehnergard and Woods, 2008). Akka-
dian is written mostly using syllabic signs, but a
selection of logograms is also used. The extent
of logogram use varies depending on the time pe-
riod and genre. Typically, everyday texts, such as
letters, do not contain many logograms, but they
are abundantly used until the later time periods in
scholarly texts.

Sumerian was an isolate language first attested
in writing in the middle of the fourth millennium
BCE. Sumerian died as an everyday vernacular in
the 18th century BCE and transformed into a liter-
ary language used by the Babylonian and Assyrian
scholars in various contexts until the end of the
cuneiform tradition circa the first or the second
century CE (Jagersma, 2010). As an agglutinating
language with 10 grammatical cases, possessive
suffixes and heavy verbal prefixation its morphol-
ogy is quite rich, not as opaque as that of Akkadian.
Although Sumerian is generally written in a logo-
syllabic manner, the earliest texts were purely lo-
gographic, and some texts written after the second
millennium BCE used only syllabic signs. Counter-
intuitively, these syllabic, so-called unortographic,
texts are often the most difficult ones to understand
due to their high ambiguity (Michalowski, 2011).

Urartian was a language spoken in Asia Mi-
nor and the northern reaches of Mesopotamia. It
belonged to the Hurro-Urartian language family
and is attested between the 9th and the 7th century
BCE on inscriptions written in the Neo-Assyrian
cuneiform script (Wilhelm, 2008). Similarly to
Sumerian, Urartian is a heavily agglutinating lan-
guage with a complex morphology, including nine
grammatical cases, Suffixaufnahme (stacking of
nominal suffixes in genitive constructions) and rich
verb affixation. Due to the relatively low number
of surviving inscriptions and their repetitive nature,
the Urartian language is far less understood than
Akkadian or Sumerian.

3 Digital Resources

The most relevant digital resource to the work pre-
sented in this paper is the Open Richly Annotated
Cuneiform Corpus, better known as Oracc (Tinney
et al., 2006). It contains ca. 112,000 cuneiform
texts in various languages, including but not lim-
ited to Sumerian, Akkadian and Urartian. Other

important digital resources include the Cuneiform
Digital Library Initiative (Englund et al., 1998)
(ca. 350,000 entries, including texts and meta-
data), Database of Neo-Sumerian Texts (Molina,
2002) (ca. 105,000 Neo-Sumerian administrative
documents), The Electronic Babylonian Library
Fragmentarium (Jiménez et al., 2018) (16,000 frag-
ments), Archibab (Charpin, 2009) (10,000 texts),
Ebla Digital Archives (Milano and Maiocchi, 2016)
(3,000 texts) and Achemenet (Briant and Henkel-
man, 2009) (4,000 texts). For a more detailed sur-
vey on cuneiform language resources, see Charpin
(2014).

Oracc contains ca. 2.22 million words of Akka-
dian as of 2023. As the total number of words in
known Akkadian tablets and inscriptions has been
estimated to be around 10 million (Streck, 2010), a
majority of Akkadian texts remain unannotated to
date.1

For Sumerian, Oracc hosts texts comprising 4.45
million words and they include the vast majority of
the important Sumerian texts and archives. Most
of the Sumerian data has already been lemmatized,
and therefore the need for Sumerian annotation
tools is not as urgent as it is for Akkadian. Nonethe-
less, many witnesses of Sumerian composite texts
still lack lemmatization.

For Urartian, Oracc contains texts comprising
26,000 words, 24,000 of which have already been
lemmatized. The total number of non-digitized
texts existing outside Oracc is not clear to us.

4 Previous Work

Akkadian lemmatization and POS-tagging have
been approached with finite-state morphology on
several occasions since the late 1980s. The first
attempt to morphologically analyze, lemmatize
and POS-tag Akkadian with finite-state transduc-
ers was taken by Kataja and Koskenniemi (1988).
Barthélemy (1998) and Macks (2002) used Prolog
Definite Clause Grammars for parsing Akkadian
verbal morphology, and later a procedural approach
to Akkadian verb morphology was taken by Sahala
(2014). Bamman (2012) built a finite-state model
for lemmatizing Old Assyrian letters, and Sahala
et al. (2020) published the BabyFST, a finite-state
model for Babylonian.

1There is no reliable estimate of the total number of Akka-
dian words in various digital resources, but alongside Oracc, at
least 30,000 texts exist in other digital resources with varying
accessibility (Charpin, 2014).
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For Sumerian, morphological analysis, POS-
tagging and lemmatization have been done with
the GATE Java Suite (Tablan et al., 2006) and more
recently with a dictionary-based approach by Chiar-
cos et al. (2018).

To date, the most comprehensive lemmatizer for
cuneiform languages is L2 (Tinney, 2019), a dic-
tionary and rule-based tool that has been used to
annotate Oracc. L2 is also capable of providing
morphological analysis for Sumerian.

For a more comprehensive survey on Computa-
tional Assyriology see Sahala (2021), and on the
use of Machine Learning in ancient language pro-
cessing Sommerschield et al. (2023).

5 Data

All our cuneiform language data comes from Oracc
JSON dumps downloaded in January 2023. For the
experiments done in this paper, we extracted all the
texts written in Sumerian, Akkadian and Urartian.

We selected the data from Oracc as follows:

• The Urartian data set comprised all texts
from Oracc labeled as Urartian, the major-
ity of the data coming from the eCUT (Chris-
tiansen et al., 2016). In total, this set consisted
of 24,000 words.

• The Neo-Assyrian data set comprised all
texts from Oracc labeled as Neo-Assyrian di-
alect. In total, this set consisted of 331,000
words. This corpus consists mostly of royal
inscriptions and letters that primarily come
from SAAo (Radner et al., 2005) and ATAE
(Novotny et al., 2017).

• The First Millennium Babylonian data set
consisted of all Oracc texts labeled as any
variant of Babylonian or Akkadian, excluding
Neo-Assyrian, in the first millennium BCE,
thus containing Standard Babylonian, Neo-
Babylonian and Late Babylonian texts. In
total, this consisted of 1.33 million words be-
longing to a wide range of genres. The largest
portions of data came from RINAP (Frame
et al., 2007), ADSD (Pirngruber et al., 2018),
SAAo, RIBO (Frame et al., 2015) and HBTIN
(Pearce et al., 2011).

• The Sumerian (literary) data set consisted of
all Sumerian texts in Oracc’s ePSD2/Literary,
eSD2/earlylit and ePSD/Praxis* (Tinney et al.,
2017). In this data set, the subscript indices

were not removed from the Sumerian data
as homophones with different indices can be-
long to different POS-classes and denote com-
pletely different lemmata (see section on tok-
enization). We chose to separate literary texts
from administrative texts due to their differ-
ing vocabulary and grammar. This data set
comprised 268,000 words.

• The Sumerian (administrative) data set con-
sisted of all Sumerian Early Dynastic, Old
Babylonian, Old Akkadian, Ebla and Lagaš
II administrative texts in Oracc’s ePSD2 cor-
pus. The Ur III corpus was excluded because
it would have completely overwhelmed this
data set with its 81,000 texts. As in the data set
above, the subscript indices were preserved.
This data set consisted of 570,000 words.

To test our system on historical non-cuneiform
languages, we used the Latin and Ancient Greek
PROIEL treebanks (Haug and Jøhndal, 2008), com-
prising 205,000 and 210,000 words respectively.

5.1 Training Data Cleanup

All our models are trained by using the Oracc data,
but we run it through heuristic cleanup rules to
provide more consistent learning results for the
models and to minimize the amount of unwanted
and meaningless errors in the evaluation, such as
{d}x-x being tagged as a divine name in one place
but as an unknown POS-class somewhere else.

For the Akkadian data, we merge some inconsis-
tent lemmatizations with their most common rep-
resentations in the data (e.g. aganutillû vs. agan-
nutillû) and correct obvious lemmatization errors
such as bēlēšu, which is de facto the phonological
transcription of the word instead of lemma. We
also apply the Helsinki normalizations (Jauhiainen
et al., 2019) to all divine names in the corpus to
make their lemmatization consistent. Therefore
variation such as Anunnaki, Anunnaku and Anunak
is consistently mapped into Anunnaki. Unfortu-
nately the normalizations are available only for
names that occur in the first millennium Akkadian
texts.

For all cuneiform languages, we do the following
normalizations:

1. Remove all lacuna indicators such as vari-
ous brackets, exclamation marks and question
marks.
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2. Remove all entries that have been transliter-
ated as asterisks. This convention is used in
some composite texts where that only exist in
phonological transcription, such as iddinū for
varying spellings in the witnesses like id-di-nu
and id-di-nu-u2.

3. Remove all entries without lemmatization un-
less they are supposed to be unlemmatized, as
is the case of lacunae (breakages in tablets)
and numbers.

4. Remove all lemmatizations from numbers and
force the POS-tag n to them.

5. Force POS-tags for broken personal names,
place names and divine names if the determi-
native is visible but the words have not been
POS-tagged in Oracc. This can be done in
high confidence for divine names and personal
names.

6. Force the POS-tag u for broken words in case
they do not have a POS-tag.

We did not do any modifications to the Ancient
Greek and Latin data. These data sets were used as
they are distributed in the Universal Dependencies
GitHub repository.

6 Description of the System

Our system first pre-annotates the input text using
a encoder-decoder model, and then aims to cor-
rect possible errors by using simple post-correction
rules. The system is based on the Open Neural Ma-
chine Translation Toolkit (OpenNMT) (Klein et al.,
2017) and handles the POS-tagging and lemmati-
zation almost completely as a machine translation
task. Relying purely on OpenNMT makes the tool
easy to setup and allows more flexibility and easier
customization. The whole pipeline is written in
Python and it comes with an easy-to-use command-
line interface and extensive documentation.

As our tool is purely based on Oracc notation,
it aims to harmonize various digital resources and
to encourage various projects to publish their data
openly in Oracc.

6.1 Network Architecture
Our neural network architecture for both, the POS-
tagger and the lemmatizer, follows the architecture
of the Universal Lemmatizer (Kanerva et al., 2021).
We use a deep attentional encoder-decoder network,

where the encoder is a two layer BiLSTM that reads
the sequence of logo-syllabically tokenized input.
The decoder for generating the output character se-
quences is a two layer unidirectional LSTM with in-
put feeding attention. However, we train the model
for a lesser amount of steps relative to the training
data size, as it improves the training speed but does
not seem to affect the model’s performance. We
use a batch size of 64 and start the learning rate
decay halfway through the training process.

6.2 Tokenization
We tokenize the input sequences in a special way
that is particularly suitable for the logo-syllabic
cuneiform writing system. From here on, we re-
fer to this as logo-syllabic tokenization. In logo-
syllabic tokenization, syllabic signs and phonetic
complements that represent phonetic sequences are
encoded as space-separated character sequences,
whereas logograms and determinatives are encoded
as indivisible tokens. We retain indices for lo-
gograms, because homophonic logograms can refer
to different parts-of-speech and lemmata (e.g. in
Akkadian DUG3 = t.ābu "good" and DUG4 = qabû
"speak"), but for syllabic signs indexation is re-
moved to bring homophonic readings such as šu
and šu2 closer to each other. Based on our ob-
servations, splitting compound logograms such as
MA.NA into MA and NA yields better results than
handling them as monolithic units.

The tagger is trained with 5-grams of logo-
syllabically tokenized word forms and it aims to
predict the POS-label for the center word wrapped
inside double angle brackets (see Table 1 for to-
kenization examples). The lemmatizer is trained
with tokenized word forms followed by its POS-
tag, as well as the word’s previous and following
POS-tags to provide shallow information about
the word’s context. This input string sequence is
mapped to its lemma on the character level, en-
abling the system to infer unseen lemmata.

6.3 Lemmatization and POS-tagging Process
The input text is first tokenized logo-syllabically
and fed into the tagger. The tagger output is then
used as the context information for the lemmatizer,
which produces the fully annotated output consist-
ing of the lemma and the POS-tag.

The post-correction comprises two steps. First,
we calculate the distribution of lemmata assigned
for each word form + POS-tag pair in the training
data and in case any single lemma constitutes more
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Original {m}KU6-li-i-di ina ŠA3-bi x MA.NA
Source {m} KU6 - l i - i - d i | i n a « ŠA3 - b i » x | MA . NA
Target N
Source ŠA3 - b i P0=PRP P1=N P2=u
Target l i b b u
Combined libbu + N

Table 1: Example of logo-syllabic tokenization. The upper part shows the tokenization fed into the tagger, the center
word wrapped in double angle brackets, and the wanted output N (noun). The lower table shows the tokenization
fed into the lemmatizer, including the center word and its POS-tag along with the preceding and the following
POS-tags, and the wanted output as a sequence of characters.

than 70% of the lemmatizations of the given pair,
we replace the predictions made by the neural net-
work with this lemmatization. Next, we repeat the
same step but instead of using word forms and their
POS-tags, we also use the POS-tags assigned to the
preceding and the following words. These steps
aim to ensure, that close to unambiguous lemmata
are always lemmatized consistently. However, due
to the fact that the context information is taken into
account already in the neural lemmatization, the
post-correction no longer improves the lemmatiza-
tion results significantly as in the previous version
of BabyLemmatizer (Sahala et al., 2022). There-
fore the post-correction is now mostly used for
assigning lemmatizations with confidence scoring.

Confidence scoring aims to assist humans to
manually verify and correct the lemmatization re-
sults. This system is mainly designed for detect-
ing out-of-vocabulary (OOV) words, that is, word
forms that were not present in the training data,
and categorizing these words into different classes
based on their spellings. The lowest confidence
score of 0 is given to OOV words written logo-
graphically as the logogram and its lemma has a
suppletive relation. The score of 1 is given for
logo-syllabic spellings, which may have partially
suppletive relationship to their lemmata. Syllabic
OOV spellings are given a confidence score of 2.

Confidence scores between 3 and 5 are assigned
for in-vocabulary words. The score of 3 is given
to highly ambiguous words, such as polyvalent
logograms that exist in contexts that have not been
observed in the training data. The score of 4 is
given to words that show low or unlikely ambiguity,
and the highest score of 5 is given to words that
have low ambiguity and exist in a POS-context that
has been witnessed in the training data.

The lemmatization process is designed to be iter-
ative. For example, if a batch of 10,000 new texts

are to be lemmatized, this data set should be broken
into smaller subsets, for example in four batches of
2,500 texts each.

After each lemmatization batch, the tool gen-
erates OOV lexicons for all low confidence score
classes. These lists are sorted by frequency, allow-
ing maximal number of corrections per each cor-
rected entry. The lemmatizations can be corrected
simply entering the corrected lemma and POS-tag
for any word form in the OOV list, or accepting
the already given lemmatization by removing the
symbol # from the beginning of the line. When
the lemmatizer is run again, the system appends
these changes to the model’s lexicon, allowing it
to lemmatize them correctly in the future. After
the lemmatization results of the current batch are
considered to be clean enough, the model can be
retrained by using the the data from the current
batch appended to the model’s existing training
data, yielding an updated model augmented with
new manual corrections. This approach should
significantly reduce the time needed for manual
corrections after each batch.

6.4 CoNLL-U+ for Cuneiform

Our tool uses an extended CoNLL-U format for
input and output.2 The first ten columns follow
the standard notation, reserving the XPOS field for
the Oracc POS-label. In addition to the conven-
tional fields (ID, FORM, LEMMA, UPOS, XPOS,
FEATS, HEAD, DEPREL, DEPS, MISC), our CoNLL-
U+ format has the following fields: ENG for the
English translation, NORM for phonological tran-
scription, LANG for word’s language, FORMCTX

and XPOSCTX for storing temporary context infor-
mation for the system, SCORE for the confidence
scoring and LOCK for write-protecting the field in

2See https://universaldependencies.org/
format.html

https://universaldependencies.org/format.html
https://universaldependencies.org/format.html
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case the file has manual corrections that the system
should not overwrite.

The pipeline handles the conversion of CoNLL-
U+ into OpenNMT-compatible target and source
files and conversion of simple rawtext translitera-
tion into CoNNL-U+.

7 Evaluation

For evaluation, we train ten models for each data
set. We use a 80/10/10 train/dev/test split and esti-
mate the model’s accuracy, that is, the percentage
of correct analyses over all analyses, using 10-fold
cross-validation. We measure the accuracy in two
categories: first, for all the word forms in the test
set, and second for the OOV word forms only to
examine the models’ ability to predict labels for
words that were not present in the training data.
The results are summarized in Table 2 and Table
3 respectively. Confidence intervals of the cross-
validation are shown in parentheses.

We ignored all fully broken words in the eval-
uation, as assigning empty labels for completely
destroyed words is trivial.

7.1 Results for Cuneiform Languages

With the current data sets, the minimum accu-
racy scores for POS-tagging and lemmatization
of known word forms are 95% and 92%, respec-
tively. For OOV words, the system achieves mini-
mum accuracy of 81% for POS-tagging and 68%
for lemmatization. OOV lemmatization accuracy

seems to vary greatly depending on the language
and the diversity of the data set, the most strik-
ing difference being between the first millennium
Babylonian (68%) and the Sumerian literary texts
(84%). This difference can be explained partly by
the diversity of the Babylonian data, and partly by
Sumerian morphology, which is significantly more
transparent than that of Akkadian. The low per-
formance in the OOV lemmatization in administra-
tive Sumerian can be explained by inconsistencies
in the data especially in proper nouns. At times,
Oracc renders their lemmata as sequences of signs
separated by dots, whereas at times the dots are
not used, for instance, {d}nin-mar{ki} is lemma-
tized as Ninmar, Nin.mar, Nin.MAR, which makes
it difficult for the model to learn how to generalize.
About 18% of OOV lemmatization errors and 13%
of all lemmatization errors in this particular data
set are caused by such inconsistencies.

7.2 Comparison Against Version 1.0

Compared with the earlier version of BabyLemma-
tizer, the current tool clearly outperforms its neural
network performance, which significantly reduces
the improvement gained from post-correction. For
comparison, we used the same 500,000 word Baby-
lonian evaluation data set as we used in our earlier
report (Sahala et al., 2022). Better performance of
the neural network translates directly into a better
performance in OOV word lemmatization, improv-
ing the prediction accuracy of Lemma+POS labels

Category Urartian Neo-Assyrian Babylonian Sum. (lit.) Sum. (adm.)
NN POS-tagger 96.97 (±0.39) 97.67 (±0.17) 96.80 (±0.18) 94.79 (±0.28) 96.32 (±0.08)
NN Lemmatizer 93.45 (±0.66) 95.35 (±0.20) 95.02 (±0.31) 94.67 (±0.25) 95.50 (±0.10)
NN Combined 92.49 (±0.72) 94.48 (±0.26) 93.82 (±0.36) 92.28 (±0.37) 94.57 (±0.09)
PC POS-tagger 96.97 (±0.39) 97.72 (±0.17) 96.80 (±0.18) 94.77 (±0.28) 96.32 (±0.08)
PC Lemmatizer 94.12 (±0.57) 95.47 (±0.21) 95.14 (±0.30) 94.66 (±0.27) 95.53 (±0.08)
PC Combined 93.18 (±0.63) 94.59 (±0.28) 93.94 (±0.34) 92.27 (±0.37) 94.60 (±0.07)
OOV-rate 8.26 9.20 6.06 16.80 5.21

Table 2: Results of the 10-fold cross-validation for the neural net (NN) and the post-corrected (PC) results. Combined
represents word forms where both, lemma and POS-tag were predicted correctly. OOV-rate shows the average
percentage of OOV words in the test set.

Category Urartian Neo-Assyrian Babylonian Sum. (lit.) Sum. (adm.)
POS-tagger 83.00 (±1.96) 90.87 (±0.74) 85.78 (±0.81) 84.39 (±0.84) 81.17 (±0.77)
Lemmatizer 70.10 (±2.16) 71.16 (±1.14) 67.82 (±1.36) 83.93 (±1.00) 70.51 (±1.24)
Combined 65.73 (±2.06) 70.15 (±1.09) 65.52 (±1.31) 76.49 (±1.15) 67.20 (±1.28)

Table 3: Results of the 10-fold cross-validation for OOV words only. This table does not contain separate results for
NN and PC, because post-correction does not affect OOV words.



210

for OOV words on average by 10 percentage points.
The performance increase is summarized in Table
4.

Category All OOV
NN POS-tagger +0.14 +4.06
NN Lemmatizer +8.87 +8.84
NN Combined +8.91 +10.48
PC POS-tagger +0.14 +4.06
PC Lemmatizer +0.35 +8.37
PC Combined +0.45 +10.01

Table 4: Average improvement in accuracy-% from v1.0
to v2.0, overall and for OOV words (NN for neural net
and PC for post-corrected).

7.3 Experiment on Latin and Ancient Greek
To test our system on non-cuneiform languages,
we tagged and lemmatized the PROIEL treebanks
for Latin and Ancient Greek (Table 5). For these
languages, we used character sequences as input
format for both the tagger and the lemmatizer with
the same context information as in the logo-syllabic
tokenization (5-grams for tagger and adjacent POS-
context for lemmatizer). We used the training, de-
velopment and test data provided at the Universal
Dependencies GitHub.

Category Greek Latin
POS-tagger 96.70 95.31
Lemmatizer 96.70 95.81
Combined 94.96 94.03
OOV POS-tagger 87.54 84.64
OOV Lemmatizer 74.47 75.92
OOV Combined 73.18 74.92
OOV-rate 11.02 10.58

Table 5: Results for the Ancient Greek and Latin data.
The upper table shows the overall results and the lower
table the results for OOV words only.

8 Conclusions and Future Work

We presented an updated version of BabyLemma-
tizer, a pipeline for POS-tagging and lemmatiz-
ing cuneiform languages and evaluated its perfor-
mance on Sumerian, first millennium Babylonian,
Neo-Assyrian and Urartian texts extracted from
Oracc to observe its performance for the first time
outside Babylonian texts. The system achieves
a POS-tagging accuracy between 95-98% and a
lemmatization accuracy of 94-96% depending on
the language or dialect. For OOV words only,

the current version can predict correct POS-tags
for 83-91%, and lemmata for 68-84% of the in-
put word forms from transliteration. Compared
with the earlier version, the current one has about
10% higher accuracy in OOV lemmatization and
POS-tagging due to better neural network perfor-
mance. We also tested the system for lemmatizing
and POS-tagging the PROIEL Ancient Greek and
Latin treebanks, achieving results similar to those
with the cuneiform languages.

In the future, we plan to add prediction for UD
POS-tags, phonological transcription and morpho-
logical labels for Akkadian, Sumerian and Urartian.
We also plan on adding full Oracc lemma predic-
tion that includes the English translation of the
word following Oracc’s lemma[translation]POS
format, but prior to this more data cleanup is re-
quired.
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